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Abstract

In localization, an outage occurs if the positioning error exceeds a pre-defined threshold, ǫth. For

time-of-arrival based localization, a key factor affecting the positioning error is the relative positions of

the anchors, with respect to the target location. Specifically, the positioning error is a function of (a) the

distance-dependent signal-to-noise ratios (SNRs) of the anchor-target links, and (b) the pairwise angles

subtended by the anchors at the target location. From a design perspective, characterizing the distribution

of the positioning error over an ensemble of target and anchor locations is essential for providing

probabilistic performance guarantees against outage. To solve this difficult problem, previous works

have assumed all links to have the same SNR (i.e., SNR homogeneity), which neglects the impact of

distance variation among the anchors on the positioning error. In this paper, we model SNR heterogeneity

among anchors using a distance-dependent pathloss model and derive an accurate approximation for

the error complementary cumulative distribution function (ccdf). By highlighting the accuracy of our

results, relative to previous ones that ignore SNR heterogeneity, we concretely demonstrate that SNR

heterogeneity has a considerable impact on the error distribution.
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I. INTRODUCTION

In recent years, the number of applications requiring accurate position information has grown

steadily; from navigation for autonomous vehicles [1] to crowd-sensing [2], location-based

advertising [3] and virtual reality [4], to name a few. On a two-dimensional surface, a target

can be localized if its distance (also known as range) to at least three fixed reference points,

called anchors, is known (see Fig. 1). For wireless systems, ranges can be estimated from the

time-of-arrival (ToA) of a ranging signal1 and for wideband systems in particular, ToA-based

localization is especially attractive, since the finer time resolution due to the large bandwidth

improves the accuracy of the range estimates [5], thereby resulting in accurate location estimates.

While the principle behind ToA-based localization is fairly straightforward, a variety of op-

erating conditions and propagation phenomena, such as noise, interference, multipath, blocking,

target mobility etc. render the task of designing a localization network challenging. In order

to provide a reliable quality of service in terms of accuracy (e.g., an error of at most 50m at

least 90% of the time, as mandated by the the E911 standard [6]), it is important to characterize

the probability distribution of the positioning error over an ensemble of operating conditions,

especially for safety critical applications like autonomous vehicles or E911 emergency services.

A commonly used metric for this purpose is the localization mean-squared error (MSE), which

is a function of the anchor locations, the transmit powers, the propagation environment, as well

as the choice of ranging and localization algorithms. In this work, we consider the impact of

the anchor locations, relative to a target, on the MSE. Specifically, we consider a lower bound

for the MSE, known as the squared position error bound (SPEB) [7], [8], which is satisfied by

all positioning algorithms that return unbiased2 estimates of the target location. The SPEB is

a function of the anchor geometry and importantly, does not depend on a specific localization

1This requires the targets and anchors to be synchronized.

2An estimate p̂ of a target location p is said to be unbiased if E[p̂] = p.
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Fig. 1: ToA based localization: Each distance (range) estimate constrains the target to lie on a

circle centered at the corresponding anchor, whose radius equals the range. The intersection of

three or more such circles provides an unambiguous solution for the target location in R2.

algorithm. As a result, it is well-suited as a metric to analyze the impact of the anchor geometry

on the positioning error. If the SPEB exceeds a pre-defined threshold, ǫth, then the target is

said to be in outage. Over an ensemble of target and/or anchor locations, the SPEB (and the

MSE, as well) is a random variable and characterizing its complementary cumulative distribution

function (ccdf) in closed-form (i.e., P(SPEB > u), as a function of u) is important from a design

perspective, as it can be used to determine a deployment of anchors that can guarantee an outage

probability of at most pout
3.

Given N anchors in a region, a natural model for capturing the randomness in the anchor

locations is the well-known binomial point process (BPP) [9, Chap. 2], in which the anchors are

distributed independently and uniformly over the region. In this paper, we attempt to derive

3For a given error threshold, ǫth, an outage probability of at most pout can be guaranteed if and only if the condition

P(SPEB > ǫth) ≤ pout is satisfied, which poses a constraint on the shape of the SPEB ccdf.
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a closed-form expression for the SPEB ccdf for such an anchor model4. Our approach is

summarized below.

A. Methodology

• For a given target, we assume that the anchors that are within its communication range are

distributed according to a BPP over an annular region centered at the target. For this setup,

we model the SNR heterogeneity across different anchor-target links using a pathloss model.

As a result, the SPEB metric is a function of the anchor distances and angular positions,

relative to the target.

• Given N anchors, we rearrange the SPEB expression and reduce it in terms of the product

of two random variables, XN and YN . While XN depends only on the anchor distances, YN

depends on both the distances and angular positions of the anchors. In particular, YN and

XN are statistically dependent.

• We then proceed to demonstrate that the conditional distribution of YN , given XN , is difficult

to characterize in closed-form. Hence, through constrained moment matching, we derive an

approximation for YN , denoted by VN , which depends only on the angular positions of the

anchors and has the same mean as YN . In particular, XN and VN are statistically independent.

