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Abstract—Cooperative content delivery using multiple air in-
terfaces (CCDMI) is a powerful solution to mitigate congestion
in cellular networks. In CCDMI, the operator distributes content
to selected users that further distribute it locally among its
nearby users. However, a user that is capable of contributing to
CCDMI might act selfishly and refuse to participate. Although
the operator can encourage user participation by offering incen-
tives, it has incomplete information about users’ willingness to
participate. In order to overcome this problem of adverse selec-
tion in CCDMI, we propose two contract-based methods under
information asymmetry. In both methods, the operator designs a
performance based contract set for the users that are capable of
local content distribution. Using mathematical analysis, we show
that the optimal contract under information asymmetry achieves
close to optimal utility for the users and the operator, compared
to the information symmetry case. Moreover, the users with high
willingness to participate get positive utility and the users with
low willingness get zero utility. Hence, by assigning contracts, the
operator can motivate user participation, despite the information
asymmetry between them. Our results verify that the proposed
methods improve the system performance in terms of the utility
of the operator and the users.

Index Terms—Adverse selection, cooperative content delivery,
contract theory, game theory, incentive mechanism, cellular
networks, WLAN.

I. INTRODUCTION

Over the last decade the surge in new smart device users
and the high demand services they consume has led to a
phenomenal growth in mobile data traffic, which is expected
to continue. To address this challenge, the wireless industry
is preparing for a long term 1000 times more data traffic in
cellular networks through the development of 5G networks [1].

In the current cellular networks, the default method of
acquiring access to the desired content is through independent
downloading of the content by every user through their own
cellular links. This can lead to cellular traffic congestion in
scenarios where many users are in close proximity of one
another, and they demand rich content. Moreover, when many
users demand the same rich content the cellular congestion
problem can worsen. Although alternative technologies such
as Long-Term Evolution (LTE) Broadcast with Evolved Multi-
media Broadcast Multicast Services (eMBMYS) [2] is efficient

Bidushi Barua, Marja Matinmikko-Blue, and Matti Latva-aho are with the
Centre for Wireless Communications, University of Oulu, Finland. Yanru
Zhang is with the School of Computer Science and Engineering, University of
Electronic Science and Technology of China, and Alhussein. A. Abouzeid is
with the Department of Electrical, Computer and Systems Engineering, Rens-
selaer Polytechnic Institute, Troy, NY 12180, USA. Alhussein. A. Abouzeid is
also a visiting Professor with Centre for Wireless Communications, University
of Oulu, Finland.

This research has been financially supported by Academy of Finland
6Genesis Flagship (grant 318927) and Business Finland in Multi-Operator
Spectrum Sharing (MOSSAF) project.

in delivering the same content to multiple users through
multicasting, the absence of feedback and the limitation in
performance, due to the worst performing link among all
links between the Base Station (BS) and users [3], restricts
its applicability. Moreover, many application scenarios include
both synchronous and asynchronous content delivery to a
group of users. As a result, the synchronous technology of
eMBMS is only applicable to a subset of all such possible
scenarios.

Another approach of efficient content delivery in wireless
networks is to utilize complementary and revolutionary net-
working techniques to deliver mobile data that were originally
planned for transmissions over cellular networks [4]. These
content delivery techniques are helpful in addressing the
challenges of increased mobile data traffic in the future wire-
less networks and so they are called mobile/data offloading
techniques. These techniques can be classified into three types,
based on (a) offloading through small cell networks (SCNs),
(b) offloading through WiFi networks, and (c) offloading
through devices [5]-[7]. In the work [5], offloading benefits
resulting from femto-cell deployments were investigated and
the joint macro-femto-cell mobile network was shown to
have potential offloading gains. However, since the femto-cells
utilize the same spectrum as the cellular network, interference
management becomes a critical issue in these networks [8].
More advanced technologies such as LTE-U (LTE-Advanced
in the unlicensed band) [6] offers operators a way to offload
traffic onto the unlicensed spectrum which involves leveraging
the small cells and aggregating unlicensed spectrum with the
licensed spectrum for LTE- Advanced.

WiFi offloading can be considered to be another promising
solution to utilize the various benefits of cellular and WiFi
networks, given the fact that WiFi access points (APs) are
currently widely deployed by operators and residents [7].
However, issues such as the possibility of cellular/WiFi net-
work congestion [9], limited coverage and constrained mobil-
ity within the cell, need to be addressed in these networks.

Smart devices although are content hungry, these devices
have exhibited advanced features, such as support for large
memory space, increasing processing capabilities, and also
support for using multiple interfaces. This makes it possi-
ble to deploy a device based network such as a device-to-
device (D2D) network that relies on direct communication
between smart devices without any need for an infrastruc-
ture backbone for cellular offloading [10]. However, critical
issues such as neighbor discovery, transmission scheduling,
resource allocation and interference management still need to
be considered for the effective integration of D2D in future
cellular architectures. An alternative device based approach
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Fig. 1: CCDMI for distributing common rich content in high traffic demand
areas, for e.g., in a stadium.

is the method of cooperative content delivery using multiple
interfaces (CCDMI) that offers a powerful solution to over-
come several limitations of the traditional use of a single
wireless interface on a smart device for the purpose of content
downloading. For instance, the works in [11]-[13], have shown
that the available multiple interfaces on smart devices can be
utilized locally to disseminate data content among a group
of users, thereby reducing congestion in cellular networks (as
illustrated in Fig. 1).

In our previous work [3], we proposed a method of CCDMI
in which the users with smart devices cooperatively partic-
ipated to deliver content to a group of users using cellular
and WLAN interfaces. On the basis of cellular and WLAN
links of the users, the BS selected a subset of users, called
selected users, who were given the content directly via cellular
connection. The proposed method incurred little overhead as
the information it utilizes for user selection already exists
in the network. We use the same method of CCDMI in our
current work and throughout the rest of the paper, we refer to
these selected potential relay users as relay users. Thereafter,
the relay users distributed the content to other users within
their vicinity using their WLAN interfaces. Such a selection
of users by the operator made the process of CCDMI efficient
in terms of radio resource consumption and energy savings.

