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Abstract

We propose a novel method for massive Multiple-Input Multiple-Output (massive MIMO) in Fre-

quency Division Duplexing (FDD) systems. Due to the large frequency separation between Uplink (UL)

and Downlink (DL), in FDD systems channel reciprocity does not hold. Hence, in order to provide

DL channel state information to the Base Station (BS), closed-loop DL channel probing and Channel

State Information (CSI) feedback is needed. In massive MIMO this incurs typically a large training

overhead. For example, in a typical configuration with M ' 200 BS antennas and fading coherence

block of T ' 200 symbols, the resulting rate penalty factor due to the DL training overhead, given

by max{0, 1 − M/T}, is close to 0. To reduce this overhead, we build upon the well-known fact

that the Angular Scattering Function (ASF) of the user channels is invariant over frequency intervals

whose size is small with respect to the carrier frequency (as in current FDD cellular standards). This

allows to estimate the users’ DL channel covariance matrix from UL pilots without additional overhead.

Based on this covariance information, we propose a novel sparsifying precoder in order to maximize

the rank of the effective sparsified channel matrix subject to the condition that each effective user

channel has sparsity not larger than some desired DL pilot dimension Tdl, resulting in the DL training

overhead factor max{0, 1−Tdl/T} and CSI feedback cost of Tdl pilot measurements. The optimization

of the sparsifying precoder is formulated as a Mixed Integer Linear Program, that can be efficiently

solved. Extensive simulation results demonstrate the superiority of the proposed approach with respect

to concurrent state-of-the-art schemes based on compressed sensing or UL/DL dictionary learning.
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I. INTRODUCTION

Multiuser Multiple-Input Multiple-Output (MIMO) consists of exploiting multiple antennas at

the Base Station (BS) side, in order to multiplex over the spatial domain multiple data streams

to multiple users sharing the same time-frequency transmission resource (channel bandwidth and

time slots). For a block-fading channel with spatially independent fading and coherence block of

T symbols,1 the high-SNR sum-capacity behaves as C(SNR) = M∗(1−M∗/T ) log SNR+O(1),

where M∗ = min{M,K, T/2}, M denotes the number of BS antennas, and K denotes the

number of single-antenna users [2–4]. When M and the number of users are potentially very

large, the system pre-log factor2 is maximized by serving K = T/2 data streams (users). While

any number M ≥ K of BS antennas yields the same (optimal) pre-log factor, a key observation

made in [6] is that, when training a very large number of antennas comes at no additional

overhead cost, it is indeed convenient to use M � K antennas at the BS. In this way, at the

cost of some additional hardware complexity, very significant benefits at the system level can be

achieved. These include: i) energy efficiency (due to the large beamforming gain); ii) inter-cell

interference reduction; iii) a dramatic simplification of user scheduling and rate adaptation, due

to the inherent large-dimensional channel hardening [7]. Systems for which the number of BS

antennas M is much larger than the number of DL data streams K are generally referred to as

massive MIMO (see [6–8] and references therein). Massive MIMO has been the object of intense

research investigation and development and is expected to be a cornerstone of the forthcoming

5th generation of wireless/cellular systems [9].

In order to achieve the benefits of massive MIMO, the BS must learn the downlink channel

coefficients for K users and M � K BS antennas. For Time Division Duplexing (TDD) systems,

due to the inherent Uplink-Downlink (UL-DL) channel reciprocity [3], this can be obtained from

K mutually orthogonal UL pilots transmitted by the users. Unfortunately, the UL-DL channel

reciprocity does not hold for Frequency Division Duplexing (FDD) systems, since the UL and

1This is the number of signal dimensions over which the fading channel coefficients can be considered constant over time
and frequency [1].

2 With this term we indicate the the number of spatial-domain data streams supported by the system, such that each stream
has spectral efficiency that behaves as an interference-free Gaussian channel, i.e., log SNR + O(1). In practice, although the
system may be interference limited (e.g., due to inter-cell interference in multicell cellular systems), a well-design system would
exhibit a regime of practically relevant SNR for which its sum-rate behaves as an affine function of log SNR [5].
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DL channels are separated in frequency by much more than the channel coherence bandwidth

[1]. Hence, unlike TDD systems, in FDD the BS must actively probe the DL channel by sending

a common DL pilot signal, and request the users to feed their channel state back.

In order to obtain a “fresh” channel estimate for each coherence block, Tdl out of T symbols

per coherence block must be dedicated to the DL common pilot. Assuming (for simplicity of

exposition) a delay-free channel state feedback, the resulting DL pre-log factor is given by

K ×max{0, 1−Tdl/T}, where K is the number of served users, and max{0, 1−Tdl/T} is the

penalty factor incurred by DL channel training. Conventional DL training consists of sending

orthogonal pilot signals from each BS antenna. Thus, in order to train M antennas, the minimum

required training dimension is Tdl = M . Hence, with such scheme, the number of BS antennas

M cannot be made arbitrarily large. For example, consider a typical case taken from the LTE

system [10], where groups of users are scheduled over resource blocks spanning 14 OFDM

symbols × 12 subcarriers, for a total dimension of T = 168 symbols in the time-frequency

plane. Consider a typical massive MIMO configuration serving K ∼ 20 users with M ≥ 200

antennas (e.g., see [11]). In this case, the entire resource block dimension would be consumed

by the DL pilot, leaving no room for data communication. Furthermore, feeding back the M -

dimensional measurements (or estimated/quantized channel vectors) represents also a significant

feedback overhead for the UL [12–16].

While the argument above is kept informal on purpose, it can be made information-theoretically

rigorous. The central issue is that, if one insists to estimate the K × M channel matrix in

an “agnostic” way, i.e., without exploiting the channel fine structure, a hard dimensionality

bottleneck kicks-in and fundamentally limits the number of data streams that can be supported

in the DL by FDD systems. It follows that gathering “massive MIMO gains” in FDD systems is

a challenging problem. On the other hand, current wireless networks are mostly based on FDD.

Such systems are easier to operate and more effective than TDD systems in situations with

symmetric traffic and delay-sensitive applications [17–19]. In addition, converting current FDD

systems to TDD would represent a non-trivial cost for wireless operators. With these motivations

in mind, a significant effort has been recently devoted in order to reduce the common DL training

dimension and feedback overhead in order to materialize significant massive MIMO gains also

for FDD systems.
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A. Related works: compressed DL pilots

Several works have proposed to reduce both the DL training and UL feedback overheads by

exploiting the sparse structure of the massive MIMO channel. In particular, these works assume

that propagation between the BS array and the user antenna occurs through a limited number of

scattering clusters, with limited support3 in the Angle-of-Arrival/Angle-of-Departure (AoA-AoD)

domain.4 Hence, by decomposing the angle domain into discrete “virtual beam” directions, the

M -dimensional user channel vectors admit a sparse representation in the beam-space domain

(e.g., see [20, 21]). Building on this idea, a large number of works (e.g., see [19, 22–28])

proposed to use “compressed pilots”, i.e., a reduced DL pilot dimension Tdl < M , in order

to estimate the channel vectors using Compressed Sensing (CS) techniques [29, 30]. In [21]

sparse representation of channel multipath components in angle, delay and Doppler domains

was exploited to propose CS methods for channel estimation using far fewer measurements than

required by conventional least-squares (LS) methods. For example, in [24], the authors noticed

that the angles of the multipath channel components are common among all the subcarriers in the

OFDM signaling and exploited the common sparsity to further reduce the number of required

channel measurements. This gives rise to a so-called Multiple Measurement Vector (MMV)

setting, arising when multiple snapshot of a random vector with common sparse support can

be acquired and jointly processed (e.g., see [31, 32]). This was adapted to FDD in massive

MIMO regime were introduced next, where the frequent idea is to probe the channel using

compressed pilots in the downlink, receiving the measurements at the BS via feedback and

performing channel estimation there. A recent work based on this approach was presented in

[19], starting with the observation that, as shown in many experimental studies [33–36], the

propagation between the BS antenna array and the users occurs along given scattering clusters,

that may be common to multiple users, since they all belong to the same scattering environment.