• Consequently, the SPEB can be approximated in terms of the product of independent

random variables, XN and VN , and we derive a closed-form expression for the ccdf of

this approximation (see Theorem 1 in Section III), which is the key result of this paper.

• Through simulations, we verify that the derived SPEB ccdf accurately estimates the true

ccdf. Thus, from a design perspective, our contribution is useful in determining the number

of anchors required in order to satisfy pout ≤ δ, for any δ ∈ (0, 1). We also show that

the accuracy of our approach is superior to that of other approaches that ignore SNR

heterogeneity, which serves to highlight the impact of SNR heterogeneity on the SPEB

(and consequently, the MSE) distribution.

4Typically, the number of anchors, N , is also a random variable, often modeled as having a Poisson distribution. Together

with the randomness in the anchor locations, this corresponds to the well-known homogeneous Poisson point process (PPP),

which has been used to analyze the localization performance of a variety of wireless networks [10]–[14]. Hence, the results

presented in this paper for the BPP anchor model can be readily extended for the PPP case by averaging over the distribution

of N .
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B. Related Work

There have been a number of recent works that have focused on the impact of anchor geometry

on the localization error performance; specifically, for the SPEB metric, the impact of the target

being situated within the convex hull of the anchors was investigated in [15], while scaling

laws, with respect to the number of anchors within communication range, were derived in [16].

A related, but simpler metric, known as the geometric dilution of precision (GDOP) has been

studied extensively for the BPP anchor model. The GDOP corresponds to a special case of the

SPEB when all the anchor-target links have the same SNR. The asymptotic distribution of the

GDOP, as the number of anchors approaches infinity, was derived using U-statistics in [17]. For

the more realistic case of a finite number of anchors, the max-angle metric was proposed and

analyzed in [18] and shown to be correlated to the GDOP. An approximate GDOP distribution

was presented in [19], using the order statistics of the inter-node angles, while the exact GDOP

distribution was characterized in [20]. To the best of our knowledge, ours is the first work to

consider the more realistic scenario where the anchor-target links may have different SNRs (due

to the anchors being situated at different distances from the target), which increases the difficulty

of the problem considerably, as highlighted in Section II.

C. Notation

Throughout this work, bold lower case letters are used for deterministic vectors. In particular,

1 denotes the all-one vector. Uppercase letters in serif font are used for scalar random variables

(e.g., X), while random vectors are underlined and similarly represented (e.g., X). For square

matrices, the trace and inverse operators are respectively denoted by tr(·) and (·)−1. R represents

the real numbers, C the complex numbers, i ∈ C the imaginary unit, and Im(z) the imaginary part

of z ∈ C. For random variables X and Y, fX(·), FX(·) and ϕX(·) denote the marginal probability

density function (pdf), the marginal ccdf and the characteristic function of X, respectively, while

FX|Y(.|y) denotes the conditional ccdf of X, given Y = y. P(.) denotes the probability measure,

while EX[.] denotes the expectation operator over the distribution of X. A real, parametrized

function h : R → R, with argument t and parameters given by a vector, a, is denoted by h(t; a).

For x ∈ R, the sine and cosine integrals, denoted by Si(x) and Ci(x), respectively, are defined

as follows:

Si(x) =

x∫

0

sin t

t
dt, (1)
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Ci(x) = −
∞∫

x

cos t

t
dt. (2)

1(·.) denotes the indicator function and finally, the function H : R → C is defined as follows:

H(x) := Si(x)− iCi(x), x ∈ R. (3)

D. Organization

This paper is divided into five sections. The system model is described in Section II, where the

anchors are modeled by a BPP over an annular region surrounding the target, and a distance-

dependent pathloss model is assumed for the SNRs of the anchor-target links. Under these

conditions, we illustrate the difficulty of characterizing the SPEB distribution in Section III,

which motivates the derivation of a tractable approximation for the SPEB ccdf later on in the

same section. In Section IV, we compare the accuracy of our approach with other bounds and

approximations that do not consider SNR heterogeneity. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Consider a target situated in R2 that needs to be localized. Since we are interested in the anchor

geometry relative to the target, we can assume, without loss of generality, that the target is situated

at the origin, o. Centered at the target, consider N ≥ 3 anchors deployed according to a BPP

over an annular region from dmin to dmax (dmax > dmin > 0)5, denoted by Ao(dmin, dmax), and

let (Rk,Θk) denote the location of the k-th anchor in polar coordinates (Rk ∈ [dmin, dmax], Θk ∈
[0, 2π); k = 1, · · · , N). Let s(t), having Fourier transform S(f), denote the ranging signal

transmitted by the anchors6 and let y(t;Rk,Θk) denote the signal received from the k-th anchor,

which can be modeled as a superposition of a number of multipath components (MPCs) in the

following manner:

y(t;Rk,Θk) =

L(Rk,Θk)∑

l=1

αl(Rk,Θk)s(t− τl(Rk,Θk)) + ηk(t), k ∈ {1, · · · , N}, (4)

where the location-dependent quantities L(Rk,Θk), αl(Rk,Θk) ∈ C and τl(Rk,Θk) ∈ R respec-

tively denote the number of observed MPCs, the complex amplitude of the l-th MPC and its ToA.