Once the BS chooses the relay users for CCDMI, every
relay user is assumed to be willing to participate in CCDMI.
However, this is not always true, since the users might suffer
significant costs in terms of battery consumption, mobile
data usage, effort etc. [14], [15] for participation in CCDMI.
An independent relay user therefore, might act selfishly and
refuse to participate to maximize its own benefit. A similar
instance of user selfishness was also evident in [16], where
the authors considered offloading social data traffic through a
delay tolerant network of D2D devices. This kind of selfish
behavior creates the challenge of insufficient participation
of users in CCDMI which necessitates the introduction of
an incentive mechanism design. Incentives are rewards the
operator can offer the mobile users in return for participating in
CCDMI. Among different incentive mechanisms for inducing
cooperation that have been studied in the literature, the most
common mechanisms are the ones based on auctions [17], [18]
and games [19]. Although auction methods guarantee system

efficiency and truthfulness of the users, they are not suitable
for tasks where massive participation is required to achieve
the desired geographical coverage. Stackelberg game is an
alternative incentive mechanism that can be used to encourage
entities to offload cellular traffic [19] and this method is ideal
to model perfect information games.

In this paper, we assume that the operator does not
have the exact information about the relay user’s prefer-
ences/willingness to participate. As a consequence, there arises
the possibility of an unwilling relay user to dishonestly report
its preferences to be high instead of low to the operator in order
to reap incentives. This can be detrimental to the process of
CCDMI, where the operator would not able to offer the right
incentives to the relay users according to their preferences.
Thus, the operator would face the adverse selection problem!
in CCDMI. In the adverse selection problem (e.g. see [20]),
the principal, which here is the operator, is not informed about
a certain characteristic of the agent, which here is the de-
vice/user/relay, at the time when the contract is designed. The
adverse selection problem in CCDMI would further encourage
relay users to be dishonest about their preferences, leading to
a reduction in the network payoff. Therefore, to avoid such an
undesirable situation, we use the tools of contract theory that
provides effective tools to provide incentives under adverse
selection [21], [22]. This leads to the design of contract-based
incentive mechanisms that reveals the true preferences of relay
users and rewards relay users who are willing to participate.
The main contributions of this paper are:

« Firstly, we utilize the framework of normal form games
to model the interactions between the BS and a relay
user, as a one stage game. We show that the dominant
strategy of the relay user is to act selfishly and to refuse
participation in CCDMI, that causes the BS utility and
the utility of other users to suffer loss.

« We address the adverse selection problem in CCDMI, and
propose two novel contract-based incentive methods that
motivates the relay users to reveal their true preferences.
As a result, the operator can incentivize these users
in accordance with their preferences, that will maxi-
mize its own and the overall network’s utility. The two
proposed methods are (a) Multiple-User Single-Contract
(MUSC) method and (b) Multiple-User Multiple-Contract
(MUMC) method and they are designed for different ap-
plication scenarios depending on the nature of incentives
demanded by a relay user that prefers to participate in
CCDMI.

¢ We compare each proposed method with a benchmark
adverse selection-free method and using numerical eval-
uations and simulation results, show that the optimal con-
tracts obtained using the proposed method under adverse
selection, achieve close performance to optimal contracts

I'This is similar to adverse selection in health insurance [20] where the type
of the patient (healthy versus unhealthy) is hidden from the service provider.
One type of insurance that is designed for average customer might be too
expensive for healthy patients and too cheap to cover the costs for unhealthy
patients on average. The insurance company in this scenario does not know
the health of the customer, so it is subject to adverse selection by the more
informed customer.



which are adverse selection-free.

« Finally, using simulation results, we show the impact of
different parameters of the contract on the utility of the
relay user and the BS, and compare the performance of
the two proposed methods in terms of the utility of the
relay user with an increase in number of users the relay
user serves through WLAN.

The rest of the paper is structured as follows. We review the
related work in Section II. In Section III we present the system
setup. Section IV presents the mathematical formulation of the
adverse selection problem in CCDMI which is followed by a
game theoretic model that studies the interactions between the
BS and a user capable of distributing content to other users
locally. Then the proposed method of offering contracts under
adverse selection in CCDMI is described in Section V, and the
simulation results are described in Section VI. Finally, Section
VII draws conclusions and outlines possible avenues for future
work.

II. RELATED WORK

In heterogenous cooperative wireless networks, the proper
design of incentive mechanisms is crucial in order to motivate
users to participate in collaborations such as for offloading
traffic. Broadly speaking, the different forms of incentives that
can be used to encourage users in a network to cooperate can
be classified as (a) monetary [1], [23] and (b) non-monetary
incentives [24], [25] which we review next.

A. Monetary Incentives

Monetary incentives refer to rewards in the form of money
which the operator/service provider or the platform directly
pays to the users for their successful contribution in com-
pleting a task. The monetary incentive mechanisms in mobile
networks, studied in the literature, are mostly based on reverse
auctions. In the content delivery method proposed in [18],
edge nodes are incentivized using a reverse auction model to
encourage cooperation in providing caching services. Based
on the interaction between mobile users and edge nodes,
candidates of edge node are selected by the users to cache
content with the bid containing the caching price and the
caching size. Although auction methods are simple, risk-
free of bid non-fulfilment and oblivious to truthfulness, the
main drawback of these methods is that they are not suitable
for tasks where massive participation is required to achieve
a required geographic coverage. In those cases, lottery or
Tullock contest [26] can be a good alternative monetary
incentive mechanism where the winner is determined by a
winning probability, therefore, every user has a chance to win.

Game-theoretic model can be used to design an incentive
mechanism to encourage different entities to offload cellular
traffic. In [19] a two-stage non-cooperative Stackelberg game
theory is applied for a data offloading scheme to determine the
optimal amount of monetary incentives a macro-cell should
offer to small-cells. Offering of contract is another effective
tool used to provide monetary incentives when the provider has
limited information of the users valuation of the resources [21],
[27]. In [21], the authors proposed a quality-price contract for

spectrum trading in a monopoly spectrum market. The work
in [27] proposed a contract-based incentive mechanism in a
cognitive radio (CR) network where the primary users are
provided with payments to share their spectrum and suffer
some degradation in performance. On the other hand, unlike
contracts, the incentive method of pricing can be used when
the service provider has knowledge about the value of the
resource that is being allocated to the users. In the pricing
framework proposed in [28], each cellular data flow corre-
sponding to a mobile source-destination pair offers payment to
incentivize APs to participate in offloading, and then payment
is shared in proportion to the amount of data offloaded to each
AP.

