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Abstract—We consider the estimation of an integer vector x̂ ∈

Z
n from the linear observation y = Ax̂ + v, where A ∈ R

m×n

is a random matrix with independent and identically distributed
(i.i.d.) standard Gaussian N (0, 1) entries, and v ∈ R

m is a
noise vector with i.i.d. N (0, σ2) entries with given σ. In digital
communications, x̂ is typically uniformly distributed over an
n-dimensional box B. For this estimation problem, successive
interference cancellation (SIC) decoders are popular due to their
low complexity, and a detailed analysis of their word error rates
(WERs) is highly useful. In this paper, we derive closed-form
WER expressions for two cases: (1) x̂ ∈ Z

n is fixed and (2)
x̂ is uniformly distributed over B. We also investigate some of
their properties in detail and show that they agree closely with
simulated word error probabilities.

Index Terms—Word error rate, successive interference can-
cellation, Babai’s nearest plane algorithm, integer least-squares
problems.

I. INTRODUCTION

A. Motivation

INTEGER parameter estimation [1] in linear models finds

many applications such as Global Positioning System

(GPS), cryptography, digital communications, code division

multiple access and others. The prototype problem is to

estimate (detect) an integer vector x̂ ∈ Z
n from the linear

model:

y = Ax̂+ v, v ∼ N (0, σ2I), (1)

where y ∈ R
m is an observation vector, A ∈ R

m×n is a

random matrix with i.i.d. standard Gaussian N (0, 1) entries

and v ∈ R
m is a Gaussian noise vector N (0, σ2I) with

variance σ2 of each entry.

The maximum-likelihood (ML) estimator of x̂ is the solu-

tion of a simple least-squares problem if the integer constraint
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is relaxed (e.g., x̂ ∈ R
n). However, such relaxation is not

highly accurate. Thus, the exact ML estimator of x̂ is given

by the solution of the following integer least-squares (ILS)

problem [1] [2]:

min
x∈Zn

‖y −Ax‖2. (2)

Because solving (2) is equivalent to finding the closest point

to y in the lattice {Ax : x ∈ Z
n}, problem (2) is also referred

to as the closest-point problem in cryptography [3]. In terms

of complexity, this problem is Non-deterministic Polynomial

(NP)-hard.

In digital communication links, prior to transmission, data

bits are mapped to a fixed set of modulation symbols (signal

constellation). For example, Section IV discusses M -ary pulse

amplitude modulation (PAM) constellation, which consists of

M integers. Thus, with M -ary PAM, the entries of x̂ are

selected from the fixed constellation of integers. The signal

constellations are also subject to the average power constraints.

Thus, the parameter vector x̂ satisfies a box constraint [4]–[8],

i.e.,

x̂ ∈ B := {x : ℓ ≤ x ≤ u, x, ℓ,u ∈ Z
n}. (3)

In practical systems, all signal constellation points are equally

likely, which is equivalent to x̂ being uniformly distributed

over B, see, e.g., [9], [10]. Thus, the box constraint (3) can be

incorporated in (2), which yields the so-called box-constrained

integer least-squares (BILS) problem:

min
x∈B

‖y −Ax‖2. (4)

Problems (2) and (4) can be optimally solved by a sphere

decoder (see [2] and [6]), which consists of pre-processing and

search stages. For example, one can pre-process matrix A by

using the Lenstra-Lenstra-Lovász (LLL) algorithm [11], which

reduces A to a nearly orthogonal lattice basis, which improves

the efficiency of the search stage. Other pre-processing strate-

gies include Vertical-Bell Labs layered Space Time algorithm

(V-BLAST) [12], Sorted QR Decomposition (SQRD) [13] and

their variants [5]–[7]. Perhaps, the most frequently utilized

discrete search algorithms for (2) or (4) are the Schnorr-

Euchner search algorithm [14] and its variants [3], [4], [15]–

[19].

It has respectively been shown in [20] and [9] that (2)

and (4) are NP-hard problems; hence, for many applications,

suboptimal algorithms are common. A popular one for solving

(2) is the ordinary successive interference cancellation (OSIC)

decoder, which is actually Babai’s nearest plane algorithm

[21]. It can also be adapted to form a box-constrained SIC

http://arxiv.org/abs/1808.09071v2
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(BSIC) decoder, a suboptimal algorithm for (4). Interestingly,

since the Schnorr-Euchner algorithm is a depth-first search,

the first valid solution found by it, is in fact the OSIC decoder

solution, also called Babai point [3], [22]. Similarly, the initial

solution of the Schnorr-Euchner decoder of (4) is the BSIC

decoder solution, which is a box-constrained Babai point [3],

[4], [6], [10].

Analyzing the performance of decoders helps to design

and characterize wireless communication links [23]–[29]. The

most common decoder performance measures involve the error

probability of the decoding process. Specifically, we utilize

the error probability that the output of the decoder is not

equal to the true integer vector x̂, which is called word error

rate (WER). The probability of correct detection is called the

success probability [1], [10], [22], [30].

The WER characterization of both OSIC and BSIC decoders

is useful [10], [22]. Indeed, with OSIC decoder solving (2) or

a BSIC decoder solving (4), their WERs, respectively denoted

by, P OSIC

e and P BSIC

e , serve as critical quality parameters. For

instance, a suitable threshold can be setup a priori – if the

WER is below is threshold – to indicate that the decoder

can be used with confidence. In this case, the additional

effort of optimally solving the ILS (2) or the BILS (4) yields

diminishing returns. However, if P OSIC

e or P BSIC

e is above the

threshold, then more accurate decoders, such as a sphere

decoder (ML estimator), should be used. Even if one intends

to solve the ILS (2) or the BILS (4) for ML estimator of x̂,

it is still of vital importance to compute P OSIC

e or P BSIC

e since

they are often used to approximate their WER.

