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Robust Joint Hybrid Transceiver Design for

mmWave Full-Duplex MIMO Relay Systems
Yunlong Cai, Ying Xu, Qingjiang Shi, Benoit Champagne, and Lajos Hanzo

Abstract—The joint design of hybrid beamforming matrices is
conceived for multiuser mmWave full-duplex (FD) multiple-input
multiple-output (MIMO) relay-aided systems in the presence
of realistic channel state information (CSI) errors. Specifically,
considering a probabilistic CSI error model, we maximize the
system’s worst-case sum rate by jointly optimizing the base
station’s (BS) analog and digital beamforming matrices, plus
the analog receive and transmit beamforming matrices of the
relay station (RS) as well as its digital amplify-and-forward (AF)
beamforming matrix under practical constraints. Explicitly, the
transmit power constraints of the BS and RS, the residual self-
interference power constraint of the RS, the per-user quality
of service constraints and the unit-modulus constraints on the
analog beamforming matrix elements are all taken into account.
Since the resultant optimization problem is very challenging
due to its highly nonlinear objective function and nonconvex
coupling constraints, we first transform it into a more tractable
form. We then develop a novel joint optimization algorithm
based on the penalty dual decomposition (PDD) technique to
solve the resultant problem. The proposed PDD-based algorithm
performs double-loop iterations: the inner loop updates the
optimization variables in a block coordinate descent fashion,
while the outer loop adjusts the Lagrange multipliers and penalty
parameter, hence ensuring convergence to the set of stationary
solutions of the original problem. Our simulations show that
mmWave FD hybrid MIMO relay systems relying on our new
algorithm significantly outperform both their non-robust FD and
conventional half-duplex counterparts.

Index Terms—Millimeter wave, full-duplex, multiuser MIMO
relay, hybrid beamforming, robust transceiver design.

I. INTRODUCTION

Millimeter wave (mmWave) communications in the 30 -

300GHz band represent a salient next-generation technique
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for mitigating the spectrum shortage and supporting very

high data rates [1]–[5]. However, owing to the excessive

cost of radio frequency (RF) chains and analog-to-digital

(A/D) converters at such high frequencies, the traditional fully

digital transceiver architecture cannot be utilized in mmWave-

based multiple antenna systems. As an alternative, a hybrid

transceiver structure consisting of cascaded baseband digital

and RF analog beamformers has been the focus of intense

research. Indeed, this structure makes it possible to employ

less RF chains than the number of antenna elements, while

imposing a unity-modulus constraint on the elements of the

analog beamforming matrix.

Some representative algorithms have been proposed in [6]–

[10], [13] for the design of the hybrid transceiver parameters,

in particular for the analog beamforming matrix. In [6], the

authors have exploited the structure of mmWave channels to

develop a hybrid transceiver algorithm based on orthogonal

matching pursuit (OMP). A channel matching based hybrid

beamforming algorithm has been proposed in [7]. To increase

the performance of heuristic methods, the authors of [8]

developed a joint hybrid transceiver design based on manifold

optimization with antenna selection for large-scale multiple-

input multiple-output (MIMO) mmWave systems. By taking

the hardware constraint into account, a number of codebook-

based hybrid beamforming techniques have been studied in

[9]–[12]. In particular, an efficient hierarchical codebook de-

sign method has been developed in [11], [12] for beamforming

training and channel estimation. Moreover, Full-duplex (FD)

based mmWave systems have been investigated in [13].

Given the severe pathloss characterizing mmWave commu-

nications, relays may be invoked for avoiding LoS blockage or

for extending the coverage area [14]. Hence, the study of relay-

assisted mmWave communications is of great importance.

Traditional relaying operates in half-duplex (HD) mode, which

requires separate time or frequency resources for transmission

and reception; by contrast, FD relaying potentially doubles the

mmWave link capacity by supporting simultaneous transmis-

sion and reception [15]–[17]. However, mitigating the self-

interference (SI) imposed by the high-power signal leakage

from the transmitter output to the receiver input is a challeng-

ing issue in FD system design. Fortunately, major advances

have been made in RF hardware for FD communications and

hence, the SI can likely be mitigated to acceptable levels [18],

[19]. Furthermore, several SI suppression algorithms have been

developed for efficiently solving this problem in the digital

domain, thereby motivating further research on transceiver

design for FD relay-aided systems [20]–[23].

Recently, the authors of [24], [25] have designed
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transceivers for HD mmWave MIMO relay systems, in order

to improve network coverage. However, the existing HD

mmWave relays rely on separate design approaches for the

hybrid beamforming matrices. Indeed, the analog and digital

beamforming matrices are not optimized jointly for maximiz-

ing the system’s sum rate, which hence constitutes a heuris-

tic, suboptimal approach from an optimization perspective.