In turns, this yields that the channel sparse representations (in the angle/beam-space domain)

share a common part of their support. Hence, [19] considers a scheme where the users feed

back their noisy DL pilot measurements to the BS and the latter runs a joint recovery algorithm,

coined as Joint Orthogonal Matching Pursuit (J-OMP), able to take advantage of the common

3Throughout the paper the term “support” indicates a set of intervals/indices over which a function/vector has non-zero value.
4From the BS perspective, AoD for the DL and AoA for the UL indicate the same domain. Hence, we shall simply refer to

this as the “angle domain”, while the meaning of departure (DL) or arrival (UL) is clear from the context.
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sparsity. It follows that in the presence of common sparsity, J-OMP improves upon the basic CS

schemes that estimate each user channel separately.

More recent CS-based methods, in addition, make use of the angular reciprocity between the

UL and the DL channels in FDD systems to improve channel estimation. Namely, this refers

to the fact that the directions (angles) of propagation for the UL and DL channel are invariant

over the frequency range spanning the UL and DL bands, which is generally very small with

respect to the carrier frequency (e.g., UL/DL separation of the order of 100MHz, for carrier

frequencies ranging between 2 and 6 GHz) [37–39]. In [28] the sparse set of AoAs is estimated

from a preamble transmission phase in the UL, and this information is used for user grouping

and channel estimation in the DL according to the well-known JSDM paradigm [4, 40]. In [25]

the authors proposed a dictionary learning-based approach. First, in a preliminary learning phase

a pair of UL-DL dictionaries able to sparsely representing the channel are obtained. Then, these

dictionaries are used for a joint sparse estimation of instantaneous UL-DL channels. An issue with

this method is that the dictionary learning phase requires off-line training and must be re-run if the

propagation environment around the BS changes (e.g., due to large moving objects such as truck

and buses, or new building). In addition, the computation involved in the instantaneous channel

estimation is prohibitively demanding for real-time operations with a large number of antennas

(M > 100). In [27] the authors propose estimating the DL channel using a sparse Bayesian

learning framework aiming at joint maximum a posteriori (MAP) estimation of the off-grid

AoAs and multipath component strength by observing instantaneous UL channel measurements.

This method has the drawback that it fundamentally assumes discrete and separable (in the

AoA domain) multipath components and assumes that the order of the channel (number of

AoA components) is a priori known. Hence, the method simply cannot be applied in the case

of continuous (diffuse) scattering, where the scattering power is distributed over a continuous

interval of in the angle domain.

B. Contribution

The focus of this paper is an efficient scheme for massive MIMO in FDD systems. Our goal is

to be able to serve as many users as possible even with very small number of DL pilots, compared

to the inherent channel dimension. Similar to previous works [19, 25, 27], we consider a scheme

where each user sends back its Tdl noisy pilot observations per slot, using unquantized analog
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feedback (see [12, 13]). Hence, achieving a small Tdl yields both a reduction of DL training and

UL feedback overhead. We summarize the major contributions of our work as follows:

• DL covariance estimation: the first problem addressed in this paper is how to estimate DL

channel covariance from UL pilot symbols, which are sent anyway in order to enable a coherent

multiuser MIMO reception in the UL (see Section III). The covariance matrix can be expressed

as an integral transform of the channel Angular Scattering Function (ASF), which encodes the

signal power distribution over the angle domain. Because of the already mentioned UL/DL angle

reciprocity, the channel ASF is invariant with respect to frequency over frequency intervals that

are small with respect to the carrier frequency. Stemming from the ASF reciprocity, the idea of

UL to DL covariance estimation/transformation is studied in several previous works, including

[41–45]. Our approach consists of estimating the channel ASF of each user from UL pilots, and

using it to “extrapolate” the covariance matrix from UL to DL. As shown in our recent work

[46], this extrapolation problem is non-trivial and must be posed in a robust min-max sense. In

[46] we also show that robust covariance reconstruction can be obtained as long as one ensures

that the estimated channel ASF is a real, positive function and that its generated UL antenna

correlation is consistent with the true UL antenna correlation. Unlike most of the works in the

literature, including the ones mentioned above, our covariance extrapolation technique does not

rely on any regularity assumption on the ASF. That is to say, we do not assume the ASF to be

discrete or sparse, and the estimation method works for a generic ASF. In contrast, it exploits

the Toeplitz (resp., block-Toeplitz) structure of the channel covariance matrix resulting from

Uniform Linear Arrays (ULA) (resp., Uniform Planar Arrays (UPA)).

• Active channel sparsification: the second problem addressed in this paper is how to effectively

and artificially reduce each user channel dimension, such that a single common DL pilot of

assigned dimension Tdl is sufficient to estimate a large number of user channels (see Section IV).

In the CS-based works reviewed above, the pilot dimension depends on the channel sparsity level

s (number of non-zero components in the angle/beam-space domain). In fact, standard CS theory

states that stable sparse signal reconstruction is possible using Tdl = O(s logM) measurements.5

In a rich scattering situation, s is large or may in fact vary from user to user or in different cell

locations. Even if the channel support is known, one needs at least s measurements for a stable

5As commonly defined in the CS literature, we say that a reconstruction method is stable if the resulting MSE vanishes as
1/SNR, where SNR denotes the Signal-to-Noise Ratio of the measurements.
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two visibility regions

Base Station

Fig. 1: A sketch of the clusters and visibility regions in the COST 2100 model.

channel estimation. Hence, these CS-based methods (including the ones having access to support

information) may or may not work well, depending on the propagation environment. In order

to allow channel estimation with an assigned pilot dimension Tdl, we use the DL covariance

information in order to design an optimal sparsifying precoder. This is a linear transformation

that depends only on the channel second order statistics (estimated DL covariances) that imposes

that the effective channel matrix (including the precoder) has large rank and yet each column

has sparsity not larger than Tdl. In this way, our method is not at the mercy of nature, i.e. it is

flexible with respect to various types of environments and channel sparsity orders. We cast the

optimization of the sparsifying precoder as a Mixed Integer Linear Program (MILP), which can

be efficiently solved using standard off-the-shelf solvers.

II. SYSTEM SETUP

We consider a directional channel propagation model formed by multiple multipath components

(MPCs), each corresponding to a scattering cluster characterized by a certain angle width and

AoA direction. In addition, as in [19], we consider the possibility that different users have

partially overlapped multipath components. An example of such spatially consistent scattering

model is provided by the COST 2100 channel model [47], where each MPC is associated to a

visibility region, and users inside its visibility region are coupled with the BS array through the

corresponding scattering cluster (see Fig. 1).

This model implies that the scattering geometry of the channel between the BS antenna array

and the UE antenna remains constant over time intervals corresponding to the UE remaining

in the same intersection of visibility regions. Since moving across the regions occurs at a time



7

scale much larger than moving across one wavelength, it is safe to assume that the channel

scattering geometry is locally stationary over intervals much longer than the time scale of the

transmission of channel codewords. Such fixed geometry yields the so-called Wide Sense Sta-

tionary Uncorrelated Scattering (WSSUS) channel model, for which the channel vectors evolve

in time according to a WSS processes. Also, we use the ubiquitous block-fading approximation,

and assume that the channel random process can be approximated as locally piecewise constant

over blocks of T time-frequency symbols, where T ≈ WcTc, Wc denoting the channel coherence

bandwidth and Tc denoting the channel coherence time [1]. We consider a BS equipped with

an ULA with M � 1 antennas and single-antenna UEs.6 In an FDD system, communication

takes place over two disjoint frequency bands. The UEs transmit to the BS over the frequency

interval [ful−Wul

2
, ful +

Wul

2
], where ful is the UL carrier frequency and Wul is the UL bandwidth.