B. Contributions

Closed-form expressions for P OSIC

e and P BSIC

e have respec-

tively been given in [22] and [10] when A in (1) is determinis-

tic. Moreover, closed-form WER expressions for zero-forcing

and BSIC decoders have been derived for when x̂ is a fixed

integer vector and for when x̂ is uniformly distributed over B
for deterministic A [31]. The relationship between WERs of

zero-forcing and BSIC decoders was also investigated in [31].

However, all of these formulas are for deterministic A. To

the best of our knowledge, for random A, the WER analysis

for SIC decoders has been lacking. This paper fills this gap

and derives closed-form WER expressions for both OSIC and

BSIC cases. Specifically, the contributions can be summarized

as follows:

• We derive a closed-form WER expression P OSIC

e for the

SIC decoder when x̂ is a fixed integer vector, and

investigate some of the properties of P OSIC

e . In particular,

we rigorously show that P OSIC

e tends to 0 when σ2, which

is the noise variance, tends to 0, and quantify the gap of

P OSIC

e for two sizes n1 and n2 (Section III)1.

• We derive a closed-form WER expression P BSIC

e for BSIC

decoder when x̂ is uniformly distributed over B, and

investigate some of its properties. In particular, we rigor-

ously show that P BSIC

e tends to 0 when σ tends to 0, and

1This paper was presented in part at 2017 IEEE International Conference
on Communications (ICC) [32].

quantify the gap of P BSIC

e for two sizes n1 and n2 (Section

IV).

• We study the relationship between P OSIC

e and P BSIC

e . More

precisely, we show that P BSIC

e ≤ P OSIC

e and they converge

to one value as noise variance σ2 tends to 0 (Section V).

C. Comparison with existing work

Many works have theoretically analyzed the performance

of some commonly used decoders [23]–[25]. Although our

closed-form WER analysis has some connections with those

in [23]–[25], there are main differences between them. More

specifically:

1) Our closed-form expressions (see eq. (12) and eq. (28)

in Sec. III and IV) for the WER of OSIC and BSIC de-

coders are simpler and more concise than [23, Theorem

1] (note that [23, eq. (14)] is more complicated than eq.

(10)), [24, eq. (18)] and [25, Theorem 1]. Because of this

simplicity, we can theoretically characterize the gap of

the WER corresponding to two different dimensions of

A (Theorems 3 and 7). However, we do not find similar

results in [23]–[25].

2) Another common difference between this paper and

[23]–[25] is the techniques for the WER analysis. Our

main techniques for the WER analysis are the distri-

bution of the triangular factor of the QR factorization

of the random matrix A, chain rule, random available

transformation and the computational formulas of OSIC

and BSIC which are simple and clear. The main tech-

niques of the joint error probability analysis in [23]

are the distribution of the triangular factor of the QR

factorization of the random matrix A, chain rule and

a result from [33]. Reference [24] mainly uses the total

probability theorem and some approximation techniques.

The main technique of [25] is based on some analysis

on n-PSK modulation. There are also some other differ-

ences between them, outlined below:

3) Another difference between this paper and [23] is that

our WER analysis is valid for any box B, while [23]

assumes that B is a cube with the edge length 22z , where

z is a positive integer. Since in some applications, such

as when the constellations are 4-QAM, the edge length

of B does not satisfy 22z for a positive integer z, and the

analysis of WER over an arbitrary box B is still needed.

4) Different from our paper which analyzes the WER of

OSIC and BSIC decoders, [24] investigates the bit error

rates of both minimum mean square error (MMSE)-non-

SIC and MMSE-SIC. From eq.(7)-eq.(8) and [24, eq.s

(2-7)], we can see that these two papers study the error

performance of different decoders.

5) There are three additional differences between this paper

and [25]: firstly, our analysis is valid for any box B,

which is different from [25] that assumes B is trans-

formed from n-PSK modulators. Secondly, the WER in

this paper refers to the probability that a decoder does

not successfully detect x̂, which is different from the

symbol error probability in [25] (please see [25, eq.s

(18) and (22)]). Thirdly, we give closed-form expres-

sions for the exact WER of OSIC and BSIC decoders,
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whereas [25] proposes an approximation of the symbol

error probability of multiple-input and multiple-output-

MMSE-SIC decoders.

The rest of the paper is organized as follows. In Section II,

we introduce the computational details of OSIC and BSIC de-

coders. In Section III, we develop a closed-form expression for

P OSIC

e and investigate its properties. In Section IV, we develop

closed-form P BSIC

e and study its properties. The relationship

between P OSIC

e and P BSIC

e is analyzed in Section V. Numerical

simulations to verify the derived formulas are presented in

Section VI. Finally, we summarize and discuss our results in

Section VII.

Notation: For a vector x, ⌊x⌉ denotes its nearest integer

vector, i.e., each entry of x is rounded to its nearest integer

(if there is a tie, rounding is downward), and xi denotes the

i-th element of x. Let aij be the element of matrix A at row

i and column j. Let P OSIC

e and P BSIC

e respectively denote the

WER of the SIC and BSIC decoders

II. OSIC AND BSIC DECODERS

In this section, we briefly introduce the computational

details of OSIC and BSIC decoders.

Suppose that A in (1) has the following thin QR factoriza-

tion [34, p.230]:

A = QR, (5)

where Q ∈ R
m×n is an orthonormal matrix and R ∈ R

n×n

is an upper triangular matrix. Let ȳ = QTy and v̄ = QTv.

Since v ∼ N (0, σ2I), v̄ ∼ N (0, σ2I). By (5), eq. (1) can be

transformed to

ȳ = Rx̂+ v̄, v̄ ∼ N (0, σ2I). (6)

The output of the OSIC decoder xOSIC ∈ Z
n is computed as

follows [21]:

cOSIC

i = (ȳi −
n
∑

j=i+1

rijx
OSIC

j )/rii, xOSIC

i = ⌊cOSIC

i ⌉ (7)

for i = n, n− 1, . . . , 1, where
∑n

n+1 rnjx
OSIC

j = 0.