Finally, most of the mmWave MIMO relay designs stipulate

the idealized simplifying assumption of having perfect channel

state information (CSI), whilst there is a paucity of robust joint

transceiver designs relying on realistic imperfect CSI.

To fill this gap, we jointly design the hybrid beamforming

matrices of our sophisticated multiuser mmWave FD MIMO

relay-aided system by assuming a probabilistic CSI error

model. Based on this model, we first derive the worst case

sum rate expression for our relaying system. Then, we jointly

optimize the base station’s (BS) analog and digital beamform-

ing matrices, plus the relay station’s (RS) analog transmit and

receive beamforming matrices as well as its digital amplify-

and-forward (AF) beamforming matrix by maximizing the

worst-case sum rate under realistic optimization constraints.

Explicitly, both the BS and RS transmit power constraints, the

residual RS SI power constraint, as well as the per-user quality

of service (QoS) constraints and the unity-modulus constraints

of the RF analog beamforming matrix elements are taken into

account.

However, this holistic global optimization problem cannot

be solved directly due to its highly nonlinear objective function

and nonconvex coupling constraints, imposed by the product

of the digital and analog beamforming matrices as well as

the unity-modulus constraint of the analog matrix elements.

By introducing auxiliary variables, we first convert this worst-

case sum-rate maximization problem into an equivalent but

more tractable mean squared error minimization problem.

Then, we invoke the innovative penalty dual decomposi-

tion (PDD) optimization method [26]–[29] for solving this

simplified problem and jointly optimize the analog as well

as digital beamforming matrices. The coupling components

of the problem are handled by introducing new auxiliary

variables and equality constraints. To elaborate, with the aid

of the PDD method, we penalize and dualize the newly

introduced equality constraints into the objective function

as augmented Lagrangian (AL) components [30], [31]. The

resultant augmented Lagrangian problem is then solved by our

new double-loop iterative optimization algorithm. Explicitly,

in the inner loop, we resort to the concave-convex procedure

(CCCP) [32]–[34] for updating the optimization variables in

a block coordinate descent fashion, where the subproblems of

each block can be solved in closed form. Then in the outer

loop, we adjust both the Lagrange multipliers and the penalty

parameter of the AL cost function. The proposed robust PDD-

based joint hybrid transceiver design algorithm converges to

the set of stationary solutions of the original optimization

problem. Furthermore, we extend the proposed algorithm to

the practical scenario of finite-resolution phase shifters and

analyze its computational complexity. Finally, we demonstrate

that the proposed robust joint hybrid FD transceiver design

significantly outperforms its nonrobust counterpart as well as

the conventional HD hybrid transceiver design.

The main original contributions of this work are summarized

as follows:

1) To increase coverage and guarantee high transmission

rates for mmWave communications, we propose a FD

hybrid MIMO relay system architecture, and formulate a

realistic but very challenging joint optimization problem

for the optimization of the underlying transceiver param-

eter in the presence of CSI errors.

2) We transform this complex problem into an equivalent

yet more tractable form and develop a novel PDD-based

double-loop algorithm to solve it. The proposed robust

algorithm converges to the set of stationary solutions of

the original optimization problem.

3) The proposed algorithm is extended to the scenario of

finite-resolution phase-shifter and a detailed computa-

tional complexity analysis is provided as well.

4) The properties of the new algorithm are investigated by

means of simulations using a practical mmWave channel

model; the results demonstrate its advantages over exist-

ing benchmarks schemes.

The rest of this paper is organized as follows. In Sections

II and III, we present our system model and formulate the

worst-case sum-rate maximization problem, respectively. In

Section IV, we first transform the original problem into a more

tractable but equivalent form and then develop the PDD-based

joint hybrid transceiver design algorithm for solving the re-

sultant problem. Our finite-resolution phase-shifter design and

computational complexity analysis are discussed in Section V.

In Section VI, we demonstrate the benefits of the proposed

algorithms. Our conclusions are offered in Section VII, whilst

proofs and background derivations appear in the Appendices.

Notations: E{·} denotes the expectation operator. Boldface

upper case and lower case letters represent matrices and

vectors, respectively. Tr(A), AT , and AH represent the trace,

transpose, and conjugate transpose of matrix A, respectively.

A(a : b, :) denotes a new matrix obtained by selecting rows

a through b of matrix A. For a matrix A, A(i, j) denote

the element at the intersection of row i and column j. I

and 0 stand for identity and zero matrices with appropri-

ate dimensions, respectively. ‖ · ‖ and det(·) represent the

Frobenius norm and determinant, respectively. ℜ{.}, ℑ{.}
and | · | respectively denote the real part, imaginary part and

magnitude of a complex number. The operator vec(·) stacks

the elements of a matrix in one long column vector, while

diag {·} denotes a diagonal matrix with the given arguments

on its diagonal. The symbol ⊗ denotes the Kronecker product.

