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Abstract

This paper considers a multiple-input multiple-output (MIMO) downlink communication scenario

with one base station and two users, where each user is equipped with m antennas and the base station

is equipped with n antennas. To efficiently exploit the spectrum resources, we propose a transmission

protocol which combines generalized singular value decomposition (GSVD) and non-orthogonal multiple

access (NOMA). The average data rates achieved by the two users are adopted as performance metrics

for evaluation of the proposed GSVD-NOMA scheme. In particular, we first characterize the limiting

distribution of the squared generalized singular values of the two users’ channel matrices for the

asymptotic case where the numbers of transmit and receive antennas approach infinity. Then, we calculate

the normalized average individual rates of the users in the considered asymptotic regime. Furthermore,

we extend the proposed GSVD-NOMA scheme to the MIMO downlink communication scenario with

more than two users by using a hybrid multiple access (MA) approach, where the base station first

divides the users into different groups, then the proposed GSVD-NOMA scheme is implemented within

each group, and different groups are allocated with orthogonal bandwidth resources. Finally, numerical

results are provided to validate the effectiveness of the proposed GSVD-NOMA protocol, and the

accuracy of the developed analytical results.
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Non-orthogonal multiple access (NOMA), generalized singular value decomposition (GSVD),
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is an effective approach to improve the spectral

efficiency of wireless networks and has been recognized as a promising candidate for 5G multiple

access (MA) [1]. The key idea of NOMA is to serve multiple users at the same frequency

resource blocks and at the same time. In general, NOMA can be implemented in two ways:

first, by using single-carrier NOMA [2], [3], where the principle of NOMA, spectrum sharing, is

implemented on one resource block, such as one subcarrier, and, second, by using multi-carrier

NOMA [4], where the principle of NOMA is jointly implemented across multiple orthogonal

resource blocks. In the past two years, NOMA has been widely used and investigated due to its

superior spectral efficiency and flexibility compared to conventional orthogonal MA (OMA) [5],

[6]. In [7], the performance of a downlink NOMA network with randomly deployed users was

investigated. An uplink NOMA transmission scheme was proposed in [8] and its performance

was evaluated. Moreover, practical forms of multi-carrier NOMA, such as sparse code multiple

access (SCMA) and low-density spreading (LDS) NOMA, were proposed in [9], [10], which

introduce redundancy via coding/spreading among multiple subcarriers to facilitate interference

cancelation.

On the other hand, multiple-input multiple-output (MIMO) techniques have also been identified

as a key enabling technology for improving the 5G system throughput. It is well known that if

perfect channel state information at the transmitter (CSIT) is available, the capacity region of

MIMO broadcast channels can be achieved by using dirty paper coding (DPC) [11]. However, due

to its prohibitive computational complexity, it is difficult to implement DPC in practice [12].

Compared to DPC, MIMO-NOMA schemes have a relatively low computational complexity

at the expense of a small loss in performance [12]. Therefore, MIMO-NOMA systems have

attracted considerable research interest. In [13], the ergodic rate was maximized for MIMO-

NOMA systems having statistical CSIT only. In [14], a layered transmission scheme was

applied to MIMO-NOMA systems and an optimal power allocation policy was developed. In

[15], a hybrid MIMO-NOMA scheme was proposed, where users were grouped into small-

size clusters. NOMA was implemented within each cluster, and MIMO detection was used

May 24, 2018 DRAFT



3

to cancel inter-cluster interference. In [16], a new MIMO-NOMA scheme based on QR

decomposition was proposed and power allocation policies for this scheme were investigated.

In [17], coordinated beamforming techniques were developed to enhance the performance of

MIMO-NOMA communications in the presence of inter-cell interference. In [18], NOMA was

applied to downlink multiuser MIMO cellular systems and a linear beamforming technique was

proposed to cancel inter-cluster interference. A more detailed literature review on MIMO-NOMA

can be found in [19].

The generalized singular value decomposition (GSVD) is an efficient tool to decompose the

MIMO-NOMA channel into parallel single-input single-output (SISO) channels, such that the

NOMA principle can be applied to each SISO channel individually1. In [20], the GSVD was

applied to MIMO-NOMA uplink and downlink transmission. However, the authors in [20] only

consider the special case where all nodes are equipped with the same number of antennas. Also,

in [20], the performance evaluation of the proposed GSVD-NOMA scheme relied on computer

simulations, and more insightful analytical results are missing. Motivated by this, in this paper,

we apply GSVD-NOMA to a general MIMO downlink communication scenario with one base

station and two users, where each user is equipped with m antennas and the base station is

equipped with n antennas. Moreover, the average data rates achieved by the two users are

adopted as performance metrics for evaluation of the proposed GSVD-NOMA scheme.

The main contributions of this paper are summarized as follows.

• We characterize the limiting distribution of the squared generalized singular values of the

two users’ channel matrices for the asymptotic case where the numbers of transmit and

receive antennas approach infinity, i.e., n,m → ∞ with m
n

→ η, where η is a constant

denoting the ratio of the numbers of receive and transmit antennas. To the best of the

authors’ knowledge, the limiting distribution of the squared generalized singular values

in the considered asymptotic regime, has not been characterized before. Compared to the

eigenvalues and conventional singular values [21], it is more challenging to characterize the

distribution of the squared generalized singular values, since they depend on the channel

matrices of both users. Long-term power normalization is applied at the base station. In

1 The proposed GSVD-NOMA scheme can be viewed as an extension of conventional MIMO processing for a single-user

point-to-point link where the singular value decomposition (SVD) is performed to convert the MIMO channel into parallel SISO

channels.
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order to investigate the impact of power normalization on the proposed GSVD-NOMA

scheme, we study the properties of the GSVD decomposition matrix and characterize the

long-term power normalization factor.

• Furthermore, in order to evaluate the performance of the proposed GSVD-NOMA scheme,

we characterize the normalized average individual rates2 of the two users in the considered

asymptotic regime. The developed analytical results are easy to evaluate the performance of

the proposed GSVD-NOMA scheme and can help avoid extensive computer simulation in

the considered asymptotic case where the numbers of transmit and receive antennas are large.

Also, when the base station and the users have moderate numbers of antennas (e.g. m =

2, n = 5), the derived analytical results still provide good approximations, as indicated by the

presented simulation results. In addition, simulation results are provided to corroborate the

improvement of the normalized average sum rate of the proposed GSVD-NOMA scheme

compared to “conventional” OMA and QR-NOMA in [16]. Moreover, a hybrid NOMA

scheme is proposed to extend the proposed GSVD-NOMA scheme to the MIMO downlink

communication scenario with more than two users, where the base station first divides

the users into different groups, then the proposed GSVD-NOMA scheme is implemented

within each group, and different groups are allocated with orthogonal bandwidth resources.

Also, numerical results are provided to demonstrate the performance of this hybrid NOMA

scheme.

The rest of the paper is organized as follows. In Section II, we introduce the system model

considered in this paper. In Section III, we present the proposed GSVD-NOMA design which

efficiently exploits the spectral resources. In Section IV, we derive new analytical results for

the squared generalized singular values and develop analytical expressions for the normalized

average individual rates of the two users. Numerical results are provided in Section V, and

Section VI concludes this paper.

II. SYSTEM MODEL

In this paper, we consider a general MIMO downlink communication scenario with one base

station and two users, where each user is equipped with m antennas and the base station is

2 Consider a linear memoryless vector channel of the form y = Hx + n, where H is the m × n channel matrix, x is

the n-dimensional input vector, y is the m-dimensional output vector, and the m-dimensional vector n models the additive

circularly symmetric Gaussian noise. The normalized input-output mutual information of this channel is defined as 1
m
I(x;y)

[21]. Similarly, in this paper, we define the normalized rate of a user as 1
m
Rd, where Rd is the overall data rate of the user.
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equipped with n antennas. We assume block fading, i.e., the user channels are constant for the

transmission of one codeword and change independently from one codeword to the next. The

m× n channel matrix from the base station to the i-th user, i ∈ {1, 2}, is denoted by Gi. The

considered composite channels are modeled as Gi =
1√
dτi
Hi, where Hi ∈ C

m×n models the

small-scale fading, 1√
dτi

models large-scale path loss, τ is the path loss exponent, and di denotes

the distance between the base station and the i-th user, i ∈ {1, 2}. The locations of the users

affect the user channels via large-scale path loss 1√
dτi

. All small-scale fading coefficients are

assumed to be independent and identically distributed Rayleigh with unit variance, i.e., Hi is

an m × n matrix whose elements are mutually independent and identically distributed (i.i.d.)

complex Gaussian random variables with zero mean and unit variance. Full CSIT is assumed to

be available at the base station.