By modifying the Babai nearest plane algorithm [21] with

taking the constrained box into account, one can get a BSIC

decoder (see, e.g., [10]). The output of BSIC decoder xBSIC ∈ B
can be computed via

cBSIC

i = (ȳi −
n
∑

j=i+1

rijx
BSIC

j )/rii,

xBSIC

i =











ℓi, if ⌊cBSIC

i ⌉ ≤ ℓi

⌊cBSIC

i ⌉, if ℓi < ⌊cBSIC

i ⌉ < ui

ui, if ⌊cBSIC

i ⌉ ≥ ui

(8)

for i = n, n− 1, . . . , 1, where
∑n

n+1 rnjx
BSIC

j = 0.

III. WER FOR OSIC DECODERS

In this section, we derive closed-form P OSIC

e and investigate

its properties.

A. WER for OSIC Decoders

This subsection derives the P OSIC

e expression. To this end,

we introduce two lemmas which are needed for the one

dimensional case and for characterizing the distribution of the

entries of R in (5). We begin by introducing the first lemma.

Lemma 1. Consider the following scalar linear model:

ȳ = rx̂ + v̄, v̄ ∼ N (0, σ2), (9)

where x̂ ∈ Z is a fixed unknown parameter number, v̄ ∈ R

is a Gaussian N (0, σ2) noise term, and r2 > 0, which is

independent with v̄, is a chi-square χ2
k random variable with

k > 0 degrees of freedom. Let x = ⌊ȳ/r⌉, then

Pk = Pr(x = x̂) = Ck

∫ arctan(1/(2σ))

0

cosk−1(θ)dθ (10)

where

Ck =
2Γ((k + 1)/2)√

πΓ(k/2)
. (11)

Proof. See Appendix A.

To derive the main theorem for P OSIC

e , we introduce the

following lemma from [35, P. 99].

Lemma 2. Let the entries of A ∈ R
m×n be i.i.d. Gaussian

N (0, 1) terms. Then all rij , 1 ≤ i ≤ j ≤ n, are independent.

Moreover, r2ii ∼ χ2
m−i+1 and rij ∼ N (0, 1) for 1 ≤ i < j ≤

n.

Based on Lemmas 1 and 2, the following theorem for P OSIC

e

can be obtained.

Theorem 1. The word error rate P OSIC

e of OSIC decoder (see

(7)) satisfies

P OSIC

e ≡ Pr(xOSIC 6= x̂) = 1−
n
∏

i=1

Pm−i+1, (12)

where Pi is defined in (10).

To prove Theorem 1, we first use the chain rule of condi-

tional probabilities to transform 1 − P OSIC

e to the product of

n terms with each of them representing a one-dimensional

conditional success probability. We use Lemma 1 to compute

each term and finally obtain (12). The detail is in the proof

below.

Proof. Let

P OSIC

s = Pr(xOSIC = x̂) = 1− P OSIC

e ,

then by the chain rule of conditional probabilities, we have

P OSIC

s = Pr

(

n
⋂

i=1

(xOSIC

i = x̂i)

)

= Pr(xOSIC

n = x̂n)

×
n−1
∏

i=1

Pr



(xOSIC

i = x̂i)|
n
⋂

j=i+1

(xOSIC

j = x̂j)



 .
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Thus, to show (12), we show

Pr(xOSIC

n = x̂n) = Pm−n+1, (13)

Pr



(xOSIC

i = x̂i)|
n
⋂

j=i+1

(xOSIC

j = x̂j)



 = Pm−i+1, (14)

for i = n− 1, n− 2, . . . , 1.

By (6),

ȳn = rnnx̂n + v̄n, v̄n ∼ N (0, σ2), (15)

and for i = n− 1, . . . , 1,

ȳi −
n
∑

j=i+1

rij x̂j = riix̂i + v̄i, v̄i ∼ N (0, σ2). (16)

Clearly, if xOSIC

i+1 = x̂i+1, · · · , xOSIC

n = x̂n, by (7), (15) and (16),

we can see that, for i = n, . . . , 1,

rii c
OSIC

i = riix̂i + v̄i, v̄i ∼ N (0, σ2). (17)

By Lemma 2,

r2ii ∼ χ2
m−i+1, i = n, n− 1, . . . , 1.

Thus, by (17) and Lemma 1, we can see that both (13) and

(14) hold. Hence, the theorem holds.

Remark 1. By (11),

n
∏

i=1

Cm−i+1 =

n
∏

i=1

(

2√
π

Γ((m− i+ 2)/2)

Γ((m− i+ 1)/2)

)

=

(

2√
π

)n
Γ((m+ 1)/2)

Γ((m− n+ 1)/2)
. (18)

Thus, by (10), eq. (12) can be rewritten as

P OSIC

e = 1− α

n
∏

i=1

∫ arctan(1/(2σ))

0

cosm−i(θ)dθ, (19)

where

α =

(

2√
π

)n
Γ((m+ 1)/2)

Γ((m− n+ 1)/2)
.

Note that (19) gives a more efficient way than (12) for

computing P OSIC

e since computing α is slightly more efficient

than computing
∏n

i=1 Cm−i+1.

Remark 2. In digital communications, matrix A is often

square. That is m = n. Thus, it is useful to simplify P OSIC

e in

(19) under this condition. Since Γ(1/2) =
√
π, when m = n,

we have

α =

(

2√
π

)n
Γ((m+ 1)/2)

Γ((m− n+ 1)/2)
=

(

2√
π

)n
Γ((n+ 1)/2)√

π

=
2nΓ((n+ 1)/2)√

πn+1

and
n
∏

i=1

∫ arctan(1/(2σ))

0

cosm−i(θ)dθ

=

n
∏

i=1

∫ arctan(1/(2σ))

0

cosn−i(θ)dθ

=

1
∏

j=n

∫ arctan(1/(2σ))

0

cosj−1(θ)dθ

=
n
∏

j=1

∫ arctan(1/(2σ))

0

cosj−1(θ)dθ,

where the second equality follows form the transformation that

j = n− i+ 1. Hence, when m = n, (19) can be rewritten as

P OSIC

e = 1− 2nΓ((n+ 1)/2)√
πn+1

n
∏

i=1

∫ arctan(1/(2σ))

0

cosi−1(θ)dθ.

