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Abstract—Primary channel activity statistics (such as the
minimum idle/busy periods of the channel, the moments or
the underlying distributions) can be exploited by Cognitive
Radio (CR) systems to adapt their operation and improve their
performance. Such statistics can be directly estimated from
periodic observations of the instantaneous idle/busy state of the
primary channel (i.e., periodic spectrum sensing). However, the
periodicity of such observations (i.e., the sensing period) imposes
a fundamental limit on the time resolution to which idle/busy
periods can be observed and consequently on the accuracy of any
subsequent estimated statistics. In this context, this work provides
a comprehensive analysis on the estimation of the primary
activity statistics based on periodic channel state observations
performed with a finite sensing period. In particular, this work
provides a comprehensive set of closed-form expressions for the
estimated statistics as a function of the true primary activity
statistics and the employed sensing period. These expressions
can find a wide range of applications in the analysis, design and
simulation of CR systems. Moreover, several methods to minimise
the estimation errors and improve the accuracy are proposed and
validated both with simulations and hardware experiments.
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I. INTRODUCTION

DESPITE being a much broader concept [1]–[3], Dy-
namic Spectrum Access/Cognitive Radio (DSA/CR) is

commonly understood as an opportunistic spectrum access
method whereby unlicensed (secondary) users are allowed
to access the spectrum bands assigned to licensed (primary)
systems during the inactivity periods of the primary users [4],
[5]. This spectrum sharing approach is commonly known in
the literature as interweave, which has received considerable
more attention than the alternative underlay and overlay ap-
proaches [5]. In underlay and overlay, secondary transmissions
concurrent to the primary transmissions are allowed under
predefined interference constraints and therefore the number
of users and power generated by the primary and secondary
systems during their joint activity periods is an important
aspect to take into account. In interweave, which constitutes
the focus of this work, the DSA/CR system is not allowed
to transmit during the activity periods of the primary system
and therefore features such as the aggregated power generated
by the primary system during its activity periods or number
of primary users are not relevant. In interweave, the DSA/CR
system is mainly concerned with the binary on/off occupancy
pattern of the primary channel and the associated durations
of its activity/inactivity periods. Owing to the opportunistic
nature of the interweave operation principle, the behaviour
and performance of DSA/CR systems depend on the spec-
trum occupancy patterns of the primary systems. An accurate
knowledge of the primary activity patterns and their statistical
properties can be useful to DSA/CR systems. Statistical in-
formation such as the duration of past idle/busy periods, their
minimum, moments (mean, variance, etc.) or the underlying
distribution, can be exploited to predict potential future trends
in spectrum occupancy [6]–[8], schedule spectrum sensing [9],
select the most appropriate band and channel of operation for
the DSA/CR system [10]–[14], and take appropriate actions to
minimise interference, optimise the system performance and
improve the spectrum efficiency [15]–[20].

The activity statistics of a primary channel are initially
unknown to the DSA/CR system but can be estimated using
spectrum sensing decisions. DSA/CR systems periodically
sense the instantaneous state of primary channels and in
every sensing event a binary (idle/busy) decision is made
based on a spectrum sensing (signal detection) method [21],
[22]. While the main purpose of spectrum sensing is the



instantaneous detection of transmission opportunities [23], the
sequence of spectrum sensing decisions can also be used
to estimate the durations of the idle and busy periods and,
with an appropriate processing of these values, obtain relevant
primary activity statistics. The periodicity of spectrum sensing
observations (i.e., the sensing period) imposes a fundamental
limit on the time resolution to which idle/busy periods can be
observed and consequently on the accuracy of any subsequent
estimated statistics. While being an important issue of practical
relevance in DSA/CR systems, the impact of this particular
practical limitation on the estimated statistics still represents
a problem that, to the best of the authors’ knowledge, has
not received a rigorous and formal treatment in the literature.
Previous related work in this area (see for example [24]–
[27]) suffers from several limitations: 1) the focus has been
mainly on the estimation of the channel duty cycle or the mean
idle/busy times, neglecting other relevant statistics of practical
interest; 2) idle/busy times have commonly been assumed to
be exponentially distributed, an assumption that facilities the
analytical tractability of the problem but has been proven by
experimental studies to be unrealistic [28]–[32]; and 3) the
conclusions of analytical studies have rarely been validated
with experimental results (only in very few cases hardware
experiments have been considered in addition to simulations
[33]).

This work overcomes the above mentioned limitations by
providing a comprehensive analysis on the estimation of
primary activity statistics based on periodic channel state
observations performed with a finite sensing period [34]. This
work considers a broad range of relevant primary activity
statistics, including the minimum idle/busy times, moments
(not only the mean idle/busy times but also the variance,
skewness and kurtosis) and the underlying distributions (first
without assuming any distribution model and then considering
more realistic models than the exponential distribution). The
interest of this work is in analysing the impact of the employed
sensing period on the accuracy of the estimated primary
activity statistics. To this end, this work explores the relation
between the true primary activity statistics and those estimated
by a DSA/CR system as a function of the employed sensing
period. In particular, this work answers (for each primary
activity statistic) the following key questions, which constitute
the main contributions:

• Q1: What are the statistics estimated from periodic chan-
nel observations? This work provides a comprehensive
set of closed-form expressions for the estimated statistics
as a function of the true primary statistics and the
employed sensing period. These expressions can find a
wide range of applications in the analysis, design and
simulation of CR systems.

• Q2: What is the deviation or error with respect to the
true primary activity statistics? Based on the above men-
tioned expressions, the error of the estimated statistics is
quantified. The resulting expressions are useful in system
designs (e.g., to determine the maximum sensing period
that can guarantee a certain level of accuracy for each
primary activity statistic).

t0ta tb t1tx ty
busy busy
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y··· ···
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Fig. 1. Considered model (the estimation of an idle period is illustrated).

TABLE I
PARAMETERS INVOLVED IN THE MODEL OF FIG. 1.

Parameter Description
t0 Instant of transition from busy to idle state

t1 Instant of transition from idle to busy state

ta Instant of last sensed busy before switching to idle

tb Instant of first sensed idle after switching to idle

tx Instant of last sensed idle before switching to busy

ty Instant of first sensed busy after switching to busy

T0 = t1 − t0 Real duration of period being estimated (Ti, i = 0)

Ts = tb − ta Time interval between consecutive channel
state observations (sensing period)= ty − tx

Ta
e = t0 − ta

Differences (errors) between the instants of channel
state transitions and the nearest sensing instants

T b
e = tb − t0

Tx
e = t1 − tx

T y
e = ty − t1

• Q3: What can be done to minimise the estimation error?
This work also proposes several methods to minimise the
estimation errors and improve the accuracy of the esti-
mated statistics, which are validated by both simulations
and hardware experiments.

The rest of this work is organised as follows. First, Section
II analyses the estimation of individual period durations from
spectrum sensing decisions. The findings are used in Section
III to analyse the estimation of several scalar statistics (mini-
mum idle/busy period, moments of the estimated periods, and
estimated channel duty cycle) and in Section IV to analyse the
estimation of the underlying distribution. Section V validates
the analytical results and assesses the performance of the
methods proposed to reduce the estimation error, both with
simulations and hardware experiments. Finally, Section VI
summarises and concludes this work.

II. ESTIMATION OF INDIVIDUAL PERIODS

Primary activity statistics (including both scalar statistics
and the distribution of period durations) are estimated based
on a sufficiently large number of observed idle/busy periods in
the primary channel. Before the analysis of such statistics can
be performed, a detailed study on the estimation of individual
periods is first required, which is presented in this section.