C
m×n (Rm×n) denotes the space of m× n complex (real)

matrices. The projection of a point X onto a set Ω is denoted

by PΩ{X} , minY∈Ω ‖X−Y‖. If Ω is a sphere of radius r
centered at the origin, i.e., Ω = {X|‖X‖ ≤ r}, then PΩ{X}
is equal to r X

‖X‖+max(0,r−‖X‖) .

II. SYSTEM MODEL

Let us consider a multiuser mmWave FD MIMO relay sys-

tem, as shown in Fig. 1, which consists of one BS, one FD RS

and K users. The BS is equipped with Nt transmit antennas

and R1 (R1 ≤ Nt) RF chains. The RS, which operates in FD
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mode, is equipped with Nr receive and Nr transmit antennas,

as well as R2 (R2 ≤ Nr) RF chains for the receive and

transmit processing, respectively. Each user is equipped with

a single antenna. We assume that K ≤ min{R1, R2} so as

to provide sufficient degrees of freedom for signal detection.

We consider a narrowband formulation with flat fading radio

channel conditions. Furthermore, we assume that there is no

direct link between the BS and the end users due to physical

obstacles or severe attenuation.

Let s = [s1, . . . , sK ]T represent the K× 1 transmit symbol

vector, whose elements are modeled as independent random

variables with zero mean and unit variance, i.e., E{|sk|2} = 1.

The transmit signal vector at the BS can be expressed as

xB = VFs, (1)

where F = [f1, . . . , fK ] ∈ C
R1×K denotes the BS digital

beamforming matrix and V ∈ C
Nt×R1 denotes the BS analog

transmit beamforming matrix. The transmit power of the BS

can be expressed as

PB , E{Tr(xBx
H
B )} = ‖VF‖2. (2)

The received signal at the RS can be written as

yR = GVFs+ nR + iR, (3)

where G ∈ C
Nr×Nt denotes the channel matrix between the

BS and the RS, nR ∈ C
Nr×1 represents the complex circular

Gaussian noise vector at the RS with zero mean and covariance

E{nRn
H
R } = σ2

rI, where σ2
r denotes the noise variance, and

iR represents the complex Gaussian residual SI with zero-

mean and covariance E{iRiHR } = σ2
siI. Here a constraint on

the residual SI power is applied, i.e., E{‖HRxR‖2} ≤ Pth

[23], where HR denotes the relay residual SI channel1, Pth

denotes the maximum tolerable SI power, and xR denotes the

transmit signal at the RS. The latter is given by

xR = U2WU1(GVFs+ nR + iR), (4)

where W ∈ C
R2×R2 denotes the RS digital AF beamforming

matrix, while U1 ∈ C
R2×Nr and U2 ∈ C

Nr×R2 represent the

analog receive and transmit beamforming matrices at the RS,

respectively. Defining σ2
R , σ2

r + σ2
si, the transmit power at

the RS can be expressed as

PR , E{Tr(xRx
H
R )} = ‖U2WU1GVF‖2+σ2

R‖U2WU1‖2.
(5)

The received signal at user k ∈ K , {1, . . . ,K} can be

written as

yk =

K∑

j=1

hH
k U2WU1GVfjsj+hH

k U2WU1(nR+ iR)+nk,

(6)

where hk ∈ C
Nr×1 represents the Hermitian transpose of the

channel vector between the RS and user k, while nk is the

complex circular Gaussian receiver noise at user k with zero

mean and variance E{|nk|2} = σ2
k.

1The SI power can be initially mitigated to an acceptable level based on the
use of hardware-aided FD interference cancellation techniques such as [16]–
[19] and passive cancellation methods [20]. Consequently, herein the focus is
on optimizing the hybrid beamforming algorithm to handle the residual SI.

The CSI from the BS to the RS and the CSI of the SI link

at the RS can be obtained by implementing a suitable channel

estimation algorithm, such as available from e.g., [35]–[37].