Denote the n×n precoding matrix at the base station by Pb. Then, the base station transmits an

n× 1 signal vector x to the two users, where x = Pbs and the n× 1 vector s = [s1, s2, · · · sn]T

is the information bearing vector. The elements of s, si, i ∈ {1, · · · , n}, are coded symbols

representing the messages intended for the two users and are taken from Gaussian codebooks,

see Section III-B for detailed description. The observations at the two users can be expressed

as follows:

y1 =
1
√

dτ1
H1x+ n1 and y2 =

1
√

dτ2
H2x + n2, (1)

respectively, where ni, i ∈ {1, 2}, denotes the Gaussian additive noise vector of user i, whose

elements are mutually independent and identically distributed (i.i.d.) complex Gaussian random

variables with zero mean and unit variance. Define the detection matrices at user 1 and user 2

as D1 ∈ Cm×m and D2 ∈ Cm×m, respectively. After applying the detection matrices, user 1 and

user 2 observe the following signals:

D1y1 =
1
√

dτ1
D1H1Pbs+ n′

1 and D2y2 =
1
√

dτ2
D2H2Pbs+ n′

2, (2)

respectively, where n′

1 = D1n1 and n′

2 = D2n2.

III. DESCRIPTION OF THE PROPOSED GSVD-NOMA SCHEME

In the following, we propose a transmission protocol which combines GSVD and NOMA. To

be more specific, we first introduce the GSVD of the two m× n channel matrices H1 and H2.

May 24, 2018 DRAFT



6

Please note that in this paper, we assume that H1 and H2 are full rank3. Then, we explain the

designs of Pb, D1, D2, and s, which are based on GSVD and NOMA to efficiently exploit the

spectrum resources.

A. Definition of GSVD

We first introduce the GSVD of the two m× n channel matrices H1 and H2 as follows [23]:

UH1Q = Σ1 and VH2Q = Σ2, (3)

where U ∈ Cm×m and V ∈ Cm×m are two unitary matrices, Q ∈ Cn×n is a nonsingular matrix,

and Σ1 ∈ Cm×n and Σ2 ∈ Cm×n are two nonnegative diagonal matrices. Moreover, Σ1 and Σ2

have the following forms depending on the choices of m and n.

• When m ≥ n, Σ1 and Σ2 can be expressed as follows:

Σ1 =





S1

O(m−n)×n



 and Σ2 =





O(m−n)×n

S2



 , (4)

where O(m−n)×n denotes the zero matrix of size (m− n)× n, S1 = diag(α1, · · · , αn) and

S2 = diag(β1, · · · , βn) are two n × n nonnegative diagonal matrices, satisfying 1 ≥ α1 ≥
α2 · · · ≥ αn ≥ 0 and S2

1 + S2
2 = In, where In denotes the identity matrix of size n. Then,

the squared generalized singular values are defined as w2
i = α2

i /β
2
i , i ∈ {1, · · · , n}.

• When m < n < 2m , let us define r = n−m and q = 2m− n. Then, Σ1 and Σ2 can be

expressed as follows:

Σ1 =





Ir Or×q Or×r

Oq×r S1 Oq×r



 and Σ2 =





Oq×r S2 Oq×r

Or×r Or×q Ir



 , (5)

where S1 = diag(α1, · · · , αq) and S2 = diag(β1, · · · , βq) are two q×q nonnegative diagonal

matrices, satisfying 1 ≥ α1 ≥ α2 · · · ≥ αq ≥ 0 and S2
1 + S2

2 = Iq. Similarly, we define the

squared generalized singular values as w2
i = α2

i /β
2
i , i ∈ {1, · · · , q}.

• When 2m ≤ n, Σ1 and Σ2 can be expressed as follows:

Σ1 =
(

Im Om×(n−m)

)

and Σ2 =
(

Om×(n−m) Im

)

. (6)

Note that the generalized singular values are independent of H1 and H2 in this case.

3 Since the elements of H1 and H2 are i.i.d. complex Gaussian random variables, they are full rank with probability one

[22].
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B. The proposed GSVD-NOMA design

As shown in (3), the GSVD of the two m × n matrices H1 and H2 can be expressed as

UH1Q = Σ1 and VH2Q = Σ2. Then, the precoding matrix Pb is given by Pb = Q
√
P/t,

where P denotes the total transmission power of the base station, and t is a scalar for power

normalization. In this paper, for the sake of analytical tractability, long-term power normalization

is applied at the base station, i.e., t2 = E{trace(QssHQH)}, where s is the information bearing

symbol vector, E{·} denotes mathematical expectation, and trace(QssHQH) denotes the trace of

QssHQH . The detection matrices D1 and D2 are chosen as D1 = U and D2 = V, respectively.

From (2), we conclude that, with these choices, user 1 and user 2 obtain the following signals:

Uy1 =
1
√

dτ1
UH1Pbs+ n′

1 =

√
P

t
√

dτ1
Σ1s + n′

1, and

Vy2 =
1
√

dτ2
VH2Pbs + n′

2 =

√
P

t
√

dτ2
Σ2s+ n′

2, (7)

where n′

1 = Un1 and n′

2 = Vn2. Next, we explain the design of s which is based on NOMA

in order to fully exploit the available spectrum resources.

1) The case when m ≥ n: As shown in Section III-A, when m ≥ n, Σ1 and Σ2 can be

expressed as in (4). So, when m ≥ n, after applying detection matrices U and V, we obtain the

following:

Uy1 =

√
P

t
√

dτ1















α1s1
...

αnsn

O(m−n)×1















+ n′

1 and Vy2 =

√
P

t
√

dτ2















O(m−n)×1

β1s1
...

βnsn















+ n′

2. (8)

Therefore, the use of the GSVD converts the downlink MIMO channel into n parallel SISO

channels as follows:

y1i =

√
P

t
√

dτ1
αisi + n1i and y2i =

√
P

t
√

dτ2
βisi + n2i, i ∈ {1, · · · , n}, (9)

where y1i and y2i are the received signals at user 1 and user 2, respectively. As in [7], we consider

fixed-NOMA (F-NOMA) in this paper. To be more specific, let us define two predefined power

allocation coefficients l1 and l2 with l1 > l2 and l21 + l22 = 1. For the i-th SISO channel, when

αi√
dτ1

> βi√
dτ2

, i.e., user 1 has a stronger channel gain than user 2, si is designed as si = l2s1i+l1s2i,

where s1i and s2i are the information bearing messages for user 1 and user 2, respectively. On
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the other hand, for the i-th SISO channel, when αi√
dτ1

≤ βi√
dτ2

, i.e., user 2 has a stronger channel

gain than user 1, si is designed as si = l1s1i + l2s2i. Since Gaussian codebooks are employed,

the input symbols s1i and s2i are independent zero mean complex Gaussian random variables.

Moreover, as shown in (9), after applying the proposed GSVD-NOMA scheme, the base station

decomposes the MIMO channels of the two users into parallel SISO channels. For simplicity, it

is assumed that the base station allocates the same power to each parallel SISO channel4, i.e.,

E{|si|2} = E{|s1i|2} = E{|s2i|2} = 1, i ∈ {1, · · · , n}. Recall that w2
i = α2

i /β
2
i , i ∈ {1, · · · , n},

are the squared generalized singular values. Then, when αi√
dτ1

> βi√
dτ2

, i.e., w2
i >

dτ1
dτ2

, SIC is

performed at user 1 to decode s1i and the information rates of s1i and s2i can be expressed as

R1i = log

(

1 +
Pα2

i l
2
2

t2dτ1N0

)

and R2i = log

(

1 +
Pβ2

i l
2
1

Pβ2
i l

2
2 + t2dτ2N0

)

, (10)

respectively, where N0 denotes the noise power. On the other hand, when αi√
dτ1

≤ βi√
dτ2

, i.e.,

w2
i ≤

dτ1
dτ2

, SIC is performed at user 2 to decode s2i and the information rates of s1i and s2i can

be expressed as

R1i = log

(

1 +
Pα2

i l
2
1

Pα2
i l

2
2 + t2dτ1N0

)

and R2i = log

(

1 +
Pβ2

i l
2
2

t2dτ2N0

)

, (11)

respectively. Note that (10) and (11) provide the achievable instantaneous rates of the users for

given user channel matrices H1 and H2.

2) The case when m < n < 2m: As shown in Section III-A, when m < n < 2m, Σ1 and

Σ2 can be expressed as in (5). So, when m < n < 2m, after applying detection matrices U and

V, user 1 and user 2 can observe the following signals:

Uy1 =

√
P

t
√

dτ1



























s1
...

sr

α1sr+1

...

αssm



























+ n′

1 and Vy2 =

√
P

t
√

dτ2



























β1sr+1

...