Likewise, the BS transmits to the UEs over the frequency band [fdl − Wdl

2
, fdl + Wdl

2
] where fdl

is the DL carrier frequency and Wdl is the DL bandwidth. The channel bandwidth is always

much less than the carrier frequency, i.e. Wul

ful
� 1, Wdl

fdl
� 1. Let α = fdl

ful
denote the ratio

between the DL and the UL carrier frequencies. Notice that in FDD systems in operation today,

we always have α > 1 (e.g., see [48]). A general form for the above WSSUS channel model in

the time-frequency-antenna domain is given by

h(t, f) =

∫

Θ

ρ(t, dθ)a(θ, f) ∈ CM , (1)

where Θ := [−θmax, θmax) is the angular range scanned by the ULA, the vector a(θ, f) ∈ CM

is the array response at frequency f and angle θ, with m-th element given by

[a(θ, f)]m = e
j2π f

c0
md sin θ

, (2)

where c0 denotes the speed of light and d the distance between two consecutive antennas, and

ρ(t, dθ) is a random gain dependent on the time t and the angle range [θ, θ + dθ]. We model

ρ(t, dθ) to be a zero-mean Gaussian stochastic process with independent increments respect to

θ (uncorrelated scattering) and WSS with respect to t. The angular autocorrelation function is

given by

E [ρ(t, dθ)ρ(t, dθ′)] = γ(dθ)δ(θ − θ′), (3)

6 The approach of this paper can be immediately generalized to UPAs for 3-dim beamforming. Here we restrict to a planar
geometry for the sake of simplicity.
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where γ(dθ) is the channel ASF, modeling the power received from scatterers located at any

angular interval. It is convenient to assume that γ(dθ) is a normalized density function, such

that
∫

Θ
γ(dθ) = 1. Based on the narrow-band assumption we consider the array response to

be a constant function of frequency over each of the UL and DL bands separately and write

aul(θ) := a(θ, ful) and adl(θ) := a(θ, fdl). We let d = κ λul
2 sin(θmax)

, where λul = ful
c0

is the UL

carrier wavelength and κ is the spatial oversampling factor, usually (including here) set to κ = 1.

With this definition we have that [aul(θ)]m = ejmπ
sin(θ)

sin(θmax) and [adl(θ)]m = ejmπα
sin(θ)

sin(θmax) . Notice

that the exponents of the array response elements for UL and DL differ by the factor α, which

is typically slightly larger than 1 (e.g., for the LTE-IMT bands we have α = 2140
1950
≈ 1.1 [48]).

The channel vector covariance matrix is thereby given as follows

Ch(f) = E
[
h(t, f)h(t, f)H

]
=

∫

Θ

γ(dθ)a(θ, f)a(θ, f)H, (4)

which is time-invariant due to stationarity. The dependence of the covariance matrix on frequency

is due to the fact that, as discussed before, the array response vector is a function of frequency.

The covariance matrix is Toeplitz positive semidefinite Hermitian and hence can be described

by its first column c(f) as Ch(f) = T (c(f)),7 where the first column is given by c(f) =
∫

Θ
γ(dθ)a(θ, f). We denote UL and DL covariance matrices by Cul := Ch(ful) and Cdl :=

Ch(fdl), respectively.

III. DL COVARIANCE ESTIMATION FROM UL PILOTS

Our proposed DL covariance estimation method exploits the assumption that the channel ASF is

the same for UL and DL (angular reciprocity) [37–39]. Unlike previous works, we do not assume

the ASF to be sparse, or to consist of only “discrete” components. In fact, as we have shown

in a companion paper [46], any estimate of the ASF that is real, positive and consistent with

the UL covariance, regardless of being sparse, is good enough for the purpose of DL covariance

estimation.

7 For x ∈ CM , we let T (x) denote the Toeplitz Hermitian matrix with first column x, i.e., with (i, j)-th element [T (x)]i,j =
xi−j for i ≥ j and [T (x)]i,j = x∗|i−j| for i < j. If x is a sampled autocorrelation function, then T (x) is positive semidefinite.
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A. Uplink covariance estimation

Since the user channel vectors are mutually independent, and we assume Additive White

Gaussian Noise (AWGN), the estimation of each user channel covariance in the UL is decoupled

and we can focus on the estimation of a generic user. The received UL pilot observation during

the i-th UL coherence block, after projecting over the orthogonal pilot sequence of the given

generic user, is given by y[i] = hul[i]+n[i] (see [6]), where hul[i] denotes the generic user channel

vector during the i-th coherence block and where n ∼ CN (0, σ2IM) is the measurement noise

vector. Collecting a window of Nul UL measurements and assuming the noise variance σ2 to be

known we estimate the UL covariance as follows. We first calculate the sample covariance matrix

as C̃ul = 1
Nul

∑Nul

i=1 y[i]y[i]H. The sample covariance is not necessarily Toeplitz and therefore, to

improve the estimate, we project it to the Toeplitz, positive semidefinite cone using the following

convex program as suggested in [45],

Ĉul = arg min
X∈TM+

‖X−
(
C̃ul − σ2IM

)
‖F , (5)

where TM
+ is the cone of Toeplitz, Hermitian, positive semidefinite M ×M matrices and ‖ · ‖F

is the Frobenius norm. Being a Toeplitz Hermitian matrix, Ĉul can be fully described by its first

column which is denoted by ĉul hereafter.

B. Estimation of the channel ASF

Define G as a uniform grid consisting of G�M discrete angular points {θi}Gi=1, where each

point is given by θi = sin−1
(

(−1 + 2(i−1)
G

) sin(θmax)
)
∈ Θ, and define G ∈ CM×G to be a

matrix whose ith column is given by 1√
M

aul(θi), i ∈ [G]. A discrete approximation of the ASF

γ on the grid G can be written as γ(dθ) ≈∑G
i=1[z]iδ(θ − θi) for some vector z ∈ RG

+. We find

z by solving a non-negative least squares (NNLS) convex optimization program [46]:

z∗ = arg min
z∈RG+

‖Gz− ĉul‖. (6)

The particularly desirable property of NNLS is that, it yields a real, positive approximation of the

ASF and, minimizes the `2 distance of its generated UL covariance samples Gz and the estimated

UL covariance samples ĉul to satisfy a data consistency constraint. In fact, as we show in [46],

positivity and data consistency are the only two requirements needed for guaranteeing a stable DL

covariance estimation. Furthermore, the NNLS solution can be efficiently computed via several
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convex optimization techniques [49]. By solving (6), the estimated discretized approximation of

the ASF is simply given as γ̂(dθ) =
∑G

i=1[z∗]iδ(θ − θi).

C. Covariance extrapolation via Fourier transform resampling

Building on the theory developed in our companion paper [46], the problem of extrapolating

the estimated UL covariance matrix to the DL frequency can be seen as the resampling of the

Fourier transform of the channel ASF. To see this, notice that the m-th components of the first

column cul of Cul are given by

[cul]m =

∫

Θ

γ(dθ)ejmπ
sin θ

sin θmax =

∫ 1

−1

γ(dξ)ejmπξ, m ∈ [M ], (7)

where we introduce the change of variable ξ = sin θ
sin θmax

. Define the continuous Fourier transform

of the positive measure γ(dξ) as γ̌(x) =
∫ 1

−1
γ(dξ)ejxπξ. Then it is clear from (7) that [cul]m =

γ̌(m), m ∈ [M ]. In words, the first column of the UL covariance matrix is simply a sampling

of the Fourier transform of the positive measure γ(dξ) at points m = 0, . . . ,M − 1. Taking

similar steps, one can show that the components of the first column of the DL covariance matrix

are given by [cdl]m =
∫ 1

−1
γ(dξ)ejαmπξ, m ∈ [M ] and hence [cdl]m = γ̌(αm), m ∈ [M ].

Estimating the DL covariance from the UL covariance is equivalent to resampling γ̌(·) over

a grid {0, α, 2α, . . . , (M − 1)α}, knowing its samples at the integer grid {0, 1, 2, . . . ,M − 1}.
Summarizing, the proposed DL covariance estimation method consists of the following steps:

1) Estimate a discrete approximation of the positive measure γ(dθ) using the the UL sample

covariance estimator and solving (6). The samples of the Fourier transform of this measure on the

grid {0, . . . ,M −1} asymptotically converge to those generated from the true angular scattering

function [50] for large sample size Nul.