Due to the stationarity and high transmit power of the BS and

RS, we assume that the corresponding channel matrices, i.e. G

and HR, can be known with high accuracy. However, to obtain

the CSI from the RS to the users, represented by vectors hk, is

more challenging. Due to user mobility, processing latency and

other limitations, the CSI for the user channels is inevitably

corrupted by estimation errors. The channel matrix from the

RS to the users, i.e., H = [h1, . . . ,hK ]H , can be expressed

as

H = Ĥ+∆H, (7)

where Ĥ = [ĥ1, . . . , ĥK ]H denotes the estimated channel ma-

trix and ∆H = [∆h1, . . . ,∆hK ]H denotes the corresponding

channel error matrix. Here, ∆H is assumed to be statistically

independent of the estimated channel matrix and characterized

by a matrix-variate complex circular Gaussian distribution, i.e.

vec(∆H) ∼ CN (0, σ2
eI), where σ2

e denotes the variance of the

individual CSI errors2.

III. PROBLEM FORMULATION

In this section, we introduce the worst-case sum rate

maximization problem under consideration in this work. Our

starting point is the formulation of a deterministic lower

bound on the sum rate. Let pk , U2WU1GVfksk denote

the kth signal vector component transmitted by the RS (see

eq. (6)) and let H(pk; yk|Ĥ) denote the conditional mutual

information of user k, conditioned on estimated channel matrix

Ĥ. Expanding H(pk; yk|Ĥ) in terms of the corresponding

differential entropies yields,

H(pk; yk|Ĥ) = H(pk|Ĥ)−H(pk|yk, Ĥ). (8)

The first term on the right hand side (RHS) of (8) simplifies

to 1
2 log det(2πeQk), where Qk , E{pkp

H
k } denotes the

transmit covariance matrix associated to pk. Regarding the

second term, let us rewrite the received signal at user k as

follows

yk = ĥH
k pk +

K∑

k
′ 6=k

ĥH
k pk

′ +

K∑

j=1

∆hH
k pj

+ ĥH
k U2WU1(nR + iR)

+ ∆hH
k U2WU1(nR + iR) + nk.

(9)

Consequently, the second term on the RHS of (8) is upper

bounded by the entropy of a Gaussian random variable, i.e.

[40],

H(pk|yk, Ĥ) ≤1

2
log det

(

2πe

(

Qk −
Qkĥkĥ

H
k Qk

ĥH
k Qkĥk +Υk

))

(10)

2In practice, the mmWave CSI can be obtained by applying compressed
sensing channel estimation algorithms, and under the case of additive Gaussian
noise, the resulting channel estimation errors obey a multivariate Gaussian
distribution [38], [39].
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Fig. 1: Multiuser mmWave FD MIMO relay system

where

Υk ,

K∑

k
′ 6=k

ĥH
k Qk

′ ĥk +

K∑

j=1

σ2
eTr(Qj)

+ σ2
Rĥ

H
k U2WU1U

H
1 WHUH

2 ĥk

+ σ2
Rσ

2
eTr(U2WU1U

H
1 WHUH

2 ) + σ2
k.

(11)

Hence, substituting (10) into (8) and making use of the

Woodbury matrix identity yields the following deterministic

lower bound on the conditional mutual information for user

k:

H(pk; yk|Ĥ) ≥ 1

2
log

(

1 +
|ĥH

k U2WU1GVfk|2
Υk

)

. (12)

The detailed derivation of (12) is presented in Appendix A.

Then, by considering the sum of the lower bound of the

mutual information over all users, we can formulate the worst-

case sum rate maximization optimization problem as shown in

(13) where we define for convenience

Nk , σ2
e





K∑

j=1

‖U2WU1GVfj‖2 + σ2
R‖U2WU1‖2



+σ2
k.

(14)

The residual self-interference power constraint is shown in

(13b) while constraints (13c) and (13d) reflect the bounded

transmit power budget of the BS and RS, respectively. Con-

straint (13e) guarantees the per user QoS (i.e. transmission

rate), where γk denotes the threshold of the achievable

transmission rate for user k. Finally, the constant modulus

constraint of the analog beamforming matrices is given by

(13f).

The above problem formulation can be extended to more

complex situations. For intance, when considering hardware

impairments, e.g., limited analog-to-digital convertor accuracy,

oscillator phase noise or low-noise-amplifier distortion, such

sources of transmitter/receiver distortion in the communication

chain can be modeled as independent Gaussian distributed

errors [39]. In this case, we can still follow the same approach

as introduced above to derive the corresponding lower bound

on the system’s sum rate.

We note that the constrained optimization problem (13) is

very difficult to solve due to the highly coupled and nonconvex

objective function and constraints. In the following section,

we propose an efficient joint transceiver optimization design

algorithm.

IV. ROBUST JOINT TRANSCEIVER DESIGN ALGORITHM

In this section, following a brief overview of the PDD

optimization framework, we first transform the problem in (13)

into a more tractable yet equivalent form. Then, by applying

the PDD technique, we obtain an alternative formulation to

(13) where a number of AL terms are incorporated into the

objective in order to handle the exacting coupling constraints.

