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Abstract—In this contribution, we investigate a coarsely quan-
tized Multi-User (MU)-Multiple Input Single Output (MISO)
downlink communication system, where we assume 1-Bit Digital-
to-Analog Converters (DACs) at the Base Station (BS) antennas.
First, we analyze the achievable sum rate lower-bound using the
Bussgang decomposition. In the presence of the non-linear quan-
tization, our analysis indicates the potential merit of reconsider-
ing traditional signal processing techniques in coarsely quantized
systems, i.e., reconsidering transmit covariance matrices whose
rank is equal to the rank of the channel. Furthermore, in the
second part of this paper, we propose a linear precoder design
which achieves the predicted increase in performance compared
with a state of the art linear precoder design. Moreover, our linear
signal processing algorithm allows for higher-order modulation
schemes to be employed.

Index Terms—1-bit digital-to-analog converters, downlink sce-
nario, energy efficiency, multi-user multiple-input-single-output,
quantized Wiener filter, superposition modulation, sum rate.

I. INTRODUCTION AND MOTIVATION

I
N recent years, the demand for higher data rates has

drastically increased as the number of personal and inter-

connected devices continuously increases (e.g., Internet of

Things). These demands should be fulfilled by 5th Generation

Wireless Systems (5G) under similar cost and energy con-

straints as current wireless communication systems. To this

end, two complimentary technologies have been introduced at

the forefront of research to provide the required data rates for

5G. First, the use of a large number of antennas at the Base

Station (BS), referred to as massive Multiple Input Multiple

Output (MIMO), has been investigated. Due to the inherent

high antenna diversity and array gain, these systems have

shown improvements in data throughput, spectral and radiated

energy efficiency, using relatively simple processing, see e.g.,

[1]–[3]. Second is the use of millimeter wave (mmWave)

carrier frequencies, where the large amount of available band-

width will allow for higher data rates, e.g., [4], [5].
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If future communications systems are equipped with many

BS antennas (hundreds or even thousands), and/or are working

at higher sampling rates, the requirement for power and cost

efficient components in the Radio Frequency (RF) chain at

each antenna is evident. Currently, the most power hungry

component in the RF chains are the Power Amplifiers (PAs),

[6], [7]. PAs are most energy efficient when operated in

their saturation region; however, in this region, they introduce

non-linear distortions to the transmit signal. These distor-

tions can be avoided when constant envelope input signals

are employed, i.e., signals with a constant magnitude, and

thus such amplitude distortions can be ignored. Furthermore,

the power consumption of the Digital-to-Analog Converters

(DACs)/Analog-to-Digital Converters (ADCs) in the RF chains

increases exponentially with their resolution (in bits) and

linearly with the sampling frequency, i.e., Pdiss ∝ 2b · fs , [8]–

[10]. Thus, a simple solution to reduce power consumption and

chip area, whilst simultaneously employing constant envelope

modulation, is to use low-resolution (or coarsely-quantized)

DACs/ADCs. In this paper, we focus on the downlink scenario

with the coarsest form of quantization, i.e., systems where the

BS is equipped with 1-bit DACs.

It has been shown, see e.g., [11]–[13], that systems employ-

ing oversampling at the transmitters/receivers can improve the

performance limitations introduced by the 1-bit DACs/ADCs.

Furthermore, the issue of spectral shaping with 1-bit DACs

and oversampling was investigated in [14], where it was shown

that despite the low-resolution quantization, sufficient spectral

confinement can be achieved. As we only consider spatial

filtering and discrete-time processing, we focus on symbol-

sampled models.

A. Existing Work

Recent research into the topic of coarsely-quantized MIMO

systems can be categorized as focusing on either the uplink

or the downlink scenario, where the BS is assumed to have

low-resolution ADCs or DACs, respectively.

1) Uplink: The capacity of coarsely-quantized MIMO sys-

tems was originally investigated in [15], which showed only

a small loss in capacity comparing quantized and unquantized

MIMO systems. However, [15] and [16] show that coding

becomes an issue, since traditional channel coding methods are

unsuitable for quantized MIMO systems. In [17], the Taylor

expansion of the mutual information up to the second-order is

derived, which shows a 2/π loss in achievable rate at low-

Signal-to-Noise Ratio (SNR). This loss, due to the use of

http://arxiv.org/abs/1802.10329v1
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symmetric threshold quantizers, was also reported in [18].

Moreover, a mutual information lower-bound was derived in

[19], based on the Bussgang theorem [20], which confirms the

2/π loss at low-SNR.

In [21] and [22], a closed-form expression for the capacity

of the Single Input Single Output (SISO) and Multiple Input

Single Output (MISO) uplink scenarios is derived, assuming

perfect Channel State Information (CSI). Moreover, capacity

bounds are found for the general MIMO scenario, and the

mutual information lower-bound from [19] was shown to be

tight at low-SNR but loose at high-SNR. Furthermore, [23]

shows that higher-order modulation is possible with 1-bit

quantized ADCs.

2) Downlink: A lower-bound for the achievable rate in

quantized MIMO systems was derived in [24], assuming

matched filter precoding and estimated CSI. Moreover, in [24],

for single-antenna users, it was shown that roughly 2.5 times

more BS antennas are required to achieve the same rates as in

unquantized systems for maximum ratio precoding. In [25], the

validity of traditional signal processing techniques was ques-

tioned for quantized single-user MISO systems, i.e., whether

proper signaling and transmit covariance matrices whose rank

is equal the rank of the channel matrix (channel rank) are still

optimal in the presence of the non-linear quantization.

Recent research has also focused on linear and non-linear

transmit signal processing techniques in quantized MIMO

downlink systems; one of the first linear signal processing

designs taking quantization into account was introduced in

[26]. Therein, a Quantized Transmit Wiener Filter (TxWFQ)

was designed using the optimal quantization step-size and

linearizing the quantization operation. In [27], a linear pre-

coder and an analog power allocation matrix were designed

to minimize the Mean Squared Error (MSE) using a gradient

projection algorithm. It should be noted that a precoder design

using the optimal quantization step-size (e.g., [26]) is equiv-

alent to using constant step-sizes and introducing an analog

real-valued diagonal power allocation matrix (e.g., [27]). A

linear precoder designed to maximize the weighted sum rate

in a Multi-User (MU)-MISO system was introduced in [28],

where the weighted sum rate is derived using a lower-bound

on the achievable rate similar to [19]. In [29] an asymptotic

analysis of MIMO scenarios is provided where the number

of antennas and users increase to infinity. Moreover, [29]

employs the Zero Forcing (ZF) precoder as a benchmark; an

asymptotic achievable rate lower-bound is provided based on

the Bussgang decomposition [20], and the authors show that

reasonable performance can be obtained if the ratio of antennas

to users is large enough. Applying simple perturbations to the

solutions obtained by standard quantized linear precoders has

also been shown to improve system performance in [30].