B. Non-monetary Incentives

The non-monetary incentives can be classified as (a)
performance-based incentives, e.g., capacity, cost, and rate, (b)
ranking incentives, e.g., trust and reputation, and (c) contract-
based incentives. Improved capacity or throughput per user
for the mobile user is the most basic performance-based
incentive to meet the explosion of data traffic. In [29], the
authors discuss a network assisted WLAN offloading model
to maximize per user throughput in a heterogenous network.
Another performance-based incentive is cost minimization in
cellular networks. In [30], the authors propose a novel mobile
tethering based cooperative network system where tethering
markets are opened and cellular traffic is traded in order to
minimize the overall cellular traffic cost of the system. The
rate in the form of the average completion time of demanded
data transmissions, can be a significant performance parameter
too, in order to incentivize users. For instance, in [31], the
authors proposed a method to find optimum fraction of traffic
to be offloaded for maximizing probability that a randomly
located user has a rate greater than arbitrary threshold.

Trust and reputation system is another non-monetary incen-
tive method where trust refers to local and subjective measure
of the relationship between two persons/agents, and can be
derived from direct or indirect past interactions whereas, repu-
tation is a global and a rather objective measure by aggregating
all other people’s trust with respect to a certain person [32].
This mechanism is more sustainable than monetary incentive
mechanisms due to the lack of financial burden and the long-
term social influence. In [24], [33], the authors propose an
inference system to determine the trust of contribution, given
quality of the contributed data and the trust of participant. The
consequent reputation of the participant determines the reward
of the participant user, that incentivizes the user to contribute
more and improve the quality of its contribution.

The tool of contracts discussed before for providing mone-
tary incentives, has also proven to be successful in providing
non-monetary incentives to users in order to encourage them
to participate in cooperation under conditions of information
asymmetry [22], [34], [35]. In [34], the authors proposed
a contract-based cooperative spectrum sharing mechanism
under different information cases. The two main problems
that arises due to information asymmetry are, (a) adverse
selection, where the users have certain information hidden
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Fig. 2: An example scenario of the task of CCDMI with N, = 3; (a) all capable users are of high preference type , (b) all capable users except node 4 are

of high preference type.

from the operator and (b) moral hazard [36], [37], where the
user can exert some hidden effort which will also have an
impact on the performance of the operator. In [22], the authors
propose an contract-based incentive method to encourage users
to participate in device-to-device (D2D) mechanism under
adverse selection. The BS offers users with free data as non-
monetary incentives in return for rate offered due to the users
participation in D2D. In [35], the authors propose a contract-
based incentive method for an adverse selection situation in
a relay-assisted cooperative communication between a source
node and a destination node. By using this method, the source
can provide incentives to the relay nodes to reveal the relay’s
channel conditions with the destination node. In this paper, we
address the adverse selection problem in CCDMI and propose
methods of designing contracts to overcome the limitation of
information asymmetry between the operator and the set of
relay users.

III. SYSTEM MODEL

In this section, we describe the system model in order to
formulate the problem of adverse selection that arises during
the process of distributing content to a group of users at the
vicinity of each other using the method of CCDMI. Consider
a generic circular cell of radius pr in which a BS is located
at the cell center, as illustrated in Fig. 2. There are n, number
of hotspot clusters of users > located in the cell of interest
where pc (< pr) represents the radius of the hotspot cluster.
Each cluster has n, users. Let AL ={1,2,3,---,(n.n;)} be the
set of N users that are distributed in clusters around the BS.
The number of users in an instant is modeled as a Poisson

distribution of mean A.

From the set of N users interested in receiving the same
content, the BS selects a subset N, of users known as the
relay users for distributing the content through CCDMI. This
set of users is selected by the BS by employing mobile
crowdsourcing. As a result of the crowdsourcing process,
a user operates in one of the possible modes namely, the
relay, the recipient or the isolated mode. The relay mode user
receives the content from the BS via a cellular link and then
potentially may distribute the same content via WLAN to other
users within its vicinity. The recipient mode user receives the
content via WLAN, from a relay user. The isolated mode user
receives the content directly from the BS via a cellular link.
The users that are in relay mode are assumed by the BS to be
potentially good enough for distributing content to other users
that are in close proximity through their WLAN interfaces
and thus, we refer to these users as capable users. Such users
usually have a good quality cellular link with the BS and good
WLAN coverage with other users in its vicinity. However, a
capable user may be willing or unwilling to participate, that
also influences the BS’s utility. We assume that a capable user
is of high (H) preference type if it is willing to participate and
it is of low (L) preference type if it is unwilling to participate.
Thus, the set of preference types for the capable user i € AL,
is given by ®; = {H,L}. Naturally, the capable users of high
preference type are more preferred by the BS and will be
promised a greater reward for participating.

We consider the problem of overcoming adverse selection
in CCDMI where the BS needs to incentivize capable users of
high preference type when the BS has incomplete information

2The term ‘user’ is used to represent ‘node’ and/or ‘access point’ inter-
changeably with relevance to the context



about the true preference types of the capable users. In order to
overcome such a situation of information asymmetry between
the BS and the set of capable users, we adopt the tools
of contract theory [36] so that the BS can offer incentives
to capable users of high preference type even when their
preference types of users are not known to the BS with
absolute certainty.

Fig. 2 provides an illustrative example showing the impact
of the preference type of a capable user on the utility of the
BS and the other users which the capable user can potentially
serve. Four hot spot clusters of users (nodes/access points)
are distributed across the cellular coverage area of the BS
and each of these users is interested in receiving the same
content. Through crowdsourcing, the BS selects users 1, 2 and
4 as capable users. In Fig. 2(a), the capable users 1, 2 and 4
are of high preference type. Hence, CCDMI is successfully
implemented by the BS. However, a high preference type
capable user consumes its own resources in order to distribute
content to other users within its vicinity. Therefore, a capable
user might be reluctant to participate in CCDMI and act
instead as a low preference type user. In Fig. 2(b) the capable
user 4 acts as a low preference type user and does not distribute
the content to the other users in its vicinity. In this case, the BS
has to distribute the content directly via cellular links to the
other users. Therefore, user 4, by acting as a low preference
type user, saves its own resources which it would have used
in order distribute content to other users via WLAN. On the
other hand, due to user 4’s unwillingness to participate, the
BS and other users within its vicinity suffer and end up with
lower utility values as compared to the case when all capable
users are of high preference type. Moreover, since the BS
does not have the complete information about the preference
types of the capable users, the BS cannot incentivize the users
according to their preference types. This leads to the adverse
selection problem in CCDMI which occurs when one of the
parties has some private information which is hidden from the
other party. In this case, the BS is the uninformed party that
is suffering from the adverse selection problem [36].

IV. MATHEMATICAL FORMULATION OF THE ADVERSE
SELECTION PROBLEM IN CCDMI

In this section, we mathematically model the adverse selec-
tion problem [20] in CCDMI. Firstly, we define the utility
functions of the BS and the capable users. Thereafter, we
model the interactions between the BS and the capable users
as a one-stage game.