5dmax can be interpreted as the distance beyond which s(t) is too weak to be detected by the target.

6We assume that the anchors coordinate their transmissions to avoid interference at the target. As a result, ToA/range estimation

is noise-limited.
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ηk(t) is the measurement noise, which is modeled as a zero-mean complex Gaussian random

process, having a power spectral density of N0. We assume that line-of-sight exists from the

target to all the anchors. Hence, the first arriving MPC from each anchor corresponds to the

direct path (DP) and depends on the anchor position as follows:

τ1(Rk,Θk) = τ1(Rk) =
Rk

c
, k ∈ {1, · · · , N}, (5)

where c denotes the speed of light in free space. The other MPCs are known as indirect paths

(IPs) and we assume no prior knowledge of their statistics. Under these conditions, the MSE of

an unbiased estimate of the target location can be bounded using the Cramer-Rao lower bound

(CRLB) [7], [8], as follows:

MSE ≥ tr





(
N∑

k=1

µ(Rk,Θk)u(Θk)u(Θk)
T

)−1


 (6)

:= S(R(N),Θ(N)), (7)

where R
(N) = [R1, · · · , RN ]

T , (8)

Θ
(N) = [Θ1, · · · , ΘN ]

T , (9)

µ(Rk,Θk) =
8π2β2(1− χ(Rk,Θk))γ(Rk,Θk)

c2
, (10)

γ(Rk,Θk) =
|α1(Rk,Θk)|2

N0

∞∫

−∞

|s(t)|2 dt, (11)

β =









∞∫

−∞

f 2|S(f)|2df





/



∞∫

−∞

|S(f)|2df









1/2

, (12)

and u(Θk) = [cos(Θk) sin(Θk)]
T . (13)

S(R(N),Θ(N)) is commonly known as the squared-position error bound (SPEB) [7], [8] in

localization terminology. The term µ(Rk,Θk) is referred to as the ranging information intensity

(RII) from the k-th anchor and is a measure of the ranging accuracy associated with the k-th

anchor7. It is a function of the DP SNR, γ(Rk,Θk), the effective bandwith, β, and the path

overlap factor, χ(Rk,Θk) ∈ [0, 1], which determines the extent of overlap between the DP and

subsequent MPCs, due to finite bandwidth8. For simplicity, we assume χ(Rk,Θk) = 0 for all

7µ(Rk,Θk) is the reciprocal of the CRLB for an unbiased estimate of Rk [5].

8The expression for χ(Rk,Θk) can be found in [8].
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k, which corresponds to the case where the DP does not overlap with any other MPC, thereby

resulting in the most accurate estimate of Rk. Furthermore, γ(Rk,Θk) is a function of the DP

attenuation, |α1(Rk,Θk)|2, for which the following pathloss model is assumed:

|α1(Rk,Θk)|2 = |α1(Rk)|2 = (dmin/Rk)
2. (14)

Remark 1. For anchors having line-of-sight to the target, the inverse-square law pathloss model

in (14) is a reasonable assumption for the DP component if there is zero path overlap, which, in

turn, can be assumed when dmax < dbreak, where dbreak denotes the breakpoint distance associated

with the ground reflection [21], since zero overlap between the DP and the ground-reflected path

can be rarely achieved.

Apart from the RIIs, which depend primarily on the ranges, S(R(N),Θ(N)) also depends on the

angular geometry of the anchors, which is captured in (6) by the outer product u(Θk)u(Θk)
T ,

where u(Θk) is the unit vector in the direction of the k-th anchor. In summary, the k-th term

in the summation in (6) represents the contribution of the k-th anchor to S(R(N),Θ(N)). From

(6)-(14), S(R(N),Θ(N)) can be expressed as follows:

S(R(N),Θ(N)) =

N∑

k=1

R
−2
k

Ts

N−1∑

j=1

N∑

k=j+1

R
−2
j R

−2
k sin2(Θj −Θk)

, (15)

where Ts =
8π2β2d2min

N0c2

∞∫

−∞

|s(t)|2 dt. (16)

Since S(R(N),Θ(N)) does not depend on any particular positioning algorithm, it is well-suited

as a metric to analyze the impact of anchor geometry on the MSE. Moreover, many positioning

algorithms have been proposed in recent years that have been shown to satisfy (6) with equality

[22]–[25]. Hence, for the remainder of this paper, we assume that the MSE is identical to

S(R(N),Θ(N)).