Non-linear precoders, which map the source symbols to the

transmit vector in a general way, outperform linear precoders

whose outputs are simply truncated by the one-bit quantiza-

tion, however this comes at the price of higher computational

complexity when designing the precoder. The first non-linear

precoder design for low resolution quantized MIMO systems

was introduced in [31], where the Tomlinson-Harashima Pre-

coding method was extended to take the quantization into

account. A novel, non-linear precoder design which optimizes

the transmit signal vector by generating lookup-tables for each

channel realization was introduced in [32]. Furthermore, in

[33], an optimization to reduce the probability of detection er-

ror of Phase Shift Keying (PSK) symbols was introduced. This

optimization is based on linear programming, and significantly

reduces complexity compared to the lookup-table optimization

in [32]. In [34], linear and non-linear precoding methods are

investigated; it is shown that linear precoding methods only

require 3 or 4 bit DACs to achieve performance similar to

unquantized systems. Furthermore, three different non-linear

algorithms which minimize the squared error are introduced,

and only show a 3 dB loss compared with unquantized

systems.

In [35] two non-linear precoder designs based on a biconvex

relaxation of the MSE minimization is introduced, whereby

the second algorithm is optimized to be scalable and have

low-complexity with increasing number of BS antennas. A

multi-step non-linear precoder design was introduced in [36] to

reduce complexity for Quadrature Phase Shift Keying (QPSK)

input symbols. First, a quantized linear precoder is applied,

a subset of transmit antennas are selected and an exhaustive

search over a subset-codebook is performed to optimize a

criterion similar to [32]. A branch-and-bound approach to

maximize the minimum distance to the decision boundary at

the receivers is introduced in [37].

Finally, the non-linear algorithms described in [32] and

[34] were extended to allow higher-order modulation schemes

in [38] and [39]. In [38], two lookup-tables are generated

per channel realization to allow for a superpositioning of the

transmit symbols. In [39], linear and non-linear algorithms

for higher order modulation schemes are introduced, including

two algorithms to estimate the receiver scaling factor. These

results show the potential of using higher-order modulation

schemes despite the constraint of low-resolution DACs.

The aforementioned non-linear precoder designs optimize

the transmit vector symbol-by-symbol at the sampling fre-

quency, which greatly increases their computational complex-

ity. Therefore, despite the performance gains of the non-linear

methods, we are interested in investigating whether linear

precoding methods can be improved.

B. Motivation

The motivation behind this work stems from the same

question we asked in [25]: Are traditional signal processing

techniques optimal in coarsely quantized MU-MISO systems?

1) Improper Signaling: First, traditional signal processing

techniques often assume that all signals are circular Gaussian

distributed, [40], i.e., s ∼ CN(0, σ2
s ) with σ2

ℜ{s}
+σ2
ℑ{s}
= σ2

s ,

where σ2
ℜ{s}

= σ2
ℑ{s}

represent the variance of the real and

imaginary parts, respectively. Moreover, the real and imaginary

parts of s are assumed to be uncorrelated.

To motivate the question of whether circular Gaussian sig-

naling is still optimal, we consider the following symmetrical

non-convex optimization problem

min
x1,x2

{|x1 | + |x2 |} s.t. x2
1 + x2

2 = 1. (1)
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Despite the fact that (1) is symmetric with respect to (w.r.t.)

the variables x1 and x2, i.e., exchanging the variables does

not change the objective function nor the constraint, yet the

extreme points, x1,opt = ±1 and x2,opt = 0 or x1,opt = 0

and x2,opt = ±1 are not equal, i.e., x1,opt , x2,opt. We can

imagine that the constraint in (1) is the variance of the real

and imaginary part of a complex signal s, i.e., x1 = σℜ{s} and

x2 = σℑ{s}. This would imply that the extreme points allow

for unequal power allocation.

In general, optimization problems in quantized MIMO sys-

tems are non-convex due to the non-linearities and constraints

introduced by the quantization. This simple example, of a

symmetrical non-convex optimization problem motivated us to

question the optimality of circular Gaussian distributed signals

and proper signaling in quantized MIMO systems.

2) Higher-Rank Transmit Covariance Matrix: Second, tra-

ditional linear signal processing techniques typically assume

that the transmit covariance matrix has the same, or lower,

rank than the channel. As an example, we consider Fig. 1,

in which an abstract, real-valued, noiseless quantized single-

user MISO scenario is depicted, with the rank one channel

vector hT
= [1, . . . , 1] ∈ R1×Nt . The input signal s is fed

into the linear precoder matrix P, which we assume can be

either a vector p ∈ RNt (a beamforming vector) or a full

matrix P ∈ RNt×Nt . Note, we consider linear precoders, the

rank of the transmit covariance matrix Rx is determined by

the rank of the precoder matrix. The transmit signal is then

passed through the 1-bit non-linear quantizers at all transmit

antennas; these merely take the sign of the transmit signal,

i.e., Q(x) : RNt → {±1}Nt .

Next, we consider the signal at the transmit antennas after

the 1-bit DACs; here we see that in total we have 2Nt distinct

transmit signals. However, if we assume a linear, channel rank

precoder vector then the transmit signal is given by: p ·s ∈ RNt ,

where only the sign of s affects the transmit signal. Thus, we

restrict the system to only use 2 of the available 2Nt distinct

transmit signals. This implies that the receive constellation

yields only two points, y ∈ Y = {±Nt}, and the achievable

rate is I(x; y) ≤ 1 bit(s) per channel use (bpcu).

If, however, we increase the number of streams available,

i.e., s = [s1, . . . , sR ] with independent symbols si , and com-

bine them with an augmented precoder matrix P ∈ RNt×R

where the columns of P are linearly independent, then we

can obtain more distinct transmit signals. In other words, by

increasing the rank of the precoder matrix to rank(P) = R,

the maximum number of distinct receive constellation points

becomes |Y| = R+1. Thus, using a full rank precoder matrix,

i.e., P ∈ RNt×Nt , the receive constellation has |Y| = Nt + 1

points and, in turn, we can achieve a rate closer to the capacity

of the channel, C ≤ log2(Nt + 1) bpcu, assuming a uniform

distributed input signal.

This simple example motivated our study of whether higher-

rank transmit covariance matrices can increase the system

performance in the presence of the non-linear quantizers.