B. Properties of OSIC Decoders

We now investigate some properties of P OSIC

e . We begin with

presenting the following important lemma, which can be used

to show that P OSIC

e tends to 0 if noise level σ tends to 0 for

the one dimensional case.

Lemma 3. For any integer k, it holds that

∫ π/2

0

cosk−1(θ)dθ =
1

Ck
. (20)

Lemma 3 can be obtained from [36, (24)].

Remark 3. Since

lim
σ→0

arctan

(

1

2σ

)

=
π

2
,

by (10) and (20), one can easily see that, for any integer k,

we have

lim
σ→0

Pk = 1. (21)

By (21), we have the following result.

Theorem 2. The WER P OSIC

e (see (12)) of OSIC decoders is

an increasing function of σ and n. Moreover, it satisfies

lim
σ→0

P OSIC

e = 0. (22)

Proof. By (20), one can easily see that for any fixed σ, we

have
∫ arctan(1/(2σ))

0

cosk−1(θ)dθ <
1

Ck
, (23)

which combing with (10) implies that Pk < 1 for any fixed σ.

Thus, by (12), P OSIC

e is an increasing function of n for any fixed

σ. One can easily show that P OSIC

e is an increasing function of

σ for any fixed n, thus, the first part of the result holds.

By (12) and (21), we have

lim
σ→0

P OSIC

e =1− lim
σ→0

n
∏

i=1

Pm−i+1

=1−
n
∏

i=1

lim
σ→0

Pm−i+1 = 0.
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Thus, eq. (22) holds.

Note that Theorem 2 also holds for deterministic A. More

details can be found in [10, Corollary 2].

In many applications, matrix A is a square matrix. For

ease of notation, let the WER of OSIC decoder be P OSIC

e (n)
when matrix A is n×n. The following results can be directly

obtained from (12).

Theorem 3. Let n1 < n2 be two integers, then P OSIC

e (n1) and

P OSIC

e (n2), which are respectively the WER of OSIC decoders

for sizes n1 and n2 satisfy

1− P OSIC

e (n2)

1− P OSIC
e (n1)

=

n2
∏

k=n1+1

Pk. (24)

Theorem 3 quantifies the gap between two P OSIC

e for two

different sizes. Specifically, if noise level σ converges to 0,

then by (21), Pk is close to 1 for any integer k. Thus, eq. (24)

indicates that when noise level σ converges to 0, the difference

between 1 − P OSIC

e (n1) and 1 − P OSIC

e (n2) is small, implying

that the gap between P OSIC

e (n1) and P OSIC

e (n2) is very small

as long as noise level σ is near 0. For more details, see the

numerical experiments in Section VI.

IV. WER FOR BSIC DECODERS

As mentioned before, for digital wireless communications

and other applications, x̂ is uniformly distributed over B. For

this condition, we analyze the WER of BSIC decoder.

A. WER for BSIC Decoders

To derive closed-form P BSIC

e , we first introduce the following

useful lemma, which analyzes the WER for one dimensional

case.

Lemma 4. Suppose that we have the scale linear model (9),

where x̂ ∈ Z is uniformly distributed on [ℓ, u], v̄ ∈ R is a

noise number following the Gaussian distribution N (0, σ2),
and r2 > 0, which is independent with v̄, follows central chi-

square distribution χ2
k with k > 0 degree of freedom. Let

x =











ℓ, if ⌊ȳ/r⌉ ≤ ℓ

⌊ȳ/r⌉, if ℓ < ⌊ȳ/r⌉ < u

u, if ⌊ȳ/r⌉ ≥ u

. (25)

Then x satisfies

Pr(x = x̂) = P̄k(u− ℓ), (26)

where for η > 0,

P̄k(η) =
Ck

η + 1

(

1

Ck
+ η

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

(27)

with Ck being defined in (11).

Proof. See Appendix B.

By using Lemmas 2 and 4, we have the following theorem

for P BSIC

e .

Theorem 4. Suppose that x̂ in (1) is uniformly distributed

over the constraint box B (see (3)), and x̂ and v are inde-

pendent. Then, the word error rate P BSIC

e of BSIC decoder (see

(8)) satisfies

P BSIC

e ≡ Pr(xBSIC 6= x̂) = 1−
n
∏

i=1

P̄m−i+1(ui − ℓi), (28)

where P̄m−i+1(ui − ℓi) is defined in (27).

Since x̂ is uniformly distributed over B, x̂i is uniformly

distributed on [ℓi, ui] for 1 ≤ i ≤ n. Theorem 4 can be proved

by using more or less the same techniques as that for Theorem

1, thus we omit its proof.

Remark 4. Similar to the ordinary case, by (18) and (27),

eq. (28) can be rewritten as

P BSIC

e = 1−β
n
∏

i=1

P̂i, (29)

where

β =

(

2√
π

)n
Γ(m+ 1)/2

Γ(m− n+ 1)/2

n
∏

i=1

1

(ui − ℓi + 1)

and

P̂i =
1

Cm−i+1
+ (ui − ℓi)

∫ arctan(1/2σ)

0

cosm−i(θ)dθ

with Cm−i+1 being defined in (11). Clearly, P BSIC

e computed

by (29) is more efficient than that via (28) since computing β
is slightly more efficient than computing

∏n
i=1

Cm−i+1

(ui−ℓi+1) .

Remark 5. In digital communications, the box B is usually

a n-dimensional cube. Let d be the length of the box (i.e.,

d = ui− li) and m = n, then (29) can be further rewritten as

P BSIC

e = 1−
n
∏

i=1

P̄i(d)

= 1− β
n
∏

i=1

(

1

Ci
+ d

∫ arctan(1/2σ)

0

cosi−1(θ)dθ

)

,

where Ci is defined in (11) and

β =

(

2√
π(d+ 1)

)n
Γ((m+ 1)/2)√

π
.