2) Calculate the Fourier transform of the estimated measure on the grid {αm}M−1
m=0 to obtain the

estimated DL antenna autocorrelation function

[ĉdl]m =
G∑

i=1

γ̂(θi)e
jα(m−1)π

sin θi
sin θmax , m ∈ [M ]. (8)

The resulting DL covariance matrix is given by the Toeplitz completion Ĉdl = T (ĉdl). As a

final remark in this section, notice that the above DL covariance estimation method does not

rely on particular features of the channel ASF. For example, it does not require that the ASF

has a sparse or discrete support, as needed in other ad-hoc methods (e.g., see [28, 39, 44]).
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D. Circulant approximation of the DL covariance matrices

The DL covariance estimation from UL pilot signals is performed for all the users k ∈ [K]

at the BS. These covariance matrices are Toeplitz by construction, due to the structure of the

ULA as described before. In Section IV we will introduce the novel idea of active channel

sparsification where, for a given DL pilot dimension, the BS selects a set of angular directions

to transmit data to the users, such that the number of DL data streams that the system can support

is maximized. A necessary step before performing sparsification is that all of the estimated DL

covariance matrices share a common set of eigenvectors, namely, the same virtual beam-space

representation. In the massive MIMO regime where M � 1, this is possible by considering the

circulant approximation of Toeplitz matrices that follows as an application of Szegö Theorem

(see details in [4] and references therein). Let Ck denote the estimated DL channel covariance

of user k for k ∈ [K], where from now on we shall drop the subscript “dl” since it is clear

from the context, as we consider only DL multiuser MIMO transmission. Define the diagonal

matrices Λ̊k, k ∈ [K] for which [Λ̊k]m,m = [FHCkF]m,m, where F is the M ×M DFT matrix,

whose (m,n)-th entry is given by [F]m,n = 1√
M
e−j2π

mn
M , m, n ∈ [M ]. There are several ways

to define a circulant approximation [51], among which we choose the following:

C̊k = FΛ̊kF
H. (9)

According to Szegö’s theorem, for large M , Λ̊k converges to the diagonal eigenvalue matrix Λk

of Ck, i.e. Λ̊k → Λk as M → ∞. Hence, within a small error for large M , the sought set of

(approximate) common eigenvectors for all the users is provided by the columns of the M ×M
DFT matrix. As a consequence, the DL channel covariance of user k is characterized simply

via a vector of eigenvalues λ(k) ∈ RM , with m-th element [λ(k)]m = [Λ̊(k)]m,m. In addition, the

DFT matrix forms a unitary basis for (approximately) expressing any user channel vector via

an (approximated) Karhunen-Loeve expansion. In particular, let fm := [F]·,m denote the m-th

column of F. We can express the DL channel vector of user k as

h(k) ≈
M−1∑

m=0

g(k)
m

√
[λ(k)]m fm, (10)

where g(k)
m ∼ CN (0, 1) are i.i.d. random variables. The columns of F are very similar to array

response vectors and in fact, recalling equation (2), we have that fm = 1√
M

adl

(
sin−1(λdl

d
m
M

)
)
.
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Hence, each column with index m ∈ [M ] of the DFT matrix can be seen as the array response

to an angular direction and [λ(k)]m can be seen as the power of the channel vector associated

with user k along that direction. Due to the limited number of local scatterers as seen at the

BS and the large number of antennas of the array, only a few entries of λ(k) are significantly

large, implying that the DL channel vector h(k) is sparse in the Fourier basis. This sparsity in

the beam-space domain is precisely what has been exploited in the CS-based works discussed

in Section I-A, in order to reduce the DL pilot dimension Tdl. It is also evident that this channel

representation combined with the geometrically consistent model reviewed in Section II yields

the common sparsity across users, as exploited by J-OMP in [19]. As seen in the next section,

our proposed approach does not rely on any intrinsic channel sparsity assumption, but adopts a

novel artificial sparsification technique.

IV. ACTIVE CHANNEL SPARSIFICATION AND DL CHANNEL PROBING

In this section we consider the estimation of the instantaneous realization of the DL user channel

vectors. As in [4], we consider the concatenation of the physical channel with a fixed precoder,

i.e., a linear transformation that may depends on the user channel statistics (notably, on their

covariance matrices estimated as explained in Section III), but is independent of the instantaneous

channel realizations, which in fact must be estimated via the closed-loop DL probing and channel

state feedback mechanism as discussed in Section I.

The BS transmits a training space-time matrix Ψ of dimension Tdl ×M ′, such that each row

Ψi,. is transmitted simultaneously from the M ′ ≤M inputs of a precoding matrix B of dimension

M ′ ×M , and where M ′ is a suitable intermediate dimension that will be determined later. The

precoded DL training length (in time-frequency symbols) spans therefore Tdl dimensions, and

the DL training phase is repeated at each DL slot of dimension T . Stacking the Tdl DL training

symbols in a column vector, the corresponding observation at the UE k receiver is given by

y(k) = ΨBh(k) + n(k) = Ψȟ
(k)
eff + n(k), (11)

where B is the precoding matrix, h(k) is the channel vector of user k, and we define ȟ
(k)
eff :=

Bh(k) as the effective channel vector, formed by the concatenation of the actual DL channel

(antenna-to-antenna) with the precoder B. The measurement noise is AWGN with distribution
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n(k) ∼ CN (0,N0ITdl
). The training matrix and precoding matrix are normalized such that

tr(ΨBBHΨH) = TdlPdl, (12)

where Pdl denotes the total BS transmit power and we define the DL SNR as SNR = Pdl/N0.

Notice that most works on channel estimation focus on the estimation of the actual channels

{h(k)}. This is recovered in our setting by letting B = IM . However, our goal here is to design

a sparsifying precoder B such that each user effective channel has low dimension (in the beam-

space representation) and yet the collection of effective channels for k ∈ [K] form a high-rank

matrix. In this way, each user channel can be estimated using a small pilot overhead Tdl, but

the BS is still able to serve many data streams using spatial multiplexing in the DL (in fact, as

many as the rank of the effective matrix).

A. Necessity and implication of stable channel estimation

For simplicity of exposition, in this section we assume that the channel representation (10)

holds exactly and that the eigenvalue vectors λ(k) have support Sk = {m : [λ(k)]m 6= 0} with

sparsity level sk = |Sk|. We hasten to say that the above are convenient design assumptions,

made in order to obtain a tractable problem, and that the precoder designed according to our

simplifying assumption is applied to the actual physical channels. Under these assumptions, the

following lemma yields necessary and sufficient conditions of stable estimation of the channel

vectors h(k).

Lemma 1: Consider the sparse Gaussian vector h(k) with support set Sk given by the RHS

of (10). Let ĥ(k) denote any estimator for h(k) based on the observation8 y(k) = Ψh(k) + n(k),

and let Re = E[(h(k)− ĥ(k))(h(k)− ĥ(k))H] denote the corresponding estimation error covariance

matrix. If Tdl ≥ sk there exist pilot matrices Ψ ∈ CTdl×M for which limN0↓0 tr(Re) = 0 for all

support sets Sk : |Sk| = sk. Conversely, for any support set Sk : |Sk| = sk any pilot matrix

Ψ ∈ CTdl×M with Tdl < sk yields limN0↓0 tr(Re) > 0. �

Proof: See appendix VII-A.

As a direct consequence of Lemma 1, we have that any scheme relying on intrinsic channel

sparsity cannot yield stable estimation if Tdl < sk for some users. Furthermore, we need to

impose that the effective channel sparsity (after the introduction of the sparsifying precoder

8Note that this coincides with (11) with B = IM , i.e., without the sparsifying precoder.
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B) is less or equal to the desired DL pilot dimension Tdl. It is important to note that the

requirement of estimation stability is essential in order to achieve high spectral efficiency in

high SNR conditions, irrespectively of the DL precoding scheme. In fact, if the estimation MSE

of the user channels does not vanish as N0 ↓ 0, the system self-interference due to the imperfect

channel knowledge grows proportionally to the signal power, yielding a Signal-to-Interference

plus Noise Ratio (SINR) that saturates to a constant when SNR becomes large. Hence, for

sufficiently high SNR, the best strategy would consist of transmitting just a single data stream,

since any form of multiuser precoding would inevitably lead to an interference limited regime,

where the sum rate remains bounded while SNR→∞ [52]. In contrast, it is also well-known that

when the channel estimation error vanishes as O(N0) for N0 ↓ 0, the high-SNR sum rate behaves

as if the channel was perfectly known and can be achieved by very simple linear precoding [12].

A possible solution to this problem consists of serving only the users whose channel support sk

is not larger than Tdl. This is assumed implicitly in all CS-based schemes (see Section I-A), and

represents a major intrinsic limitation of the CS-based approaches. In contrast, by artificially

sparsifying the user channels, we manage to serve all users given a fixed DL pilot dimension

Tdl.

B. Sparsifying precoder optimization

Before proceeding in this section, we introduce some graph-theoretic terms [53]. A bipartite

graph is a graph whose vertices (nodes) can be divided into two sets V1 and V2, such that every

edge in the set of graph edges E connects a vertex in V1 to one in V2. One can denote such

a graph by L = (V1,V2, E). A subgraph of L is a graph L′ = (V ′1,V ′2, E ′) such that V ′1 ⊆ V1,

V ′2 ⊆ V2 and E ′ ⊆ E . With regards to L, the following terms shall be defined and later used.