βssm

sm+1

...

sn



























+ n′

2, (12)

4 More sophisticated, optimized power allocation strategies can further increase the sum rate of the two users, but make

implementation and performance analysis more complicated. Nevertheless, the development of optimal power allocation

strategies, which maximize the sum rate and ensure user fairness at the same time, is an important direction of future research.
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respectively. Again, we assume that E{|si|2} = 1, i ∈ {1, · · · , n}. For i ∈ {1, · · · , r}, si is

observed by user 1 only, and the observations of si, i ∈ {1, · · · , r}, at the two users can be

expressed as

y1i =

√
P

t
√

dτ1
si + n1i and y2i = 0, (13)

respectively. So, when i ∈ {1, · · · , r}, we adopt the OMA transmission strategy, and si is

designed as si = s1i, i.e., si only contains the message for user 1. Therefore, the corresponding

information rate of s1i, i ∈ {1, · · · , r}, can be expressed as R1i = log
(

1 + P
t2dτ1N0

)

. When

i ∈ {m+1, · · · , n}, si is observed by user 2 only and the observations of si, i ∈ {m+1, · · · , n},

at the two users can be expressed as

y1i = 0 and y2i =

√
P

t
√

dτ2
si + n2i, (14)

respectively. Hence, when i ∈ {m + 1, · · · , n}, we adopt the OMA transmission strategy, and

si is designed as si = s2i, i.e., si only contains the message for user 2. The corresponding

information rate of s2i, i ∈ {m+1, · · · , n}, can be expressed as R2i = log
(

1 + P
t2dτ2N0

)

. When

i ∈ {r + 1, · · · , m}, si is observed by both users. The observations of si, i ∈ {r + 1, · · · , m},

at the two users can be expressed as

y1i =

√
P

t
√

dτ1
αi−rsi + n1i and y2i =

√
P

t
√

dτ2
βi−rsi + n2i, (15)

respectively. Again, by applying F-NOMA, when
αi−r√

dτ1
> βi−r√

dτ2
, i ∈ {r+1, · · · , m}, i.e., w2

i−r >

dτ1
dτ2

, si, i ∈ {r+1, · · · , m}, is designed as si = l2s1i+ l1s2i, where s1i and s2i are the information

bearing messages for user 1 and user 2, respectively. When
αi−r√

dτ1
≤ βi−r√

dτ2
, i ∈ {r + 1, · · · , m},

i.e., w2
i−r ≤

dτ1
dτ2

, si, i ∈ {r + 1, · · · , m}, is designed as si = l1s1i + l2s2i. Note that E{|si|2} =

E{|s1i|2} = E{|s2i|2} = 1, i ∈ {r+1, · · · , m}. Therefore, when w2
i−r >

dτ1
dτ2

, i ∈ {r+1, · · · , m},

SIC is carried out at user 1 and the information rates of s1i and s2i, i ∈ {r+1, · · · , m}, can be

expressed as

R1i = log

(

1 +
Pα2

i−rl
2
2

t2dτ1N0

)

and R2i = log

(

1 +
Pβ2

i−rl
2
1

Pβ2
i−rl

2
2 + t2dτ2N0

)

, (16)

respectively. When w2
i−r ≤

dτ1
dτ2

, SIC is carried by user 2 and the information rates of s1i and s2i,

i ∈ {r + 1, · · · , m}, can be expressed as

R1i = log

(

1 +
Pα2

i−rl
2
1

Pα2
i−rl

2
2 + t2dτ1N0

)

and R2i = log

(

1 +
Pβ2

i−rl
2
2

t2dτ2N0

)

, (17)

respectively. Note that, similar to (10) and (11), (16) and (17) provide the achievable instanta-

neous rates of the users for given user channel matrices H1 and H2.
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3) The case when 2m ≤ n: As shown in Section III-A, when 2m ≤ n, Σ1 and Σ2 can be

expressed as in (6). So, when 2m ≤ n, after applying detection matrices U and V, user 1 and

user 2 observe

Uy1 =

√
P

t
√

dτ1











s1
...

sm











+ n′

1 and Vy2 =

√
P

t
√

dτ2











sn−m+1

...

sn











+ n′

2, (18)

respectively. Again, we assume that the base station allocates the same power to each parallel

SISO channel, i.e., E{|si|2} = 1, i ∈ {1, · · · , m, n−m + 1, · · · , n}. For i ∈ {1, · · · , m}, si is

observed by user 1 only, and the observations of si, i ∈ {1, · · · , m}, at the two users can be

expressed as

y1i =

√
P

t
√

dτ1
si + n1i and y2i = 0, (19)

respectively. So, when i ∈ {1, · · · , m}, we adopt the OMA transmission strategy, and si

is designed as si = s1i, i.e., si only contains the information bearing message for user 1.

Therefore, the corresponding information rate of s1i, i ∈ {1, · · · , m}, can be expressed as

R1i = log
(

1 + P
t2dτ1N0

)

. When i ∈ {n−m+ 1, · · · , n}, si is observed by user 2 only, and the

observations of si, i ∈ {n−m+ 1, · · · , n}, at the two users can be expressed as

y1i = 0 and y2i =

√
P

t
√

dτ2
si + n2i, (20)

respectively. Hence, when i ∈ {n−m+1, · · · , n}, we also adopt the OMA transmission strategy,

and si is designed as si = s2i, i.e., si only contains the information bearing message for user

2. The corresponding information rate of s2i, i ∈ {n − m + 1, · · · , n}, can be expressed as

R2i = log
(

1 + P
t2dτ2N0

)

. For i ∈ {m+ 1, · · · , n −m}, si is observed neither by user 1 nor by

user 2. So, si, i ∈ {m+ 1, · · · , n−m}, is set as si = 0 in order to save transmit power.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed GSVD-NOMA protocol for the

asymptotic case, where the numbers of transmit and receive antennas approach infinity while the
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ratio of the numbers of receive and transmit antennas remains constant, i.e., η = m
n

is constant5.

To this end, we first characterize the limiting distribution of the squared generalized singular

values w2
i = α2

i /β
2
i in the considered asymptotic regime. Then, we study the characteristics

of power normalization factor t. Finally, we calculate the normalized average individual rates

of the two users. The derived analytical results can be applied when the base station and the

users have large numbers of antennas. For example, in heterogenous networks, a macro base

station may communicate with two micro base stations by using GSVD-NOMA. In this case,

it is reasonable to assume that both the transmitter and the receivers have large numbers of

antennas. Furthermore, the numerical results in Section V reveal that when the base station and

the users have moderate numbers of antennas (e.g. m = 2, n = 5), the derived analytical results

provide still accurate approximations. Therefore, our asymptotic results provide insight into the

performance achieved by the proposed GSVD-NOMA scheme for the realistic case where the

base station and the users have moderate numbers of antennas.

A. The limiting distribution of the squared generalized singular values

As shown in Section III-B, the rates of the users depend on the squared generalized singular

values of the two users’ channel matrices. Therefore, in order to calculate the normalized average

individual rates of the two users, we first need to characterize the limiting distribution of the

squared generalized singular values.

Assuming that the elements of H1 and H2 are i.i.d. complex Gaussian random variables with

zero mean and unit variance, the distribution of the squared generalized singular values w2
i can

be characterized as follows. First, let us define the empirical distribution function (e.d.f.) of k

random variables vi, i ∈ {1, · · · , k}, as Fk
vi
(x), where

Fk
vi
(x) =

1

k

k
∑

j=1

1{vj ≤ x}, (21)

5Please note that, in this section, the performance analysis of the GSVD-NOMA system encompasses all possible cases of

m and n, i.e., 2m ≤ n, m < n < 2m, and m ≥ n. The case m ≤ n applies when the users have fewer antennas than the

base station, which is an expected scenario in the Internet of Things and cellular networks. Furthermore, the case m ≥ n is

applicable to e.g. small cells [24] and cloud radio access networks (C-RANs) [25], where low-cost base stations are deployed

with high density and these base stations are expected to have capabilities similar to those of advanced smart phones and tablets.
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and 1{·} is the indicator function. Next, we define function fy,y′(x) as follows:

fy,y′(x) =















(1−y′)

√

(

x−
(

1−g(y,y′)

1−y′

)2
)(

(

1+g(y,y′)

1−y′

)2
−x

)

2πx(xy′+y)
,
(

1−g(y,y′)
1−y′

)2

< x <
(

1+g(y,y′)
1−y′

)2

0, otherwise

(22)

where x is the argument of the function, y and y′ are two parameters of the function, and

g(y, y′) =
√

1− (1− y)(1− y′).

Then, equipped with there definitions, we can characterize the distribution of the squared

generalized singular values w2
i as in the following theorem.

Theorem 1: Suppose that H1 and H2 are two m×n matrices whose elements are i.i.d. complex

Gaussian random variables with zero mean and unit variance and their GSVD is defined as in

(3).

• When m ≥ n, almost surely, Fn
wi
(x), the e.d.f. of their squared generalized singular values

w2
i , i ∈ {1, · · · , n}, converges, as m,n → ∞ with m

n
→ η, to a nonrandom cumulative

distribution function (c.d.f.) Fwi
(x), whose probability density function (p.d.f.) is f 1

η
, 1
η
(x).

• When m < n < 2m, almost surely, F2m−n
wi

(x), the e.d.f. of their squared generalized singular

values w2
i , i ∈ {1, · · · , 2m − n}, converges, as m,n → ∞ with m

n
→ η, to a nonrandom

c.d.f. Fwi
(x), whose p.d.f. is η

(2η−1)2
f η

2η−1
,η

(

x
2η−1

)

.