For the special case when all the anchors are at the same distance R from the target (i.e.,

all links have the same SNR), S(R(N),Θ(N)) reduces to another well-known metric called the

Geometric Dilution of Precision (GDOP), which is denoted by G(R,Θ(N)) and has the following
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expression9:

G(R,Θ(N)) =
NR2

Ts

N−1∑

j=1

N∑

k=j+1

sin2(Θj −Θk)

=
1

Ts

G1(R)G2(Θ
(N)), (17)

where G1(R) = R
2, (18)

and G2(Θ
(N)) =

N
N−1∑

j=1

N∑

k=j+1

sin2(Θj −Θk)

. (19)

Compared to S(R(N),Θ(N)), G(R,Θ(N)) is more tractable for a statistical characterization, since

it can be decomposed into a product of two independent random variables, G1(R) and G2(Θ
(N)),

as shown in (17). However, since the sin2(·) terms are weighted differently in the denominator

of (15), it is, in general, not possible to express S(R(N),Θ(N)) as S1(R
(N))S2(Θ

(N)), for some

S1(·) and S2(·), in much the same way as it is generally not possible to represent an expression

like a1x1+ · · ·+aMxM as h1(a1, · · · , aM)h2(x1, · · · , xM), for some scalar-valued real functions,

h1(·) and h2(·) and arbitrary real values of ai and xi (i = 1, · · · ,M). Hence, for the sake of

tractability, we formulate an approximation that allows a decomposition of S(R(N),Θ(N)), along

the lines of (17), in the following section.

III. CHARACTERIZING SPEB DISTRIBUTION

Although S(R(N),Θ(N)) cannot, in general, be decomposed as a product of independent random

variables, a partial decomposition can be obtained as shown in the lemma below:

Lemma 1. The expression for S(R(N),Θ(N)) in (15) can re-written as follows:

S(R(N),Θ(N)) =
4

TsXNYN
, (20)

where XN =
N∑

k=1

Ak, (21)

Ak = R
−2
k , (22)

YN = 1−
(

N∑

k=1

Bk,N cos 2Θk

)2

−
(

N∑

k=1

Bk,N sin 2Θk

)2

, (23)

9Technically, the GDOP is defined as the square root of G(R,Θ(N)) [26] and thus, has the units of distance. However, in

order to have a fair comparison with S(R(N),Θ(N)) (which has units of distance-squared), we slightly abuse the notation and

refer to G(R,Θ(N)) as the GDOP in this work.
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and Bk,N =
Ak

XN
, k = 1, · · · , N. (24)

Proof: See Appendix A.

While XN depends only on R
(N), YN is a function of both R

(N) and Θ
(N). Moreover, since

YN is a function of XN , the two random variables are statistically dependent. Let F S(·) denote

the ccdf of S(R(N),Θ(N)), which can be expressed as follows:

F S(u) = P(S(R(N),Θ(N)) > u)

= P

(

XNYN ≤ 4

uTs

)

= 1− EXN

[

FYN |XN

(
4

uxTs

∣
∣
∣
∣
x

)]

. (25)

Before proceeding to derive an expression for F S(·), we consider the GDOP special case, for

which the evaluation of (25) is relatively simpler.

Corollary 1. For the special case when R
(N) = R1 in (20)-(24), S(R(N),Θ(N)) reduces to

G(R,Θ(N)), which can be re-written as follows:

S(R1,Θ(N)) = G(R,Θ(N))

=
4R2

TsNWN
, (26)

where WN = 1− 1

N2





(
N∑

k=1

cos 2Θk

)2

+

(
N∑

k=1

sin 2Θk

)2


 . (27)

From (26), the ccdf of G(R,Θ(N)), denoted by FG(·), can be obtained as follows:

FG(u) = P(G(R,Θ(N)) > u)

= 1− ER

[

FWN |R

(
4r2

TsNu

∣
∣
∣
∣
r

)]

= 1− ER

[

FWN

(
4r2

TsNu

)]

, (28)

where (28) follows from the independence of R and WN . As a result, the marginal distributions

of R and WN completely characterize FG(·). In particular, the ccdf of WN has the following
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expression [20],

FWN
(u) =







1, u < 0

N
√
1− u

∞∫

0

J1

(
N
√
1− u y

)
(J0(y))

Ndy, u ∈ [0, 1],

0, u > 1

(29)

where J0(.) and J1(.) denote the zeroth and first order Bessel functions, respectively, while the

pdf of R is given by

fR(r) =
2r

d2max − d2min

1(r ∈ [dmin, dmax]). (30)

Remark 2. Given N , the support (i.e., the feasible set of values) of S(R(N),Θ(N)) and G(R,Θ(N))

is [4d2min/(NTs),∞), where the minimum value, 4d2min/(NTs), is attained when the anchors are

located at the vertices of a regular N-sided polygon inscribed within a circle of radius dmin.

Due to the common support, FG(·) can be interpreted as a GDOP-based approximation of

F S(·), where the averaging over R in (28) partially takes into account the SNR heterogeneity,

while retaining the GDOP structure. In [19], the authors considered an alternate GDOP-based

approximation for S(R(N),Θ(N)), given below, using the average link SNR:

S(R(N),Θ(N)) ≈ H(Θ(N))

:=
4

TsNE[R−2]WN

= G((E[R−2])−1/2,Θ(N)), (31)

where E[R−2] is proportional to the average link SNR due to the pathloss model assumed

in (14). While H(Θ(N)) also partially accounts for SNR heterogeneity, its minimum value is

4/(NTsE[R
−2]) ≥ 4d2min/(NTs), since R−2 ≤ d−2

min. To illustrate the impact of this support mis-

match, consider the ratio between the minimum values of H(Θ(N)) and S(R(N),Θ(N)), provided

below:

min
Θ(N)

H(Θ(N))

min
R(N),Θ(N)

S(R(N),Θ(N))
=

1

d2minE[R
−2]

=
(dmax/dmin)

2 − 1

2 log(dmax/dmin)
. (32)

Since (32) is increasing in (dmax/dmin), we can reasonably conclude that the approximation

given by (31) is unlikely to be accurate when the difference between dmin and dmax is large.