A. BS’s Utility Function

The objective of the BS is to maximize the number of
carriers saved due to the participation of capable users in CCD.
When a capable user participates in CCD and serves the users
within its vicinity, the BS saves the cellular carriers which
would have otherwise served those users. Therefore, the BS’s
utility is modelled as follows. The BS’s utility is denoted by
W and the number of users that a capable user i can potentially
serve locally is denoted by 7;. Therefore, T; is also the number
of carriers saved if capable user i participated in CCD. P;

denotes cost in terms of effort exerted by capable user i to
serve the other users locally. For simplicity, it is assumed that

o {O7 if capable user i is of low preference type 0

P, if capable user i is of high preference type

where P is a constant and P > 0. And b denotes the number
of resource carriers the BS provides to capable users as
incentives. Then the utility of the BS is defined as

W) TP—b, ©)
iEN;
where the first term of (2) represents the BS’s gain in terms of
number of carriers saved due to CCD and the second term of
(2) represents the BS’s cost for offering carriers as incentives
to the capable users who participate in CCD. Moreover, it is
assumed that Zie% T;P; > b.

B. User’s Utility Function

A capable user’s objective is to maximize the net benefit
it receives due to participation in CCD. Therefore, a capable
user’s utility is modelled as follows. The utility function of
the capable user i is denoted by U; and, the general amount of
resources allocated by the BS to the capable user i is R;. v(R;)
is a valuation function that depends on R;. Let R; = R; +r;,
where R; and r; denote the basic amount of resources and
the additional incentive resources the BS allocates to capable
user i, respectively. If the resources allocated to user i is
less than the basic resource R; which is required to serve
user i successfully, the valuation function is equal to zero.
If r; > 0, then the valuation function v(R;) is modelled as an
exponential function in order to represent the defining feature
of diminishing marginal returns. The valuation function v(R;)
is therefore, denoted as

0, if R; < R;
Ry =4 SR ] 3)
2—exp{—(Ri—R))}, if R; > R;

Further, we denote ¢ as the capable user’s unit cost per effort
exerted for providing the content to other user within its reach
using its WLAN interface. For simplicity we assume that ¢ =1.
Then we define the utility function of a capable user i as

U; £ v(R;) — éP; (4)

where the first term represents the amount of benefit the
capable user i receives due to the amount of resources it is
allocated by the BS, and the second term represents the loss
it suffers in order to serve the other users, locally.

C. Adverse Selection in CCDMI as a One-stage Game

In this section, we model the interactions between the BS
and a capable user, that can strategically choose between being
of high and low preference types, as a one stage game. We
show that a capable user’s dominant strategy is to be of low
preference type. This motivates the design of contracts in the
next section, since the result here shows that the user chooses
to be of low preference type even in the presence of incentives
by the BS.
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TABLE I: Payoff table for the one-stage adverse selection game. (Low
Preference, Basic Service) is a unique Nash equilibrium.
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ser i
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preference AT P+ Ljenc j T+ Py | ATi#P+Ljeng jui TP} =b
type

We consider a capable user i € A; whose preference type
is unknown to the BS. The BS therefore, has the choice of
offering the capable user i a basic amount of resource (R;) or
the basic amount of resources with some incentives (R; + r;).

The payoff table for this one stage game is represented in
Table I. A unique Nash equilibrium exists for this game: user
i chooses to be of low preference type, and BS offers basic
service. Therefore, the capable user i’s dominant strategy is to
be of low preference type. From the utility definition of the BS
from (2), however, it can be said that the BS cannot maximize
its utility when a capable user is of low preference type. To
overcome this problem, it is important for the BS to incentivize
the capable user to be of high preference type by offering
the right incentives. However, since the BS has incomplete
information about the preference types of the capable users,
this adverse selection problem can be resolved by offering
contracts in such a way that the capable users are rewarded
according to their preference types and the BS gets optimal
utility. In the next section, we propose incentive methods based
on contracts through which the BS can incentivize the capable
users according to their preference types.

V. PROPOSED METHODS OF INCENTIVIZING CAPABLE
USERS BY OFFERING CONTRACTS

In this section, we describe the utility functions for the
BS and capable users, the feasibility conditions to define
contracts for capable users, and finally define the optimization
problem representing the optimal contract so that the adverse
selection problem is overcome. Before designing the contract,
we observe the main objectives of both the BS and every
capable user (see Fig. 3). Firstly, the BS wants to maximize
the outcome due to the participation of the capable users, and
at the same time, minimize the rewards given to the capable
users for their participation. On the other hand, a capable user
wants to maximize the additional resources it obtains from the

BS as rewards, and minimize the cost required to distribute
the content to other users through its WLAN interface. Both
the BS and the capable users have conflicting objectives in
this interaction. Therefore, both the BS and the capable users
need to evaluate the trade-off between their costs and rewards.
We propose a contract-based framework because it brings the
BS and the capable users together and helps to resolve the
conflict.

A. Contract Formulation

According to the revelation principle [36] in contract theory,
to determine the optimal contracts under asymmetric infor-
mation, it suffices to consider one contract item for each
preference type, but it has to be ensured that a capable user
of a certain preference type has incentive to select only the
contract item that is designed for it. In our problem, a capable
user can opt to be of high or low preference type. Thus,
for designing a contract for capable users in CCDMI, it is
enough to design a contract that consists of two contract items
i.e., for high and low preference type of a capable user. For
modelling the contract, we represent the preference type of a
capable user by coefficient parameter 6;. The values taken by
0, where k = {H,L} represent the extent to which a capable
user is willing/not willing to participate in CCDMI. Without
loss of generality, we assume that 0; < 0. Since there are
only two possible preference types, the BS needs to design
contract items for high and low preference type users.

The BS determines the contract which specifies the relation-
ship between the capable user’s performance in terms of the ef-
fort for participating in CCDMI and the corresponding reward
to be given to the capable user by the BS for that performance.
Let PP and Pl denote the costs suffered by a high and low
preference type capable user, respectively, to participate in
CCDMI, ? £ {P" PL} and P > PL. Let X and r represent
extra resources that the capable user receives when it accepts
the contract designed for low and high preference type users
respectively and V £ {rL #}. Intuitively, a high preference
type user should be rewarded more than a low preference type
user. Moreover, the reward received by a capable user r is a
strictly increasing function of P. Therefore, r* < r. The set
of contract items ® = {(PX,r¥) Vk = {H,L}} is a contract set
and fully defines the contract. Each such distinct cost-reward
(PX, %) pair association becomes a contract item. The contract



specifies a reward r* € V for every effort PX € P. Once a
contract is designed and offered, each capable user will choose
the contract item that maximizes its payoff. As we now look at
the problem of adverse selection using the concepts of contract
theory, it is necessary to generalize the definitions of the BS
utility and capable user’s utility functions from the previous
sections as defined next. We will discuss these new definitions
of utility functions in the next section.