• When 2m ≤ n, Σ1 and Σ2 are deterministic and given by [Im Om×(n−m)] and

[Om×(n−m) Im], respectively.

Proof: See Appendix A.

B. The value of the power normalization factor t

As shown in Section III-B, the power normalization factor t is a key parameter affecting

the rates of the users. In this subsection, we characterize the value of this power normalization

factor. Recall that t2 can be expressed as t2 = E{trace(QssHQH)}, where Q is the GSVD

decomposition matrix defined as in (3), and s is the information bearing symbol vector. Moreover,

as shown in Section III-B, E{ssH} can be expressed as E{ssH} =







In 2m ≥ n

B 2m < n
, where n×n

matrix B = diag
[

Im,O(n−2m)×(n−2m), Im
]

. Thus, t2 can be further expressed as follows:

t2 = E{trace(QssHQH)} =







E{trace(QQH)} 2m ≥ n

E{trace(QBQH)} 2m < n
. (23)
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Moreover, let us define H =





H1

H2



 and η = m
n

. Then, the value of t2 is discussed as follows.

• For the case of 2m > n, the value of t2 is given by the following theorem.

Theorem 2: Assume that H1 and H2 are two m × n matrices whose elements are i.i.d.

complex Gaussian random variables with zero mean and unit variance and their GSVD is

defined as in (3). Then, for 2m > n, t2 = E{trace(QQH)} = E{trace((HHH)−1)} = 1
2η−1

.

Proof: See Appendix B.

• For the case of 2m < n, the value of t2 is given by the following theorem.

Theorem 3: Assume that H1 and H2 are two m × n matrices whose elements are i.i.d.

complex Gaussian random variables with zero mean and unit variance and their GSVD is

defined as in (3). Then, for 2m < n, t2 = E{trace(QBQH)} = E{trace((HHH)−1)} =

1
1/(2η)−1

.

Proof: See Appendix C.

• For the case of 2m = n, from Appendix B, it can be shown that t2 = E{trace(QQH)} =

E{trace((HHH)−1)}. Note that the elements of H are i.i.d. complex Gaussian random

variables with zero mean and unit variance. From [21], it is easy to show that when 2m = n,

E{trace((HHH)−1)} approaches infinity. Therefore, when n = 2m, the average power of

the GSVD precoding matrix, t2, approaches infinity. Thus, when n = 2m, the long-term

power constraint is not applicable, and in practice more sophisticated precoding schemes

based on an instantaneous power constraint should be applied at the base station. Studying

such precoders is beyond the scope of this paper.

C. The normalized average individual rates of the two users

In this subsection, we focus on the normalized average individual rates of the two users.

1) The case of m ≥ n: As shown in Section III-B1, when m ≥ n, s1i and s2i, i ∈ {1, · · · , n},

are broadcasted by the base station, where s1i and s2i are the information bearing messages

for user 1 and user 2, respectively. The instantaneous information rates of s1i and s2i can be

expressed as in (10) and (11). Recall that the squared generalized singular values are defined as

w2
i = α2

i /β
2
i , i ∈ {1, · · · , n}. From the fact that α2

i +β2
i = 1, we can obtain that α2

i =
w2

i

1+w2
i

and

β2
i = 1

1+w2
i
. Therefore, when m ≥ n, substituting α2

i =
w2

i

1+w2
i

and β2
i = 1

1+w2
i

into (10), we can
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show that when w2
i >

dτ1
dτ2

, the instantaneous information rates of s1i and s2i can be expressed as

follows:

R1i = log

(

1 +
Pα2

i l
2
2

t2dτ1N0

)

= log

(

1 +
Pw2

i l
2
2

t2dτ1N0(1 + w2
i )

)

(24)

and

R2i = log

(

1 +
Pβ2

i l
2
1

Pβ2
i l

2
2 + t2dτ2N0

)

= log

(

1 +
P l21

P l22 + t2dτ2N0(1 + w2
i )

)

. (25)

Furthermore, substituting α2
i =

w2
i

1+w2
i

and β2
i = 1

1+w2
i

into (11), we can show that when w2
i ≤

dτ1
dτ2

,

the instantaneous information rates of s1i and s2i can be expressed as as follows:

R1i = log

(

1 +
Pα2

i l
2
1

Pα2
i l

2
2 + t2dτ1N0

)

= log

(

1 +
Pw2

i l
2
1

Pw2
i l

2
2 + t2dτ1N0(1 + w2

i )

)

(26)

and

R2i = log

(

1 +
Pβ2

i l
2
2

t2dτ2N0

)

= log

(

1 +
P l22

t2dτ2N0(1 + w2
i )

)

. (27)

So when m ≥ n, m,n → ∞ with m
n
→ η, the normalized average individual rates of the two

users can be characterized as in the following corollary.

Corollary 1: When m ≥ n, m,n → ∞ with m
n
→ η, the normalized average individual rates

of user 1 and user 2 can be expressed as follows:

R1 =
1

η

(

C

(

dτ1
dτ2

, B,
dτ1N0

dτ1N0 + P l22(2η − 1)

)

− C

(

dτ1
dτ2

, B, 1

)

(28)

+ log

(

dτ1N0 + P l22(2η − 1)

dτ1N0

)

D

(

dτ1
dτ2

, B

)

+ C

(

A,
dτ1
dτ2

,
dτ1N0

dτ1N0 + P (2η − 1)

)

−C

(

A,
dτ1
dτ2

,
dτ1N0

dτ1N0 + P l22(2η − 1)

)

+ log

(

dτ1N0 + P (2η − 1)

dτ1N0 + P l22(2η − 1)

)

D

(

A,
dτ1
dτ2

))

and

R2 =
1

η

(

C

(

dτ1
dτ2

, B, 1 +
P (2η − 1)

dτ2N0

)

− C

(

dτ1
dτ2

, B, 1 +
P l22(2η − 1)

dτ2N0

)

+C

(

A,
dτ1
dτ2

,
P l22(2η − 1) + dτ2N0

dτ2N0

)

− C

(

A,
dτ1
dτ2

, 1

))

, (29)

where A =

(

1−
√

1−(1−1/η)(1−1/η)

1−1/η

)2

, B =

(

1+
√

1−(1−1/η)(1−1/η)

1−1/η

)2

, C(y1, y2, y3) =
∫ y2
y1

log(x+

y3)f 1
η
, 1
η
(x)dx, and D(y1, y2) =

∫ y2
y1

f 1
η
, 1
η
(x)dx.

Proof: See Appendix D.
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2) The case when m < n < 2m: As shown in Section III-B2, when m < n < 2m, s1i,

i ∈ {1, · · · , m}, and s2i, i ∈ {r+1, · · · , n}, are broadcasted by the base station, where r = n−m,

and s1i and s2i are the information bearing messages for user 1 and user 2, respectively. The

instantaneous information rate of s1i, i ∈ {1, · · · , r}, is given by R1i = log
(

1 + P
t2dτ1N0

)

. The

instantaneous information rate of s2i, i ∈ {m+ 1, · · · , n}, is given by R2i = log
(

1 + P
t2dτ2N0

)

.

When i ∈ {r+1, · · · , m}, s1i and s2i are observed by both users. The instantaneous information

rates of s1i and s2i, i ∈ {r+1, · · · , m}, are given by (16) and (17). Recall that when m < n < 2m,

the squared generalized singular values are defined as w2
i = α2

i /β
2
i , i ∈ {1, · · · , 2m − n}. As

α2
i +β2

i = 1, we obtain α2
i =

w2
i

1+w2
i

and β2
i = 1

1+w2
i
. Therefore, when m < n < 2m, from (16) and

(17), it can be shown that when w2
i−r >

dτ1
dτ2

, i ∈ {r + 1, · · · , m}, the instantaneous information

rates of s1i and s2i can be expressed as follows:

R1i = log

(

1 +
Pα2

i−rl
2
2

t2dτ1N0

)

= log

(

1 +
Pw2

i−rl
2
2

t2dτ1N0(1 + w2
i−r)

)

(30)

and

R2i = log

(

1 +
Pβ2

i−rl
2
1

Pβ2
i−rl

2
2 + t2dτ2N0

)

= log

(

1 +
P l21

P l22 + t2dτ2N0(1 + w2
i−r)

)

. (31)

On the other hand, when w2
i−r ≤

dτ1
dτ2

, i ∈ {r+1, · · · , m}, the instantaneous information rates of

s1i and s2i can be expressed as follows:

R1i = log

(

1 +
Pα2

i−rl
2
1

Pα2
i−rl

2
2 + t2dτ1N0

)

= log

(

1 +
Pw2

i−rl
2
1

Pw2
i−rl

2
2 + t2dτ1N0(1 + w2

i−r)

)

(32)

and

R2i = log

(

1 +
Pβ2

i−rl
2
2

t2dτ2N0

)

= log

(

1 +
P l22

t2dτ2N0(1 + w2
i−r)

)

. (33)

Thus, when m < n < 2m, m,n → ∞ with m
n
→ η, the normalized average individual rates of

the two users can be characterized as in the following corollary.