C. Contributions

In this paper, we analyze and investigate the optimality of

two aspects of traditional signal processing in 1-bit quantized

s P

Q(·)

Q(·)

Q(·)

{±1}

{±1}

{±1}

...

|Y| = Nt + 1

y

x1

xNt

x2

1

1

1

Fig. 1: Motivation: Higher-Rank Transmit Covariance Matrix

MU-MISO systems: (i) proper signaling, and/or (ii) channel

rank transmit covariance matrices. We summarize our contri-

butions presented in this paper for the downlink scenario as

follows:

1) In the first part of the paper, we investigate the structure

of the transmit covariance matrix Rx̄ . We provide an

achievable rate analysis, applying the Bussgang decom-

position to investigate the sum rate lower-bound in 1-bit

quantized MU-MISO systems. We investigate whether

(i) improper signaling and/or (ii) higher-rank trans-

mit covariance matrices maximize the sum rate lower-

bound. This analysis indicates that higher-rank transmit

covariance matrices can improve the sum rate lower-

bound, whereas improper signaling may only marginally

improve the system performance.

2) In the second part of the paper, we focus on the opti-

mization of the linear precoder taking the results from

our achievable rate analysis into account. In the end,

we provide a gradient-projection algorithm to design a

sub-optimal, higher-rank linear precoder. To obtain a

higher-rank linear precoder, we introduce the idea of

a linear superposition matrix which allows for linear

superposition coding in 1-bit quantized MU-MISO sys-

tems. Moreover, our higher-rank linear precoder shows

the predicted performance increase due to the increase in

rank, compared with the linear precoder TxWFQ from

[26].

Our results indicate that indeed there are benefits in recon-

sidering signal processing methods for 1-bit quantized MU-

MISO scenarios. Moreover, we provide an algorithm to design

a linear precoder TxWFQ–Π whose rank is higher than the

rank of the channel.

D. Paper Structure

The rest of the paper is structured as follows. In Section

II the system model is introduced, including the necessary

mathematical tools required for our analysis. In Section III we

delve into the achievable rate analysis, and in Section IV we

introduce our novel transmit precoder design taking the results

from Section III into account. At the end of Section IV, we

show the performance improvements introduced by our linear

precoder design, investigate the complexity of our algorithm,

and analyze the robustness of the algorithm against channel

estimation errors. Finally, in Section V we conclude the paper

by summarizing our main results and providing an outlook

onto further work.

E. Notation

Scalars, vectors and matrices are denoted by italic letters,

bold italic lowercase letters and bold italic uppercase letters,
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respectively. The operators (·)T, tr (·), E[·] ℜ{·}, ℑ{·} represent

the transpose, trace, expected value, real part and imaginary

part, respectively. The notation diag (A) represents a diagonal

matrix with the diagonal elements of A, while nondiag (A)

represents the matrix A − diag (A). The matrix operation

A◦n defines the Hadamard product to the nth power, i.e.,

A ◦ . . . ◦ A, where [A◦n]i, j = an
i, j

, which represents element-

wise multiplication. The Kronecker product of two matrices

is represented by A ⊗ B. We use IN and 0N to represent an

N × N identity matrix and all-zero matrix, respectively.

Moreover, we introduce Widely-Linear (WL) notation (see

e.g., [40]–[42]) to accommodate our analysis of whether

proper signaling is optimal in quantized MU-MISO systems.

To this end, we introduce the following definitions:

Definition 1 (Widely-Linear Vector): Taking a complex

vector a ∈ CN , we can express it in WL notation as

ā =

[
ℜ{a}

ℑ{a}

]
∈ R2N . (2)

Definition 2 (Strictly Linear Transformation): A trans-

formation in the complex domain is strictly linear, i.e.,

c = Ba ∈ CM ⇔ c̄ = B̄ ā ∈ R2M , if and only if (iff), in the

real domain, the matrix B̄ has the following structure

B̄ =

[
ℜ{B} −ℑ{B}

ℑ{B} ℜ{B}

]
∈ R2M×2N . (3)

We define the real-valued covariance matrix of the arbitrary

signal ā in WL notation as

Rā =

[
E[ℜ{a}ℜ{aT}] E[ℜ{a}ℑ{aT}]

E[ℑ{a}ℜ{aT}] E[ℑ{a}ℑ{aT}]

]
. (4)

Definition 3 (Proper Signals): The signal a is proper iff

both of the following conditions hold:

E
[
ℜ{a}ℜ

{
aT

}]
= E

[
ℑ {a} ℑ

{
aT

}]
, (5)

E
[
ℜ{a} ℑ

{
aT

}]
= −E

[
ℑ {a}ℜ

{
aT

}]
. (6)

II. SYSTEM MODEL

We consider the downlink scenario of a single-cell, coarsely

quantized MU-MISO system as depicted in Fig. 2. The BS has

Nt transmit antennas, each equipped with two 1-bit quantized

DACs for the in-phase and quadrature signal components.

The BS serves K single-antenna users simultaneously, and

we assume the ADCs at the users have infinite quantization

resolution. Furthermore, we assume that the BS and the users

are fully synchronized, with their DACs and ADCs working

at the same sampling frequency.

Thus, assuming narrowband channels, we can collect the

real-valued baseband received signals at each user into a single

vector representation

ȳ = H̄TD̃t̄ + η̄ ∈ R2K . (7)

The vector ȳ ∈ R2K contains the received signals of all

users, where [ȳk, ȳk+K ]
T
= [ℜ{yk},ℑ{yk }]

T ∈ R2 represents

the received signal of user k in WL notation. The strictly

linear (see Def. 2) downlink channel matrix is denoted by

H̄T ∈ R2K×2Nt in WL notation. We assume perfect CSI at the

BS1, i.e., the matrix H̄T is perfectly known. Furthermore, we

assume that the complex channel elements are circular sym-

metric independent and identically distributed (i.i.d.) Gaussian

random variables with hk,n = [H ]k,n ∼ CNC(0, 1),∀k, n. The

quantized transmit signal is t̄ ∈ {±1}2Nt , where we assume the

output of the uniform 1-bit DACs is either ±1.

The diagonal, real-valued power allocation matrix is denoted

by D̃ ∈ R2Nt×2Nt . We assume that D̃ does not necessarily

have the strictly linear structure defined in Def. 2, so that the

power can be allocated freely between the real and imaginary

parts, which allows for improper signaling. Improper signaling

can also be achieved by introducing correlation between the

real and imaginary parts of the signals before the DACs,

i.e., breaking the circular symmetry of the complex signals.

Despite the fact that the power allocation matrix must be

updated for every channel realization, one could still achieve

constant envelope modulation per channel by feeding back a

distinct scalar to the PAs at each antenna, which adjusts the

supply voltage at each PA for a given channel, e.g., employing

envelope tracking PAs (see, e.g., [43]). These supply voltages

remain constant during each channel coherence time.

Finally, the Additive White Gaussian Noise (AWGN) is

assumed to have the following distribution for all users: η̄ ∼

CN(0, σ2
η/2 · I2K ). The scaling factor β ∈ R+ at the receivers,

introduced in [44], can be interpreted as an automatic gain

control which is required to amplify the received symbol at

each user such that it lies the correct decision region. We

assume the scaling factor β changes relatively slowly and thus

can be (perfectly) estimated over multiple received symbols by

each user using blind methods [38], [39], allowing the users

to employ minimum distance decoding.