DSA/CR systems sense periodically the instantaneous
idle/busy state of a primary channel in order to detect trans-
mission opportunities (idle periods) and determine when the



channel needs to be vacated to avoid interference (busy
periods). The sequence of idle/busy decisions provided by
the employed spectrum sensing method can be exploited to
estimate the duration of the idle/busy periods of the primary
channel as illustrated in Fig. 1, which shows the estimation
of the duration of an idle period (the involved parameters are
described in Table I). The primary channel is assumed to be
sensed periodically with a spectrum sensing period of Ts time
units (t.u.). The DSA/CR system estimates the duration of the
real idle/busy period duration Ti (i = 0 for idle periods, i = 1
for busy periods) based on the time difference between the
sensing events observed around the channel state transitions
(ta, tb, tx, ty). Based on the channel states observed at these
sensing events, the DSA/CR system can make an estimation
of the period duration, denoted as T̂i, following three different
methods or Estimation Strategies (ESs):
• ES1: T̂i = tx − tb = Ti − T be − T xe , which results in an

underestimation of Ti.
• ES2: T̂i = ty − ta = Ti + T ae + T ye , which results in an

overestimation of Ti.
• ES3: T̂i =

(tx−tb)+(ty−ta)
2 = tx − ta = ty − tb = Ti +

T ae −T xe = Ti−T be +T ye , which provides a more accurate
estimation of Ti by averaging the estimations of ES1/ES2.

The true primary period Ti would be estimated accurately
if the channel were sensed exactly when the channel state
changes (t0 and t1). However, since spectrum sensing is in
practice desynchronised with the primary activity, the channel
is in general sensed at arbitrary time instants around the
channel state transitions (ta, tb, tx, ty) and, as a result, the
estimated periods T̂i are affected by certain estimation errors
(T ae , T be , T xe , T ye ). For the three ESs, the estimated period
duration can be expressed as (answer to Q1 for the estimation
of individual periods):

T̂i = Ti + Te (1)

where Te represents the error component, which is in turn
composed of the sum of two other error subcomponents as
shown above for each ES.

It can be shown as follows that the error (sub)components
are directly related with the sensing period Ts. Note that T ae ,
T be , T xe and T ye can take any value within the interval [0, Ts]
and, as a matter of fact, can be assumed to be uniformly dis-
tributed within such interval, i.e., T ae , T

b
e , T

x
e , T

y
e ∼ U(0, Ts),

where U(a, b) denotes a uniform distribution between a and
b. Since the error component Te for all ESs is composed of
the sum of two uniform random variables in [0, Ts], assumed
independent, then Te can be modelled as a random variable
whose Probability Density Function (PDF) can be obtained as
the convolution of two uniform distributions with width Ts
– either U(0, Ts) or U(−Ts, 0) depending on the sign of the
error subcomponent – which leads to a triangular distribution
with width 2Ts [35, theorem 3.8.3]. More concretely, calcu-
lating such convolution for each ES, the PDF of Te is found
to be:

fES1
Te

(T ) = fES3
Te

(T + Ts) (2a)

fES2
Te

(T ) = fES3
Te

(T − Ts) (2b)

fES3
Te

(T ) =


Ts + T

T 2
s

, −Ts ≤ T ≤ 0 (2ca)

Ts − T
T 2
s

, 0 ≤ T ≤ Ts (2cb)

0, otherwise (2cc)

Denoting by ∆(a, b) a symmetric triangular distribution
between a and b, then Te ∼ ∆(−2Ts, 0) for ES1, Te ∼
∆(0, 2Ts) for ES2, and Te ∼ ∆(−Ts, Ts) for ES3.

As it can be appreciated, the estimation error Te of in-
dividual periods can be modelled as a symmetric triangular
random variable with width 2Ts for all the considered ESs.
The maximum deviation of T̂i with respect to Ti, i.e., the
maximum absolute error is given by (answer to Q2):

εT̂i
a,max =max(|Ti − T̂i|)=max(|Te|)=


2Ts, for ES1 (3a)
2Ts, for ES2 (3b)
Ts, for ES3 (3c)

This result not only is consistent with the intuitive notion that
reducing the sensing period Ts improves the accuracy of the
estimated periods but, more interestingly, indicates that given
an irreducible sensing period (the minimum value of Ts may
be constrained by hardware limitations or other system design
aspects [36]) the estimation error of individual periods can be
minimised by employing ES3 (answer to Q3). In the remainder
of this work it will be assumed (unless otherwise stated) that
individual idle/busy periods are estimated based on ES3.

While the model in (1)–(2) can describe the statistical
properties of the estimated individual periods, it is unable
to accurately characterise their discrete nature. Note that the
estimated periods are integer multiples of the sensing period
(i.e., T̂i = kTs, k ∈ N+). To account for this, a second model
is proposed. It can be shown that the estimated periods under
ES3 can also be expressed as (answer to Q1):

T̂i =

(⌊
Ti
Ts

⌋
+ ξ

)
Ts (4)

where b·c denotes the floor operator and ξ ∈ {0, 1} is a
Bernoulli random variable introduced to model the fact that
the same original period Ti can lead to two possible estimated
periods, either T̂i = bTi/TscTs or T̂i = (bTi/Tsc + 1)Ts =
dTi/TseTs (where d·e denotes the ceil operator), depending
on the relative (random) position of the sensing events with
respect to the beginning/end of the original period Ti. The
Bernoulli probabilities P (ξ = 0) and P (ξ = 1) can be
calculated noting that the true value of the original period Ti is
within the interval [bTi/TscTs, dTi/TseTs], and the estimation
T̂i = bTi/TscTs (i.e., ξ = 0) will be more likely when Ti is
closer to the lower extreme of the interval, while the estimation
T̂i = dTi/TseTs (i.e., ξ = 1) will be more likely when Ti is
closer to the upper extreme of the interval, hence:

P (ξ = 0) = P

(
T̂i =

⌊
Ti
Ts

⌋
Ts

)
=

⌈
Ti
Ts

⌉
− Ti
Ts

(5a)

P (ξ = 1) = P

(
T̂i =

⌈
Ti
Ts

⌉
Ts

)
=

Ti
Ts
−
⌊
Ti
Ts

⌋
(5b)

which completes the characterisation of the model in (4).
The estimation error of individual periods can also be

inferred from (4) as follows. As mentioned above, when



Ti ∈ [bTi/TscTs, dTi/TseTs] the estimated period T̂i will
be one of the two extremes of the interval. The maximum
estimation error will occur when Ti is close to one of the
extremes of the interval and the estimated period T̂i is the
other extreme. Hence, the maximum error (answer to Q2) is
equal to the difference between the extremes of the interval:

εT̂i
a,max = max(|Ti − T̂i|) =

∣∣∣∣⌈TiTs
⌉
Ts −

⌊
Ti
Ts

⌋
Ts

∣∣∣∣ = Ts (6)

which leads to the same conclusion that was obtained in (3c)
for ES3 with the model in (1)–(2).

III. ESTIMATION OF SCALAR ACTIVITY STATISTICS

DSA/CR systems can calculate primary activity statistics
based on a set of idle/busy periods observed from spectrum
sensing as illustrated in Fig. 1. Let {T̂i,n}Nn=1 be a set of
N estimated periods T̂i of type i (i = 0 for idle periods,
i = 1 for busy periods) based on which the primary activity
statistics are calculated. This section analyses the estimation
of scalar primary activity statistics based on such set (namely
the minimum period duration, the moments of the estimated
periods, and the estimated channel duty cycle) and determines
the impact of the sensing period Ts on the resulting accuracy.
The impact of the sample size N on the accuracy of the
estimated statistics is out of the scope of this work and
therefore it will be assumed to be sufficiently large to provide
the best attainable accuracy, so that all observed estimation
errors will be the result of the employed sensing period Ts,
which is the aspect of interest in this work.