Corollary 2: When m < n < 2m, m,n → ∞ with m
n
→ η, the normalized average individual

rates of user 1 and user 2 can be expressed as follows:

R1 =

(

2− 1

η

)(

G

(

dτ1
dτ2

, F,
dτ1N0

dτ1N0 + P l22(2η − 1)

)

−G

(

dτ1
dτ2

, F, 1

)

(34)

+ log

(

dτ1N0 + P l22(2η − 1)

dτ1N0

)

H

(

dτ1
dτ2

, F

)

+G

(

E,
dτ1
dτ2

,
dτ1N0

dτ1N0 + P (2η − 1)

)

−G

(

E,
dτ1
dτ2

,
dτ1N0

dτ1N0 + P l22(2η − 1)

)

+ log

(

dτ1N0 + P (2η − 1)

dτ1N0 + P l22(2η − 1)

)

H

(

E,
dτ1
dτ2

))

+

(

1

η
− 1

)

log

(

1 +
P (2η − 1)

dτ1N0

)
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and

R2 =

(

2− 1

η

)(

G

(

dτ1
dτ2

, F, 1 +
P (2η − 1)

dτ2N0

)

−G

(

dτ1
dτ2

, F, 1 +
P l22(2η − 1)

dτ2N0

)

+G

(

E,
dτ1
dτ2

,
P l22(2η − 1) + dτ2N0

dτ2N0

)

−G

(

E,
dτ1
dτ2

, 1

))

+

(

1

η
− 1

)

log

(

1 +
P (2η − 1)

dτ2N0

)

, (35)

where E = (2η − 1)

(

1−
√

1−(1−η/(2η−1))(1−η)

1−η

)2

, F = (2η − 1)

(

1+
√

1−(1−η/(2η−1))(1−η)

1−η

)2

,

G(y1, y2, y3) =
∫ y2
y1

log(x + y3)
η

(2η−1)2
f η

2η−1
,η(x/(2η − 1))dx, and H(y1, y2) =

∫ y2
y1

η
(2η−1)2

f η
2η−1

,η(x/(2η − 1))dx.

Proof: Following steps similar to those in the proof of Corollary 1, the normalized average

individual rates of the two users can be obtained.

3) The case when 2m < n: As shown in Section III-B3, when 2m < n, s1i and s2i, i ∈
{1, · · · , n}, are broadcasted by the base station. The information rates of s1i and s2i can be

expressed as R1i = log
(

1 + P
t2dτ1N0

)

and R2i = log
(

1 + P
t2dτ2N0

)

, respectively. Moreover, when

2m < n, t2 = trace(QssHQH) = trace(QBQH). Theorem 3 obtains that when 2m < n,

t2 = trace(QBQH) converges, as m,n → ∞ with m
n

→ η, to 1
1/(2η)−1

. Thus, when 2m < n,

m,n → ∞ with m
n

→ η, the normalized average individual rates of the two users can be

expressed as follows:

R1 = log

(

1 +
P (1/(2η)− 1)

dτ1N0

)

and R2 = log

(

1 +
P (1/(2η)− 1)

dτ2N0

)

. (36)

V. NUMERICAL RESULTS

In this section, we first provide computer simulation results by focusing on the MIMO

downlink communication scenario with one base stations and two users, where the base station

and the users have large but finite numbers of antennas, to demonstrate the performance of the

proposed GSVD-NOMA scheme, and to verify the correctness of the developed analytical results.

Then, we propose a hybrid NOMA scheme to extend the proposed GSVD-NOMA scheme to

the MIMO downlink communication scenario with more than two users, and provide numerical

results to demonstrate the performance of this hybrid NOMA scheme.

In Fig. 1, we compare the normalized average sum rates achieved by OMA and GSVD-NOMA

when m = 28, d1 = 10m, d2 = 100m, τ = 2, N0 = −35dBm, and l22 = 0.2. Here, “BPCU”

denotes bit per channel use. From this figure, we observe that the proposed GSVD-NOMA
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Fig. 1. Comparing the normalized average sum rates achieved

by OMA and GSVD-NOMA.
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Fig. 2. The normalized average sum rates achieved by OMA

and GSVD-NOMA versus distance d2.

scheme outperforms conventional OMA6 by a considerable margin. As the transmit power P

increases, the performance gap between the two protocols also increases, which confirms that the

proposed GSVD-NOMA scheme can exploit the spatial degrees of freedom of the channel more

efficiently than OMA in the high SNR regime. Moreover, when η = m
n

changes from 4
5

to 2
5
,

i.e., the number of the transmit antennas increases, the normalized average sum rate achieved by

OMA stays practically constant while the normalized average sum rate achieved by the proposed

GSVD-NOMA scheme increases considerably. This can be explained as follows, with OMA,

the base station can perform SVD to convert the n × m MIMO channel of each user into k1

parallel SISO channels, where k1 = min{m,n}. Thus, in OMA systems, when n exceeds m, the

number of the parallel SISO channels, k1, will stop growing, which results in the saturation of

the normalized average sum rate. On the other hand, as shown in Section III-B, for the proposed

GSVD-NOMA scheme, the base station decomposes the n ×m MIMO channels of both users

into k2 parallel SISO channels, where k2 = min{2m,n}. Therefore, when n increases from m

to 2m, while k1 will stay constant, k2 will grow. Hence, while the normalized average sum rate

achieved by OMA saturates quickly, that of the proposed GSVD-NOMA scheme does not.

Fig. 2 compares the normalized average sum rates achieved by OMA and GSVD-NOMA as

a function of d2 when m = 28, d1 = 50m, τ = 2, P = 30dBm, N0 = −35dBm, and l22 = 0.2.

From this figure, we observe that the proposed GSVD-NOMA outperforms conventional OMA

for all considered values of d2. In fact, regardless of whether d1 < d2 or d1 > d2, the proposed

GSVD-NOMA achieves a higher sum rate than conventional OMA. Moreover, when the number

of the transmit antennas increases, the performance gap between the two protocols increases

6 Here, the time division multiple access (TDMA) protocol is used as the benchmark.
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Fig. 3. The normalized average rates achieved by the QR-

NOMA scheme in [16] and the proposed GSVD-NOMA scheme.
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Fig. 4. The normalized average individual rates of the two users

versus n.

from 1.5 BPCU to 9.5 BPCU for d2 = 10m.

In Fig. 3, the normalized average rates achieved by the proposed GSVD-NOMA scheme are

compared to those achieved by the QR-NOMA scheme in [16]. In this figure, it is assumed that

m = 40, n = 50, d1 = 10m, d2 = 10m, τ = 2, N0 = −35dBm, and l22 = 0.2. For QR-NOMA

[16], the channel of one user will become extremely weak, which negatively affects the average

sum rate. Therefore, as shown in Fig. 3, when increasing the transmit power, the average sum

rate of the proposed GSVD-NOMA scheme increases more rapidly than that of the QR-NOMA

scheme. Moreover, for the proposed GSVD-NOMA scheme, the normalized average individual

rates of the two users are identical, i.e., R1 = R2. In contrast, for the QR-NOMA scheme

[16], R1 is much greater than R2. Therefore, the proposed GSVD-NOMA scheme ensures better

fairness between the two users than QR-NOMA.

Fig. 4 shows the normalized average individual rates of the two users with n increasing from

5 to 30, when d1 = 10m, d2 = 40m, τ = 2, P = 15dBm, N0 = −35dBm, and l22 = 0.2. As can

be seen from this figure, when m and n is small (e.g. m = 2, n = 5), the numerical results still

coincide with the analytical results perfectly, which validates the analytical results developed in

Section IV-C. In this figure, although the normalized average rates (R1 and R2) decrease as m

increases, the overall average rates of the users (mR1 and mR2) still increase with m.

Fig. 5 shows the normalized average individual rates of the two users when m = 2, d1 = 10m,

d2 = 100m, τ = 2, N0 = −35dBm, and l22 = 0.2. From this figure, we observe that the

numerical results match the analytical results perfectly and the normalized average individual

rates of both users increase when the number of transmit antennas increases, i.e., increasing

the number of transmit antennas can improve the performance of the proposed GSVD-NOMA

scheme. Moreover, as expected, user 1 which is closer to the base station achieves a higher
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Fig. 6. The normalized average rates of the two users for

different power allocation coefficients.

average rate than user 2.

Please note that in the considered asymptotic scenario, when both users have the same distance

to the base station, i.e, d1 = d2, for the proposed GSVD-NOMA scheme, the normalized average

individual rates of both users are the same, i.e., R1 = R2, as shown in Fig. 3. Hence, the proposed

GSVD-NOMA scheme ensures user fairness. When d1 6= d2, there can be significant difference

between the users’ channel conditions. In this scenario, the use of the proposed GSVD-NOMA

scheme can efficiently explore the dynamic range of channel difference to improve the overall

system throughput. However, we note that, when d1 6= d2, the near user will achieve a higher

information rate as shown in Fig. 4 and Fig. 5, i.e., the overall system throughput is improved at

a price of reduced user fairness. This is reasonable, since a user with better channel conditions

can support a higher achievable rate, and allocating more bandwidth resources to the weak user

is not beneficial to the spectral efficiency.