B. WER Properties of BSIC Decoders

In this subsection, we study some properties of the WER

expression. We first investigate the property of P̄i. Specifically,

we have the following result.

Lemma 5. For any fixed 1 ≤ i ≤ n and σ, P̄i (see (27)) is a

strictly decreasing function of η, i.e., the following inequality

holds for any ǫ > 0:

P̄i(η) > P̄i(η + ǫ). (30)



6

Proof. For any 1 ≤ i ≤ n, by (27), eq. (30) is equivalent to

Ci

η + 1

(

1

Ci
+ η

∫ arctan(1/2σ)

0

cosi−1(θ)dθ

)

>
Ci

η + ǫ+ 1

(

1

Ci
+ (η + ǫ)

∫ arctan(1/2σ)

0

cosi−1(θ)dθ

)

.

By some basic calculations, one can easily verify that the

aforementioned inequality can be rewritten as

1

Ci
>

∫ arctan(1/2σ)

0

cosi−1(θ)dθ.

By (23), the above inequality holds. Hence, eq. (30) holds.

By (28) and Lemma 5, one can easily obtain the following

result.

Theorem 5. Let B1 and B2 be any two n × n dimensional

boxes that satisfy u1
i − ℓ1i ≤ u2

i − ℓ2i for 1 ≤ i ≤ n, then the

WER of BSIC decoders corresponding to B1 and B2 satisfy

P BSIC

e (B1) ≤ P BSIC

e (B2). (31)

Similar to the ordinary case, the following result holds.

Theorem 6. The WER P BSIC

e of BSIC decoders is an increasing

function of σ and n. Moreover it satisfies

lim
σ→0

P BSIC

e = 0.

Proof. Similar to the proof of Theorem 2, one can see that

P BSIC

e is an increasing function of σ and n.

We next prove the second part of Theorem 6. By (27) and

(20), for any 1 ≤ i ≤ n, we have

lim
σ→0

P̄m−i+1(ui − ℓi)

=
Cm−i+1

ui − ℓi + 1

(

1

Cm−i+1
+ (ui − ℓi)

1

Cm−i+1

)

= 1. (32)

Thus

lim
σ→0

P BSIC

e =1− lim
σ→0

n
∏

i=1

P̄m−i+1(ui − ℓi) = 0.

Hence, the theorem holds.

Note that Theorem 6 also holds for deterministic A. For

more details, see [10, Corollary 2].

Similar to OSIC decoders, for easy notation, we denote the

WER of BSIC decoders for n×n square matrix A and a cube

B whose edge length is d as P BSIC

e (n, d). The following results

can then be directly obtained from (28).

Theorem 7. Let n1 < n2 be two integers, then P BSIC

e (n1, d)
and P BSIC

e (n2, d) satisfy

1− P BSIC

e (n2, d)

1− P BSIC
e (n1, d)

=

n2
∏

k=n1+1

P̄k(d). (33)

Similar to the case of OSIC, Theorem 7 quantifies the gap

between two P BSIC

e . Specifically, by (32), if σ is close to 0,

then P̄k(d) is close to 1 for any integer k and d. Thus, eq.

(33) indicates that when σ is close to 0, the difference between

1 − P BSIC

e (n1, d) and 1 − P BSIC

e (n2, d) is very small, implying

that the gap between P BSIC

e (n1, d) and P BSIC

e (n2, d) is very small

as long as noise level σ is close to 0. For more details, see

the numerical experiments in Section VI.

V. RELATIONSHIP BETWEEN P OSIC

e AND P BSIC

e

In this section, we investigate the relationship between P OSIC

e

and P BSIC

e .We first investigate the relationship between Pi and

P̄i (see (10) and (27)). Specifically, we have the following

result.

Theorem 8. For any fixed 1 ≤ i ≤ n and σ, if η > 0, then

Pi and P̄i satisfy

P̄i(η) > Pi. (34)

Moreover,

lim
η→∞

P̄i(η) = Pi. (35)

Proof. We first show (34). For any 1 ≤ i ≤ n, by (10) and

(27), eq. (34) is equivalent to

1

η + 1

(

1

Ci
+ η

∫ arctan(1/2σ)

0

cosi−1(θ)dθ

)

>

∫ arctan(1/(2σ))

0

cosi−1(θ)dθ

which can be rewritten as

1

Ci
>

∫ arctan(1/2σ)

0

cosi−1(θ)dθ.

By (23), the above inequality holds. Hence, eq. (34) holds.

In the following, we prove (35). Clearly, for any 1 ≤ i ≤ n,

lim
η→∞

P̄i(η) = lim
η→∞

Ci

η + 1

(

1

Ci
+ η

∫ arctan(1/2σ)

0

cosi−1(θ)dθ

)

=Ci

∫ arctan(1/(2σ))

0

cosi−1(θ)dθ = Pi.

Thus, eq. (35) holds.

By (12), (28) and Theorem 8, we obtain Theorem 9, which

characterizes the relationship between P OSIC

e and P BSIC

e .

Theorem 9. For any B, P OSIC

e and P BSIC

e have the following

relationship

P BSIC

e < P OSIC

e . (36)

Moreover,

lim
all 1≤i≤n,ui−ℓi→∞

P BSIC

e = P OSIC

e .

Note that Theorem 9 also holds for deterministic A, for

more details, see [10, Corollary 1]. The inequality (36) shows

that BSIC outperforms OSIC given the same level of noise.

Intuitively this is because, in OSIC, x̂ can be anywhere in

Z
n. In BSIC, x̂ is limited to finite number of choices, and

this property seems to improve the detection accuracy. Theo-

retically, it can be showed by using (12), (28) and Theorem

8.
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VI. NUMERICAL EXPERIMENTS

We now provide simulations and numerical results to verify

the accuracy of the WER formulas (12) and (28), which are

compared against the simulated WER. Each simulation run

is averaged over 105 samples. For simplicity, we assume that

m = n in all of the following tests (our extensive simulations

found that both (12) and (28) are accurate for both SIC and

BSIC decoders for both m = n and m > n).