• Degree of a vertex: for a vertex x ∈ V1 ∪ V2, the degree of x refers to the number of edges

in E incident to x and is denoted by degL(x).

• Neighbors of a vertex: the neighbors of a vertex x ∈ V1∪V2 are the set of vertices y ∈ V1∪V2

connected to x. This set is denoted by NL(x).

• Matching: a matching in L is a subset of edges in E without common vertices.

• Maximal matching: a maximal matching M of L is a matching with the property that if any

edge outside M and in E is added to it, it is no longer a matching.

• Perfect matching: a perfect matching in L is a matching that covers all vertices of L.



15

We propose to design the sparsifying precoder using a graphical model, where a bipartite

graph is formed by a set of vertices representing users on one side and another set of vertices

representing beams on the other side. An edge of the bipartite graph between a beam and a user

represents the presence of that beam in the user angular profile, with its weight denoting the user

channel power along that beam. Now, we wish to design the precoder B such that the support

of the effective channels ȟ
(k)
eff = Bh(k) is not larger than Tdl for all k, such that all users have a

chance of being served. Let Ȟ = L�G ∈ CM×K denote the matrix of DL channel coefficients

expressed in the DFT basis (10), in which each column of Ȟ represents the coefficients vector of

a user, where L is a M×K matrix with elements [L]m,k =
√

[λ(k)]m, where G ∈ CM×K has i.i.d.

elements [G]m,k = g
(k)
m ∼ CN (0, 1), and where � denotes the Hadamard (elementwise) product.

Let A denote a one-bit thresholded version of L, such that [A]m,k = 1 if [λ(k)]m > th, where

th > 0 is a suitable small threshold, used to identify the significant components, and consider

the M ×K bipartite graph L = (A,K, E) with adjacency matrix A and weights wm,k = [λ(k)]m

on the edges (m, k) ∈ E .

Given a pilot dimension Tdl, our goal consists in selecting a subgraph L′ = (A′,K′, E ′) of L
in which each node on either side of the graph has a degree at least 1 and such that:

1) For all k ∈ K′ we have degL′(k) ≤ Tdl, where degL′ denotes the degree of a node in the

selected subgraph.

2) The sum of weights of the edges incident to any node k ∈ K′ in the subgraph L′ is greater

than a threshold, i.e.
∑

m∈NL′ (k) wm,k ≥ P0, ∀k ∈ K′.
3) The channel matrix ȞA′,K′ obtained from Ȟ by selecting a ∈ A′ (referred to as “selected

beam directions”) and k ∈ K′ (referred to as “selected users”) has large rank.

The first criterion enables stable estimation of the effective channel of any selected user with

only Tdl common pilot dimensions and Tdl complex symbols of feedback per selected user. The

second criterion makes sure that the effective channel strength of any selected user is greater

than a desired threshold, since we do not want to spend resources on probing and serving users

with weak effective channels (where “weak” is quantitatively determined by the value of P0).

Therefore P0 is a parameter that serves to obtain a tradeoff between the rank of the effective

matrix (which ultimately determines the number of spatially multiplexed DL data streams) and

the beamforming gain (i.e., the power effectively conveyed along each selected user effective
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channel). The third criterion is motivated by the fact that the DL pre-log factor is given by

rank(ȞA′,K′) × max{0, 1 − Tdl/T}, and it is obtained by serving a number of users equal to

the rank of the effective channel matrix. The following lemmas relate the rank of the effective

channel matrix to a graph-theoretic quantity, namely, the size of the maximal matching.

Lemma 2: [Skeleton or “CUR” decomposition [54]] Consider Ȟ ∈ CM×K , of rank r. Let

Q be an r × r non-singular intersection submatrix obtained by selecting r rows and r columns

of Ȟ. Then, we have Ȟ = CUR, where C ∈ CM×r and R ∈ Cr×K are the matrices of the

selected columns and rows forming the intersection Q and U = Q−1. �

Lemma 3: [Rank and perfect matchings] Let Q denote an r × r matrix with some elements

identically zero, and the non-identically zero elements independently drawn from a continuous

distribution. Consider the associated bipartite graph with adjacency matrix A such that Ai,j = 1

if Qi,j is not identically zero, and Ai,j = 0 otherwise. Then, Q has rank r with probability 1 if

and only if the associated bipartite graph contains a perfect matching. �

Proof: See appendix VII-B.

A similar theorem can be found in [55], but we provide a direct proof in Appendix VII-B for

the sake of completeness. Lemmas 2 and 3 result in the following corollary, which is an original

contribution of this work.

Corollary 1: The rank r of a random matrix Ȟ ∈ CM×K with either identically zero elements

or elements independently drawn from a continuous distribution is given, with probability 1, by

the size of the largest intersection submatrix whose associated bipartite graph (defined as in

Lemma 3) contains a perfect matching. �

Obviously this corollary holds in our case where the non-zero elements of Ȟ are drawn from

the complex Gaussian distribution. Using Corollary 1 this problem can be formulated as:

Problem 1: Let Tdl denote the available DL pilot dimension and let M(A′,K′) denote a

matching of the subgraph L′(A′,K′, E ′) of the bipartite graph L(A,K, E). Find the solution of

the following optimization problem:

maximize
A′⊆A,K′⊆K

|M (A′,K′)| (13a)

subject to degL′(k) ≤ Tdl ∀k ∈ K′, (13b)
∑

a∈NL′ (k)

wa,k ≥ P0, ∀k ∈ K′. (13c)
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Fig. 2: (a) An example of a bipartite graph L. (b) The corresponding weighted adjacency matrix W.

♦

The following theorem shows that Problem 1 can be solved in a tractable way.

Theorem 1: The optimization problem in (13) is equivalent to the mixed integer linear

program (MILP) below:

PMILP : maximize
xm,yk,zm,k

∑

m∈A

∑

k∈K

zm,k (14a)

subject to zm,k ≤ [A]m,k ∀m ∈ A, k ∈ K, (14b)
∑

k∈K

zm,k ≤ xm ∀m ∈ A, (14c)

∑

m∈A

zm,k ≤ yk ∀k ∈ K, (14d)

∑

m∈A

[A]m,kxm ≤ Tdlyk +M(1− yk) ∀k ∈ K, (14e)

P0 yk ≤
∑

m∈A

[W]m,kxm ∀k ∈ K, (14f)

xm ≤
∑

k∈K

[A]m,kyk ∀m ∈ A, (14g)

xm, yk ∈ {0, 1} ∀a ∈ A, k ∈ K, (14h)

zm,k ∈ [0, 1] ∀m ∈ A, k ∈ K, (14i)

where W is the |A|× |K| weighted adjacency matrix in which [W]m,k = wm,k (see the example

in Fig. 2a and Fig. 2b). The solution sub-graph is given by the set of nodes A′ = {m : x∗m = 1}



18

and K′ = {k : y∗k = 1}, with {x∗m}Mm=1 and {y∗k}Kk=1 being a solution of (14). �

Proof: See Appendix VII-C.

The introduced MILP can be efficiently solved using an off-the-shelf optimization toolbox. The

solution to this optimization, however, is not necessarily unique, i.e. there may exist several sub-

graphs with the same (maximum) matching size. In order to limit the solution set we introduce

a regularization term to the objective of (14) to favor solutions containing more “active” beams.

The regularized form of (14) is given as

PMILP : maximize
xm,yk,zm,k

∑

m∈A

∑

k∈K

zm,k + ε
∑

m∈A

xm

subject to {xm, yk, zm,k}m∈A,k∈K ∈ Sfeasible,

(15)

where the feasibility set Sfeasible encodes the constraints (14a)-(14i). Here the regularization factor

ε is chosen to be a small positive value such that it does not effect the matching size of the

solution sub-graph. In fact choosing ε < 1
M

ensures this, since then ε
∑

m∈A xm < 1 and a

solution to (15) must have the same matching size as a solution to (14), otherwise the objective

of (15) can be improved by choosing a solution with a larger matching size.