B. Utility Functions for Defining Contract in Adverse Selec-
tion

In this subsection, we model the adverse selection problem
between the BS and the capable users as a principal-agent
model in contract theory [36], and then define the utility
functions of the BS and the capable users. We consider the BS
as the risk neutral principal of an adverse selection problem,
where the capable users act as the agents. A risk neutral
entity is indifferent between the two options of taking risks to
achieve an outcome and accepting a guaranteed outcome. On
the other hand, we assume that a capable user is risk adverse
agent which means that in the event of being exposed to an
uncertainty, the agent attempts to reduce that uncertainty.
(1) BS’s utility function with contract: The utility of the BS
W; due to a capable user i, i € A, of type k is defined as

W; & T,P* — Q)

where ¥ is the additional resource blocks which the capable
user i is rewarded according to the contract provided the
user’s performance is PX. Here, each capable user i chooses
a contract item (P* /) that maximizes its utility, where
(PK Py € {(PH rH), (PL,#*)}. The term c is the BS’s unit cost
of providing incentives to a capable user. Hence, the utility of
the BS due to all the capable users, is given by

Y wi=Y 1P -t (6)
IEN; i€EN;
(2) User’s utility function with contract: In this case, a capable
user tries to maximizes rewards it receives in the form of
resources allocated by the BS minus the cost of acting as a
high/low preference type user. The utility of a capable user i,
i € AL, of type k is defined as

UF 2 0,0(F) — éPk. (7)

where v(rk) is a strictly increasing and concave function
w(0) = 0,v/(*) > 0,v"(r*) < 0 for all #*) which models ca-
pable users as risk-averse agents. The parameter 6 represents
the preference type of a capable user and this information is
private to this user.

C. Feasibility Conditions for Contracts

In this subsection, we consider the necessary and sufficient
conditions for a feasible contract [36] in order to solve the
adverse selection problem that arises in CCDMI. We will then
use these conditions to derive the optimal contracts in the next
section. These conditions defined for the capable users, ensure
that they are incentivized sufficiently to participate in CCDMI.

Definition 1. Individual rationality constraint (IR-constraint):
A contract item which a capable user accepts should guarantee
a non-negative payoff, i.e.,

O(rt)—P* >0, k=H,L. (8)

In CCDM], if a capable user refuses the contract, it will still
receive the content directly from the BS by default cellular
method. In this case, the capable user is not allocated any
reward by the BS and the capable user faces no expense
because it does not participate in CCDMI. Then the utility of
the capable user is called its reservation utility and its value
is zero (by using (7)). Therefore, a capable user will accept a
contract item only if its utility is at least equal to zero.

Definition 2. [Incentive compatibility constraint (IC-
constraint): Each capable user must choose a contract item
designed specifically for its own preference type, i.e.,

Ov(r) —P* > ev(r) =P kI =H,L k#1. )

We need to define this constraint to make sure that a capable
user accepts the contract item according to its preference
type, and thus to make the contract incentive compatible. This
constraint ensures that a capable user of type k gets maximum
utility by accepting the contract designed for a type k capable
user. Therefore, by accepting the contract which maximizes its
utility, the capable user is indirectly revealing its preference
type. So the contract that satisfies this constraint can also be
called a self-revealing contract. It is necessary to define this
constraint for the contract, or else it is possible for example,
that a capable user of low reference type would reap higher
benefits by accepting the contract item designed for high
preference type user. Next, we discuss the other conditions
that are needed for contract feasibility.

Lemma V.1. For any feasible contract ® = {(P*,r*),Vk €
{H,L}}, T > L if and only if 8y > 6, and " = rL if and
only if 0y = 0r.

Proof: Firstly, we prove the sufficiency, i.e., if 0y > 0,
then 1 > rL'. We begin by assuming that 8y > 6. Using the
IC-constraint for high and low preference type capable users,
we get

0pv(r") —P" > 0yv(r*) - P, (ICH)
(10)
opv(rt) — Pl > opv(r) — P, (ICL)
Adding the inequalities of (10), we get
O v(r) +0,v(rF) > 0gv(rt) +0,v(r?) an

=v(rf) (0 —0r) > v(r") (0 — ).

As Oy > 01, hence Oy — 6, > 0. Dividing both sides of the
inequality (11) by 8y — 8y, we have v(r) > v(rl). Since v(r¥)
is a strictly increasing function of %, we can conclude that
>l

Next, we prove the necessity, i.e., if i > rL. then 6y > 0;.
We consider the inequalities of (10) and in the same way as



above, add these inequalities to get
B v(r™) +0,v(rt) > 0yv(rt) + 0 v(r)

0 () (M)} > B ) — by

Since ! > L and v(r¥) is a strictly increasing function of r*,
v(rf) > v(rt) and v(r) —v(r) > 0. Dividing both sides of
the inequality (12) by v(rf') —v(rt), we get 8y > 6;. By using
the same procedure, we can prove that 7/ = L if and only if
0y =0;. |

Lemma V.1 shows that if a capable user is of high preference
type, then it should receive more incentives from the BS and
vice versa. And if two capable users receive the same reward,
then they are of the same preference type. From here, we
can deduce the next condition for contract feasibility which is
defined below.

Definition 3. Monotonicity condition (M-condition): For any
feasible contract ® = {(P*,1X),Vk € {H,L}}, the reward r*
follows 0 < k< rH.

Monotonicity condition (M-condition) implies that capable
users of high preference type get higher rewards. From this
condition, we can have the following proposition.

Proposition V.2. As r is a strictly increasing function of P, P
satisfies the following condition intuitively 0 < Pt < PH.

Proposition V.2 implies that incentive compatible contracts
requires a high cost of participation from a capable user if it
receives a high reward and vice versa.

Lemma V.3. For any feasible contract ® = {(P*,r*),Vk €
{H,L}} , the utility of a capable user of different preference
types should satisfy 0 <UL < UH

Proof: Using Definition 3, Proposition V.2 and if 86 > 0,
, we have

U =oyv(r) — P > 0yv(r*)—PL (IC) 13)
> 0pv(rt) — PL = U~

|

Therefore, 0 <UL < UH ie., a capable user of high prefer-

ence type gets higher utility than being of low preference type.