A. Estimation of the Minimum Period Duration

The minimum period duration, denoted as µi, is an im-
portant parameter since it determines the minimum period
of time for which the primary channel will be available for
opportunistic transmission (µ0) or the minimum amount of
time the DSA/CR system will have to wait before the channel
becomes available (µ1). The minimum period duration is a
relative concept that can be considered at both short and long
times scales. The value of µi at short time scales is typically
known since it is determined by the physical layer features
of the radio technology employed by the primary system. For
example, the value of µi at short time scales is typically the
slot duration (e.g., 417 µs in DECT, 577 µs in GSM, 14.167
ms in TETRA), the transmission time interval (e.g., 1 ms in
LTE), or similar (25 µs PIFS in IEEE 802.11a). However, such
value is not usually very useful to DSA/CR systems since
it may be challenging to exploit spectrum opportunities (idle
periods) at such short time scale. On the other hand, idle/busy
periods at longer time scales resulting from the primary traffic
pattern at higher layers (e.g., user sessions) are more suitable
for opportunistic transmissions. In such another case, the value
of µi at long time scales may be known or may need to be
estimated from spectrum sensing [37].

The minimum period duration can be estimated from a set
{T̂i,n}Nn=1 of N estimated periods as µ̂i = min

n
({T̂i,n}Nn=1).

The relation between the estimated minimum period µ̂i and

the true minimum period µi (answer to Q1) can be obtained
from (4) by noting that min(Ti) = µi and min(ξ) = 0:

µ̂i = min(T̂i) = min

[(⌊
Ti
Ts

⌋
+ ξ

)
Ts

]
=

⌊
µi
Ts

⌋
Ts (7)

The absolute error in (6) for individual periods is also
applicable to the minimum estimated period in (7), hence
εµ̂i
a,max = Ts (answer to Q2).

Since the floor function is not invertible, it is not possible to
uniquely identify the value of the true minimum µi based on a
single pair of employed (known) Ts and observed µ̂i. However,
the result in (7) suggests a possible method to accurately
estimate the true minimum µi (answer to Q3). Notice that
µ̂i = µi when Ts = µi/k with k ∈ N+ (i.e., the estimated
minimum is equal to the true minimum if the sensing period
is an integer submultiple of the true minimum), and µ̂i < µi
otherwise. Based on this observation, the DSA/CR system
could increase/decrease progressively the employed Ts and
observe the estimated values of µ̂i until a maximum is found
by trial-and-error, which would be an accurate estimation of
the real µi. However, an exhaustive search based on testing a
large number of values for Ts may not be practical or feasible
in real DSA/CR implementations. To address this problem,
a method based on curve-fitting is proposed, which is aimed
at providing an accurate estimation of the true minimum µi
based on a reduced set of tested Ts and observed µ̂i values.
Let {Ts,l}Ll=1 be a set of L values of the sensing period
tested by the DSA/CR system and {µ̂i,l}Ll=1 the corresponding
set of estimated minimum periods for each sensing period
(i.e., µ̂i,l = bµi/Ts,lcTs,l). The proposed method consists in
using curve-fitting to find the value of µi that provides the
best fit of (7) to the experimentally observed sets {Ts,l}Ll=1

and {µ̂i,l}Ll=1. The discontinuities of the floor function in (7)
are problematic for curve-fitting methods, which are typically
based on gradient search. This can be easily solved by rewrit-
ing the floor function in (7) in terms of its (continuous) Fourier
series [38, eq. (2.1.7)], which yields:

µ̂i = µi −
Ts
2

+ Ts

∞∑
m=1

sin
(

2πmµi

Ts

)
πm

(8)

The expression in (8) can be readily fitted to {Ts,l}Ll=1

and {µ̂i,l}Ll=1 using conventional curve-fitting methods. This
provides an estimation of the true minimum as the value of
µi in (8) that offers the best fit to the sets {Ts,l}Ll=1 and
{µ̂i,l}Ll=1. While this method needs several values of Ts as an
input, this does not necessarily require the DSA/CR system
to actually modify the employed sensing period, which might
not be practical in some cases. Different sensing periods can
be emulated by selectively discarding some sensing decisions
(e.g., discarding every other sensing decision would be equiva-
lent to employing a sensing period 2Ts). An additional method
to estimate the minimum, based on the assumption of a certain
distribution for Ti, will be discussed in Section IV-B. The
accuracy of these approaches will be assessed in Section V.

B. Estimation of the Moments of Period Durations
The moments of the idle/busy period durations can be

used by DSA/CR systems to characterise the primary channel



activity pattern in a simple manner. The most commonly
used moments in statistics are the mean (first raw moment),
variance (second central moment), skewness (third normalised
moment) and kurtosis (fourth normalised moment). Given
a set {T̂i,n}Nn=1 of N estimated periods, the mean E(T̂i),
variance V(T̂i), skewness S(T̂i) and kurtosis K(T̂i) of the
observed periods can be estimated based on the corresponding
(unbiased) sample moment estimators (m̂i, v̂i, ŝi and k̂i,
respectively)1:

E(T̂i) ≈ m̂i =
1

N

N∑
n=1

T̂i,n (9)

V(T̂i) ≈ v̂i =
1

N − 1

N∑
n=1

(
T̂i,n − m̂i

)2
(10)

S(T̂i) ≈ ŝi =

√
N(N − 1)

N − 2

1
N

∑N
n=1(T̂i,n−m̂i)

3(√
1
N

∑N
n=1(T̂i,n−m̂i)

2
)3 (11)

K(T̂i) ≈ k̂i =
N − 1

(N − 2)(N − 3)

[
(N + 1)×

×
1
N

∑N
n=1(T̂i,n−m̂i)

4(
1
N

∑N
n=1(T̂i,n−m̂i)

2
)2− 3(N − 1)

]
+ 3 (12)

The relation between the estimated moments in (9)–(12)
and the true moments E(Ti), V(Ti), S(Ti) and K(Ti) as a
function of the employed sensing period Ts (answer to Q1)
can be obtained based on the model in (1):

E(T̂i) = E(Ti) + E(Te) =


E(Ti)− Ts, for ES1 (13a)
E(Ti) + Ts, for ES2 (13b)
E(Ti), for ES3 (13c)

V(T̂i) = V(Ti) +V(Te) = V(Ti) +
T 2
s

6
, for all ESs (14)

S(T̂i) =
E([T̂i − E(T̂i)]

3)

[V(T̂i)]3/2
=

E([Ti − E(Ti) + Te − E(Te)]
3)

[V(Ti) + V(Te)]3/2

=
E([Ti − E(Ti)]

3) + E([Te − E(Te)]
3)

[V(Ti) + V(Te)]3/2

= S(Ti)

[
1 +

V(Te)

V(Ti)

]− 3
2

+ S(Te)

[
1 +

V(Ti)

V(Te)

]− 3
2

= S(Ti)

[
1 +

T 2
s

6V(Ti)

]− 3
2

, for all ESs (15)

1The expressions in (9)–(12) may impose high storage/memory require-
ments in DSA/CR systems, in particular if the sample size N is large. This
problem can be solved in practical implementations by employing equivalent
recurrence formulae, which only require two (instead of N ) values to be
processed (see [39] for details).