We subsequently develop an efficient CCCP algorithm to solve

the AL problem in the inner loop of the PDD algorithm in a

block coordinate descent fashion. Finally, we summarize the

proposed PDD-based joint transceiver design algorithm. The

flow chart of our proposed approach is shown in Fig. 2.

A. Proposed PDD optimization framework

Below, we briefly review the PDD method in a general

framework. Consider the following problem:

(P ) min
x∈X

f(x)

s.t. h(x) = 0,

g(x) ≤ 0.

(15)

where f(x) is a scalar continuously differentiable function

and X ⊆ R
n is a closed convex set. As for constraints,

h(x) ∈ R
p is a vector of p continuously differentiable

functions, and g(x) ∈ R
q is a vector of q differentiable but

possibly nonconvex functions. In order to handle the equality
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max
F,W,V,U1,U2

K∑

k=1

log

(

1 +
|ĥH

k U2WU1GVfk|2
∑K

j 6=k |ĥH
k U2WU1GVfj |2 + σ2

R‖hH
k U2WU1‖2 +Nk

)

(13a)

s.t. ‖HRU2WU1GVF‖2 + σ2
R‖HRU2WU1‖2 ≤ Pth, (13b)

‖VF‖2 ≤ P1, (13c)

‖U2WU1GVF‖2 + σ2
R‖U2WU1‖2 ≤ P2, (13d)

log

(

1 +
|ĥH

k U2WU1GVfk|2
∑K

j 6=k |ĥH
k U2WU1GVfj |2 + σ2

R‖ĥH
k U2WU1‖2 +Nk

)

≥ γk, ∀k, (13e)

|V(i, j)| = 1, |U1(i, j)| = 1, |U2(i, j)| = 1, ∀i, j, (13f)

Fig. 2: The flow chart of the proposed PDD-based solution approach.

constraints, the PDD method aims for solving the following

AL problem:

(P̺,λ) min
x∈X
L(x) , f(x) + λ

Th(x) +
1

2̺
‖h(x)‖2

= f(x) +
1

2̺
‖h(x) + ̺λ‖2

s.t. g(x) ≤ 0,
(16)

where L(x) is the AL function with scalar penalty parameter

̺ > 0 and dual variable λ. In particular, when ̺→∞, solving

the above problem yields an identical solution to problem (15)

[30]. The PDD method is a double-loop algorithm, where the

inner loop solves the AL problem (16) via a block coordinate

descent method while the outer loop updates the penalty

parameter ̺ or the dual variable λ according to the constraint

violation. The PDD algorithm is summarized in Algorithm 1,

where the inner loop is subsumed by the “optimize” function

in Step 2. A detailed discussion about the convergence and

optimality properties of this algorithm can be found in [26],

[27]. In particular, it can be shown that under appropriate

conditions, the sequence of iterates xr generated by the PDD

method converges to a KKT (stationary) point of the original

problem3.

Algorithm 1 PDD algorithm for problem (15)

0. initialize x0 ∈ X , ̺0 > 0, λ0, and set 0 < c < 1, r = 0

1. Repeat

2. xr+1 = optimize(P̺r,λr
,xr) % Solve AL problem

3. if ‖h(xr)‖∞ ≤ ηr

4. λr+1 = λr +
1
̺r
h(xr)

5. ̺r+1 = ̺r

6. else

7. λr+1 = λr

8. ̺r+1 = c̺r

9. end

10. r = r + 1

11. Until some termination criterion is met

3In the absence of better alternative, it is readily seen that this proposed
algorithm is the best choice for solving this optimization problem under study.
Due to the NP-hard nature of the problem, based on existing optimization
techniques, it does not seem possible to provide a quantitative analysis of
the performance gap between the optimal solution and that obtained with the
proposed algorithm. At the present time, ensuring convergence to a stationary
point is the best we can do in terms of convergence analysis for this kind
of constrained optimization problem. The characterization of the performance
gap between the optimal and iterative solutions remains an open problem for
future research.
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B. Problem transformation

We first transform the optimization problem in (13) into an

equivalent yet more tractable form. To this end, let us introduce

the auxiliary variables uk, zk > 0 (k ∈ K), which stand for the

receiver gain and weighting coefficient of user k, respectively.

Using these variables, (13) can be equivalently formulated as

the following weighted MSE minimization problem shown in

(17), in the sense that both problems share the same global

optimal solutions for F, W, V, U1 and U2 under the given

constraints, where γ
′

k , 2γk and ek denotes the MSE of user

k, which can be expressed as

ek , E
[
|ukyk − sk|2

]

= |uk|2




K∑

j=1

|ĥH
k U2WU1GVfj |2 + σ2

R‖ĥH
k U2WU1‖2 +Nk





−
(

ukĥ
H
k U2WU1GVfk + u∗

kf
H
k VHGHUH

1 WHUH
2 ĥk

)

+ 1.