Note that (32) holds for the inverse-square law pathloss model only.
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We now focus our attention back to the general case of deriving a closed-form expression for

F S(·) from (25), by characterizing the marginal distribution of XN and the conditional distribution

YN , given XN .

Lemma 2. The characteristic function of XN is given by:

ϕXN
(t) = (ϕA1(t))

N , (33)

where ϕA1(t) =
1

d2max − d2min

[

d2max exp

(

i
t

d2max

)

− d2min exp

(

i
t

d2min

)

+tH

(
t

d2max

)

− tH

(
t

d2min

)]

, (34)

and H(·) is given by (3).

Proof: See Appendix B.

From ϕXN
(t), the ccdf of XN can be evaluated as follows [27]:

FXN
(x) =

1

2
+

1

π

∞∫

0

Im{exp(−itx)ϕXN
(t)}

t
dt. (35)

Remark 3. We have chosen to characterize XN by its ccdf instead of its pdf, since the ccdf can be

obtained from the characteristic function by evaluating a single integral, which is computationally

less intensive than the double integral required to obtain the pdf. Since XN is non-negative, the

expected value of h(XN ), for a differentiable real function h(·), can be expressed in terms of

FXN
(·), by considering the following relation:

h(XN ) = h(0) +

XN∫

0

h′(u)du

= h(0) +

∞∫

0

h′(u)1(XN > u)du, (36)

where h′(·) denotes the derivative of h(·). Thus, by applying the expectation operator on both

sides of (36), we obtain

E[h(XN )] = h(0) +

∞∫

0

h′(u)FXN
(u)du. (37)

While the marginal distribution of XN is fairly tractable, as it is the sum of N independent

and identically distributed (iid) random variables, the same cannot be said of FYN |XN
(·|x). To
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illustrate this, consider the expression for YN , given XN = x:

YN = 1− 1

x2

N∑

k=1

A
2
k −

2

x2

N−1∑

j=1

N∑

k=j+1

AjAk(cos 2Θj cos 2Θk + sin 2Θj sin 2Θk). (38)

Let A
(N) = [A1, · · · , AN ]

T . Given XN = x, it is easily seen from (21) and (38) that A
(N)

is a vector of identically distributed, but not independent random variables. Hence, in order to

characterize FYN |XN
(·|x), the conditional joint distribution of A

(N), given XN = x, is required,

which is not easy to express in closed-form. From (23), it is clear that the dependence between

XN and YN is induced by the collection of random variables, {Bk,N : k = 1, · · · , N}. For

the sake of tractability, we remove this dependence by assuming Bk,N ≈ m, for some m ≥ 0;

furthermore, to obtain a random variable whose second-order statistics match that of YN , we

approximate YN as follows:

Approximation 1. YN ≈ VN , where

VN := v



1−m2





(
N∑

k=1

cos 2Θk

)2

+

(
N∑

k=1

sin 2Θk

)2






 , (39)

with the values of v and m being obtained by moment matching with YN .

Remark 4. For the special case when R
(N) = R1, the approximation in (39) reduces to an

equality (i.e., YN = VN = WN ), with v = 1 and m = 1/N .

From (39), the mean and variance of VN are given by:

E[VN ] = v(1−m2N). (40)

σ2
VN

= E[(VN − E[VN ])
2]

= 2

(
N

2

)

v2m4, (41)

where (40) follows as a result of Θ(N) being an iid uniform random vector over [0, 2π). Equating

E[VN ] and σ2
VN

with the corresponding quantities for YN , i.e., E[YN ] and σ2
YN

, we obtain the

following expressions for m and v:

m =
1√
v

(
σ2
YN

N(N − 1)

)1/4

, (42)

v = E[YN ] +N

√

σ2
YN

N(N − 1)
. (43)
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However, since YN is non-negative, a similar requirement on VN imposes the following constraint

on m:

VN ≥ 0,

=⇒ m2max
Θ

(N)





(
N∑

k=1

cos 2Θk

)2

+

(
N∑

k=1

sin 2Θk

)2




︸ ︷︷ ︸

Squared-distance of N -step random walk

≤ 1. (44)

The term in square parentheses in (44) can be interpreted as the squared-distance of an N-step

two-dimensional random walk with unit step size; thus, it has a maximum value of N2, obtained

when all the steps are in the same direction (i.e., Θk = Θ, for all k). Therefore,

0 ≤ m ≤ 1/N. (45)

From (42) and (43), the upper bound on m, given by (45), reduces to the following equivalent

constraint on the second-order statistics of YN :