The real-valued input signal s̄ ∈ R2Rtot contains the 2Rtot

input symbols of all users. We introduce Rtot =
∑K

k=1 Rk as

the sum of the number of streams per user. The variable Rk

represents the number of streams each user receives, which, in

turn, determines the increase in rank of the precoder matrix.

It should be noted that if Rk = 1, the precoder matrix will

have the same rank as the channel. Moreover, Rk ≤ Nt holds

because the maximum number of streams per user is upper

bounded by the number of transmit antennas. Unless otherwise

stated, the input signal is assumed to be Gaussian distributed

with s̄ ∼ N(0, Rs̄).

The transmit signal x̄ ∈ R2Nt is the output of the precoder

with input s̄, i.e., x̄ = P( s̄), where P(·) is bijective but

otherwise arbitrary and can be linear or non-linear. If we

assume it to be a linear function, we do not restrict it to be

strictly linear in the complex domain as defined in Def. 2, i.e.,

P̃ , P̄. This allows Rx̄ to have the arbitrary structure as in

(4).

We define the non-linear quantization function in the 1-bit

case to take the sign of the input signal sign(x̄), i.e.,

Qt : R2Nt → {±1}2Nt, x̄ 7→ Qt (x̄) = sign(x̄) = t̄ . (8)

where the non-linear function sign(·) is applied element-wise.

Therefore, the total power across all transmit antennas after

quantization is
∑2Nt

i=1
E[|t̄i |

2] = 2Nt. If we define the total

1The impact of imperfect CSI will be studied later in the numerical results.
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P(·) Qt (·) D̃ H̄T

η̄

βI
2Rtot

s̄

2Nt

x̄

2Nt

t̄

2Nt

t̄D ȳ

2K 2K

r̄

Fig. 2: Abstract Downlink Quantized MU-MISO System Model

available transmit power as ETx, and assume the power is

equally allocated over all antennas, then the power allocation

matrix must be a scaled identity matrix, i.e.,

D̃ =

√
ETx

2Nt

I2Nt
. (9)

With this power allocation matrix we allow for improper

signaling by introducing correlation between the transmit

signal at different antennas. Thus, the total power after the

power allocation matrix is equal to
∑2Nt

i=1
E[

��t̄D,i

��2] = ETx.

A. Bussgang Decomposition

Similar to previous work, e.g., [19], [29], we model the

quantization function using the Bussgang decomposition [20].

According to the Bussgang theorem, the cross-correlation

between two Gaussian distributed input signals remains the

same when one signal is subjected to non-linear distortion,

except for a scaling factor. This implies that a non-linear

function with Gaussian inputs can be modeled by a linear

transformation and the addition of some distortion which is

uncorrelated with the inputs.

The transmit signal becomes approximately Gaussian dis-

tributed as the number of users increases due to the central

limit theorem. Therefore, we assume x̄ ∼ N(0, Rx̄ ) when

K is large enough. Thus, using the Bussgang theorem the

quantization function in (8) can be modeled as

t̄ = Qt (x̄) = Ax̄ + q, (10)

where the quantization error, q is uncorrelated with the input

signal x̄. From the latter criterion we see that

E
[
q x̄T

]
= 02Nt

⇒ A = Rt̄ x̄R
−1
x̄ . (11)

Thus, we observe that the matrix A is simply a linear Mini-

mum Mean Squared Error (MMSE) estimate of the quantized

signal t̄ from the unquantized input signal x̄. Moreover, the

Bussgang decomposition depends on the covariance matrix

between the quantized signal t̄ and the unquantized signal x̄.

Finally, we can express the covariance matrix of the quan-

tization error as

Rq + ARx̄A
T (11)
= Rt̄ − Rt̄ x̄R

−1
x̄ Rx̄ t̄ . (12)

B. Price’s Theorem – Quantized Covariance Matrices

To calculate the covariance matrices Rt̄ = E
[
t̄ t̄T

]
and Rt̄ x̄ =

E
[
t̄ x̄T

]
we apply Price’s theorem [45], (for more details see

e.g., [46, Sec. II]). To this end, the covariance matrix of the

quantized output signal is, e.g., [47, p. 307],

Rt̄ =
2

π
arcsin

(
diag (Rx̄ )

−1/2 Rx̄diag (Rx̄ )
−1/2

)
, (13)

where the factor 2/π comes from the fixed quantization levels

and the real-valued function arcsin(A) is defined element-wise

on the matrix argument A. The covariance matrix between

the input and output of the 1-bit quantizer can equally be

calculated by applying Price’s theorem

Rt̄ x̄ =

√
2

π
diag (Rx̄ )

−1/2 Rx̄ . (14)

Moreover, due to the real-valued WL notation, the following

relationship holds: Rx̄ t̄ = RT
t̄ x̄

.

III. ACHIEVABLE RATE ANALYSIS

In this section, we investigate the achievable rate in 1-bit

quantized MU-MISO systems by looking at the structure of

the transmit covariance matrices Rx̄k . For our achievable rate

analysis, we assume that the total transmit power is constant

ETx = 2Nt, and the SNR at the receiver is varied by changing

the noise variance σ2
η . With equal power allocation, we have

D̃ = I2Nt
. Moreover, since we are investigating the mutual

information and not the signal processing techniques in this

section, we assume the receiver scaling factor to be one, β = 1.

We assume that the CSI is perfectly known at the BS and at

the users.

Using the Bussgang decomposition defined in Section II-A

and the covariance matrices defined in Section II-B, we can

express the real-valued received signal at user k from (7) as

ȳk = H̄T
k (Ax̄ + q) + η̄k

= H̄T
eff,k x̄ + η̃k, (15)

where H̄T
k

represents the strictly linear channel matrix of user

k. We recall that the received signal at each single-antenna

user and the total transmit signal are expressed in WL notation

from Def. 1.

Moreover, we introduce the effective channel H̄T
eff,k

=

H̄T
k
A

(11)
= H̄T

k
Rt̄ x̄R

−1
x̄ , and the effective noise η̃k = H̄T

k
q + η̄k ,

which is no longer Gaussian due to the quantization error,

with Rx̄ and Rt̄ x̄ defined in (13) and (14), respectively.

Furthermore, we express the transmit signal x̄ as the sum

of the transmit signals intended for each user, and we only

consider coding schemes where the transmit signals for each

user are independent, i.e.,

x̄ =

K∑
k=1

x̄k ⇒ Rx̄ =

K∑
k=1

Rx̄k , (16)



6

where x̄k and Rx̄k represent the transmit signal and transmit

covariance matrix intended for user k prior to the DACs,

respectively.