In the next section we will use these constraints for finding

optimal contracts for the adverse selection problem in CCDMI.

D. Optimal Contract Methods for Adverse Selection Problem
in CCDMI

Next, we describe two different kinds of contract methods
to incentivize capable users to participate in CCDMI. As
the BS does not know about their exact preference type, it
offers each capable user, contract items for both high and low
preference type user. The capable user is assumed to accept the
contract that would maximize its utility. The BS only knows
the ex-ante probabilities of each capable user’s type. The BS
assumes that qf’ is the probability that a capable user i is
of preference type high and (1 —¢!?) is the probability that
the capable user i is of preference type low. Next we define
the two different kinds of optimal contract methods Multiple-
User Single-Contract (MUSC) and Multiple-User Multiple-

Contract (MUMC) method based on the nature of demand
of incentives by the high preference capable user. In the
MUSC method, every high preference type capable user gets a
common utility, irrespective of its contribution to the CCDMI
saving of resources by serving other users. Hence, the MUSC
method is particularly suited when a capable user cooperates
for the overall welfare of the network and is satisfied with
a common reward for its participation. On the other hand,
the MUMC method is proposed to solve the adverse selection
problem where a high preference type capable user enjoys
utility that is proportional to the amount of CCDMI saving
of resources it contributes. Thus, the MUMC method is used
for those cases when the amount of incentives rewarded to a
capable user justifies that user’s amount of contribution to the
process of CCDMI saving of resources.

1) Multiple-User Single-Contract (MUSC) method: We
propose an incentive method of offering contracts, where we
assume that irrespective of the amount of contribution of
a capable user i in terms of the number of other users it
can serve, T;, the capable user is satisfied with a common
reward that gives it an incentive to participate in CCDMI and
result in the overall welfare of the BS and all capable users.
Therefore, the optimal contract defined in this method results
in a common contract set for all N, capable users, irrespective
of their 7; values. Since all capable users are provided with
one common contract, this method is called the Multiple-
User Single-Contract (MUSC) method. The advantage of this
method lies in the fact that the optimal contract is obtained
by solving a single optimization problem. It is clear that in
this situation, the capable user i is not too selfish and greedy
regarding the incentives and is not concerned about getting
greater share of rewards in proportion to the amount of its
contribution, 7;. Rather, the capable user is satisfied enough to
cooperate and contribute to the overall welfare given any fixed
amount of reward and for a reasonable cost of participation
demanded of it from the BS.

The BS finds the optimal contract by solving the optimiza-
tion problem given by
maximize )’ gH{TP — ey + (1 — g {TPE — e}
Pk iE€N;
subject to Bv(rF) —PX >0, k=H,L
Ouv(rt) — P* > 0 (r/) — P/,

(IR),

k,j=H,Lk+#j (IC),
o<rb</H (M.
(14)
The IC constraint can be re-written as,
0 (v(r) —v(*)) — (P =P <0 (15)

It can be clearly observed that the convexity of the constraint
cannot be clearly proved for all cases. Hence, this optimization
problem defined by (14) is non-convex. In order to solve
this problem, we firstly formulate a relaxed problem without
the M-condition, by reducing the remaining constraints. The



relaxed problem with the M-condition becomes

maximize Z g TP — ey + (1 — g {TP" — e}
PEr A
subject to ov(r)—PL =0,
GHv(rH) — P = GHv(rL) —PL,
0<rt <.

(16)
Further, we solve the relaxed optimization problem by using
the standard procedure of Lagrangian multiplier method and
check if this solution also satisfies the M-condition. By solving
this optimization problem the BS finds the optimal contract
and it is found that the low preference type capable user
obtains zero utility whereas a high preference type capable
user achieves a strictly positive utility.

2) Multiple-User Multiple-Contract (MUMC) method: We
propose another method of incentivizing capable users where
the contracts that are offered reflect every capable user’s
amount of contribution to the BS’s utility. The BS can design
a different and unique contract set for each capable user
in order to ensure that this user gets a utility proportional
to the amount of its contribution in terms of the number
of other users it can serve. In this case, the performance-
reward contract set is uniquely defined for each capable user
and hence this method is called the Multiple-User Multiple-
Contract (MUMC) method. The capable users in this method
are greedy and they expect the right amount of reward and is
satisfied only if they get that amount of reward as incentive to
participate in CCDMI. Unlike the case in the MUSC method,
the contract sets are obtained here by solving N, number of
optimization problems.

In this method, two capable users of the same preference
type are offered different contracts. As a result, they will get
different rewards and the amount of reward is proportional to
the value of 7;. Similarly, the cost of participation required
from any two capable users may vary according to their
respective values of 7;. The only disadvantage of this method
is that the complexity of the solution will increase with an
increase in the number of capable users in the system. The
BS finds the optimal contract for user i € A, by solving the
optimization problem given by

maximize ¢/ (TP — '} + (1= g0 /TP —eri}
subject to  Ov(r¥) —PF >0, k=H,L (IR),
O (rf) = P > Bp0(ri) = P,
ki=H,L k%l (IC),
o< <rf (M)
a7

We adopt the same procedure to solve the optimization
problem as used in MUSC method. The optimal contract
obtained by solving this optimization problem for each capable
user results in the capable users of low preference type getting
zero utility and the capable users of high preference type
getting a strictly positive utility.

For implementing the proposed contract-based methods for
a practical network the following signalling information are

TABLE II: Physical layer parameter

[ Parameter | Value ]
Cellular area radius 1000 meters
WLAN area radius 75 meters
Noise power BS: -100 dBm; user: -40 dBm
WLAN rate range 5-40 Mbps

Cellular rate range
Path loss constant

and path loss exponent
Transmit power

600 kbps-2 Mbps

kil;a 3
BS: 46 dBm; device: 20 dBm

exchanged between the BS and the capable users. On the basis
of the information available at the BS end, such as the cellular
network radius, cellular user’s transmit power, the number of
users, and the initial probability with which a capable users is
of high preference type, the BS finds the optimal contract for
each capable user. Then the BS acts in the following way.
The BS broadcasts the menu of contract items to the capable
user. By evaluating the contract, the capable user sends feed-
back signals indicating their willingness to accept or reject
the contract. If the capable user accepts the contract, the BS
signs the contract with the user. If any capable user rejects
the contract, it will serve that capable user and all the users
it could serve, directly. After signing the contract, the capable
user of high preference will distribute the content to other
users. In order to watch the ongoing communication between
the capable user and the other users it could serve, the BS
sends control signals and receives feedback signals from the
recipient users. If the transmission is successful the BS rewards
the capable user with incentives as mentioned in the contract.
If the transmission fails, the BS serves the user directly and
the capable user will not receive any reward.