K(T̂i) =
E([T̂i − E(T̂i)]

4)

[V(T̂i)]2
=

E([Ti − E(Ti) + Te − E(Te)]
4)

[V(Ti) + V(Te)]2

=
E([Ti − E(Ti)]

4) + E([Te − E(Te)]
4)

[V(Ti) + V(Te)]2
+

+
6E([Ti − E(Ti)]

2)E([Te − E(Te)]
2)

[V(Ti) + V(Te)]2

=
K(Ti)[V(Ti)]

2 + 6V(Ti)V(Te) + K(Te)[V(Te)]
2

[V(Ti) + V(Te)]2

=
K(Ti)[V(Ti)]

2 + V(Ti)T
2
s +

T 4
s

15[
V(Ti) +

T 2
s

6

]2 , for all ESs

(16)

where Ti and Te have been assumed to be independent,
and E(Te) ∈ {0,±Ts}, V(Te) = T 2

s /6, S(Te) = 0 and
K(Te) = 12/5 are respectively the mean, variance, skewness
and kurtosis of the symmetric triangular distribution fTe

(T )
in (2) [40, ch. 40].

Based on (13)–(16), the error of the estimated moments is
given by (answer to Q2):

ε
E(T̂i)
exact = E(T̂i)− E(Ti) = E(Te) =


−Ts, for ES1 (17a)
Ts, for ES2 (17b)
0, for ES3 (17c)

ε
V(T̂i)
exact = V(T̂i)− V(Ti) = V(Te) =

T 2
s

6
, for all ESs (18)

ε
S(T̂i)
exact =

S(T̂i)− S(Ti)

S(Ti)
=

[
1 +

T 2
s

6V(Ti)

]− 3
2

−1, for all ESs

(19)

ε
K(T̂i)
exact =

K(T̂i)−K(Ti)

K(Ti)

=

[
V(Ti)T

2
s +

T 4
s

15

] [
1

K(Ti)
− 1

3

]
− T 4

s

180[
V(Ti) +

T 2
s

6

]2 , for all ESs

(20)

Note that (17)–(20) establish unique exact relations between
true and estimated moments based on Ts and other known or
accurately estimable parameters. This indicates that corrected
versions (m̃i, ṽi, s̃i, k̃i) of the sample moments (m̂i, v̂i, ŝi,
k̂i) can be used as accurate estimations of the true moments
(E(Ti), V(Ti), S(Ti), K(Ti)) as follows (answer to Q3):

E(Ti) ≈ m̃i =


m̂i + Ts, for ES1 (21a)
m̂i − Ts, for ES2 (21b)
m̂i, for ES3 (21c)

V(Ti) ≈ ṽi = v̂i −
T 2
s

6
, for all ESs (22)

S(Ti) ≈ s̃i = ŝi

[
1 +

T 2
s

6ṽi

] 3
2

, for all ESs (23)



K(Ti) ≈ k̃i=
1

ṽ2i

(̂
ki

[
ṽi+

T 2
s

6

]2
− ṽiT 2

s −
T 4
s

15

)
, for all ESs

(24)
which allows an accurate estimation of the real moments of
Ti for any employed sensing period.

C. Estimation of the Channel Duty Cycle

The Duty Cycle (DC) is commonly used in DSA/CR to
quantify the overall occupancy level (load) of primary chan-
nels, which can be useful in many contexts (e.g., channel selec-
tion). This parameter is defined as the probability (probabilistic
definition) or fraction of time (empirical definition) that the
channel is busy (i.e., in use by the primary system). The true
DC of a primary channel, denoted as Ψ, can be expressed as:

Ψ =
E(T1)

E(T0) + E(T1)
(25)

The analysis of Section III-B demonstrated that the terms
E(Ti) in (25) can be accurately estimated by applying a
certain correction factor to the sample means as shown in (21).
Therefore, the estimation of the DC obtained from sample
means, Ψ̂ ≈ m̃1/(m̃0 + m̃1), is an accurate estimation of the
true DC, Ψ, regardless of the employed sensing period (answer
to Q1) with no estimation error (answer to Q2) provided that
the estimation is based on the corrected sample means m̃i

(answer to Q3).

IV. ESTIMATION OF THE DISTRIBUTION

The distribution of the idle/busy period durations provides
a complete characterisation of the primary channel activity. A
common assumption widely employed in the existing literature
is that idle/busy periods are exponentially distributed (see
[24]–[27] for some examples and [41, Section II] for a detailed
discussion). While this assumption simplifies analytical stud-
ies, field measurements have demonstrated that the exponential
model is unrealistic [28]–[32]. A more realistic model over a
broad range of frequency bands is the Generalised Pareto (GP)
distribution [42]. The Probability Density Function (PDF),
fTi

(T ), and the Cumulative Distribution Function (CDF),
FTi

(T ), of the GP distribution are respectively given by [43,
ch. 20]:

fTi
(T ) =

1

λi

[
1 +

αi(T − µi)
λi

]−1/αi−1

, T ≥ µi (26a)

FTi(T ) = 1−
[
1 +

αi(T − µi)
λi

]−1/αi

, T ≥ µi (26b)

where µi > 0, λi > 0, αi ∈ R are the location, scale and
shape parameters, respectively. The analysis of empirical data
indicates that αi ∈ [0, 0.25] in most practical cases [42]; in
such a case (for αi ≥ 0) the support of the distribution in (26)
is T ≥ µi. This work assumes GP-distributed periods. It can be
shown, by applying the change of variable x = αi(T −µi)/λi
and using limx→0(1 + x)1/x = e, that the limit of (26) as αi
tends towards zero is an exponential distribution with location
parameter µi and rate parameter 1/λi. The same applies for

the moments [43, eq. (20.156)] when αi = 0. Therefore,
the results obtained in this work can be particularised to the
exponential case by deriving the limit as αi tends towards zero
(the results can be found in [44]).

A. Direct Estimation

The Direct Estimation Method (DEM) makes an estimation
of the distribution FTi(T ), denoted as FT̂i

(T̂ ), based on a set
T̂i = {T̂i,n}Nn=1 of N observed period durations as follows:

FT̂i
(T̂ ) =

1

N

N∑
n=1

1T̂i(T̂ ){T̂i,n} =
|T̂i(T̂ )|
N

(27)

where |T̂i(T̂ )| indicates the cardinality (number of elements)
of T̂i(T̂ ) = {T̂i,n : T̂i,n ≤ T̂ , n = 1, . . . , N} (the subset of
period durations lower than or equal to T̂ ), and 1A{x} is the
indicator function of subset A, which is equal to one for the
elements x ∈ A and zero otherwise. Note that this method can
be used without any assumptions on FTi(T ) and the estimated
distribution FT̂i

(T̂ ) (usually referred to as empirical CDF)
has a discrete domain T̂ = kTs (k ∈ N+), even though the
original ditribution FTi(T ) is in general continuous, since the
periods of the set T̂i are integer multiples of the sensing period
(T̂i,n = kTs, k ∈ N+).