C. Channel estimation and multiuser precoding

For a given set of user DL covariance matrices, let {x∗m}Mm=1 and {y∗k}Kk=1 denote the MILP

solution and denote by B = {m : x∗m = 1} = {m1,m2, . . . ,mM ′} the set of selected beam

directions of cardinality |B| = M ′ and by K = {k : y∗k = 1} the set of selected users of

cardinality |K| = K ′. The resulting sparsifying precoding matrix B in (11) is simply obtained

as B = FH
B , where FB = [fm1 , . . . , fmM′ ] and fm denotes the m-th column of the M ×M unitary

DFT matrix F. Given a DFT column fm, we have

Bfm =





0 if m /∈ B
ui if m = mi ∈ B

where ui denotes a M ′×1 vector with all zero components but a single “1” in the i-th position.

Using the above property and (10), the effective DL channel vectors take on the form

ȟ
(k)
eff = B

∑

m∈Sk

g(k)
m

√
[λ(k)]mfm =

∑

i:mi∈B∩Sk

√
[λ(k)]mig

(k)
mi

ui. (16)

In words, the effective channel of user k is a vector with non-identically zero elements only at the

positions corresponding to the intersection of the beam directions in Sk, along which the physical
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channel of user k carries positive energy, and in B, selected by the sparsifying precoder. The

non-identically zero elements are independent Gaussian coefficients ∼ CN (0, [λ(k)]mi). Notice

also that, by construction, the number of non-identically zero coefficients are |B∩Sk| ≤ Tdl and

their positions (encoded in the vectors ui in (16)), plus an estimate of their variances [λ(k)]mi are

known to the BS. Hence, the effective channel vectors can be estimated from the Tdl-dimensional

DL pilot observation (11) with an estimation MSE that vanishes as 1/SNR. The pilot observation

in the form (11) is obtained at the user k receiver. In this work, we assume that each user sends

its pilot observations using Tdl channel uses in the UL, using analog unquantized feedback, as

analyzed for example in [12, 13]. At the BS receiver, after estimating the UL channel from the UL

pilots, the BS can apply linear MMSE estimation and recovers the channel state feedback which

takes on the same form of (11) with some additional noise due to the noisy UL transmission.9

With the above precoding, we have BBH = IM ′ . Also, we can choose the DL pilot matrix Ψ

to be proportional to a random unitary matrix of dimension Tdl×M ′, such that ΨΨH = PdlITdl
.

In this way, the DL pilot phase power constraint (12) is automatically satisfied. The estimation

of ȟ
(k)
eff from the DL pilot observation (11) (with suitably increased AWGN variance due to the

noisy UL feedback) is completely straightforward and shall not be treated here in details.

For the sake of completeness, we conclude this section with the DL precoded data phase and

the corresponding sum rate performance metric that we shall use in Section V for numerical

analysis and comparison with other schemes. Let Ĥeff = [ĥ
(1)
eff , . . . , ĥ

(K′)
eff ] be the matrix of the

estimated effective DL channels for the selected users. We consider the ZF beamforming matrix

V given by the column-normalized version of the Moore-Penrose pseudoinverse of the estimated

channel matrix, i.e., V =
(
Ĥeff

)†
J1/2, where

(
Ĥeff

)†
= Ĥeff

(
ĤH

effĤeff

)−1

and J is a diagonal

matrix that makes the columns of V to have unit norm. A channel use of the DL precoded data

transmission phase at the k-th user receiver takes on the form

y(k) =
(
h(k)

)H
BHVP1/2d + n(k), (17)

where d ∈ CK′×1 is a vector of unit-energy user data symbols and P is a diagonal matrix

9As an alternative, one can consider quantized feedback using Tdl channel uses in the UL (see [12, 13] and references therein).
Digital quantized feedback yields generally a better end-to-end estimation MSE in the absence of feedback errors. However, the
effect of decoding errors on the channel state feedback is difficult to characterize in a simple manner since it depends on the
specific joint source-channel coding scheme employed. Hence, in this work we restrict to the simple analog feedback.
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defining the power allocation to the DL data streams. The transmit power constraint is given by

tr(BHVPVHB) = tr(VHVP) = tr(P) = Pdl,

where we used BBH = IM ′ and the fact that VHV has unit diagonal elements by construction. In

particular, in the results of Section V we use the simple uniform power allocation Pk = Pdl/K
′ to

each k-th user data stream. In the case of perfect ZF beamforming, i.e., for Ĥeff = Heff, we have

that (17) reduces to y(k) =
√
JkPkdk + n(k), where Jk is the k-th diagonal element of the norm

normalizing matrix J, Pk is the k-th diagonal element of the power allocation matrix P, and dk

is the k-th user data symbol. Since in general Ĥeff 6= Heff, due to non-zero estimation error, the

received symbol at user k receiver is given by y(k) = bk,kdk +
∑

k′ 6=k bk,k′dk′ + n(k), where the

coefficients (bk,1, . . . , bk,K′) are given by the elements of the 1×K ′ row vector
(
h(k)

)H
BHVP1/2

in (17). Of course, in the presence of an accurate channel estimation we expect that bk,k ≈
√
JkPk

and bk,k′ ≈ 0 for k′ 6= k. For simplicity, in this paper we compare the performance of the proposed

scheme with that of the state-of-the-art CS-based scheme in terms of ergodic sum rate, assuming

that all coefficients (bk,1, . . . , bk,K′) are known to the corresponding receiver k. Including the DL

training overhead, this yields the rate expression (see [56])

Rsum =

(
1− Tdl

T

)∑

k∈K

E

[
log

(
1 +

|bk,k|2

1 +
∑

k′ 6=k |bk,k′ |
2

)]
. (18)

V. SIMULATION RESULTS

In this section we compare the performance of the proposed approach for FDD massive MIMO

to two of the most recent CS-based methods proposed in [19] and [25] in terms of channel

estimation error and sum-rate. In [19], the authors proposed a method based on common probing

of the DL channel with random Gaussian pilots. The DL pilot measurements y(k) at users

k = 1, . . . , K are fed back and collected by the BS, which recovers the channel vectors using

a joint orthogonal matching pursuit (J-OMP) technique able to exploit the possible common

sparsity between the user channels (see channel model in Section II).

In [25], a method based on dictionary learning for sparse channel estimation was proposed.

In this scheme, the BS jointly learns sparsifying dictionaries for the UL and DL channels by

collecting channel measurements at different cell locations (e.g., via an off-line learning phase).
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The actual user channel estimation is posed as a norm-minimization convex program using the

trained dictionaries and with the constraint that UL and DL channels share the same support

over their corresponding dictionaries. Following the terminology used in [25], we refer to this

method as JDLCM.

For this comparison, we considered M = 128 antennas at the BS, K = 13 users, and resource

blocks of size T = 128 symbols. For our proposed method, the BS computes the users’ sample

UL covariance matrices by taking Nul = 1000 UL pilot observations and then applies the scheme

explained in Section III. Given the obtained DL channel covariance matrix estimates, we first

perform the circulant approximation and extract the vector of approximate eigenvalues as in (9).

Then, we compute the sparsifying precoder B via the MILP solution as given in Section IV-B. In

the results presented here, we set the parameter P0 in the MILP to a small value in order to favor

a high rank of the resulting effective channel matrix over the beamforming gain.10 After probing

the effective channel of the selected users along these active beam directions via a random

unitary pilot matrix Ψ, we calculate their MMSE estimate using the estimated DL covariance

matrices. Eventually, for all the three methods, we compute the ZF beamforming matrix based

on the obtained channel estimates. In addition, instead of considering all selected users, in both

cases we apply the Greedy ZF user selection approach of [57], that yields a significant benefit

when the number of users is close to the rank of the effective channel matrix. As said before,

the DL SNR is given by SNR = Pdl/N0 and during the simulations we consider ideal noiseless

feedback for simplicity, i.e., we assume that the BS receives the measurements in (11) without

extra feedback noise to the system.11 The sparsity order of each channel vector is given as an

input to the J-OMP method, but not to the other two methods. This represents a genie-aided

advantage for J-OMP, that we introduce here for simplicity.

As the simulation geometry, we consider three MPC clusters with random locations within

the angular range (parametrized by ξ rather than θ) [−1, 1). We denote by Ξ the i-th interval

and set each interval size to be |Ξi| = 0.2, i = 1, 2, 3. The ASF for each user is obtained

by selecting at random two out of three such clusters, such that the overlap of the angular

10This approach is appropriate in the medium to high-SNR regime. For low SNR, it is often convenient to increase P0 in
order to serve less users with a larger beamforming energy transfer per user.