(E[YN ])
2

σ2
YN

− (N2 −N) ≥ 0. (46)

However, from Fig. 2, it can be seen that (46) is not satisfied for any N ≥ 3; in fact, the

expression on the left-hand side of (46) becomes increasingly negative as N increases. Thus,

it follows that (42), (43) and (45) are not satisfied simultaneously. In particular, the expression

for m in (42) is greater than 1/N . As a result, we optimize for the values of m and v in the

following manner:

min
m,v

|σ2
YN

− σ2
VN

| (47)

subject to (45),

E[YN ] = E[VN ], (48)

where the above optimization problem can be viewed as constrained moment matching, due to

the non-negativity constraint on VN imposed by (45). From (48) and (40), the objective function

in (47) can be represented in terms of a single parameter, m, as follows:
∣
∣
∣
∣
σY2

N
−N(N − 1)(E[YN ])

2 m4

(1−m2N)2

∣
∣
∣
∣

(49)

For m > 0, the expression in (49) is initially a monotonically decreasing function of m and

attains a minimum value of zero, for m given by (42). However, as observed previously, this

value of m does not lie in the feasible region, 0 ≤ m ≤ 1/N . Consequently, the minimum value
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Verifying the inequality given by (49)

Fig. 2: Since (46) is not satisfied, it follows that (42), (43) and (45) cannot be satisfied

simultaneously. The values of E[YN ] and σ2
YN

were obtained empirically from 106 samples.

For a closed-form characterization of E[YN ], see Lemma 3.

of (49) over the interval [0, 1/N ] is attained at m = 1/N . Thus, the optimal solutions for m and

v, denoted by mopt and vopt, respectively, are given by:

mopt = 1/N, (50)

vopt :=
E[YN ]

1−m2
optN

, (51)

where the expression for E[YN ] is given by the following lemma:

Lemma 3. The mean of YN is given by

E[YN ] = 1−N




ρ2max − ρ2min

2
+

2

π

ρmax∫

ρmin

∞∫

0

u
Im{ϕT(N)(u)(t)}

t
dt du



 , (52)

where ρmin =
d−2
max

d−2
max + (N − 1)d−2

min

, (53)
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ρmax =
d−2
min

d−2
min + (N − 1)d−2

max

, (54)

and ϕT(N)(u)(t) = ϕA1((1− u)t)(ϕA1(−ut))N−1. (55)

Proof: See Appendix C.

Remark 5. Incidentally, note that E[Bk,N ] = mopt = 1/N . To see this, E[Bk,N ] can be expressed

as follows:

E[Bk,N ] = EXN

[
E[Ak|XN = x]

x

]

, k = 1, · · · , N. (56)

Since A
(N) is a vector of identically distributed random variables, given XN = x, we have

N∑

k=1

E[Ak|XN = x] = E[XN |XN = x]

= x

= NE[Ak|XN = x], for any k ∈ {1, · · · , N} (57)

=⇒ E[Ak|XN = x] = x/N. (58)

Substituting (58) in (56), we get

E[Bk,N ] = 1/N = mopt. (59)

While, in retrospect, approximating Bk,N by its mean may seem like an obvious choice, the

optimality of this approach from a constrained moment matching perspective is not self-evident.

Substituting mopt and vopt in (39), we obtain

VN = voptWN . (60)

Using Approximation 1, S(R(N),Θ(N)) can be approximated as follows:

S(R(N),Θ(N)) ≈ 4

TsXNVN

, (61)

where VN is given by (60). We now proceed to derive an approximate expression for the ccdf

of S(R(N),Θ(N)) using (61).

Theorem 1. The SPEB ccdf, F S(·), can be approximated as follows:

F S(u) ≈ 1− EXN

[

FWN

(
4

TsuXNvopt

)]

:= F S,app(u), (62)

where FWN
(·) is given by (29), vopt by (51) and Lemma 3, and the distribution of XN by (35).
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Proof: From (61), we get

F S(u) ≈ 1− EXN

[

FVN |XN

(
4

Tsux

∣
∣
∣
∣
x

)]

(63)

(a)
= 1− EXN

[

FWN |XN

(
4

Tsuxvopt

∣
∣
∣
∣
x

)]

(64)

(b)
= 1− EXN

[

FWN

(
4

TsuXNvopt

)]

(65)

:= F S,app(u), (66)

where (a) follows from (60), and (b) from the independence of XN and WN .

In the next section, we present numerical results pertaining to Theorem 1.