A. Sum Rate Lower-Bound

Now, we aim to calculate the mutual information between

the signal intended for user k and the signal that user receives,

i.e., I(x̄k; ȳk) = h( ȳk) − h( ȳk | x̄k), with the continuous entropy

function h(·). We assume perfect knowledge of the CSI at the

BS and at the users, and no cooperation between the users.

The encoding at the BS does not use the non-causally known

interference of the user’s signals, i.e., we do not employ dirty

paper coding, and the users decode the received signal by

treating the Multi-User Interference (MUI) as noise.

We first focus on the second continuous entropy term

h( ȳk | x̄k) = h

(
H̄T

eff,k

K∑
k=1

x̄k + η̃k

����� x̄k
)

(a)
≤ h

©­­«
H̄T

eff,k

K∑
l=1
l,k

x̄l + η̃k
ª®®
¬
, (17)

where inequality (a) comes from the fact that conditioning

cannot increase entropy, [48, Th. 2.6.5], and holds with

equality if η̃k and x̄k are statistically independent. Moreover,

the addition of a constant term does not change the entropy,

i.e., h(x̄k | x̄k) = 0. However, despite the fact that q and x̄k are

uncorrelated, they may still be dependent. The total noise is

H̄T
eff,k

∑K
l=1,l,k x̄l + η̃k , which contains the MUI, quantization

error q, and the AWGN.

Furthermore, in [49] (see also [24]), it was shown that for

a given noise covariance matrix, Gaussian distributed noise

minimizes the mutual information in a given system. Thus,

assuming Gaussian distributed inputs and total noise from

(17), we can write the instantaneous mutual information lower-

bound of the Gaussian system as

I(x̄k; ȳk) ≥
1

2
log2 det(I2 + SQINRk), (18)

where the Signal-to-Quantization-plus-Interference-plus-Noise

Ratio (SQINR)k defined in (19) (on the next page) shows the

contribution of the MUI, Quantization Error (QE) and AWGN.

The identity matrix I2 comes from the fact that we consider

the real and imaginary parts separately.

With the mutual information lower-bound defined per user

in (18), we can now express the instantaneous sum rate lower-

bound by summing over all k = 1, . . . ,K:

K∑
k=1

I(x̄k; ȳk) ≥
1

2

K∑
k=1

log2 det(I2 + SQINRk). (20)

Finally, we optimize for the transmit covariance matrices

which maximize the sum rate lower-bound from (20)

Rx̄k,opt
= arg max

R x̄k
�0,∀k

{
K∑
k=1

log2 det(I2 + SQINRk)

}
, (21)

where the optimization is performed over all positive semi-

definite transmit covariance matrices for all users, i.e.,

Rx̄k � 0, ∀k. Since we assume perfect CSI at the BS and

at the users, we calculate the ergodic achievable sum rate as

the average of the maximum sum rates achieved per channel

realization, i.e., we average the sum rate lower-bounds over

the channel realizations [50, Sec. II-C1].

Since the argument of the log2 det(·) function in the sum

rate depends non-linearly on the user’s transmit covariance

matrix (see (13)), we wish to investigate whether traditional

signal processing techniques still maximize (21), i.e., whether

channel rank transmit covariance matrices and proper signaling

are still optimal.

B. Cholesky Decomposition

First, we note that

rank (Rx̄) = rank

(
K∑
k=1

Rx̄k

)
≤

K∑
k=1

rank
(
Rx̄k

)
, (22)

and we define the Cholesky decompositon of Rx̄k to be

Rx̄k = Lk(Rk)L
T
k
(Rk), where Rk denotes the number of

streams for user k, which determines the rank of Rx̄k . The rank

of the transmit covariance matrix can be varied by observing

the structure of the Cholesky factor:

Lk(Rk) =



l1,1 0 . . . 0 . . . 0

l2,1
. . .

. . .
...
. . .

...

l3,1
. . . l2Rk ,2Rk 0 . . . 0

l4,1
. . . l2(Rk+1),2Rk 0 . . . 0

...
. . .

...
...
. . .

...

l2Nt,1 . . . l2Nt,2Rk 0 . . . 0



, (23)

where li,i > 0 for i ≤ Rk ≤ Nt and li, j ∈ for i > j, j ≤ Rk ≤ Nt.

Finally, we can restate (21) as

Lk,opt(Rk) = arg max
Lk (Rk ),∀k

{
1

2

K∑
k=1

log2 det(I2 + SQINRk)

}
, (24)

where the SQINRk is now parameterized in terms of Lk(Rk),

for a given Rk , instead of the transmit covariance matrix Rx̄k .

When considering proper signaling, we can also restrict user k

to employ proper signaling by further restricting the covariance

matrix Rx̄k = Lk(Rk)Lk(Rk)
T to fulfill (5) and (6) from Def.

3.

C. Simulation Results: Achievable Rate

In this section, we provide numerical results for our achiev-

able rate analysis in 1-bit quantized MU-MISO systems. We

simulated a downlink scenario with a Nt = 16 antenna BS

and K = 2 single antenna users, solving the optimization

in (24) numerically for both proper and improper transmit

covariance matrices. In this scenario, the rank of the user’s

transmit covariance matrices must be Rk ≤ Nt = 16. In

our simulations we assumed the rank of each users’ transmit

covariance matrix was equal, i.e., R1 = R2 = R, and set R = 1

and 2. We observed that if we increased the rank beyond 2, the

additional streams per user led to worse performance. We plot

the ergodic sum rate lower-bound by averaging the sum rate
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SQINRk =

©­­­­­­
«
H̄T

eff,k

K∑
l=1,l,k

Rx̄l H̄eff,k

︸                      ︷︷                      ︸
MUI

+ H̄T
k Rq H̄k︸     ︷︷     ︸

QE

+ Rη̄k︸︷︷︸
AWGN

ª®®®®®®
¬

−1

H̄T
eff,kRx̄k H̄eff,k (19)
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Fig. 3: MU-MISO Downlink lower-bound of the ergodic sum

rate with Nt = 16 and K = 2, averaged over 200 i.i.d. channels.

lower-bounds over 200 i.i.d. channel realizations where we set

ETx = 2Nt and varied the noise variance σ2
η ∈ {−20, . . . , 20}

dB.

We plot the performance of different transmit covariance

matrices in Fig. 3, comparing our optimized covariance ma-

trices, Rx̄k,opt
= Lk,optL

T
k,opt

, with the traditional strictly linear

Matched Filter (MF), ZF and MMSE precoders. We observe

that at low-SNR our optimized transmit covariance matrices

converge to those employing traditional signal processing

techniques. This indicates that traditional signal processing

methods, i.e., channel rank transmit covariance matrices and

proper signaling, may be optimal at low-SNR in the MU

scenario, similar to the Single-User (SU) scenario (see [25,

Th. 1]).