Fig. 6 shows the impact of different power allocation coefficients on GSVD-NOMA when

m = 7, n = 5, d1 = 10m, d2 = 100m, τ = 2, and N0 = −35dBm. From this figure, we observe

that when the power allocation coefficient l22 increases, the normalized average rate R1 of user

1 increases and the normalized average rate R2 of user 2 decreases, since more powers have

been allocated to the near user. On the other hand, for large P , i.e., in the high SNR regime,

the normalized average sum rate of the two users R1 + R2 remains almost the same when the

power allocation coefficient l22 changes from 0.2 to 0.4. Thus, in the high SNR regime, l22 has

an insignificant impact on the average sum rate.

Fig. 7 compares the average sum rates achieved by DPC and GSVD-NOMA in a downlink

massive MIMO scenario with one base station and two users, where the base station is equipped

with n antennas and each user is equipped with single antenna. Moreover, it is assumed that
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NOMA system

d1 = 10m, d2 = 10m, τ = 2, and N0 = −35dBm. From this figure, we observe that the

numerical results match the analytical results perfectly and the average sum rate of GSVD-

NOMA approaches that of DPC, which demonstrates the performance of the proposed GSVD-

NOMA scheme, and verifies the correctness of the developed analytical results.

Although this paper focuses on the special case of two NOMA users, the proposed GSVD-

NOMA scheme can be easily extended to the MIMO downlink communication scenario with

more than two users by using a hybrid MA approach. In particular, consider a downlink

communication scenario with one base station and multiple users. The base station first divides

all users into multiple groups, where each group contains two users. Then, the proposed GSVD-

NOMA scheme can be implemented within each group and different groups are allocated with

orthogonal bandwidth resources. This hybrid NOMA scheme can be used to e.g. upgrade an

existing OMA system without changing its fundamental resource blocks, while realizing the

performance gains of GSVD-NOMA. The reason for including only two users in each group is

to reduce the processing complexity of the SIC receiver, and the two-user pairing consideration

is consistent with the specifications in 3GPP-LTE system [26].

In order to demonstrate the performance of hybrid GSVD-NOMA, we consider a multiuser

scenario with one base station and four users. The distance between user 1 (user 2) and the

base station is d1 = 15m (d2 = 10m), and the distance between user 3 (user 4) and the base

station is d3 = 200m (d4 = 300m). In Fig. 8, we compare the normalized average sum rates

achieved by OMA and hybrid GSVD-NOMA for m = 40, n = 50, τ = 2, N0 = −35dBm,

and l22 = 0.2. From the figure, one can observe that no matter how the users are grouped, the

proposed GSVD-NOMA scheme always achieves a larger normalized average sum rate than

OMA. Moreover, pairing user 1 with user 2 results in the worst performance among the three
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possible pairing strategies. This suggests that it is preferable to pair users which are close to the

base station with users which are far from the base station7. In addition, the performance gap

between NOMA and OMA grows as the transmit power P increases.

VI. CONCLUSION

In this paper, a MIMO downlink communication scenario with one base station and two

users has been considered, where each user is equipped with m antennas and the base station is

equipped with n antennas. To fully exploit the available spatial degrees of freedom, a transmission

protocol which combines GSVD and NOMA has been proposed. The performance of the

proposed protocols has been characterized in the asymptotic regime, where the numbers of

transmit and receive antennas approach infinity. To be more specific, we have characterized

the limiting distribution of the squared generalized singular values of the two users’ channel

matrices. Then, the normalized average individual rates of the two users have been analyzed.

The proposed GSVD-NOMA scheme uses GSVD to decompose the two-user MIMO broadcast

channel into broadcast two-user SISO channels, without interference among different transmit

antennas. Moreover, the provided numerical results have shown that GSVD-NOMA achieves

considerable improvements in terms of the normalized average sum rate compared to conventional

OMA and QR-NOMA in [16], and when the base station and the users have moderate numbers

of antennas (e.g. m = 2, n = 5), the derived analytical results still provide good approximations.

Furthermore, we use a hybrid MA approach to extend the proposed GSVD-NOMA scheme to the

MIMO downlink communication scenario with more than two users, where the base station first

divides the users into different groups, then the proposed GSVD-NOMA scheme is implemented

within each group, and different groups are allocated with orthogonal bandwidth resources.

APPENDIX A: PROOF OF THEOREM 1

Since the elements of H1 and H2 are i.i.d. complex Gaussian random variables, they are full

rank with probability one [22]. Thus, in this appendix, it is assumed that H1 and H2 are full

rank.

7Obviously the performance of this hybrid NOMA scheme depends on how the users are grouped, where sophisticated

algorithms such as monotonic optimization, machine learning, and game theory can be used for performance optimization [4],

[27], [28]. We also suggest this as a topic for future work.
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A. The case when m ≥ n

First, we revisit Zha’s method [23] to construct the GSVD of the two m×n channel matrices

H1 and H2. Then, we obtain the limiting distribution of the squared generalized singular values

based on this GSVD construction method.

1) Steps of GSVD when m ≥ n: When m ≥ n, we can construct the GSVD of the two m×n

channel matrices H1 and H2 with the following steps:

• Denote the SVD of matrix H2 by

U2H2V2 =





O(m−n)×n

ΣH2



 , (37)

where ΣH2 = diag(z1, z2, · · · zn) and z1 ≥ z2 · · · ≥ zn. Moreover, define Q1 as follows:

Q1 = V2diag

(

1

z1
, · · · , 1

zn

)

. (38)

Then, define H′

1 and H′

2 as follows:

H′

1 = H1Q1 = H1V2diag

(

1

z1
, · · · , 1

zn

)

and H′

2 = U2H2Q1 =





O(m−n)×n

In



 . (39)

• Next, define the SVD of matrix H′

1 as

U3H
′

1V3 =





diag(w1, · · · , wn)

O(m−n)×n



 , (40)

where w1 ≥ w2 · · · ≥ wn are the n ordered singular values of H′

1. Furthermore, define Q2

as follows:

Q2 = V3diag(β1, β2, · · ·βn), (41)

where βi = (1 + w2
i )

−1/2.

• Finally, it can be shown that

U3H
′

1Q2 = U3H1Q1Q2 =





diag(α1, · · · , αn)

O(m−n)×n



 , (42)

where αi = wiβi =
wi

(1+w2
i )

1/2 and it is easy to see that α2
i + β2

i = 1. Moreover, it can be

shown that




Im−n O(m−n)×n

On×(m−n) VH
3



H′

2Q2 =





Im−n O(m−n)×n

On×(m−n) VH
3



U2H2Q1Q2

=





O(m−n)×n

diag(β1, · · · , βn)



 . (43)
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Then, for the case of m ≥ n, we have provided the steps needed for constructing the GSVD

defined as in (3) with Q = Q1Q2, U = U3 and V =





Im−n O(m−n)×n

On×(m−n) VH
3



U2.

2) The limiting distribution of the squared generalized singular values when m ≥ n:

From (40), it can be shown that U3H
′

1V3 =





diag(w1, · · · , wn)

O(m−n)×n



 , and the squared

generalized singular values w2
i = α2

i /β
2
i , i ∈ {1, · · · , n}, are the eigenvalues of H′H

1 H′

1,

where H′

1 = H1Q1 = H1V2diag( 1
z1
, · · · , 1

zn
). Recall that the SVD of H2 is U2H2V2 =





O(m−n)×n

diag(z1, · · · zn)



, and we have that VH
2 H

H
2 H2V2 = diag(z1, · · · , zn)2. Also, since HH

2 H2

is a central Wishart matrix which is unitarily invariant [21], it can be shown that V2 is a Haar

matrix which is independent of diag(z1, · · · , zn)2. So H′

1 = H1V2diag( 1
z1
, · · · , 1

zn
) is the product

of three independent matrices H1, V2, and diag( 1
z1
, · · · , 1

zn
).

Define G1 = H1V2. Then, it can be shown that G1 is an m×n matrix whose elements are i.i.d.

complex Gaussian random variables with zero mean and unit variance. Furthermore, we have that

H′

1 = G1diag( 1
z1
, · · · , 1

zn
) and the squared generalized singular values w2

i , i ∈ {1, · · · , n}, can

be expressed as the eigenvalues of H′H
1 H′

1 = diag( 1
z1
, · · · , 1

zn
)GH

1 G1diag( 1
z1
, · · · , 1

zn
). Moreover,

the squared generalized singular values w2
i , i ∈ {1, · · · , n}, can be also expressed as the

eigenvalues of GH
1 G1diag( 1

z1
, · · · , 1

zn
)2 or the nonzero eigenvalues of G1diag( 1

z1
, · · · , 1

zn
)2GH

1 .