The relation between the estimated distribution FT̂i
(T̂ ) in

(27) and the true distribution FTi
(T ) in (26b) as a function

of the employed sensing period Ts (answer to Q1) can be
obtained based on the model in (4). A period with duration
T̂ = kTs (k ∈ N+) can be observed when Ti ∈ [T̂ , T̂ + Ts]
and ξ = 0, or when Ti ∈ [T̂ − Ts, T̂ ] and ξ = 1. Hence, the
Probability Mass Function (PMF) of the estimated periods,
fT̂i

(T̂ ) = P (T̂i = T̂ ), can be obtained as:

fT̂i
(T̂ ) = P (T̂ ≤ Ti ≤ T̂ + Ts) · E (P (ξ = 0)) +

+ P (T̂ − Ts ≤ Ti ≤ T̂ ) · E (P (ξ = 1)) (28)

which leads to the result shown in (29).
Note that two particular cases in (28)-(29) need special

consideration, concretely the values of T̂ around the minimum
period, namely T̂ = bµi/TscTs and T̂ = dµi/TseTs. Note
that for any arbitrary period Ti the width of the interval
[bTi/TscTs, dTi/TseTs] is Ts. However, in the interval around
the minimum period µi the range of valid values is Ti ∈
[µi, dµi/TseTs] (since Ti ≥ µi ≥ bµi/TscTs) and the width
of such interval is dµi/TseTs − µi instead of Ts. Therefore,
the probability P (ξ = 0) needs to be scaled accordingly by
the factor:

χ0 =

⌈
µi

Ts

⌉
Ts − µi
Ts

=

⌈
µi
Ts

⌉
− µi
Ts

(32)

It is worth noting that when Ts = µi/k, k ∈ N+ (i.e., the
sensing period is an integer submultiple of the true minimum)
then bµi/TscTs = dµi/TseTs; in this case (29b) must be used.



fT̂i
(T̂ ) =


FTi(T̂ + Ts) · E (P (ξ = 0)) · χ0 , T̂ =

⌊
µi

Ts

⌋
Ts (29a)[

FTi
(T̂ + Ts)− FTi

(T̂ )
]
· E (P (ξ = 0)) + FTi

(T̂ ) · [1− E (P (ξ = 0)) · χ
0
] , T̂ =

⌈
µi

Ts

⌉
Ts (29b)[

FTi
(T̂ + Ts)− FTi

(T̂ )
]
· E (P (ξ = 0)) +

[
FTi

(T̂ )− FTi
(T̂ − Ts)

]
· E (P (ξ = 1)) , otherwise (29c)

gT̂i
(T ) =


0, T ≤ µi − Ts (30a)
ω(T + Ts)− λi

(1−αi)T 2
s

+ T+Ts−µi

T 2
s

, µi − Ts < T ≤ µi (30b)

ω(T + Ts)− 2ω(T ) + λi

(1−αi)T 2
s
− T−Ts−µi

T 2
s

, µi < T ≤ µi + Ts (30c)

ω(T + Ts)− 2ω(T ) + ω(T − Ts), T > µi + Ts (30d)

GT̂i
(T )=


0, T ≤ µi − Ts (31a)

Ω(T + Ts) +
λ2
i

(1−αi)(1−2αi)T 2
s

+ T 2−(µi−Ts)
2

2T 2
s

+
(
Ts − µi − λi

1−αi

)
T+Ts−µi

T 2
s

, µi − Ts < T ≤ µi (31b)

Ω(T + Ts)− 2Ω(T )− λ2
i

(1−αi)(1−2αi)T 2
s

+ λi

1−αi

T−Ts−µi

T 2
s

− T 2−T 2
s−µ

2
i

2T 2
s

+ (T−µi)(Ts+µi)
T 2
s

, µi < T ≤ µi + Ts (31c)

1 + Ω(T + Ts)− 2Ω(T ) + Ω(T − Ts), T > µi + Ts (31d)

The Bernoulli probabilities in (28)-(29) are obtained as the
expected value of those in (5) as:

E (P (ξ = 0)) =

∫
T

P (ξ = 0)fTi
(T )dT

=

∞∑
m=0

(m+ 1) [FTi((m+ 1)Ts)− FTi(mTs)]−
E(Ti)

Ts
(33)

E (P (ξ = 1)) =

∫
T

P (ξ = 1)fTi
(T )dT

=
E(Ti)

Ts
−
∞∑
m=0

m [FTi((m+ 1)Ts)− FTi(mTs)] (34)

In practice, E (P (ξ = 0)) ≈ E (P (ξ = 1)) ≈ 1/2 is a valid
approximation in many cases.

The corresponding CDF can then be obtained as:

FT̂i
(T̂ ) = P (T̂i ≤ T̂ ) =

T̂ /Ts∑
k=0

fT̂i
(kTs) (35)

Note that (28), (29), (32), (33), (34) and (35) do not make
any assumptions on the distribution of the true periods Ti.

An alternative expression for the estimated distribution
FT̂i

(T̂ ) in (27) as a function of the true distribution FTi
(T )

and Ts (answer to Q1) can be obtained based on the model
in (1). Assuming Ti and Te independent, a (continuous)
PDF associated with the estimated periods, gT̂i

(T ), can be
obtained as gT̂i

(T ) = fTi
(T ) ∗ fTe

(T ) [35, theorem 3.8.3],
where fTi

(T ) is given by (26a) (assuming GP-distributed
periods), fTe

(T ) is given by (2) and the operator ∗ indicates
convolution. The resulting expression for gT̂i

(T ) is shown in
(30) where ω(·) is given by (36), and its direct integration
yields the CDF, GT̂i

(T ) =
∫ T
−∞ gT̂i

(τ)dτ , shown in (31)
where Ω(·) is given by (37)2.

ω(τ) =
[λi + αi(τ − µi)]2

(1− αi)T 2
s

fTi(τ) (36)

2The results in (30)–(31) assume ES3. The expressions for ES1 and ES2
can be obtained by replacing T with T + Ts and T − Ts, respectively.

Ω(τ) =
[λi + αi(τ − µi)]2

(αi − 1)(1− 2αi)T 2
s

[1− FTi
(τ)] (37)

An expression for the (discrete) distribution estimated with
DEM can be obtained by evaluating (30)–(31) at the discrete
values T = (k + 1/2)Ts = T̂ + Ts/2, where a continuity
correction factor 1/2 is necessary as a discrete distribution is
being represented by a continuous expression:

fT̂i
(T̂ ) = gT̂i

(
T̂ +

Ts
2

)
(38)

FT̂i
(T̂ ) = GT̂i

(
T̂ +

Ts
2

)
(39)

The estimation error or deviation of the estimated distribu-
tion FT̂i

(T̂ ) in (27) with respect to the true distribution FTi(T )
in (26b) (answer to Q2) cannot be quantified in a straightfor-
ward manner since the former has a discrete domain (T̂ = kTs,
k ∈ N+) while the latter is in general continuous (T ∈ R+).
The difference between two distributions is typically quantified
in terms of the Kolmogorov-Smirnov (KS) distance, which
is defined as the maximum absolute difference between the
CDFs [45, eq. (14.3.17)]. The KS distance, however, is defined
in the context of continuous distributions. For the purposes
of this analysis, a modified version of the KS distance can
be defined as the maximum absolute difference between the
discrete estimated CDF FT̂i

(T̂ ) and the continuous original
CDF FTi

(T ) evaluated at the discrete points T = T̂ = kTs
(k ∈ N+) for which FT̂i

(T̂ ) is defined:

DKS,i = sup
T̂

∣∣∣FT̂i
(T̂ )− FTi

(T̂ )
∣∣∣ (40)

This KS distance can be evaluated analytically by determining
the period duration T̂ ∗ for which the absolute difference of
(40) is maximum and then computing its value at T̂ = T̂ ∗.
In order to find the discrete value T̂ ∗, let first consider the
continuous value T ∗ that maximises the absolute difference
between the continuous CDF GT̂i

(T ), which is related with



the estimated distribution as shown in (39), and the true CDF
FTi(T ). Solving ∂

∂T |FTi(T )−GT̂i
(T )| for T yields T ∗ = µi,

and based on (4) it can be seen that the sought T̂ ∗ can be
either T̂ ∗ = bµi/TscTs or T̂ ∗ = dµi/TseTs. The maximum
absolute difference is provided by either value of T̂ ∗, hence:

DKS,i = max

{
FT̂i

(⌊
µi
Ts

⌋
Ts

)
− FTi

(⌊
µi
Ts

⌋
Ts

)
,

FT̂i

(⌈
µi
Ts

⌉
Ts

)
− FTi

(⌈
µi
Ts

⌉
Ts

)}

= max

{
FT̂i

(⌊
µi
Ts

⌋
Ts

)
,

FT̂i

(⌈
µi
Ts

⌉
Ts

)
− FTi

(⌈
µi
Ts

⌉
Ts

)}
(41)

Recall that the estimated distribution FT̂i
(·) can be evaluated

based on (35) (regardless of the true distribution of Ti) or (39)
(assuming GP-distributed periods), while FTi

(·) represents the
true distribution of Ti, which in the case of GP-distributed
periods is given by (26b).