At mid- to high-SNR we observe that the optimized covari-

ance matrices diverge from the traditional signal processing

techniques. The transmit covariance matrix using the MMSE

precoder shows a higher sum rate lower-bound at high-SNR

compared with the other two traditional signal processing

techniques, but our optimized covariance matrices provide

better performance. The gain at higher-SNR for the improper

and proper solutions with channel rank, i.e., R = 1, is due to

the fact that our solutions further mitigate the MUI.

Furthermore, we observe that when the rank of both users’

transmit covariance matrices is higher than the rank of the

channel, i.e., R = 2, the sum rate lower-bound is the highest.

This indicates that higher-rank transmit covariance matrices

can achieve better performance in 1-bit quantized MU-MISO

scenarios. These results concur with our results in the SU-

MISO scenario in [25, Sec. V]. Moreover, improper signaling

only seems to marginally improve the performance.

We can summarize the results as follows: (i) higher-rank

transmit covariance matrices maximize the sum rate lower-

bound, and (ii) improper signaling only marginally improves

the sum rate lower-bound. Thus, in the following we will

attempt to optimize a linear precoder matrix which has a rank

higher than the rank of the channel, and further investigate

whether improper signaling can improve the uncoded-Bit Error

Rate (BER) or MSE performance.

IV. TRANSMIT SIGNAL PROCESSING

In this section, we move on from our investigation of the

transmit covariance matrix and introduce a linear precoder

design taking the results from Section III into account. There-

fore, we assume that the precoder function is a linear precoder

matrix P̃ ∈ R2Nt×2Rtot . Note that the WL precoder matrix can

have an arbitrary structure and not the Strictly-Linear (SL)

structure defined in Def. 2, i.e., P̃ , P̄. To this end, we express

the received signal as

r̄ = β ȳ = β
(
H̄TD̃Qt (P̃ s̄) + η̄

)
∈ R2K . (25)

A. Superposition Matrix

With the definition of the received signal in (25) we can

define the MSE, ε, as

ε = E
[
‖ r̄ −Π s̄‖22

]
, (26)

where we introduce the linear superposition matrix Π which

allows the users to receive symbols from higher-order constel-

lations than those transmitted (see e.g., [38], [51]–[53]).

In our transmitter signal processing design we take the

results from [39, Fig. 2(a)] into account which show that with a

linear precoder (ZF) and 1-bit DACs at the BS, QPSK transmit

symbols show the best uncoded-BER performance. Therefore,

we assume that the input signal in our system are QPSK for

all users.

Assuming all users receive the same constellation, i.e., Rk =

R ∀k, the linear superposition matrix describing higher order

Quadrature Amplitude Modulation (QAM) based on QPSK is

defined as

Π = I2K ⊗ τ
T ∈ R2K×2KR (27)

and the superposition row vector τT is defined as

τ
T
=

[
2R−1 2R−2 . . . 21 20

]
∈ R1×R . (28)

The superposition vector τ
T ∈ {1, 2, 4, . . . , 2R−1}1×R has a

length R per user which determines the rank of each user’s
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Fig. 4: Linear Superposition Matrix – Two QPSK symbols to

one 16–QAM symbol

precoder. The maximum rank of the precoder is equal to the

number of transmit antennas, i.e., R ≤ Nt.

To clarify how our linear superposition matrix works, as-

sume R = 2 which implies that each user receives 16-QAM

symbols, and we have τ
T
= [2, 1] as per (28). We observe

in Fig. 4 how the superposition vector τ
T
= [2, 1] works; (i)

the first symbol (solid points) is multiplied by a factor 2 and

defines which quadrant the received symbol should lie in, (ii)

the second symbol (hollow points) is added to the first and

defines which 16-QAM symbol should be received. Since we

assume QPSK input symbols and the specific superposition

matrix defined in (27), the superimposed received symbols

will be M-QAM, where M depends on the chosen number of

streams per user, Rk .

B. MSE Definition

With the superposition matrix defined in (27), we can

express the MSE as

ε =β2 2

π
tr

(
H̄TD̃ arcsin(P′P′T)D̃H̄

)
+ β2tr

(
Rη̄

)
+ tr

(
ΠRs̄Π

T
)

− 2β

√
2

π
tr

(
H̄TD̃P′R

1/2
s̄
Π

T
)
, (29)

where we have inserted the covariance matrices of the quan-

tized signals defined in (13) and (14); also we define the

normalized precoding matrix P′ as

P′ = diag
(
P̃Rs̄ P̃

T
)−1/2

P̃R
1/2
s̄
. (30)

C. Transmit Wiener Filter Design

In this subsection we introduce our algorithm to calculate a

higher-rank version of the TxWFQ from [26]. First, we define

the optimization problem as follows

{P̃opt, βopt, D̃opt} = arg min
P̃,β,D̃

{ε} s.t.
E

[

 t̄D

2

2

]
≤ ETx,

D̃ ∈ R2Nt×2Nt is diagonal,

(31)

with ε defined in (29) and the sum power constraint is applied

after the power allocation matrix D̃ (see Fig. 2).

Intuitively, we understand that the power allocated to the

transmit antennas by the precoder is normalized back to unit

power by the 1-bit DACs. Therefore, we choose D̃ to restore

the desired power allocation of the precoder by setting

D̃opt = diag
(
P̃Rs̄ P̃

T
)1/2

. (32)

With the choice of the power allocation matrix D̃opt defined

in (32), we can rewrite the optimization problem as

{P̃opt, βopt} = arg min
P̃,β

{ε} s.t.
tr

(
P̃Rs̄ P̃

T
)
≤ ETx,

D̃opt = diag
(
P̃Rs̄ P̃

T
)1/2
,

(33)

where the sum-power constraint comes from the fact that

t̄D = D̃opt t̄ and using the optimal power allocation matrix from

(32).

D. Arcsine Approximation

We note that due to the non-linear matrix function arcsin(·)

in the MSE expression (29), the derivative of ε w.r.t. P̃ proves

difficult to solve for in closed form. Therefore, we use the

second-order Taylor expansion of the off-diagonal elements

defined as: arcsin(x) ≈ x + 1/6 · x3. The diagonal elements

are given by: arcsin
(
diag

(
P′P′T

) )
= arcsin(I2Nt

) = π/2 · I2Nt
.