Note that G1 is independent of zi, i ∈ {1, · · · , n}, where zi is a nonzero singular value of H2.

Thus, directly from [21, Theorem 2.39 and Theorem 2.40], the e.d.f. of the nonzero eigenvalues

of G1diag( 1
z1
, · · · , 1

zn
)2GH

1 , which is identical to the e.d.f. of the generalized singular values

Fn
wi
(x), converges, almost surely, as m,n → ∞ with m

n
→ η, to a nonrandom c.d.f. Fwi

(x),

whose p.d.f. is f 1
η
, 1
η
(x). Then, when m ≥ n, we have characterized the limiting distribution of

the squared generalized singular values w2
i .

B. The case when m < n < 2m

Again, we first use Zha’s method to construct the GSVD of the two m× n channel matrices

H1 and H2.

1) Steps of GSVD when m < n < 2m: When m < n < 2m, we can construct the GSVD of

the two m× n channel matrices H1 and H2 with the following steps:

• First, we define the SVD of matrix H2 as

U2H2V2 =
(

Om×(n−m) diag(z1, z2, · · · zm)
)

, (44)
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where z1 ≥ z2 · · · ≥ zm. Let us define Q1 as follows:

Q1 = V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1



 . (45)

Then, it can be shown that

H′

1 = H1Q1 = H1V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1



 =
(

H′

11 H′

12

)

, (46)

where H′

11 = H1V2





In−m

Om×(n−m)



 and H′

12 = H1V2





O(n−m)×m

diag(z1, · · · zm)−1



. Also, H′

2

can be defined as follows:

H′

2 = U2H2Q1 =
(

Om×(n−m) diag(z1, · · · zm)
)





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1





=
(

Om×(n−m) Im

)

. (47)

• It is easy to see that the rank of H′

11 is r, where r = n−m. Then, we can define the SVD

of matrix H′

11 as follows:

U11H
′

11V11 =





ΣA

O(m−r)×r



 , (48)

where ΣA = diag(t1, · · · , tr) with t1 ≥ t2 · · · ≥ tr > 0. Furthermore, let us define Q2 as

follows:

Q2 =





V11 Or×m

Om×r Im









Σ−1
A Or×m

Om×r Im



 . (49)

Then, it can be shown that

H′′

2 = H′

2Q2 =
(

Om×(n−m) Im

)

Q2 =
(

Om×(n−m) Im

)

, and (50)

H′′

1 = U11H
′

1Q2 =
(

U11H
′

11 U11H
′

12

)





V11 Or×m

Om×r Im









Σ−1
A Or×m

Om×r Im





=









ΣA

O(m−r)×r



 U11H
′

12









Σ−1
A Or×m

Om×r Im





=









Ir

O(m−r)×r



 U11H
′

12



 =





Ir A13

O(m−r)×r A23



 , (51)
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where





A13

A23



 = U11H
′

12, A13 ∈ Cr×(n−r), and A23 ∈ C(m−r)×(n−r).

• It is easy to see that the rank of A23 is m− r. Let us define q = 2m− n = m− r. Then,

we can rewrite the SVD of matrix A23 as

U23A23V23 =
(

ΣA23 Oq×r

)

, (52)

where ΣA23 = diag(w1, · · · , wq) with w1 ≥ w2 · · · ≥ wq > 0. Also, let us define S2 =

diag(β1, · · · , βq) with βi = (1 + w2
i )

−1/2 and Q3 as follows:

Q3 =





Ir −A13

Om×r Im









Ir Or×m

Om×r V23



 diag(Ir,S2, Ir). (53)

• Finally, it can be shown that

VH
23H

′′

2Q3 = VH
23U2H2Q1Q2Q3 = VH

23

(

Om×r Im

)





Ir −A13

Om×r Im



 (54)

×





Ir Or×m

Om×r V23



 diag(Ir,S2, Ir) =





Oq×r S2 Oq×r

Or×r Or×q Ir



 .

Moreover, it can be shown that




Ir Or×q

Oq×r U23



H′′

1Q3 =





Ir Or×q

Oq×r U23



U11H1Q1Q2Q3 =





Ir Or×q

Oq×r U23





×





Ir A13

Oq×r A23









Ir −A13

Om×r Im









Ir Or×m

Om×r V23



 diag(Ir,S2, Ir) =





Ir Or×q Or×r

Oq×r ΣA23S2 Oq×r



 . (55)

Furthermore, define S1 = ΣA23S2 = diag(α1, · · · , αq) with αi = wiβi =
wi

(1+w2
i )

1/2 . Then,

for the case m < n < 2m, we have provided the steps for constructing the GSVD defined

in (3) with Q = Q1Q2Q3, U =





Ir Or×q

Oq×r U23



U11, and V = VH
23U2.
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2) The limiting distribution of the squared generalized singular values when m < n < 2m:

From (52), we can see that U23A23V23 =
(

diag(w1, · · · , w2m−n) O(2m−n)×(n−m)

)

, and the

squared generalized singular values w2
i = α2

i /β
2
i , i ∈ {1, · · · , 2m − n}, are the eigenvalues of

A23A
H
23. Recall that





A13

A23



 = U11H
′

12, H1V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · , zm)−1



 =
(

H′

11 H′

12

)

, (56)

U2H2V2 =
(

Om×(n−m) diag(z1, · · · , zm)
)

, and U11H
′

11V11 =





ΣA

O(2m−n)×(n−m)



 .

Similarly, from [21], it can be shown that V2 is a Haar matrix which is independent of

diag(z1, · · · , zm). Let us define P = H1V2 = (P1 P2) with P1 ∈ Cm×(n−m) and P2 ∈ Cm×m.

Then, it can be shown that P is an m × n matrix whose elements are i.i.d. complex Gaussian

random variables with zero mean and unit variance and independent of diag(z1, · · · , zm). It is

easy to see that P1 = H′

11, so H′

11 is independent of P2. Thus, U11 is independent of P2. Then,

W = U11P2 is an m×m matrix whose elements are i.i.d. complex Gaussian random variables

with zero mean and unit variance and independent of diag(z1, · · · , zm).
Let WH = (WH

1 WH
2 ) with W1 ∈ C(n−m)×m and W2 ∈ C(2m−n)×m. Then, we can

rewrite A23 as A23 = W2diag(z1, · · · , zm)−1. The squared generalized singular values w2
i ,

i ∈ {1, · · · , 2m− n}, can be expressed as the eigenvalues of W2diag(z1, · · · , zm)−2WH
2 . Note

that W2 is independent of zi, i ∈ {1, · · · , m}, where zi is a nonzero singular value of H2. Thus,

directly from [21, Theorem 2.39 and Theorem 2.40], the e.d.f. of the nonzero eigenvalues of

W2diag(z1, · · · , zm)−2WH
2 , which is identical to the e.d.f. of the generalized singular values

F2m−n
wi

(x), converges, almost surely, as m,n → ∞ with m
n
→ η, to a nonrandom c.d.f. Fwi

(x),

whose p.d.f. is η
(2η−1)2

f η
2η−1

,η

(

x
2η−1

)

. Then, when m < n < 2m, we have characterized the

limiting distribution of the squared generalized singular values w2
i .

C. The case when 2m ≤ n

For the case of 2m ≤ n, the construction of the GSVD is different from those described

before. In the following, we again use Zha’s method to construct the GSVD of the two m× n

channel matrices H1 and H2.

1) Steps of GSVD when 2m < n: When 2m < n, we can construct the GSVD of the two

m× n channel matrices H1 and H2 with the following steps:
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• First, we define the SVD of matrix H2 as

U2H2V2 =
(

Om×(n−m) diag(z1, z2, · · · zm)
)

, (57)

where z1 ≥ z2 · · · ≥ zm. Let us define Q1 = V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1



. Then,

it can be shown that

H′

1 = H1Q1 = H1V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1



 =
(

H′

11 H′

12

)

, (58)

where H′

11 = H1V2





In−m

Om×(n−m)



, H′

12 = H1V2





O(n−m)×m

diag(z1, · · · zm)−1



, H′

11 ∈

Cm×(n−m), and H′

12 ∈ Cm×m. Also, it can be shown that

H′

2 = U2H2Q1 =
(

Om×(n−m) diag(z1, · · · zm)
)

(59)

×





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1



 =
(

Om×(n−m) Im

)

.

• It is easy to see that the rank of H′

11 is m. Then, we can define the SVD of matrix H′

11 as

U11H
′

11V11 =
(

ΣA Om×(n−2m)

)

, (60)

where ΣA = diag(t1, · · · , tm) with t1 ≥ t2 · · · ≥ tm > 0. Furthermore, let us define

Q2 =





V11 O(n−m)×m

Om×(n−m) Im









Σ−1
A Om×(n−m)

O(n−m)×m In−m



. Then, it can be shown

that

H′′

2 = H′

2Q2 =
(

Om×(n−m) Im

)

Q2 =
(

Om×(n−m) Im

)

, and (61)

H′′

1 = U11H
′

1Q2 =
(

U11H
′

11 U11H
′

12

)





V11 O(n−m)×m

Om×(n−m) Im



 (62)

×





Σ−1
A Om×(n−m)

O(n−m)×m In−m



 =
(

Im Om×(n−2m) U11H
′

12

)

.