We did the simulations by choosing a range of n, σ and

boxes B (more details on the choice of these parameters are

given subsequently). For each fixed n and σ, we randomly

generated 105 A’s, whose entries independent and identically

follow the standard Gaussian distribution N (0, 1), and 105

v’s with each of them following the Gaussian distribution

N (0, σ2I). To illustrate the effectiveness of (12), for each

generated A and v, we randomly generated an x̂ ∈ Z
n. To

verify the accuracy of (28), for each generated A and v, we

randomly generated an x̂ which is uniformly distributed over

a given B. Then, we got 105 linear models which satisfy (1)

only, and another 105 linear models which satisfy both (1)

and (3). Then, we found xOSIC and xBSIC corresponding to each

ordinary and box-constrained linear model according to (7)

and (8), respectively. Finally, the number of events xOSIC 6= x̂

divided by 105 was computed as the simulated WER for OSIC

decoders. Similarly, the number of events xBSIC 6= x̂ divided by

105 was computed as the simulated WER for BSIC decoders.

The theoretical WERs are computed from (12) and (28) for

SIC and BSIC decoders.

A. Numerical experiments for OSIC decoders

We investigate the OSIC WER to verify the accuracy of

(12). Figure 1 shows the WER for several noise standard

deviations and for several sizes 2 ≤ n ≤ 64. The results

for n = 64 are added to show the WER of OSIC decoder for

large size. The theoretical and simulated WERs match very

well, confirming the accuracy of (12). Theorem 2 states that

P OSIC

e increases when σ or n increases. Indeed, Figure 1 clearly

demonstrates the increasing trend of P OSIC

e with noise level σ.

As size n increases, P OSIC

e increases slightly and then plateaus.

Although when noise variance is small, e.g., high-SNR region,

P OSIC

e is more or less constant irrespective of size n.

We may use Theorem 3 to explain the above phenomena.

The numerical Pk values are depicted in Figure 2 for noise

variance of 0.1 and 0.5. For both cases, Pk converges to 1 as k
increases. Therefore, for given σ, the performance difference

between two OSIC detectors respectively with dimensions n1

and n2 (n2 > n1) is negligible, if n1 is sufficient large.

Intuitively, this phenomenon is because, for OSIC, detection

error is more likely to occur in early stages (see (13) and (14),

and also notice that Pk increases with k). Therefore, given that

all previous stages are correctly detected, the probabilities of

correct detection of later stages approach 1 (notice that Pk

approaches 1 for sufficient large k). Therefore, if n is above

a certain threshold, further increasing n causes negligible

performance deterioration.

2 4 6 8 10 12 14 16 18 20 64

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
E

R

=0.1

=0.2

=0.3

=0.4

=0.5

Theoretical
Simulated

Fig. 1. Theoretical and simulated WER for OSIC decoders

2 4 6 8 10 12 14 16 18 20 64
0.7

0.75

0.8

0.85

0.9

0.95

1

=0.1
=0.5

Fig. 2. Pk (see (10))

B. WER performance of BSIC decoders

Here, we test the accuracy of (28). Since in wireless

applications the box B is generally a hypercube where ℓi and

ui are fixed and the same for i = 1, . . . , n. Thus, we choose

B = [0, 1]n, B = [0, 3]n, B = [0, 7]n and B = [0, 63]n for

testing.

For a BSIC with B = [0, u]n (when u = 2q − 1 for

some integer q), each entry of x̂ ∈ B = [0, u]n can be

viewed as a (u + 1)-ary pulse-amplitude modulation (PAM)

baseband signal2. Furthermore, we evaluate BSIC WER in

terms of signal-to-noise ratio (SNR), which is commonly used

in wireless communications. For a BSIC with B = [0, u]n, the

2Strictly speaking, we have xi−u/2 is equivalent to a (u+1)-ary baseband
signal, since communication signal is generally symmetric to the origin.
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2 4 6 8 10 12 14 16 18 20 64
0
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Fig. 3. Theoretical and simulated WER for BSIC decoders for B = [0, 1]n

2 4 6 8 10 12 14 16 18 20 64
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

W
E

R

SNR = 10 dB

SNR = 15 dB

SNR = 20 dB

SNR = 25 dB

SNR = 30 dB

Theoretical
Simulated

Fig. 4. Theoretical and simulated WER for BSIC decoders for B = [0, 3]n

relationship (see Appendix C for proof) between σ and SNR

in decibels (dB) is

SNR = 10 log10
E||x̂||22
nσ2

= 10 log10
u(u+ 2)

12σ2
.

Figures 3-4 show theoretical and simulated WER of BSIC

decoders. SNR ranges from 10 to 30 dB. Each entry of x̂

are randomly selected from 2-PAM and 4-PAM, respectively.

Figures 3-4 show that theoretical and simulated WERs match

well which confirms the accuracy of (28). It can also be

observed that when the size n increases, the WER increases,

which matches Theorem 6. Similar to the case of OSIC,

due to the decreasing error propagation nature of BSIC, the

performance deterioration caused by increasing n vanishes as

n exceeds certain threshold (depending on SNR).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
E

R

BSIC(1)
BSIC(3)
BSIC(7)
BSIC(63)
OSIC

Theoretical Simulated

Fig. 5. Theoretical and simulated WER for OSIC and BSIC decoders

Figure 5 investigates WER of BSIC decoders with B =
[0, 1]20, B = [0, 3]20, B = [0, 7]20 and B = [0, 63]20, denoted

by BSIC(1), BSIC(3), BSIC(7) and BSIC(63), respectively.

For comparison, the OSIC with n = 20 is also included

(denoted as OSIC). It can be recognized that, for BSIC

decoders, increasing the size increases WER. This observation

matches with Theorem 5. Furthermore, the WER of OSIC

decoder exceeds that of BSIC with the same n and σ2. Finally,

when d = 63, P BSIC appears to converge to P OSIC. Theorem 9

predicts these trends.