Thus, the matrix arcsin(·) function can be approximated as

arcsin(P′P′T) ≈ P′P′T +
1

6

(
P′P′T

)◦3
+

(
π

2
−

7

6

)
I2Nt
, (34)

where A◦n represents the matrix Hadamard product to the

power n. We use the second-order Taylor expansion since

we want to retain the non-linearities introduced by the coarse

quantization to observe the performance gains from higher-

rank transmit covariance matrices. Therefore, we can substi-

tute the optimal power allocation matrix from (32) and the

approximation from (34) into the MSE expression from (29)

to arrive at

ε ≈β2 2

π
tr

(
H̄T

(
P̃Rs̄ P̃

T
+

(
π

2
−

7

6

)
diag

(
P̃Rs̄ P̃

T
))

H̄

)

+ β2 2

π

1

6
tr

(
H̄T

(
D̃−2

opt

(
P̃Rs̄ P̃

T
)◦3

D̃−2
opt

)
H̄

)

− 2β

√
2

π
tr

(
H̄TP̃Rs̄Π

T
)
+ β2tr

(
Rη̄

)
+ tr

(
ΠRs̄Π

T
)
.

(35)

E. Gradient Projection Algorithm

Since the optimization problem in (33) is non-convex and

non-linear w.r.t. the precoder matrix P̃, solving (33) in closed-

form is intractable. Consequently, we use a gradient-projection

algorithm [54, p. 466] to iteratively solve for a locally optimal

solution, with a projection back onto the feasible set. The

gradient-projection algorithm we implement is outlined in

Algorithm 1.

First, we initialize our algorithm with a random full rank

matrix P̃(0) and calculate the initial scaling factor β(0) using

the function g
∗(P̃). This function finds the optimal scaling

factor for a given precoder matrix and will be introduced in

Appendix A (see (42)). We use an initial constant step-size of

γ = 10, but we allow for backtracking in Step 9, where we
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Algorithm 1 Gradient Projection Algorithm to Solve for the

Higher-Rank, WL TxWFQ–Π

1: Initialization:

2: P̃(0), β(0) ← g
∗(P̃(0)), γ = 10 and n = 0

3: repeat

4: if ε(n+1) ≤ ε(n) then

5: P̃(n+1) ← PC

(
P̃(n) − γ

∂ε
(
P̃(n),β

∗
(n)

)
∂P̃

)

6: β∗
(n+1)

← g
∗
(
P̃(n)

)
⊲ defined in Appendix A

7: n← n + 1

8: else

9: γ ← γ/2

10: end if

11: until |ε(n+1) − ε(n) |/ε(n) ≤ δ

halve the gradient step-size if the MSE in iteration (n + 1) is

larger than in the current iteration (n), which is checked in

Step 4.

In Step 5 we update the precoder by taking a step in the

direction of the MSE gradient w.r.t. the precoder, where the

derivative term is defined in Appendix A. Here, the projec-

tion function PC(·) ensures that the sum-power constraint

tr
(
P̃Rs̄ P̃

T
)
≤ ETx is fulfilled in each iteration. The optimal

scaling factor is updated in Step 6 using the function g
∗(P̃)

defined in Appendix A. Our algorithm runs until the stopping

criterion is met, which is triggered once the relative difference

in MSE from the previous iteration is less than a predefined

threshold, δ.

F. Simulation Results: Signal Processing

In this subsection, we present simulation results for the

TxWFQ–Π precoder introduced above. We compare our linear

precoder design with the TxWFQ design from [26]. We note

the following facts about the precoder design from [26]: (i) it

has channel rank, (ii) it is strictly linear, and (iii) the authors

further optimize the quantization output step-sizes, i.e., the

outputs of the DACs are not uniform. In the end, the resulting

power allocation in [26] is equivalent to the optimal power

allocation matrix D̃opt we introduced in (32). Additionally, we

plot the optimal Transmit Wiener Filter (TxWF) introduced

in [44], simulating the TxWF in an unquantized scenario,

i.e., assuming the DACs at the BS have infinite quantization

resolution, which we will refer to as TxWF (unq.).

We assume that the BS has Nt = 128 transmit antennas,

which serves K = 4 single antenna users. Our simulation

results assume a constant noise covariance matrix Rη = IK ,

and vary the transmit power ETx ∈ {0, . . . , 21} dB. In our

simulations, we used a block length of Nb = 10, 000 symbols

and averaged over 200 i.i.d. channel realizations. We terminate

our algorithms with the value δ = 10−4.

We plot two solutions for our precoder design, a WL and

a SL solution. The SL solution has the same structure as

defined in Def. 2. To obtain a SL solution we use the fact that

the SL structure in Def. 2 is maintained under multiplication,

addition, transposition and inversion as shown in [42] and [55].

Therefore, if we initialize our algorithm with a SL matrix, i.e.,
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u
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d
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TxWFQ, [26]

TxWF (unq.), [44]

Fig. 5: MU-MISO Downlink 16-QAM uncoded-BER using

Alg. 1 with Nt = 128 and K = 4, averaged over 200 i.i.d.

channels.
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Fig. 6: MU-MISO Downlink 16-QAM MSE using Alg. 1 with

Nt = 128 and K = 4, averaged over 200 i.i.d. channels.

P̃(0) = P̄(0) with the structure from Def. 2, then the resulting

solution will be SL.

First, we present uncoded-BER and MSE results using 16-

QAM symbols in Fig. 5 and Fig. 6, respectively. To receive

16-QAM symbols, the BS transmits two QPSK symbols to

each user using the superposition vector from (28) as τ
T
=

[2, 1], implying R = 2. Thus, the rank of each user’s precoder

matrix is twice the rank of the channel. In Fig. 5, we observe

that our precoder design from Alg. 1 outperforms the linear

TxWFQ method at higher SNR. We observe that this increase

in uncoded-BER and MSE performance, compared with the

TxWFQ design from [26], is due to the increase in rank of

our TxWFQ–Π precoder design. However, there appears to be

no gain from using improper signaling, i.e., the WL solution

performed as well as the SL solution.

Interestingly, both the WL and the SL solutions turn out

to be independent of the random initialization. Our solutions

achieve an uncoded-BER of 10−2 at around 9 dB, which

is roughly 3 dB better than TxWFQ. Compared with the

unquantized TxWF we see roughly a 7 dB performance loss
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ETx/σ
2
η [dB] 3 6 9 12 15 18 21

Alg. 1 WL 33 86 111 137 166 209 254

Alg. 1 SL 30 91 117 138 170 201 248

TABLE I: Alg. 1 with Nt = 128 and K = 4 with 16-QAM

Average Number of Iterations

due to the quantization. In Fig. 6, we also observe similar

performance gains in terms of MSE for our higher-rank

precoder design over the whole SNR range.

1) Complexity Analysis: In Table I, we show the average

number of iterations, including the back-tracking steps, for

Alg. 1 using either a WL or SL initialization. We observe that

the number of iterations grows almost linearly with the SNR

and at high-SNR roughly 250 iterations are required to achieve

a relative MSE difference of δ = 10−4. Moreover, we see that,

on average, both the WL and SL solutions require roughly the

same number of iterations to converge.