(18)

The detailed proof of the equivalence between (13) and (17)

can be found in Appendix B.

C. Augmented Lagrangian problem

Within the PDD optimization framework the difficulties

posed by the coupling terms in the constraints (13b)-(13e) can

be handled by introducing auxiliary variables and additional

equality constraints. In this way, the original coupling con-

straints can be effectively moved into the objective function of

an AL problem, such that the search variables can be optimized

in a block coordinate descent manner [41]. While auxiliary

variables and equality constraints can be introduced in a

different way, here we make use of the following guidelines,

which based on our experience with the PDD, help to simplify

the solution of the resulting AL problem:

1) The new constraints should not contain coupling terms;

2) It should be possible to jointly optimize (i.e., within one

step of block coordinate descent) the variables appearing

in the same constraint;

3) Each search variable cannot appear in more than one

constraint.

Essentially, rule 1) guarantees that the resulting algorithm

converges to a stationary solution of the original problem; we

note that conventional alternating optimization methods with

coupling constraints cannot guarantee optimality [41]. Rule 2)

prevents that the updating algorithm gets trapped in a deadlock

while updating search variables. Rule 3) makes it possible to

decompose the problem into a number of subproblems, which

can be easily solved either in a closed form or by the Lagrange

multiplier method.

In order to cope with the coupling constraints attached to

problem (17), let us introduce a set of auxiliary variables

and equality constraints. Based on rules 1) and 2), we

introduce auxiliary variables: S, Y and X̃, with equality

constraints S = VF, Y = U2WU1 and X̃ = YGS.

According to rule 3), we introduce auxiliary variables: X,

Ỹ, S̃, Ȳ, X̄ and {X̂k, Ŷk}, with constraints X = X̃,

Ỹ = σRY, S̃ = S, Ȳ = σRHRY, X̄ = HRX,

X̂k = X, and Ŷk = Y (k ∈ K). Problem (17) can

then be equivalently expressed as (19), where Z ,

{uk, zk,F,W,V,U1,U2,S,Y,X, X̃, Ỹ, S̃, Ȳ, X̄, X̂k, Ŷk}
denotes the complete set of variables, ak =
[0, . . . , 0
︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

K−k

]T (with the 1 in the kth position)

is used as a selection vector, and

ẽk ,|uk|2(
K∑

j=1

|ĥH
k Xaj |2 + σ2

R‖ĥH
k Y‖2

+ σ2
e

(
‖X‖2 + σ2

R‖Y‖2) + σ2
k

)

−
(

ukĥ
H
k Xak + u∗

ka
T
kX

H ĥk

)

+ 1.

(20)

Furthermore, we note that constraint (19e) can be viewed

as a difference of convex (DC) functions:

K∑

j 6=k

|ĥH
k X̂kaj |2 + σ2

R‖ĥH
k Ŷk‖2 + σ2

e

(
K∑

j=1

‖X̂kaj‖2 + σ2
R‖Ŷk‖2

)

+ σ2
k −

1

γ
′

k

|ĥH
k X̂kak|2 ≤ 0, ∀k,

(21)

which we seek to transform into a convex constraint. Based

on the CCCP concept [32], [33], by linearizing the term

|ĥH
k X̂kak|2 in the ith iteration around the current point X̂

(i)
k ,

the following approximated convex constraint is obtained:

K∑

j 6=k

|ĥH
k X̂kaj |2 + σ2

R‖ĥH
k Ŷk‖2 + σ2

e

(
K∑

j=1

‖X̂kaj‖2 + σ2
R‖Ŷk‖2

)

+ σ2
k +

1

γ
′

k

|ĥH
k X̂

(i)
k ak|2

− 2

γ
′

k

ℜ{aHk X̂
(i)H
k ĥkĥ

H
k X̂kak} ≤ 0, ∀k.

(22)

We then take all the equality constraints into account

by augmenting the objective function (19a) with Lagrange

multipliers: λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, {λ9,k}, {λ10,k},
and a penalty coefficient ρ. Therefore, by employing the PDD

method discussed in Subsection IV-A, the AL problem can

be formulated as (23). The proposed PDD-based transceiver

design algorithm exhibits a double-loop structure, where the

outer loop updates the dual variables and the penalty parameter

while the inner loop seeks to optimize the primal variables by

solving problem (23).