IV. NUMERICAL RESULTS

For our simulations, we chose dmin = 1m and dmax = 10m. For comparison, we consider

F S(.), obtained from 106 realizations of (20), F S,app(.) obtained from Theorem 1, FG(·) from

(28) and the ccdfs corresponding to the following GDOP-based bounds:

• Upper and lower bounds to S(R(N),Θ(N)), based on G(R,Θ(N)): Let R(1) and R(N) denote

the distance of the nearest and farthest anchors, respectively. S(R(N),Θ(N)) can then be

bounded as follows:

G(R(1),Θ
(N)) ≤ S(R(N),Θ(N)) ≤ G(R(N),Θ

(N)). (67)

As a result, F S(·) can be bounded using (28), in the following manner:

1− ER(1)

[

FWN

(

4R2
(1)

TsNu

)]

≤ F S(u) ≤ 1− ER(N)

[

FWN

(

4R2
(N)

TsNu

)]

, (68)

where the ccdfs of R(1) and R(N) are given by:

FR(1)
(r) =

(
d2max − r2

d2max − d2min

)N

1(r ∈ [dmin, dmax]). (69)

F R(N)
(r) =

[

1−
(

r2 − d2min

d2max − d2min

)N
]

1(r ∈ [dmin, dmax]). (70)

Like G(R,Θ(N)), G(R(1),Θ
(N)) and G(R(N),Θ

(N)) also have the same support as S(R(N),Θ(N)).

In contrast, for H(Θ(N)), given by (31), the support mismatch (see Remark 2) is a significant

factor, as the ratio in (32) evaluates to 21.5 for the values of dmin and dmax considered. As a

result, we do not consider the ccdf of H(Θ(N)) in our analysis.

The ccdf curves are plotted as a function of the SPEB, scaled by the term Ts, in Fig. 3 for

N ∈ {3, · · · , 8}. For all the values of N considered, it can be seen that F S,app is accurate at
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Fig. 3: F S,app(.) accurately estimates F S(·), which is useful from a design perspective for

providing probabilistic guarantees against outage.

estimating F S(·). From a design perspective, the accuracy of F S,app(·) at estimating the tail of

F S(·) is especially useful, as it captures the outage regime. Specifically, for outage probabilities

below 1%, both curves coincide, whereas for a 10% outage probability, the MSE threshold, ǫth,

is slightly larger for F S,app(·) than F S(·). Consequently, for a given value of ǫth, F S,app(·) can

be used to determine the value of N such that the outage probability is at most 10%.

In contrast to F S,app(·), we observe that the GDOP-based bounds given by (68) become
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Fig. 3: continued from the previous page.

progressively loose, while FG(·) becomes increasingly inaccurate, as the value of N increases.

To quantify this, we use the Kolmogorov-Smirnov (KS) statistic as an error metric, which is

defined as follows between a ccdf, F (·), and F S(·):

DKS(F ) = sup
x

|F (x)− F S(x)|. (71)

In Fig. 4, DKS(·) is plotted as a function of N , for all the ccdfs considered. Consistent with the

insight obtained from Fig. 3, we observe that the error increases with N for the GDOP-based

ccdfs, while DKS(F S,app) is nearly constant for all values of N . This highlights the importance

of considering distance-dependent SNR heterogeneity, especially when the gap between dmin

and dmax is large. To quantify the impact of the difference between dmin and dmax, Fig. 5 plots

DKS(·) as a function of the dmax, for N = 5. While the accuracy of F S,app(·) slightly deteriorates

with increasing dmax, as a consequence of Bk,N ≈ E[Bk,N ] = 1/N becoming less accurate due

to the larger variance of Bk,N , the resulting error is still smaller than the ones obtained for the

GDOP-based ccdfs. Hence, F S,app(·) still provides the most accurate estimate of F S(·), among

previously known approaches.

V. SUMMARY

In this paper, we set out to characterize the impact of distance-based SNR heterogeneity on

the error performance of ToA-based localization, using the SPEB metric, S(R(N),Θ(N)). We
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Fig. 4: By taking SNR heterogeneity into account, F S,app(·) is more accurate at estimating F S(·)
than the GDOP-based ccdfs.

considered anchors deployed according to a BPP over an annular region centered around a given

target and assumed a distance-dependent inverse-square law pathloss model to capture the SNR

heterogeneity. For this setup, S(R(N),Θ(N)) was shown to be a tightly coupled function of the

anchor distances (R(N)) and angular positions (Θ(N)) and as a result, its ccdf, F S(·), was difficult

to characterize in closed-form. Hence, we formulated an approximation for S(R(N),Θ(N)), where

the coupling between R
(N) and Θ

(N) was removed by constrained moment matching, which

enabled us to derive a closed-form approximation, F S,app(·), of F S(·). Through simulations, we

observed that F S,app(·) was accurate at estimating F S(·), especially at the tail, which corresponds

to the outage regime. In particular, from a design perspective, it was observed that F S,app(·) can

be used to determine the number of anchors needed to guarantee an outage probability of at

most 10%. Finally, by comparing the accuracy of F S,app(·) with GDOP-based ccdfs (obtained

by assuming SNR homogeneity) using the KS statistic, DKS(·), we demonstrated that SNR
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Fig. 5: Although Bk,N ≈ E[Bk,N ] = 1/N becomes less accurate as the difference between dmax

and dmin increases, F S,app(·) is still more accurate than the GDOP-based ccdfs, as it takes SNR

heterogeneity into account.

heterogeneity has a considerable impact on F S(·).