Moreover, we take a closer look at the computational

complexity of Alg. 1 and calculate an asymptotic upper bound

on the number of floating-point operations (FLOPs) required.

We observe that most of the computational complexity comes

from calculating the derivative of the MSE w.r.t. the precoder

matrix (derived in Appendix A). Due to the term in (45), we

see that the asymptotic upper bound is:

O
(
N2

t · K · Rtot

)
FLOPs,

which is quadratic in the number of antennas but linear in

the number of users and total number of streams per user. It

should be noted that our derivation of the derivative of the

MSE w.r.t. the precoder was not optimized to consider the

number of FLOPs required, and there may be more efficient

implementations.

2) Channel State Estimation Error: Thus far, we have

assumed perfect CSI at the BS. In the following, we investigate

how sensitive our algorithm is to CSI estimation errors. To this

end, we introduce the estimated channel matrix H̄est as

H̄est =

√
1 − ξH̄ +

√
ξ Γ̄, (36)

where ξ ∈ [0, 1] and
[
Γ̄
]
i, j
∼ CN(0, 1),∀i, j. The variable ξ

represents the variance of the channel estimation error, where

a value ξ = 0 is equivalent to a system without estimation

error, i.e., perfect CSI, and ξ = 1 is a fully erroneous channel

estimation, i.e., where the BS has no CSI. Intermediate values

of ξ represent partial CSI estimation errors.

We plot the sensitivity of our algorithm against CSI es-

timation error in Fig. 7 for 16-QAM received symbols at

ETx/σ
2
η = 12 dB. We observe that our algorithm shows

a slightly better performance compared with the TxWFQ

solution for all ξ values, although larger performance gains

are seen with smaller CSI estimation errors, since an increase

in CSI estimation error can also be seen as a decrease in SNR.

V. CONCLUSION

In this paper, we reconsider linear transmit signal processing

methods in 1-bit quantized MU-MISO downlink scenarios

using an achievable rate analysis. Our results indicate that

higher-rank precoders can increase the lower-bound of the
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Fig. 7: MU-MISO Downlink uncoded-BER vs. Channel Esti-

mation Error employing 16-QAM modulation at ETx/σ
2
η = 12

dB.

achievable sum rate. By taking these results into account, we

developed an algorithm to design a higher-rank linear precoder.

The derived precoder achieved performance superior to a state-

of-the-art linear signal processing method with channel rank,

both in terms of uncoded-BER and MSE. These gains were

due to the higher rank of the linear precoders; we observed

no additional gain by employing improper signaling. For 16-

QAM symbols, we observe a 3 dB gain for an uncoded-BER

of 10−2 over traditional linear signal processing techniques for

a system with Nt = 128 BS antennas and K = 4 single antenna

users.

Non-linear precoding methods where the transmit vec-

tor is optimized symbol-by-symbol, (e.g., [32]–[39]), show

uncoded-BER and MSE performance even closer to the un-

quantized TxWF. However, they require much higher compu-

tational complexity as they must work at the sampling rate

and scale with the number of transmit antennas. In com-

parison, the linear precoder design presented here motivates

reconsidering traditional linear precoder designs to improve

the system performance with low complexity. Moreover, the

linear precoder matrix only has to be calculated once per

channel coherence time instead of for each input symbol,

which drastically reduces the computational complexity.

To extend the work presented in this paper, one could

analyze a system using higher resolution DACs, still assuming

constant envelope modulation. Additionally, one could opti-

mize the superposition matrix Π. In the end, Π determines the

increase in rank of the precoder matrix, and also depends on

the users’ channels which could be taken into account during

the optimization. Finally, it would be interesting to extend the

work to frequency selective channels employing Orthogonal

Frequency-Division Multiplexing (OFDM); initial results show

that OFDM can be implemented with low-resolution DACs

and linear processing (e.g., [13], [56]).

APPENDIX

DERIVATIONS IN ALGORITHM 1

In this Appendix we briefly derive the various functions

and derivatives required in Alg. 1. Note that, in the following



11

derivations we will drop the iteration index (n) for notational

brevity. First, we restate the MSE term from (29) as

ε = β2
(
a(P̃) + b(P̃) + d

)
− 2βc(P̃) + e, (37)

where we define the following functions

a(P̃) ≔
2

π
tr

(
H̄T

(
P̃Rs̄ P̃

T
+

(
π

2
−

7

6

)
diag

(
P̃Rs̄ P̃

T
))

H̄

)
(38)

b(P̃) ≔
2

π

1

6
tr

(
H̄T

(
D̃−2

opt

(
P̃Rs̄ P̃

T
)◦3

D̃−2
opt

)
H̄

)
(39)

c(P̃) ≔ −

√
2

π
tr

(
H̄TP̃Rs̄Π

T
)

(40)

d = tr
(
Rη̄

)
and e = tr

(
ΠRs̄Π

T
)
. (41)

We note that the functions a(P̃) and b(P̃) come from the

second-order Taylor expansion of the non-linear arcsin(·) func-

tion (see Section IV-D). Moreover, we recall that the optimal

power allocation matrix D̃opt is also a function of the precoder

matrix.

With the approximate MSE expression from (37), we can

define the function g
∗(P̃) by setting ∂ε/∂β = 0, yielding

g
∗
(
P̃
)
≔

−c(P̃)

a(P̃) + b(P̃) + d
, (42)

with a(P̃), b(P̃), c(P̃) and d defined in (38), (39), (40) and (41),

respectively.

Next, we calculate the derivative of the MSE w.r.t. the

precoding matrix as

∂ε

∂P̃
= β2

(
∂a(P̃)

∂P̃
+

∂b(P̃)

∂P̃

)
− 2β

∂c(P̃)

∂P̃
, (43)

with a(P̃), b(P̃) and c(P̃) defined in (38), (39) and (40),

respectively. Closed-form expressions of the derivative terms

in (43) can be written as

∂a(P̃)

∂P̃
=2

2

π

[
H̄ H̄T

+

(
π

2
−

7

6

)
diag

(
H̄ H̄T

)]
P̃Rs̄ (44)

∂b(P̃)

∂P̃
=2

2

π

[
1

2
(P̃Rs̄ P̃

T)◦2 ◦ nondiag
(
D̃−2

optH̄ H̄TD̃−2
opt

)

−
1

3
diag

((
P̃Rs̄ P̃

T
)◦3

D̃−2
optH̄ H̄T

)
D̃−4

opt

+

1

2
diag

(
H̄ H̄T

)]
P̃Rs̄ (45)

∂c(P̃)

∂P̃
= − 2

√
2

π
H̄ΠRs̄ . (46)

Finally, the projection function PC(·) is simply defined as

the normalization: PC

(
P̃
)
≔

√
ETx/tr

(
P̃Rs̄ P̃

)
· P̃.
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