The result in (41) is useful to evaluate the impact of the
employed sensing period on the accuracy of the estimated
distribution. A detailed inspection of (41) reveals that the
only way to improve the accuracy with DEM is to decrease
the sensing period. To overcome this limitation, an alternative
estimation method is proposed below (answer to Q3).

B. Moment-based Estimation

The main drawback of the DEM approach is that the
estimated distribution is discrete (this constrains the resulting
estimation accuracy since the original distribution is in gen-
eral continuous). To overcome this limitation, an alternative
approach is here proposed based on the estimation of the
distribution’s parameters (namely, µi, λi and αi, assuming the
GP model in (26) as discussed above) by means of statistical
inference methods. In contrast with DEM, the resulting distri-
bution is continuous, thus offering the possibility to provide a
more accurate estimation.

Various parameter-inference techniques have been proposed
for the GP distribution, including solutions based on the
Method of Moments (MoM), Probability-Weighted Moments
(PWM), Maximum Likelihood Estimation (MLE), Principle
of Maximum Entropy (PoME), and Least Squares Estimation
(LSE) [43, ch. 20]. The solution here proposed is based
on MoM, which estimates the distribution parameters µi, λi
and αi based on sample moments. This approach is here
preferred for three reasons: 1) MoM has been reported to
be superior for the GP distribution [46]; 2) the population
moments can be accurately estimated from sample moments
by applying appropriate corrections as discussed in Section
III-B; and 3) the sample moments can be computed based on
recursion equations that only require the last sample [39] while
other inference methods in general need the whole history of
past observed period durations, which leads to significantly
higher memory and computation requirements in practical
implementations.

The parameters λi and αi of the GP distribution can be
estimated as follows [43, ch. 20]:

λi ≈ λ̃i =
1

2

(
1 +

(m̃i − µi)2

ṽi

)
(m̃i − µi) (42a)

αi ≈ α̃i =
1

2

(
1− (m̃i − µi)2

ṽi

)
(42b)

where λ̃i and α̃i are the estimations obtained based on the
corrected sample mean m̃i in (21) and the corrected sample
variance ṽi in (22). The expressions in (42) assume that the
value of the minimum period µi is known. If it is unknown, it
can be estimated with the methods discussed in Section III-A,
which do not make any assumptions on the distribution of the
true periods Ti. If the true periods Ti are assumed to be GP-
distributed, then the minimum period µi can also be estimated
based on sample moments as follows. Combining the expres-
sions for the mean and variance of the GP distribution [43,
ch. 20], the minimum period can be estimated as:

µ̃i = m̃i −
√
ṽi(1− 2α̃i) (43)

where α̃i can be estimated from the corrected sample skewness
s̃i in (23) based on [43, ch. 20]:

s̃i =
2(1 + α̃i)

√
1− 2α̃i

1− 3α̃i
(44)

Solving (44) for α̃i leads to a cubic equation with the following
solution:

α̃i = − 1

24

(
Φ

ζΥ
+ ζΥ + 9 s̃ 2

i + 12

)
(45a)

where

Φ = 9 (9 s̃ 4
i + 40 s̃ 2

i + 16) (45b)

ζ = −1

2
+

1

2

√
3i (45c)

Υ =

(
Γ− θi

2

) 1
3

(45d)

Γ = 54 (27 s̃ 6
i + 180 s̃ 4

i + 272 s̃ 2
i − 64) (45e)

θ = 3456 s̃i (s̃ 2
i + 4) (45f)

Despite the presence of the imaginary number i =
√
−1 in

(45), the resulting α̃i is always real.
The introduction of the estimated µ̃i, λ̃i and α̃i in (26)

provides a (continuous) estimated distribution FT̂i
(T ). Notice

that FT̂i
(T ) is estimated based on corrected versions of

the sample moments that, as shown in Section III-B, are
not affected by the employed sensing period. Therefore, the
estimated distribution FT̂i

(T ) and the real distribution FTi(T )
can be assumed to be identical provided that the corrected
sample moments are calculated based on a sufficiently large
set of observed periods.

V. NUMERICAL, SIMULATION AND EXPERIMENTAL
RESULTS

This section validates the developed analytical results and
assesses the accuracy of the proposed estimation methods



with both simulation and experimental results. Simulations
are conducted in Matlab by generating a sufficiently large
number (≈106-107) of GP-distributed random periods Ti with
known pre-defined parameters (µi = 100 t.u., λi = 300 t.u.
and αi = 0.2, unless otherwise stated), then sensing the
sequence of periods Ti with a given sensing period Ts in
order to calculate the corresponding sequence of estimated
periods T̂i that would be observed by a DSA/CR system,
and finally calculating the relevant statistics resulting from
the observed periods T̂i, which are compared with the true
statistics of the generated periods Ti. This simulation approach
is similar to that employed in [47]. Hardware experiments
are conducted with a Prototype for the Estimation of Chan-
nel Activity Statistics (PECAS) (see [48] for details3). The
(primary) transmitter sends a sequence of 105 pairs of GP-
distributed idle/busy periods (with the same parameters as in
the simulations) using a 433 MHz ON-OFF Keying (OOK)
modulator with an output power of 2 dBm. The (secondary
DSA/CR) receiver, placed 1 metre apart, uses a Software-
Defined Radio (SDR) with a gain of 50 dB to monitor the
idle/busy activity at 433 MHz. The SDR senses the channel
every Ts = 10 ms (longer sensing periods in steps of 10 ms
up to 90 ms are emulated by selectively discarding sensing
events). The maximum absolute timing error (jitter) is 50
µs. In every sensing event, signal samples are captured for
3 ms at a sample rate of 106 samples per second; this
provides 3000 signal samples, which are processed to decide
the instantaneous idle/busy state of the channel using energy
detection. The outcomes of the energy detection decisions are
used to estimate the durations of the observed idle/busy periods
(using ES3 only) and compute the primary activity statistics.
By comparing the parameters configured in the transmitter
with the estimations provided by the receiver, the correctness
of the developed analytical results can be verified and the
accuracy of the proposed estimation methods can be assessed
under realistic evaluation conditions, including the channel
degrading effects and practical limitations of real transmitters
and receivers. Note that the analytical expressions derived in
this work are independent of the particular units of the time
variable and therefore the results are shown in generic time
units (t.u.). In hardware experiments, where a specific unit
needs to be selected, the reference time unit is the millisecond
(i.e., 1 t.u. = 1 ms).