APPENDIX

A. Proof of Lemma 1

From (15), we have

S(R(N),Θ(N)) =

N∑

k=1

R
−2
k

Ts

N−1∑

j=1

N∑

k=j+1

R
−2
j R

−2
k sin2(Θj −Θk)

(72)
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=

2

N∑

k=1

R
−2
k

Ts

N−1∑

j=1

N∑

k=j+1

R
−2
j R

−2
k (1− cos(2Θj − 2Θk))

(73)

=

2

N∑

k=1

R
−2
k

Ts

N−1∑

j=1

N∑

k=j+1

R
−2
j R

−2
k (1− cos 2Θj cos 2Θk − sin 2Θj sin 2Θk)

(74)

=

4

N∑

k=1

R
−2
k

Ts





(
N∑

k=1

R
−2
k

)2

−
(

N∑

k=1

R
−2
k cos 2Θk

)2

−
(

N∑

k=1

R
−2
k sin 2Θk

)2




, (75)

where (75) is obtained from the following identity

N−1∑

j=1

N∑

k=j+1

ajak =
1

2

(
N∑

k=1

ak

)2

− 1

2

N∑

k=1

a2k , ak ∈ R ∀k. (76)

Let

Ak = R
−2
k , k ∈ {1, · · · , N}, (77)

XN =

N∑

k=1

Ak, (78)

and Bk,N =
Ak

XN

. (79)

Using (77)-(79), (75) can be expressed as follows:

S(R(N),Θ(N)) =
4

TsXNYN
, (80)

where YN = 1−
(

N∑

k=1

Bk,N cos 2Θk

)2

−
(

N∑

k=1

Bk,N sin 2Θk

)2

. (81)

B. Proof of Lemma 2

Since A
(N) is an iid random vector, the characteristic function of XN = A1+ · · ·+AN is given

by

ϕXN
(t) = (ϕA1(t))

N (82)
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From (22) and (30), the pdf of A1 can be expressed as follows:

fA1(a) = (1/2)a−3/2fR(a
−1/2) (83)

∴ ϕA1(t) = E[exp(itA1)]

=

∞∫

−∞

cos(ta)fA1(a) da+ i

∞∫

−∞

sin(ta)fA1(a) da

= Ic(t; dmin, dmax) + iIs(t; dmin, dmax), (84)

where Ic(t; dmin, dmax) :=

∞∫

−∞

cos(ta)fA1(a) da, (85)

and Is(t; dmin, dmax) :=

∞∫

−∞

sin(ta)fA1(a) da. (86)

Integrating (85) and (86) by parts, we get

Ic(t; dmin, dmax) =

(
1

d2max − d2min

)[

d2max cos

(
t

d2max

)

− d2min cos

(
t

d2min

)

−tSi

(
t

d2min

)

+ tSi

(
t

d2max

)]

, (87)

Is(t; dmin, dmax) =

(
1

d2max − d2min

)[

d2max sin

(
t

d2max

)

− d2min sin

(
t

d2min

)

−tCi

(
t

d2max

)

+ tCi

(
t

d2min

)]

, (88)

where Si(·) and Ci(·) are given by (1) and (2), respectively. Combining (84), (87), (88) and (3),

we get

ϕA1(t) =

(
1

d2max − d2min

)[

d2max exp

(

i
t

dmax2

)

− d2min exp

(

i
t

dmin2

)

+ tH

(
t

d2max

)

−tH

(
t

d2min

)]

. (89)

C. Proof of Lemma 3

B1,N , · · · ,BN,N form a collection of identically distributed, but not independent, random

variables. In addition, Θj and Bk,N are also independent random variables, for any j, k. Hence,

from (23), we obtain

E[YN ] = 1−NE[B2
1,N ], (90)
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For a fixed b ∈ R, the function x/(x + b) is increasing in x. Hence, from (24), it follows that

B1,N is increasing in A1, for fixed A2, · · · ,AN . As a result, B1,N ∈ [ρmin, ρmax], where

ρmin =
d−2
max

d−2
max + (N − 1)d−2

min

, (91)

ρmax =
d−2
min

d−2
min + (N − 1)d−2

max

. (92)

As B1,N is non-negative for all k, E[B2
1,N ] can be expressed as follows:

E[B2
1,N ] = 2

ρmax∫

ρmin

u FB1,N
(u)du. (93)

From (24), FB1,N
(u) can be expressed as follows:

FB1,N
(u) = FT(N)(u)(0), (94)

where T
(N)(u) = A1(1− u)− u

N∑

j=2

Aj (95)

Since A(N) is an iid random vector, the characteristic function of T(N)(u) has the following

expression:

ϕT(N)(u)(t) = ϕA1((1− u)t)(ϕA1(−ut))N−1. (96)

Similar to (35), FT(N)(u)(0) can be evaluated from ϕ
T
(N)
1 (u)

(t), as follows:

FT(N)(u)(0) =
1

2
+

1

π

∞∫

0

Im{ϕT(N)(u)(t)}
t

dt. (97)

Combining (90)-(97), we get

E[YN ] = 1−N




ρ2max − ρ2min

2
+

2

π

ρmax∫

ρmin

∞∫

0

u
Im{ϕT(N)(u)(t)}

t
dt du



 . (98)
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