VI. RESULTS

In this section, we evaluate the performance of the proposed
methods by performing a set of numerical evaluations and
further, by performing a set of MATLAB simulations on the
current system setup. Firstly, in Section VI-A, we investigate
the impact of the preference type of a capable user on its own
performance and on the performance of the BS in CCDMI.
Then in Section VI-B, we perform numerical evaluations to
confirm if the feasibility conditions of the proposed MUSC
and MUMC incentive mechanisms are satisfied. After that, in
Section VI-C, we analyze the performance of the proposed
contract methods for different parameters of the contract
by performing a set of simulations and finally in Section
VI-D, we compare the performance of capable users for the
two proposed methods on the basis of each capable user’s
contribution to CCDMI in terms of the number of other users
it can potentially serve. The main parameters of the cellular
network are shown in Table II.

A. Impact of the Preference Type of a Capable User on the
Performances of the BS and the Capable Users in CCDMI

Firstly, we show how a single capable user’s preference type
influences (a) the utility of the BS and (b) the utility of the
capable user i itself.
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Fig. 5: Evaluation of (a) contract individual rationality, (b) contract incentive compatibility conditions, using the MUSC method.

To understand this, we consider that the user i (i € AL)
can be of high or low preference type. We consider two
scenarios: (i) Scenario A: all the capable users including user
i are of high preference type, and (ii) Scenario B: all the
capable users except user i, are of high preference type. The
utilities of the BS and the capable user i are calculated for both
the scenarios. The same procedure is repeated for a different
network configuration of the BS and the group of capable
users. After multiple iterations, the average utility of the BS
and the average utility of the capable user is obtained.

(1) Average Utility Performance of the BS: In Fig. 4(a), the
graph shows the effect of a capable user’s preference type on
the average utility of the BS for the two scenarios described
above. We observe that the average utility of the BS is always
higher for Scenario A as compared to it’s average utility for

Scenario B. Moreover, for Scenario A, the average utility of
the BS increases with the number of other users 7; that a
capable user i can potentially serve. On the other hand, for
Scenario B, the average utility of the BS is unaffected and
constant, with increasing 7;.

(2) Average Utility Performance of the Users: Fig. 4(b) illus-
trates the effect of a capable user i’s preference type on its own
average utility. We observe that the average utility of user i
is always higher for Scenario B as compared to its average
utility in Scenario A. Moreover, it can be shown that for both
the scenarios, the average utility of user i remains unaffected
by increasing 7; number of other users that it can potentially
serve. Hence, when user i behaves as a low preference type
user, it improves its own average utility but the BS suffers a
loss in its average utility, in comparison to the case when i
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behaves as a high preference type user.

B. Numerical evaluations of the Feasibility Conditions for the
Contract-based Incentive Mechanism

In this subsection, we perform numerical evaluations to
verify if the feasibility conditions of the proposed contract
methods (as explained in Section V-C) are satisfied and then
we perform simulations to analyze the system performance
of CCDMI under adverse selection for different contract
parameters. We show the following results for the MUSC
method of offering contracts.

(a) Individual Rationality Condition: In Fig. 5(a), we compare
the utility of a capable user when it does not accept the
contract, to its utility when it accepts the contract item
according to its preference type. Fig. 5(a) shows that the utility
of a capable user is zero when it does not accept any contract
irrespective of its preference type. On the other hand, utility of
a capable user when it accepts a contract item according to its
preference type, is at least equal to its utility when it rejected
the contract. Therefore, the optimal solution for contracts
under information asymmetry, which is obtained by applying
the proposed MUSC method, satisfies the IR-constraint.

(b) Incentive Compatibility Condition: Fig. 5(b) compares
the utility of a capable user when it accepts the contract
item designed for its own preference type to its utility when
its accepts the contract item designed for users of another
preference type. We observe in Fig. 5(b) that the utility of a
user of low preference type is maximum when it accepts the
optimal contract item designed by the BS for low preference
type users. On the other hand, the maximum utility of a high
preference type user is achieved when it accepts the contract
item designed for high preference type users. Therefore, by
using the MUSC method, the optimal solution for contracts
under information asymmetry satisfies the IC-constraint for
contract feasibility.

(c) Monotonicity Condition: We perform numerical compu-
tations to further compare the performance of the proposed
MUSC method under adverse selection for wireless content
delivery against the adverse selection-free method in which the
BS knows exactly about the preference types of the capable
users and therefore offers contracts to them according to their
preference types. This comparison with the adverse selection-
free case is done because it can serve as an upper bound for
the performance of the proposed MUSC method. In Fig. 6(a),
we compare the optimal effort required of a high preference
type capable user to the optimal effort required of a low
preference type capable user for both the adverse selection
and adverse selection-free cases. Fig. 6(a) shows that a high
preference type user always has a higher required optimal
effort as compared to low preference type user for both the
information cases. Also, we observe that for a high preference
type user, the optimal effort required for the contract in adverse
selection case is very close to the optimal effort required
for the contract in the adverse selection-free case. On the
other hand, for a low preference type user, the optimal effort
required for the contract in adverse selection case is much less
as compared to the optimal effort required for the contract
in adverse selection-free case. In Fig. 6(b), we compare the
optimal incentives rewarded to a high preference type user
to the optimal incentives rewarded to a low preference type
capable user. This comparison is also made for both the
adverse selection and adverse selection-free cases. From Fig.
6(b), we observe that the high preference type user is rewarded
with higher optimal incentives by the BS and vice versa for
both the information cases of finding optimal contract sets.
Moreover, for a high preference type user, the optimal reward
for contract in the adverse selection case is same as the optimal
reward for contract in the adverse selection-free case. On
the other hand, for a low preference type user, the optimal
reward for contract in the adverse selection case is much less
than as compared to the optimal reward for contract in the
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Fig. 8: (a) Average utility of a capable user with increasing 0y , (b) Average utility of the BS with increasing 0.

adverse selection-free case. Therefore, we can conclude that
the optimal effort required of the capable user by the BS and
the optimal rewards given to the capable user as incentives by
the BS, both satisfy the M-condition. Similarly, for the MUMC
method, numerical evaluations can be performed to show that
the contract feasibility conditions are satisfied.