11Notice that by introducing noisy feedback the relative gain w.r.t. J-OMP is even larger, since CS schemes are known to be
more noise-sensitive than plain MMSE estimation using estimated DL covariance matrices.
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Fig. 3: (a) Normalized channel estimation error, and (b) achievable sum-rate as a function of DL pilot dimension
with SNR = 20 dB, M = 128 and K = 13.

components among users is large. The ASF is non-zero over the angular intervals corresponding

to the chosen MPCs and zero elsewhere, i.e., γk(dξ) = β1Ξi1∪Ξi2
, where β = 1/

∫ 1

−1
γk(dξ)

and i1, i2 ∈ {1, 2, 3}. The described arrangement results in each generated channel vector being

roughly sk = 0.2×M ≈ 26-sparse. To measure channel estimation error we use the normalized

Euclidean distance as follows. Let H ∈ CM×K′ define the matrix whose columns correspond

to the channel vectors of the K ′ served users and let Ĥ denote the estimation of H. Then the

normalized error is defined as

e = E

[
‖H− Ĥ‖2

‖H‖2

]
.

A. Comparisons

Fig. 3a shows the normalized channel estimation error for the J-OMP, JDLCM and our

proposed Active Channel Sparsification (ACS) method as a function of the DL pilot dimension

Tdl with SNR = 20 dB. Our ACS method outperforms the other two by a large margin, especially

for low DL pilot dimensions. When the pilot dimension is below channel sparsity order, CS-

based methods perform very poorly, since the number of channel measurements is less than the

inherent channel dimension. Fig. 3b compares the achievable sum-rate for the three methods.

Again our ACS method shows a much better performance compared to J-OMP and JDLCM.

This figure also shows that there is an optimal DL pilot dimension that maximizes the sum-rate.

This optimal value is Tdl ≈ 40 for our proposed method, Tdl ≈ 60 for JDLCM and Tdl ≈ 70
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Fig. 4: Sum-rate vs Tdl for various channel sparsity orders. Here SNR = 20 dB, M = 128 and K = 13.

for the J-OMP method.

B. The effect of channel sparsity order

Depending on the geometry and user location, channels may show different levels of sparsity

in the angular domain. In contrast to CS-based methods, our proposed method is highly flexible

with regards to various channel sparsity orders, thanks to the active sparsification method. In this

section, we investigate how sparsity order effects channel estimation error as well as sum-rate

within the framework of our proposed method. We use the same setup as in section V-A, i.e.

user ASFs consist of two clusters chosen at random among the three. But now we vary the size

of the angular interval each of the clusters occupies (|Ξi| = 0.2, 0.4, 0.6, 0.8) and see how it

effects the error and sum-rate metrics. The sparsification, channel probing and transmission are

performed as described before. Since each ASF consists of two clusters and M = 128 channel

sparsity order (roughly) takes on the values sk = 26, 51, 77, 102 for all users k ∈ [K ′]. For each

value of the pilot dimension we perform a Monte Carlo simulation to empirically calculate the

sum-rate. Fig. 4 illustrates the results. Notice that in these results we fix the channel coefficient

power along each scattering component, such as richer (less sparse) channels convey more signal

energy. This corresponds to the physical fact that the more scattered signal energy is collected

at the receiving antennas the higher the received signal energy is. As we can see in Fig. 4, for a

fixed Tdl, when the number of non-zero channel coefficients increases (i.e., the channel is less

sparse), we generally have a larger sum-rate. The main reason is that, with less sparse channels,

the beamforming gain is larger due to the fact that more scattering components contribute to the
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Fig. 5: Sum-rate as a function of log2 (SNR) with M = 128 and K = 13.

channel. Therefore, we can generally say that with our method, for a fixed pilot dimension, less

sparse channels are better. Of course, this is not the case for CS-based techniques, or techniques

based on the “sparsity assumption” of a small number of discrete angular components, which

tend to collapse and yield very bad results when such sparsity assumptions are not satisfied.

C. Relevance of the pre-log factor

An interesting final observation is to examine the system sum-rate vs. SNR with our proposed

method, and in particular show that there is indeed a regime of intermediate SNR for which

the slope of the sum-rate curve yields quite faithfully the number of spatially multiplexed data

streams. We performed a simulation with M = 128 antennas and K = 13 users and a pilot

dimension of Tdl = 60. The pre-log factor determines the slope of the sum-rate vs log2(SNR)

curve, in an intermediate regime where the sum-rate is not saturated, and yet the spectral

efficiency is large.12 As illustrated in Fig. 5, this slope is equal to 12.5 × (1 − Tdl

T
). Notice

that the Greedy ZF scheme decides to serve a number of users that may be less than K in an

opportunistic fashion, such that the expected number of served users (DL data streams) in this

SNR regime is indeed slightly less than the maximum possible K = 13. Hence, the agreement

between the sum-rate slope in this regime and the number of served DL data streams is exactly

what can be expected, thus showing the relevance of maximizing the rank of the effective matrix

in the proposed optimization of the sparsifying precoder.

12This saturation is due to the non-vanishing covariance estimation error and happens at around SNR = 60 dB.
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VI. CONCLUSION

We presented a novel approach for FDD massive MIMO systems. Our approach exploits the

reciprocity of the angular scattering function to estimate the covariance matrix of the users’ DL

channels from the UL pilots sent by the users to the BS. The estimated DL covariance matrices of

all users can be approximately expressed in terms of a common system of covariance eigenvectors

(beam-space representation). For the ULA setting, such eigenvectors are the columns of a DFT

matrix, and this representation incurs a vanishing error for large number of BS antennas M .

This beam-space information allows the BS to smartly select a set of beams and users such that

communication over the resulting effective channels is efficient even with a limited DL pilot

dimension. This beam-user selection procedure is referred to here as active channel sparsification

and is achieved via a newly formulated mixed integer linear program (MILP). Our simulation

results show that the proposed method performs well even in cases where the available DL

pilot dimension is far less than the inherent dimension of the channel vectors. This represents

a fundamental improvement with respect to the state-of-the-art CS-based method (in particular,

exploiting common sparsity or learned sparsifying dictionaries), for which the DL pilot dimension

should always be larger than the inherent channel sparsity in the angle domain. We conclude

by mentioning that in this paper we focused on purpose on a simple single-cell scenario. When

multiple cells are considered, inter-cell interference should be taken into account. However, unlike

TDD systems where UL and DL across different cells are synchronous, and the limited pilot

dimension yields pilot contamination (see [6–8]), in FDD systems there is no need for tight

inter-cell synchronization and the inter-cell incoherent interference simply results in a higher

level of the background noise, but can be taken into account in a completely straightforward

manner (as always traditionally done in the analysis of cellular systems) since no coherently

beamformed interference due to pilot contamination appears in FDD systems.

Future work along the lines presented in this paper may consist of generalizing the active

channel sparsification method to a broader category of array geometries. While such general-

ization is straightforward for UPAs, leveraging the block-Toeplitz covariance structure, for other

geometries one must find efficient methods for UL-DL covariance transformation and efficient

“beam-space representation” for the design of the sparsifying precoder.
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VII. APPENDICES

A. Proof of Lemma 1

The proof follows by using the representation h(k) =
∑

m∈Sk g
(k)
m

√
[λ(k)]mfm (see (10)),

which holds exactly by assumption. Estimating h(k) is equivalent to estimating the vector of

KL Gaussian i.i.d. coefficients g(k) = (g
(k)
m : m ∈ Sk) ∈ Csk×1. Define the M × sk DFT

submatrix FSk = (fm : m ∈ Sk), and the corresponding diagonal sk × sk matrix of the non-zero

eigenvalues Λ
(k)
Sk . After some simple standard algebra, the MMSE estimation error covariance

of g(k) from y(k) in (11) with B = IM can be written in the form

R̃e = Isk −
(
Λ

(k)
Sk

)1/2

FH
SkΨ

H
(
ΨFSkΛ

(k)
Sk FH

SkΨ
H + N0ITdl

)−1

ΨFSk

(
Λ

(k)
Sk

)1/2

. (19)

Using the fact that Re = FSk(Λ
(k)
Sk )1/2R̃e(Λ

(k)
Sk )1/2FH

Sk , such that tr(Re) = tr(ΛSkR̃e), we have

that tr(Re) and tr(R̃e) have the same vanishing order with respect to N0. In particular, it is

sufficient to consider the behavior of tr(R̃e) as a function of N0. Now, using the Sherman-

Morrison-Woodbury matrix inversion lemma [58], after some algebra omitted for the sake of

brevity we arrive at

tr(R̃e) = sk −
sk∑

i=1

µi
N0 + µi

, (20)

where µi is the i-th eigenvalue of the sk × sk matrix A = (Λ
(k)
Sk )1/2FH

SkΨ
HΨFSk(Λ

(k)
Sk )1/2. Next,

notice that

rank(A) = rank(FH
SkΨ

HΨFSk) = rank(FSkF
H
SkΨ

H) ≤ min{sk,Tdl}. (21)

In fact, Λ
(k)
Sk is diagonal with strictly positive diagonal elements, such that left and right multi-

plication by (Λ
(k)
Sk )1/2 yields rank-preserving row and column scalings, the matrix FSkF

H
Sk is the

orthogonal projector onto the sk-dimensional column-space of FSk and has rank sk, while the

matrix ΨH ∈ CM×Tdl has the same rank of ΨHΨ, that is at most Tdl.