2 4 6 8 10 12 14 16 18 20 64
0.7

0.75

0.8

0.85

0.9

0.95

1

=0.05, d=1
=0.50, d=1
=0.05, d=3
=0.50, d=3
=0.05, d=63
=0.50, d=63

Fig. 6. P̄k(d) (see (27))

To explain the above phenomena, we display P̄k(d) under

two noise levels and edge length d = {1, 3, 63} in Figure 6.

From Figure 6, one can see that P̄k(d) converges to 1 rapidly,
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especially when σ = 0.05. Also reminding that, in (33), we

have

1− P BSIC

e (n2, d)

1− P BSIC
e (n1, d)

=

n2
∏

k=n1+1

P̄k(d).

Therefore, we can conclude that P BSIC

e (n, d) should change

slowly for sufficiently large n, which explains the P BSIC

e ’s

trends along n in Figures 3-4. In addition, one can observe that,

for given k and σ, P̄k(d) gets smaller when d becomes larger,

which is confirmed via Lemma 5. This suggests that decoding

performance under larger edge length decreases more with

increasing σ. Finally, by comparing Figure 2 with Figure 6, it

can be seen that P̄k(63) is very close to Pk, which is supported

via Theorem 8. And this explains why P BSIC with d = 63
approaches P OSIC in Figure 5.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have derived closed-form WER expres-

sions P OSIC

e and P BSIC

e for OSIC and BSIC decoders, investigated

certain properties of the expressions and studied their connec-

tions. The accuracy of these expressions has been verified via

simulation and numerical results.

In our model, the entries of A are i.i.d. standard Gaussian

N (0, 1) variables. The noise vector v follows Gaussian dis-

tribution N (0, σ2I). This model can be readily extended to

the complex case, which is important in practical applications.

Thus, if the entries of A and v are i.i.d. complex Gaussian,

and x̂ is also assumed to be a complex vector with both of

its real and image parts being uniformly distributed over a

box B. Then just like the real case (see (5)), QR factorization

of A yields rij , 1 ≤ i ≤ j ≤ n, are independent, and

r2ii ∼ χ2
2(m−i+1) and rij ∼ CN (0, 1) for 1 ≤ i < j ≤ n. One

can easily obtain formulas for P OSIC

e and P BSIC

e under complex

A, x̂ and v by using the techniques developed in this paper.

Thus, we omit the details.

Theoretical results [22] show that the LLL reduction can

always decrease (not strictly) P OSIC

e for deterministic A. It is

straightforward to see that the LLL reduction can also always

decrease (not strictly) P OSIC

e for random A. Thus, it is important

to develop a formula for P OSIC

e after the LLL reduction is

performed on A. But to do this, we need to find the distribution

of the entries of R̄, which is the LLL reduced matrix of R

(see (5)). However, to the best of our knowledge, this is still an

open problem due to the complication of the LLL reduction.

It is well-known that some of the permutation strategies,

such as V-BLAST [12] and SQRD [13], can usually decrease

P BSIC

e for deterministic A. This property also holds for random

A. Thus, closed-form P BSIC

e when A is column permuted may

be useful, which is a potential future research problem. In

addition to these traditional detection strategies, one can also

use a naive lattice decoder [37] to detect x̂ (e.g. perform

traditional lattice decoding and discard the vectors not in the

box B [37]). The naive lattice decoder performs better for

(4) than for the ordinary linear model. Furthermore, naive

lattice decoding achieves maximum diversity [38]. Since this

decoding is complicated, closed-form analysis of its WER

appears intractable.

On the other hand, although the LLL reduction algorithm

reduces n-dimensional lattices, whose basis vectors are integer

vectors, in polynomial time of n (see [11], [39]), and the

average complexity of reducing an i.i.d. Gaussian matrix A

is also a polynomial of the column rank of A ( [40], [41]),

the worst-case complexity of LLL is not even finite [41]. This

suggests a potential use for closed-form P OSIC

e . For instance, if

P OSIC

e is smaller than a suitable threshold, we may not employ

LLL reduction; thus, in practical applications, LLL reduction

may be applied adaptively. Similarly, closed-form P BSIC

e can be

useful.

Minimum mean square error (MMSE) decoder is a popular

alternative to OSIC and BSIC decoders. MMSE decoder

adapts to the noise level [42]. A closed-form WER of MMSE

is a potential future research topic.

APPENDIX A

PROOF OF LEMMA 1

Proof. By (9),

x = ⌊ȳ/r⌉ = ⌊x̂+ v̄/r⌉ = x̂+ ⌊v̄/r⌉,
thus, x = x̂ if and only if |v̄/r| ≤ 1/2.

Let X = v̄2, Y = r2 and U = X/Y . Thus, x = x̂ if and

only if U ≤ 1/4. Thus, to show (10), we derive Pr (U ≤ 1/4).
Note that U is the ratio of two independent central chi-square

random variables. The distribution of this ratio is well-known

[43, Section 27]. That is, U = σ2

k
χ2
1

χ2
k
/k

= σ2

k F1,k where F1,k

an F distributed rv. Thus, the PDF of F1,k is given by

f1,k(x) =
Γ(1+k

2 )kk/2

Γ(12 )Γ(
k
2 )

x−1/2

(k + x)(k+1)/2
, x ≥ 0.

Therefore, we find

Pr(U ≤ 1

4
) =

∫ k/4σ2

0

f1,k(x)dx

=

∫ k/4σ2

0

Γ(1+k
2 )kk/2

Γ(12 )Γ(
k
2 )

x−1/2

(k + x)(k+1)/2
dx

=Ck

∫ arctan(1/(2σ))

0

cosk−1(θ)dθ, (37)

where the last equality follows from the substitution x =
k tan2(θ). Thus, the lemma holds.