C. Performance Analysis of the Incentive Mechanism for
Different Contract Parameters, AT; and 0y

Now, we study the influence of different parameters of the
contract on the performance of the system. We assume that
the BS encounters a group of high and low preference type
capable users such that the BS knows that a capable user i
is of high preference type with a probability g’. The BS
applies the MUSC method to find the optimal contract and
then offers the contract to all the capable users. We conduct
multiple iterations over time so that probability distribution of

the preference type of the capable user i is different in every
iteration and the distribution of high preference type capable
users averages to qu . At each instant, the capable users can
choose to reject, or accept the contract item that maximizes its
utility. Finally, the average utilities of the capable users and
the BS are found. We use the same simulation parameters as
shown in Table II. In addition, we assume N, = 30 and the BS’s
unit cost of providing incentives to capable users, ¢ = 0.05.
We compare the performance of the proposed MUSC method
under adverse selection with two benchmark methods, (a) the
adverse selection-free method, where the BS knows exactly
about the preferences of the capable users and (b) a content
delivery method under adverse selection, without the contract-
based incentive mechanism. The method of evaluating the
optimal contracts for the adverse selection-free case represents
the optimal outcome BS can achieve and can therefore serve as
an upper bound for the proposed MUSC method under adverse
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selection. In case of the content delivery method under adverse
selection, without the contract-based incentive mechanism, the
capable users prefer not to participate and the BS delivers the
content directly to all users. This method therefore, provides
the lower bound on the outcome the BS can achieve under
adverse selection.

(a) Impact of AT; on the Performance of the BS and the
Capable Users: We simulate the MUSC method in Fig. 7. We
measure the average utility of the BS and the capable user i
by conducting simulations for multiple iterations for a constant
value of T and repeat the same procedure for each increment
in the value of 7, AT;. We observe in Fig. 7(a) that for a
constant AT;, the average utility of a capable user is always
higher for our proposed MUSC method as compared to its
average utility in the adverse selection-free case or when the
capable user rejects the contract. Moreover, the average utility
of a capable user increases with an increment in 7;, AT; for
our proposed MUSC method, whereas the average utility of
a capable user remains constant with A7; for the other two
methods. We also consider the effect of increasing A7; on the
average utility of the BS, in Fig. 7(b). The average utility of the
BS is highest for the adverse selection-free case, as compared
to its average utility for our proposed method under adverse
selection. In both the information cases, average utility of the
BS increases with AT7;. The least average utility of the BS is
when the capable users don’t accept the contract and in this
case the average utility value remains unaffected by a change
in AT;.

(b) Impact of 0; on the performance of the BS and the capable
users: In order to study the effect of the value of coefficient
parameter 0; on the performance of the capable user and the
BS, we keep the coefficient parameter of low preference type
users, 07 constant and increase the coefficient parameter of
high preference type users 6y. Then we see how the average
utility of the BS and the average utility of the capable user
changes with an increase in the value of 6y. In Fig. 8, we
conduct simulations for multiple iterations for a constant value

of Oy and repeat the same procedure for each increasing value
of By. In Fig. 8(a), we see that the average utility of the
capable user increases with an increasing 6y for our proposed
method under adverse selection. On the other hand, for the
other two methods, the average utility of the capable user
remains constant with increasing 0y. Moreover, the average
utility of the capable user for the proposed MUSC method
under adverse selection is always higher as compared to its
average utility when the capable users rejects the contract or
when the there is no adverse selection. In Fig. 8(b), we observe
that the average utility of the BS increases with Oy for both
the adverse selection case and the adverse selection-free case.
On the other hand, the average utility of the BS is constant
and unchanging with 6y when the capable user refuses the
contract. It is clear that the BS has maximum average utility
when it has complete information about the preference types
of the capable users and offers contracts accordingly. For our
proposed methods under conditions of adverse selection, we
see that the BS’s average utility is always higher than its
average utility when the capable users reject the contract.

D. Performance Comparison of Incentive Mechanisms MUSC
and MUMC

Here, using numerical evaluations, we analyze the effect
of amount of contribution of a capable user i to CCDMI in
terms of the number of users it can serve 7;, on the utility
of the capable user for the two proposed incentive methods of
offering contracts, called the MUSC and MUMC mechanisms.
From Fig. 9, we observe that if the MUMC method is used
to solve the adverse selection problem in CCDMI and if a
capable user contributes more to the BS utility, in terms of
T;, then it ends up enjoying a greater utility value, but at the
cost of a solution with higher complexity. Thus, the MUMC
method of contracts is suitable for those cases when a capable
user needs incentive to justify its amount of contribution to the
process of CCDMI saving of resources in terms of the number
of carriers it saves for the operator by participating. On the



other hand, by using the MUSC method every capable user
gets a constant utility value, even if it contributes more to the
CCDMI saving of resources by serving more number of other
users 7;. Hence, the MUSC method is particularly suited when
a user is concerned only with the fact that all users cooperate
for the overall welfare of the users and BS.

VII. CONCLUSION

In this paper, we have addressed the problem of incentiviz-
ing users to participate in CCDMI, under the conditions of
adverse selection. In CCDMI, the cellular BS selects devices
with multiple radio interfaces that have good link quality,
for local content delivery to nearby users and this process
results in resource savings for the BS. This method incurs
little overhead as the information that is utilized for user
selection exists already in the network. Therefore, this method
can play a significant role in meeting the requirements set for
the future 5G networks. However, a mobile user that is capable
of distributing content to other users within its vicinity, can
be willing/unwilling to participate in the cooperation process.
The BS can provide incentives to the willing users provided
the BS knows exactly their degree of willingness. Since this
information is unavailable at the operator BS, the adverse
selection problem arises.

Although several incentive schemes have been used in
previous works for inducing users to cooperate, the tool of
contract theory is most suitable to deal with problems such
as adverse selection that occur due to information asymmetry
in the network. Therefore, we have proposed two novel
self revealing, contract-based incentive methods in which the
contract design ensures that the users get maximum utility
by accepting those contract items which are unique to their
willingness/unwillingness to participate. Moreover, as a result
of implementing these contracts, the users that are capable
of distributing content to other users, have higher utility
when they are willing to participate as compared to their
utility when they are unwilling. Our results have shown that
the proposed methods of offering contracts can improve the
system performance, in terms of the utility of the BS and the
users.

Future work is needed to investigate the dynamic framework
of contracts for designing incentive mechanisms to solve
similar problems with information asymmetry. By exploring
such contracts, it can be analyzed if the dynamicity in incentive
mechanisms leads to an improvement in the performance of
operator and the users, as compared to their performances
for one-period contracts as described in this paper. Another
possible extension of this work would be to design location
based incentive mechanisms using contracts to solve conges-
tion problems for situations where the BS knows the high-
demand areas of a network.
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