For Tdl ≥ sk the existence of matrices Ψ such that the rank upper bound (21) holds with

equality (i.e., for which rank(A) = sk for any support set Sk of size sk) is shown as follows.

Generate a random Ψ with i.i.d. elements ∼ CN (0, 1). Then, the columns of FH
SkΨ

H form

a collection of Tdl ≥ sk mutually independent sk-dimensional Gaussian vectors with i.i.d. ∼
CN (0, 1) components. The event that these vectors span a space of dimension less than sk is a
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null event (zero probability). Hence, such randomly generated matrix satisfies the rank equality

in (21) with probability 1. As a consequence, for Tdl ≥ sk we have that µi > 0 for all i ∈ [sk]

and (20) vanishes as O(N0) as N0 ↓ 0. In contrast, if Tdl < sk, by (21) for any matrix Ψ at most

Tdl eigenvalues µi in (20) are non-zero and limN0↓0 sk −
∑sk

i=1
µi

N0+µi
≥ sk − Tdl > 0.

B. Proof of Lemma 3

The determinant of Q is given by the expansion det(Q) =
∑

ι∈πr sgn(ι)
∏

i[Q]i,ι(i), where ι

is a permutation of the set {1, 2, . . . , r}, where πr is the set of all such permutations and where

sgn(ι) is either 1 or -1. The product
∏

i[Q]i,ι(i) is non-zero only for the perfect matchings in the

bipartite graph. Hence, if the bipartite graph contains a perfect matching, then det(Q) 6= 0 with

probability 1 (and rank(Q) = r), since the non-identically zero entries of W are drawn from a

continuous distribution. If it does not contain a perfect matching, then det(Q) = 0 and therefore

rank(Q) < r.

C. Proof of Theorem 1

First, without loss of generality let assume that L contains no isolated nodes (since these

would be discarded anyway). As before the |A| × |K| weighted adjacency matrix is denoted by

W where [W]m,k = wm,k. An example of the bipartite graph L and its corresponding weighted

adjacency matrix W is illustrated in Figs. 2a and 2b. Given the bipartite graph L(A,K, E),

we select the subgraph L′(A′,K′, E ′), so that the constraint (13b) is satisfied. We introduce

the binary variables {xm,m ∈ A} and {yk, k ∈ K} to indicate if beam m and user k are

selected, respectively. As such, the constraint (13b) is equivalent to the set of constraints:

xm ≤
∑

k∈K

[A]m,kyk ∀m ∈ A (22a) yk ≤
∑

m∈A

[A]m,kxm ∀k ∈ K (22b)

∑

m∈A

[A]m,kxm ≤ Tdlyk +M(1− yk) ∀k ∈ K (22c)

In particular, (22a) ensures that if the beam m is selected (i.e., xm = 1), there must be some

k ∈ K such that (m, k) ∈ E is selected as well, whereas if beam m is not selected, then this

constraint is redundant. Similarly, in (22b) if user k is selected (i.e., yk = 1), there must be

some m ∈ A such that (m, k) ∈ E is selected as well. Furthermore, (22c) guarantees that if user

k is chosen (i.e., yk = 1), the number of chosen beams with xm = 1 is no more than Tdl, and
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otherwise this constraint is redundant. Meanwhile, the constraint (13c) is written as:

P0 yk ≤
∑

m∈A

[W]m,kxm ∀k ∈ K (23)

which ensures that if user k is chosen (i.e., yk = 1) then the sum weights of the selected beams

(i.e., m ∈ NL′(k) if xm = 1) is no less than P0, while if user k is not chosen (i.e., yk = 0)

then this constraint is not required and redundant. A closer look reveals that the constraint (23)

renders the one (22b) redundant, because when yk = 1 in (23) there must exist at least one

m ∈ A with xm = 1. Second, given the selected subgraph L′(A′,K′, E ′), we find a matching

M(A′,K′) with maximum cardinality. To this end, we introduce another set of binary variables

{zmk,m ∈ A, k ∈ K} to indicate if an edge (a, k) ∈ E is chosen to form the maximum matching

in L′(A′,K′, E ′). Following the canonical linear program formulation of the maximum cardinality

matching for bipartite graphs, we translate the objective in (13) into the following optimization:

maximize
zm,k∈{0,1}

∑

m∈A′

∑

k∈K′
[A]m,kzm,k (24a)

subject to
∑

k∈K′
[A]m,kzm,k ≤ 1 ∀m ∈ A′, (24b)

∑

m∈A′
[A]m,kzm,k ≤ 1 ∀k ∈ K′, (24c)

Now, to transport the optimization problem on L′ to the original setting on L, we need to

guarantee that M(A′,K′) ⊆ E ′, i.e., zmk = 1 only if m ∈ A′ (xm = 1), and k ∈ K′ (yk = 1).

This is obtained for a given configuration of the variables {xm} and {yk} which define L′, by

adding constraints to (24) and yields

maximize
zm,k∈{0,1}

∑

m∈A

∑

k∈K

[A]m,kzm,k (25a)

subject to
∑

k∈K

[A]m,kzm,k ≤ 1 ∀m ∈ A, (25b)

∑

m∈A

[A]m,kzm,k ≤ 1 ∀k ∈ K, (25c)

[A]m,kzm,k ≤ xm ∀k ∈ K,m ∈ A, (25d)

[A]m,kzm,k ≤ yk ∀k ∈ K,m ∈ A, (25e)
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where (25d)-(25e) impose that the edge set {(m, k) : zm,k = 1} should be a subset of E ′. A

further inspection on these constraints yields the following equivalent simplified form:

maximize
zm,k∈{0,1}

∑

m∈A

∑

k∈K

zm,k (26a)

subject to zm,k ≤ [A]m,k, ∀m ∈ A, k ∈ K, (26b)
∑

k∈K

zm,k ≤ xm, ∀m ∈ A, (26c)

∑

m∈A

zm,k ≤ yk, ∀k ∈ K, (26d)

where the additional constraint (26b) turns all the terms of the type [A]m,kzm,k in (25) to zm,k

in (26), the constraint (26c) results from the combination of the constraints (25b) and (25d), and

(26d) results from the combination of (25c) with (25e). The formulation in (26) can be seen as

a modified maximum cardinality bipartite matching with selective vertices, in which the vertices

with xm = 1 and yk = 1 are selected to participate in the maximum cardinality matching. The

eventual mixed integer linear program is given as in (14). Notice that we have relaxed the binary

constraint on {zm,k, m ∈ A, k ∈ K} to the linear constraint (14i) based on the following lemma.

Lemma 4: The problem PMILP as stated in (14) always has binary-valued solutions for

{zm,k, m ∈ A, k ∈ K}. �

Proof: It suffices to show that zm,k are binary, given that xm and yk are binary. First, if either

xm, m ∈ A or yk, k ∈ K are 0, then za,k = 0. So, we only need to focus on the case where

xm = yk = 1, m ∈ A, k ∈ K. In that case, the constraints of PMILP with respect to zm,k, m ∈
A, k ∈ K form a convex polytope. This polytope is called the bipartite matching polytope, which

is integral, i.e. all of its extreme points have integer (and in this case binary) values (see [59,

Corollary 18.1b. and Theorem 18.2.]). Therefore, given xm, yk ∈ {0, 1}, ∀m ∈ A, k ∈ K, PMILP

reduces to a linear program with respect to the variables zm,k and the optimal solutions are the

integral extreme points of the corresponding polyhedra and the proof is complete.
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