It is worth mentioning that the sample sizes (number of
random periods) considered in simulations and experiments
were constrained by practical limitations: in simulations by
the capabilities of the employed computer (mainly the amount
of memory available), and in hardware experiments by the
shortest time scales allowed by the hardware components as
well as the need to keep the length of experiments within
practical limits. While the use of a finite sample size may
affect the accuracy of the simulation and experimental results
in some specific points/cases, the considered sample sizes
provide in general a high level of accuracy, sufficient to
validate the correctness and accuracy of the analytical results

3The software component of the PECAS prototype is based on free
open source code available at: http://www.lopezbenitez.es/misc/
PECAS.zip

-20 -10 0 10 20
Period duration, T (t.u.)

0

0.05

0.1

0.15

0.2

P
D

F
o
f
T

e
,
f T

e
(T

)

Ts = 10 t.u.

ES1 ES2ES3

Analytical
Simulation
Experimental

Fig. 2. PDF of the error component Te of the model for T̂i in (1) for a
sensing period Ts = 10 t.u.

obtained in this work. The sequences of random periods
were generated both as independent random numbers as well
as inducing several correlation features using the method
described in [49]. In both cases the same results were obtained,
thus indicating that the presence of correlations in the primary
traffic does not affect the estimation of the considered primary
activity statistics and therefore the obtained analytical results
are valid regardless of whether the primary traffic is correlated
or uncorrelated.

Let consider first the models proposed in Section II for
the estimation of individual periods. Fig. 2 compares the
expression in (2) for the PDF of the error component Te
of the first model proposed in (1) with simulation and ex-
perimental results (experimental results are shown for ES3
only). A sensing period Ts = 10 t.u. was considered and
the absolute differences between each original period Ti and
the corresponding estimated period T̂i were computed to
determine the estimation errors Te, which were then used to
calculate a histogram (empirical PDF). As it can be appre-
ciated, there is a perfect match, which validates the model
in (1)–(2). Fig. 3 compares the expressions in (5) for the
Bernoulli probabilities of the second model proposed in (4)
with simulation and experimental results obtained by sensing
a period Ti = 100 t.u. with Ts ∈ (0, Ti]. For each simulated
value of Ts the sensing process was repeated 1000 times
starting at different time instants so that the sensing events
could take place at different relative positions with respect to
the original period Ti. The first sensing event was shifted from
the beginning of the original period Ti by a random amount
uniformly distributed in [0, Ts]. The probability P (ξ = 0) was
estimated as the proportion of cases where the estimated period
was T̂i = bTi/TscTs, while P (ξ = 1) was obtained as the
proportion of cases where T̂i = dTi/TseTs. The experiments
were conducted by transmitting 105 pairs of idle/busy periods
with duration Ti = 100 ms and computing the probabilities
P (ξ = 0) and P (ξ = 1) as the proportion of cases where the
observed periods were T̂i = bTi/TscTs and T̂i = dTi/TseTs,
respectively. As it can be appreciated in Fig. 3, all results show

http://www.lopezbenitez.es/misc/PECAS.zip
http://www.lopezbenitez.es/misc/PECAS.zip
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Fig. 3. Bernoulli probabilities of the model for T̂i in (4) as a function of the
sensing period Ts for a period Ti = 100 t.u.
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Fig. 4. Estimated minimum period µ̂i as a function of the sensing period Ts
for a true minimum period µi = 100 t.u.

a perfect agreement, which validates the model in (4)–(5).
Fig. 4 shows the expression in (7) for the estimated mini-

mum period µ̂i as a function of the sensing period Ts when
the true minimum period is µi = 100 t.u., which provides a
perfect match with simulation and experimental results. It is
worth noting, as pointed out in Section III-A, that the estimated
minimum is equal to the true minimum if the sensing period
is an integer submultiple of the true minimum. However, as
appreciated, the estimated minimum period can in general
differ significantly from the true value. An exhaustive search
method for Ts based on (7) was discussed in Section III-A
along with an alternative method based on fitting (8) to a
reduced set of tested sensing periods {Ts,l}Ll=1 and observed
minimum periods {µ̂i,l}Ll=1. The performance of the latter is
illustrated in Fig. 5, which shows the estimated minimum µ̂i as
a function of the number of terms considered in the sum of (8).
These results were obtained by fitting (8) to four different pairs
of sets {Ts,l}Ll=1 and {µ̂i,l}Ll=1. For each of the four considered
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Fig. 5. Curve-fitting based estimated minimum period µ̂i as a function of the
number of terms considered in (8) for a true minimum period µi = 100 t.u.

cases, the legend of Fig. 5 shows the set of tested sensing
periods {Ts,l}Ll=1 and two additional values in the format
[A/B], where A is the best estimation provided individually by
any of the tested sensing periods in the set {Ts,l}Ll=1 and B is
the estimation obtained by means of a non-linear least squares
fit of (8) to {Ts,l}Ll=1 and {µ̂i,l}Ll=1. As it can be appreciated,
the proposed curve-fitting approach can provide significant
accuracy improvements in the estimation of the minimum
period duration. For example, in Case 1 the proposed approach
can reduce the relative error of the estimated minimum from
(100 − 80)/100 = 20% to (100 − 95.5)/100 = 4.5%, while
in the other three cases the relative error is reduced from 10%
to 1.6% (Case 2), 2.6% (Case 3), and 4.1% (Case 4). Note
that these accurate estimations can be obtained by testing just
a few sensing periods, which can be as few as L = 3 (cases
1 and 2) or L = 2 (case 3), and in some cases only L = 1
(case 4). This represents a significant reduction compared with
the exhaustive search approach discussed in Section III-A. It is
worth noting that the best estimation is (typically) obtained, as
observed in Fig. 5, when the fitted expression in (8) includes
only one term (m = 1). This is because as the number of
terms considered in (8) increases, the expression reproduces
more accurately the discontinuities of the floor function in
(7) and this leads to a poorer performance of curve-fitting
methods based on gradient search. It is also worth noting that
this approach was observed to provide the best results when
the initial value of µi for the curve-fitting algorithm is the
highest value observed in the sample set {µ̂i,l}Ll=1.

Fig. 6 compares the analytical expressions for the esti-
mated moments, including both the sample moments x̂i in
(9)–(12) and their corrected versions x̃i in (21)–(24), with
the simulation and experimental counterparts. As it can be
appreciated, there is a perfect agreement, which validates the
analytical results. Note that the default sample moments x̂i
provide an accurate estimation of the true moments (shown
on top of each subfigure) only for very low values of the
sensing period (Ts ≈ 0) and the accuracy rapidly degrades as
Ts increases. However, the corrected moments x̃i, calculated
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Fig. 6. Estimated moments (x̂i) and their corrected versions (x̃i) as a function
of the sensing period Ts (µi = 100 t.u., λi = 300 t.u., αi = 0.2).
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as shown in (21)–(24), remove the impact of Ts and provide
accurate estimations of the true moments regardless of the
employed sensing period.

Fig. 7 compares the CDF of GP-distributed periods (with
µi = 100 t.u., λi = 300 t.u., and αi = 0.2) with the CDF
estimated by DEM when a sensing period Ts = 90 t.u. is
employed. The estimated distribution is evaluated analytically
using both (35) and (39). Simulation and experimental results
are also included to validate the analytical expressions. As it
can be appreciated, the distribution estimated with DEM can
diverge significantly from the true distribution. For example,
the value of the estimated CDF at T̂ = Ts = 90 t.u. is approxi-
mately 0.11, while the value of the true distribution at the same
point is zero (estimation error of DKS,i = 0.11). Similarly,
the value of the estimated CDF at T̂ = 2Ts = 180 t.u. is
approximately 0.33 while the value of the true distribution at
the same point is 0.23 (estimation error of DKS,i = 0.10).
This estimation error can obviously be decreased by reducing
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Fig. 8. Accuracy of DEM and MoM as a function of the sensing period
(µi = 100 t.u., λi = 300 t.u., αi = 0.2).

the sensing period Ts, however this may not be possible
in practice since the value of Ts is typically selected to
achieve a certain signal detection performance under specified
hardware constraints rather than an accurate estimation of the
primary activity statistics. To overcome this limitation, the
MoM approach is proposed.