D. Proposed CCCP algorithm for solving problem (23)

Referring to our discussion in Subsection IV-A, the central

element of the PDD-based algorithm is the inner loop for

solving the AL problem, represented by the optimize

function in the outer loop of Algorithm 1. For the FD

MIMO relay transceiver design under consideration here, the

core AL problem takes the form of (23), as obtained after

the introduction of auxiliary variables and application of the

CCCP. In the following, we focus on solving the corresponding

CCCP problem (23) in a block coordinate descent fashion, in

which we divide the optimization variables into a number of
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min
F,W,U1,U2,V,{uk,zk}

K∑

k=1

zkek − log(zk)

s.t. (13b)− (13d), (13f)

|ĥH
k U2WU1GVfk|2

∑K
j 6=k |ĥH

k U2WU1GVfj |2 + σ2
R‖ĥH

k U2WU1‖2 +Nk

≥ γ
′

k,

(17)

min
Z

K∑

k=1

zkẽk − log(zk) (19a)

s.t. ‖X̄‖2 + ‖Ȳ‖2 ≤ Pth, (19b)

‖S̃‖2 ≤ P1, (19c)

‖X̃‖2 + ‖Ỹ‖2 ≤ P2, (19d)

|ĥH
k X̂kak|2

∑K
j 6=k |ĥH

k X̂kaj |2 + σ2
R |ĥH

k Ŷk‖2 + σ2
e(
∑K

j=1 |X̂kaj‖2 + σ2
R‖Ŷk‖2) + σ2

k

≥ γ
′

k, ∀k, (19e)

S = VF, Y = U2WU1, X̃ = YGS, X̃ = X, Ỹ = σRY, S̃ = S, (19f)

Ȳ = σRHRY, X̄ = HRX, X̂k = X, Ŷk = Y, ∀k, (19g)

|V(i, j)| = 1, |U1(i, j)| = 1, |U2(i, j)| = 1, ∀i, j (19h)

min
Z

K∑

k=1

(zkẽk − log(zk)) +
1

2ρ

(
‖U2WU1 −Y + ρλ1‖2 + ‖VF− S+ ρλ2‖2

+ ‖YGS− X̃+ ρλ3‖2 + ‖HRX− X̄+ ρλ4‖2 + ‖X− X̃+ ρλ5‖2

+ ‖σRHRY − Ȳ + ρλ6‖2 + ‖σRY − Ỹ + ρλ7‖2 + ‖S̃− S+ ρλ8‖2

+
K∑

k=1

(‖X̂k −X+ ρλ9,k‖2 + ‖Ŷk −Y + ρλ10,k‖2)
)

s.t. (19b)− (19d), (22), (19h).

(23)

blocks, such that for each block the corresponding subproblem

can be solved efficiently in closed form. Specifically, we

partition the search variables into four blocks, and for each

block, obtain the solution: the corresponding developments are

presented under Steps 1 to 4 below, respectively.

In Step 1, we optimize {uk}, (X̄, Ȳ), S̃,V,U1, {X̂k, Ŷk}
in parallel by fixing the other variables. Note that in this

case problem (23) can be decomposed into six independent

subproblems.

The first subproblem for uk is an unconstrained quadratic

optimization problem. By examining the first order optimality

condition, we can obtain the solution shown in (24).

The second subproblem with respect to (X̄, Ȳ) is given by

min
Ȳ,X̄

‖HRX− X̄+ ρλ4‖2 + ‖σRHRY − Ȳ + ρλ6‖2

s.t. ‖X̄‖2 + ‖Ȳ‖2 ≤ Pth.
(25)

It is readily seen that (25) is equivalent to the projection of

a point onto a sphere centered at the origin, which admits a

closed-form solution as follows

(X̄, Ȳ) = PΩ1
{ρλ4 +HRX, ρλ6 + σRHRY}, (26)

where Ω1 , ‖X̄‖2 + ‖Ȳ‖2 ≤ Pth.

Similarly, the third subproblem with respect to S̃ can be

solved with the aid of projection, with solution given by

S̃ = PΩ2
{S− ρλ8}, (27)

where Ω2 , {S̃|‖S̃‖2 ≤ P1}.
The fourth subproblem with respect to V is given by

min
|V(i,j)|=1

‖VF− S+ ρλ2‖2. (28)

By appropriate rearrangement, it can be equivalently formu-

lated as

min
|V(i,j)|=1

Tr(VHVCV )− 2ℜ{Tr(VHBV )} (29)

where CV , FFH and BV , (S − ρλ2)F
H . Since the

unit modulus constraints are separable, we can use the one-

iteration block coordinate descent type algorithm presented in

the Appendix of [28] to solve problem (29).
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uk =
xH
k ĥk

∑K
j=1 |ĥH

k xj |2 + σ2
R‖ĥH

k Y‖2 + σ2
e (‖X‖2 + σ2

R‖Y‖2) + σ2
k

, ∀k. (24)

Similarly, the fifth subproblem with respect to U1 is given

by

min
|U1(i,j)|=1

‖U2WU1 −Y + ρλ1‖2. (30)

Proceeding as in (28), (29), it can be equivalently formulated

as

min
|U1(i,j)|=1

Tr(UH
1 AU1

U1)− 2ℜ{Tr(UH
1 BU1

)}, (31)

where AU1
, WHUH

2 U2W and BU1
, WHUH

2 (Y−ρλ1).
Problem (31) can also be solved based on the method in [28].