• Finally, let us define Q3 =











In−m





−U11H
′

12

O(n−2m)×m





Om×(n−m) Im











. Then, it can be shown that

H′′

2Q3 = U2H2Q1Q2Q3 =
(

Om×(n−m) Im

)

Q3 =
(

Om×(n−m) Im

)

. Moreover,it
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can be shown that H′′

1Q3 = U11H1Q1Q2Q3 =
(

Im Om×(n−2m) U11H
′

12

)

Q3 =
(

Im Om×(n−m)

)

. Thus, for 2m < n, we have provided the steps for constructing the

GSVD defined in (3) with Q = Q1Q2Q3, U = U11, and V = U2.

2) The squared generalized singular values when 2m < n: When 2m < n, after using

Zha’s GSVD method, we have transformed the two m × n channel matrices H1 and H2

into
(

Im Om×(n−m)

)

and
(

Om×(n−m) Im

)

, respectively. Thus, the squared generalized

singular values become constants in this case.

This concludes the proof of the theorem. �

APPENDIX B: PROOF OF THEOREM 2

In this section, we characterize t2 = E{trace(QQH)} when 2m ≥ n. From (3), it can be

shown that




U Om×m

Om×m V









H1

H2



Q =





Σ1

Σ2



 . (63)

Moreover, let us define Σ =





Σ1

Σ2



. Then, when 2m ≥ n, from (4) and (5), it can be shown

that ΣHΣ =
(

ΣH
1 ΣH

2

)





Σ1

Σ2



 = In. Let us define H =





H1

H2



. Then, we have that

QHHH





UH Om×m

Om×m VH









U Om×m

Om×m V



HQ = QHHHHQ = ΣHΣ = In. (64)

Thus, it can be shown that HHH = Q−HInQ
−1 = Q−HQ−1 and QQH = (HHH)−1.

Therefore, we have that when 2m ≥ n, trace{QQH} = trace{(HHH)−1}. Then, it can be

shown that when 2m > n, t2 = E{trace(QQH)} = E{trace((HHH)−1)}. Assume that H1

and H2 are two m × n matrices whose elements are i.i.d. complex Gaussian random variables

with zero mean and unit variance. From [21, Lemma 2.10], it is easy to see that for 2m > n,

t2 = E{trace(QQH)} = E{trace((HHH)−1)} = 1
2η−1

, where η = m
n

.

This completes the proof of the theorem. �

APPENDIX C: PROOF OF THEOREM 3
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In this section, we characterize t2 = E{trace(QBQH)} when 2m < n, where the n×n matrix

B can be expressed as diag
[

Im,O(n−2m)×(n−2m), Im
]

. From (3), it can be shown that




U Om×m

Om×m V









H1

H2



Q =





Σ1

Σ2



 . (65)

Moreover, let us define H =





H1

H2



, Σ =





Σ1

Σ2



, M =





U Om×m

Om×m V



. Then, it

can be shown that H = MHΣQ−1. Thus, we have that (HHH)−1 = (MHΣQ−1Q−HΣHM)−1,

and

trace{(HHH)−1} = trace{(MHΣQ−1Q−HΣHM)−1} (66)

= trace{MH(ΣQ−1Q−HΣH)−1M}

= trace{MMH(ΣQ−1Q−HΣH)−1}

= trace{(ΣQ−1Q−HΣH)−1}.

From (6), it can be shown that

Σ =





Im Om×(n−2m) Om×m

Om×m Om×(n−2m) Im



 , (67)

and B = diag
[

Im,O(n−2m)×(n−2m), Im
]

= ΣHΣ. Then, we have

trace{QBQH} = trace{QΣHΣQH} = trace{ΣQHQΣH}. (68)

Next, we show that ΣQHQΣH = (ΣQ−1Q−HΣH)−1.

Let us define X = U11H
′

12. From Appendix A, we know that when 2m < n, Q can be

expressed as follows:

Q = Q1Q2Q3 (69)

= V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)−1









V11 O(n−m)×m

Om×(n−m) Im





×





diag(t1, · · · tm)−1 Om×(n−m)

O(n−m)×m In−m















In−m





−X

O(n−2m)×m





Om×(n−m) Im











.
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Thus, using (69) and (67), it can be shown that

ΣQHQΣH =





diag(t1, · · · tm)−2 −diag(t1, · · · tm)−2X

−XHdiag(t1, · · · tm)−2 XHdiag(t1, · · · tm)−2X+ diag(z1, · · · zm)−2



 . (70)

Moreover, based on (69), we can show that

Q−H = V2





In−m O(n−m)×m

Om×(n−m) diag(z1, · · · zm)









V11 O(n−m)×m

Om×(n−m) Im



 (71)





diag(t1, · · · tm) Om×(n−m)

O(n−m)×m In−m









In−m O(n−m)×m
(

XH Om×(n−2m)

)

Im



 .

Thus, based on (71) and (67), it can be obtained that

ΣQ−1Q−HΣH =





diag(t1, · · · tm)2 +Xdiag(z1, · · · zm)2XH Xdiag(z1, · · · zm)2

diag(z1, · · · zm)2XH diag(z1, · · · zm)2



 . (72)

Then, with (70) and (72), it can be shown that ΣQHQΣHΣQ−1Q−HΣH = I2m and

ΣQHQΣH = (ΣQ−1Q−HΣH)−1. (73)

Finally, based on (66), (68), and (73), it can be shown that when 2m < n, trace{QBQH} =

trace{ΣQHQΣH} = trace{(ΣQ−1Q−HΣH)−1} = trace{(HHH)−1}, where H =





H1

H2



.

Assume that H1 and H2 are two m × n matrices whose elements are i.i.d. complex Gaussian

random variables with zero mean and unit variance. Using [21, Lemma 2.10], it is easy to see

that for 2m < n, t2 = E{trace(QBQH)} = E{trace((HHH)−1)} = 1
1/(2η)−1

, where η = m
n

.

This completes the proof of the theorem. �

APPENDIX D: PROOF OF COROLLARY 1

When m ≥ n, from (24) and (26), the information rate of user 1 can be expressed as follows:

R1i =







log
(

1 +
Pw2

i l
2
2

t2dτ1N0(1+w2
i )

)

w2
i >

dτ1
dτ2

log
(

1 +
Pw2

i l
2
1

Pw2
i l

2
2+t2dτ1N0(1+w2

i )

)

w2
i ≤

dτ1
dτ2

, (74)

May 24, 2018 DRAFT



31

where w2
i , i ∈ {1, · · · , n}, is the squared generalized singular value. From Theorem 2, it can

be shown that t2 = 1
2η−1

, where η = m
n

. Then, user 1’s average information rate, R̄n
1i, can be

expressed as follows:

R̄n
1i =

1

n

n
∑

i=1

R1i =

∫

∞

0

R1idF
n
wi

=

∫

∞

dτ
1

dτ2

log

(

1 +
Pxl22

1
2η−1

dτ1N0(1 + x)

)

dFn
wi
(x) (75)

+

∫

dτ1
dτ
2

0

log

(

1 +
Pxl21

Pxl22 +
1

2η−1
dτ1N0(1 + x)

)

dFn
wi
(x),

where Fn
wi
(x) is the e.d.f. of the squared generalized singular values w2

i , i ∈ {1, · · · , n}, of the

two users. Moreover, Theorem 1 shows that when m ≥ n, almost surely, Fn
wi
(x), converges, as

m,n → ∞ with m
n
→ η, to a nonrandom c.d.f. Fwi

(x), whose p.d.f. is f 1
η
, 1
η
(x). Furthermore, it is

easy to see that both log

(

1 +
Pxl22

1
2η−1

dτ1N0(1+x)

)

and log

(

1 +
Pxl21

Pxl22+
1

2η−1
dτ1N0(1+x)

)

are continuous

bounded functions in the domain [0,∞]. Then, from the bounded convergence theorem [29,

Theorem 6.3], it can be shown that as m,n → ∞ with m
n
→ η, R̄n

1i converges to R̄1i, where

R̄1i =

∫

∞

dτ1
dτ2

log

(

1 +
Pxl22

1
2η−1

dτ1N0(1 + x)

)

dFwi
(x)

+

∫

dτ1
dτ2

0

log

(

1 +
Pxl21

Pxl22 +
1

2η−1
dτ1N0(1 + x)

)

dFwi
(x). (76)

Finally, when m ≥ n, m,n → ∞ with m
n

→ η, the normalized average rate of user 1, R1,

can be expressed as 1
η
R̄1i and the expression for 1

η
R̄1i is shown in Corollary 1. The normalized

average individual rate of user 2 can be obtained in a similar way. Thus, the corollary is proved.

This completes the proof of the corollary. �
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