Fig. 8 compares the estimation accuracy (in terms of the KS
distance) of DEM and MoM as a function of the employed
sensing period. The performance of MoM is shown for two
cases: when the minimum period duration µ̂i is estimated
as the minimum value of the sequence of observed periods,
µ̂i = min

n
({T̂i,n}Nn=1), and when the minimum period duration

µ̃i is estimated based on corrected sample moments as shown
in (43)-(45). The analytical curve for DEM is obtained by
evaluating (41), while the counterparts for MoM are obtained
by evaluating the maximum absolute difference between (26b)
with the true parameters and (26b) with the MoM-estimated
parameters. Simulation and experimental results are also in-
cluded to validate the analytical expressions. As it can be ap-
preciated, DEM can provide an accurate estimation of the true
distribution only if the employed sensing period is sufficiently
short. The MoM approach can provide accurate estimations
provided that the estimated minimum period is sufficiently
accurate. The minimum period duration estimated based on
(7) can be significantly inaccurate depending on the employed
sensing period and this has a direct impact on the overall
accuracy of the corresponding MoM-estimated distribution. It
is worth noting, as discussed above, that when the sensing
period is an integer submultiple of the true minimum, then
the minimum period estimated with (7) is accurate and in such
a case the estimated distribution is accurate as well (i.e., the
points in Fig. 8 where MoM with µ̂i leads to DKS,i = 0).
However, the minimum period estimated based on (7) will in
general differ significantly from the true value and as a result
the estimated distribution can be significantly inaccurate (in
some cases the estimation error is even higher than that of
DEM as observed in Fig. 8). On the other hand, the minimum



period estimated based on (43)-(45) is accurate regardless of
the employed sensing period and so is the resulting estimated
distribution (MoM with µ̃i leads to DKS,i ≈ 0 for all
sensing periods). These results demonstrate that the MoM
approach based on the proposed moment estimation methods
can provide a highly accurate (virtually perfect) estimation of
the distribution of primary periods regardless of the employed
sensing period.

An important practical aspect is the degree to which the
accuracy of the estimated primary activity statistics can affect
the performance of DSA/CR systems. To illustrate this, let us
consider as a practical example the problem of estimating the
opportunistic data rate that a DSA/CR system can expect from
a primary channel. The opportunistic data rate can be useful
for example in channel selection decisions or to determine
the optimum schedule for the task of sensing a number of
primary channels by a set of secondary users as investigated
in detail in [9]. The expected opportunistic data rate (R̂b) can
be expressed as a function of the estimated duty cycle (Ψ̂) as
R̂b = (1−Ψ̂)Wη, where W is the primary channel bandwidth
and η is the spectrum efficiency associated to the modulation
and coding schemes used by the DSA/CR system. Fig. 9 shows
the estimated available data rate (with W = 20 MHz and
η = 2 bit/s/Hz) as a function of the estimated channel duty
cycle for the three estimation strategies described in Section
II, with and without the corrections derived in (21) from the
analysis carried out in Section III-B. As it can be appreciated,
ES1 and ES2 can lead to inaccurate predictions if the impact of
the sensing period is not removed by applying appropriate cor-
rections. For ES1, the maximum error is observed at Ψ = 0.33,
where the actual data rate is 26.91 Mbit/s but the resulting
prediction is 32.84 Mbit/s, which represents an overestimation
error of 22.05% (this would result in a significant outage for
the DSA/CR system since the actual available capacity would
be significantly lower than expected). For ES2, the maximum
error is observed at Ψ = 0.22, where the actual data rate is
31.03 Mbit/s but the resulting prediction is 28.38 Mbit/s, which
represents an underestimation error of 8.55% (this would result
in a significant waste of free capacity since the actual available
capacity would be significantly higher than expected). On the
other hand, by applying the corrections proposed for ES1/ES2
or using ES3, an accurate estimation would be obtained and
the spectrum resources would be exploited efficiently. This
simple example illustrates the potential impact that inaccurate
primary activity statistics can have in the performance of
DSA/CR systems and highlights the practical importance of
the analytical results and methods that this work has provided
for an accurate estimation of the primary activity statistics.

VI. CONCLUSIONS

DSA/CR users can monitor periodically the idle/busy state
of primary channels to estimate the primary activity statistics
and exploit this information to improve the system perfor-
mance. However, the unavoidable use of a finite sensing
period imposes fundamental limits on the temporal resolu-
tion to which the duration of idle and busy periods can
be observed. This work has carried out a comprehensive
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analytical study on how this limitation affects the estimation
of individual idle/busy periods, their minimum, their moments
(mean, variance, skewness and kurtosis) and the underlying
distribution. Closed-form expressions have been developed to
determine the relation between the estimated and the true
statistics as a function of the employed sensing period as
well as the resulting estimation error. The obtained analytical
results can be useful in the analysis, design and simulation of
DSA/CR systems. Various estimation strategies and methods
have also been proposed to minimise the estimation error
resulting from the use of a finite sensing period. Simulation
and experimental results have demonstrated that the proposed
methods can minimise the impact of the sensing period, thus
providing a highly accurate (virtually perfect) estimation of
all the considered primary activity statistics regardless of the
employed sensing period.

While this work has focused on the impact of the sensing
period, another important aspect is the impact of the sample
size (i.e., how the accuracy of the estimated statistics depends
on the number of observed periods). Moreover, this work
implicitly focuses on a link-level scenario where a single
secondary receiver is considered. The extension to a network-
level scenario where multiple secondary nodes cooperate to
produce a more accurate estimation is another interesting
problem worth investigating. These problems will be addressed
in our future work.

REFERENCES

[1] Q. Zhao and A. Swami, “A survey of dynamic spectrum access: signal
processing and networking perspectives,” in Proc. IEEE Int’l. Conf.
Acoustics, Speech and Signal Process. (ICASSP 2007), vol. 4, Apr. 2007,
pp. IV/1349–IV/1352.

[2] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,”
IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89, May 2007.

[3] M. M. Buddhikot, “Understanding dynamic spectrum access: Taxonomy,
models and challenges,” in Proc. 2nd IEEE Int’l. Symp. Dyn. Spect.
Access Networks (DySPAN 2007), Apr. 2007, pp. 649–663.

[4] Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mähönen, “Cognitive radio
networking and communications: An overview,” IEEE Trans. Vehic.
Tech., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
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cooperative spectrum sensing scheduling optimization in multi-channel
dynamic spectrum access networks,” IEEE Trans. Mobile Comp., vol. 15,
no. 8, pp. 2094–2108, Aug. 2016.

[10] X. Liu, B. Krishnamachari, and H. Liu, “Channel selection in multi-
channel opportunistic spectrum access networks with perfect sensing,”
in Proc. 2010 IEEE Int’l. Symp. Dyn. Spect. Access Networks (DySPAN
2010), Apr. 2010, pp. 1–8.
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[33] J. J. Lehtomäki, M. López-Benı́tez, K. Umebayashi, and M. Juntti,
“Improved channel occupancy rate estimation,” IEEE Trans. Comms.,
vol. 63, no. 3, pp. 643–654, Mar. 2015.
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