APPENDIX B

PROOF OF LEMMA 4

Proof. Since x̂ is uniformly distributed on [ℓ, u], we have

Pr(x = x̂)

=Pr((x = x̂) ∩ (x̂ = ℓ)) + Pr((x = x̂) ∩ (x̂ = u))

+ Pr((x = x̂) ∩ (ℓ < x̂ < u))

=Pr(x = x̂|x̂ = ℓ) Pr(x̂ = ℓ)

+ Pr(x = x̂|x̂ = u) Pr(x̂ = u)

+ Pr(x = x̂|ℓ < x̂ < u) Pr(ℓ < x̂ < u)

=
1

u− ℓ+ 1
[Pr(x = x̂|x̂ = ℓ) + Pr(x = x̂|x̂ = u)

+ (u− ℓ− 1)Pr(x = x̂|ℓ < x̂ < u)]. (38)
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In the following, we derive formulas for

Pr(x = x̂|x̂ = ℓ), Pr(x = x̂|x̂ = u) and Pr(x = x̂|ℓ < x̂ < u).

Let W = v̄/r, then by (9), ⌊ȳ/r⌉ = ⌊x̂+ v̄/r⌉ = x̂+ ⌊W ⌉.
From (25), we can see that

x =











ℓ, if x̂+ ⌊W ⌉ ≤ ℓ

x̂+ ⌊W ⌉, if ℓ < x̂+ ⌊W ⌉ < u

u, if x̂+ ⌊W ⌉ ≥ u

.

Thus, x = x̂ if and only if

W ∈











(−∞, 1/2], if x̂ = ℓ

[−1/2, 1/2], if ℓ < x̂ < u

[−1/2,+∞), if x̂ = u

.

We first show how to compute Pr(x = x̂|x̂ = ℓ). Since v̄

and r2 are independent, by the distribution of v̄ and r2, we

can see that the PDF of W is symmetric with x = 0. Thus,

Pr(x = x̂|x̂ = ℓ)

=Pr(W ≤ 1/2)

=Pr(W < 0) + Pr(0 ≤ W ≤ 1/2)

=
1

2

(

1 + Pr(−1/2 ≤ W ≤ 1/2)
)

(a)
=

1

2

(

1 + Pr(U ≤ 1/4)
)

(b)
=
1

2

(

1 + Ck

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

(c)
=
1

2

(

Ck

∫ π/2

0

cosk−1(θ)dθ

+Ck

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

=
Ck

2

(

∫ 0

−π/2

cosk−1(θ)dθ +

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

=
Ck

2

∫ arctan(1/2σ)

−π/2

cosk−1(θ)dθ, (39)

where (a) is because U = W 2, (b) follows from (37) and (c)

is from (20).

Similarly, we have

Pr(x = x̂|ℓ < x̂ < u)

=Pr(−1/2 ≤ W ≤ 1/2) = Pr(U ≤ 1/4)

=Ck

∫ arctan(1/2σ)

0

cosk−1(θ)dθ. (40)

Since the PDF of W is symmetric with x = 0, we have

Pr(x = x̂|x̂ = u) =Pr(W ≥ −1/2) = Pr(W ≤ 1/2)

=
Ck

2

∫ arctan(1/2σ)

−π/2

cosk−1(θ)dθ. (41)

Then, by (38)-(41), we have

Pr(x = x̂)

=
Ck

u− ℓ+ 1

(

∫ arctan(1/2σ)

−π/2

cosk−1(θ)dθ

+ (u− ℓ− 1)

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

=
Ck

u− ℓ+ 1

(

∫ 0

−π/2

cosk−1(θ)dθ

+ (u− ℓ)

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

=
Ck

u− ℓ+ 1

(

1

Ck
+ (u− ℓ)

∫ arctan(1/2σ)

0

cosk−1(θ)dθ

)

,

where the last equality is from (20). Thus, by (27), eq. (26)

holds.

APPENDIX C

DERIVATION OF SNR

In the following, we give the relationship between SNR

in dB and σ for the case that x̂ is uniformly distributed

in a box B = [0, u]n (u = 2q − 1 for some integer q),

which is transformed from an n-dimensional (u + 1)-ary

PAM. Specifically, for any signal x̄ in an n-dimensional

(u + 1)-ary PAM, i.e., x̄i ∈ {−u
2 ,−u−2

2 , · · · , u−2
2 , u

2 }, we

let x̂ = x̄ + u/2e, where e is an n-dimensional vector with

all of its entries being 1, then x̂ ∈ B = [0, u]n.

Since B = [0, u]n is transformed from an n-dimensional

(u+1)-ary PAM, we calculate E‖x̄‖22 over the n-dimensional

(u+ 1)-ary PAM instead of E‖x̂‖22 over B. Since each entry

of x̄ belongs to a (u+1)-ary PAM, there are (u+1)n number

of different x̄, and hence

E‖x̄‖22 =
1

(u+ 1)n

∑

x̄∈ n−dimensional (u+1)−ary PAM

‖x̄‖22.

(42)

Each x̄ has n entries, so the total number of entries of all the

different x̄′s are n(u + 1)n. Since x̄ is uniformly distributed

over n-dimensional (u+ 1)-ary PAM, each entry of x̄ is also

uniformly distributed over (u + 1)-ary PAM, which implies

that each point in the (u + 1)-ary PAM are chosen

n(u+ 1)n

u+ 1
= n(u+ 1)n−1

times. Therefore,
∑

x̄∈n−dimensional (u+1)−ary PAM

‖x̄‖22

=n(u+ 1)n−1

×
[

(−u

2
)2 + (−u− 2

2
)2 + · · ·+ (

u − 2

2
)2 + (

u

2
)2
]

=
n(u+ 1)n−1(u+ 1)((u + 1)2 − 1)

12

=
n(u+ 1)n((u + 1)2 − 1)

12
=

n(u+ 1)nu(u+ 2)

12
.
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Then by (42), we have

E‖x̄‖22 =
nu(u+ 2)

12
.

Therefore, we SNR in dB satisfies

SNR = 10 log10
‖x̄‖22
nσ2

= 10 log10
u(u+ 2)

12σ2
.
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