The last subproblem with regard to {X̂k, Ŷk}, ∀k, is ex-

pressed as

min
{X̂k,Ŷk}

K∑

k=1

(‖X̂k −X+ ρλ9,k‖2 + ‖Ŷk −Y + ρλ10,k‖2))

s.t. (22).
(32)

We can solve it by applying the method of Lagrange multiplier.

The detailed derivation is shown in Appendix C.

In Step 2, we optimize (X̃, Ỹ), {zk}, U2 and F in

parallel while fixing the other variables. In this case, problem

(23) can be decomposed into four independent unconstrained

subproblems.

The first subproblem with respect to (X̃, Ỹ) can be solved

with the aid of a projection as discussed before, and the

solution is given by

(X̃, Ỹ) = PΩ3
{1
2
(ρλ5 +X+ ρλ3 +YGS), ρλ7 + σRY},

(33)

where Ω3 , {(X̃, Ỹ)|‖X̃‖2 + ‖Ỹ‖2 ≤ P2}.
The second subproblem with respect to zk is given by

min
zk

zkẽk − log(zk). (34)

By examining the first order optimality condition for zk, we

obtain

zk =
1

ẽk
. (35)

The third subproblem with respect to U2 is a quadratic

optimization problem with unit modulus constraints, which is

given by

min
|U2(i,j)|=1

‖U2WU1 −Y + ρλ1‖2. (36)

We can adopt the same method as applied to (29) to solve this

problem.

The fourth subproblem of F can be expressed as

min
F

‖VF− S+ ρλ2‖2. (37)

By applying the first order optimality condition, we obtain the

unique solution for F, which is given by

F = (VHV)−1VH(S− ρλ2). (38)

In Step 3, we optimize X and Y in parallel by fixing

the remaining variables. In this case, problem (23) can be

decomposed into two independent unconstrained subproblems.

The subproblem with respect to X is given in (39). In this

case, the first order optimality condition yields

X = (
K∑

k=1

zk|uk|2(ĥkĥ
H
k + σ2

eI)

+
1

2ρ
(HH

RHR + (K + 1)I))−1M,

(40)

where M ,
∑K

k=1 zku
∗
kĥka

T
k +

1
2ρ

(

HH
R (X̄− ρλ4) + X̃− ρλ5 +

∑K
k=1(ρλ9,k + X̂k)

)

.

The subproblem with respect to Y is given in (41). By

vectorizing Y and applying the first order optimality condition,

we obtain

vec(Y) = P−1q (42)

where

P = 2ρ

K∑

k=1

zk|uk|2σ2
R

(

I⊗ ĥkĥ
H
k + σ2

eI
)

+ (σ2
R +K + 1)I+ σ2

RI⊗HH
RHR + (GSSHGH)T ⊗ I,

(43)

q =vec (U2WU1 + ρλ1) + vec
(

(X̃− ρλ3)S
HGH

)

+ σRvec
(
HH

R (Ȳ − ρλ6)
)
+ σRvec

(

Ỹ − ρλ7

)

+

K∑

k=1

vec
(

ρλ10,k + Ŷk

)

.

(44)

In Step 4, we optimize S and W in parallel by fixing the

remaining variables.

The corresponding unconstrained subproblem for S is given

by

min
S

‖VF−S+ρλ2‖2+‖YGS− X̃+ρλ3‖2+‖S̃−S+ρλ8‖2.
(45)

By examining the first order optimality condition, we obtain

the optimal value of S as

S =
(
2I+GHYHYG

)−1

×
(

ρλ2 +VF+GHYH(X̃− ρλ3) + S̃+ ρλ8

)

.

(46)

The second subproblem with regard to W is given by

min
W

‖U2WU1 −Y + ρλ1‖2. (47)

By vectorizing W and examining the first order optimality

condition, we obtain the following solution

vec(W) =
(
(U1U

H
1 )T ⊗UH

2 U2

)−1
vec
(
UH

2 (Y − ρλ1)U
H
1

)
.

(48)
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min
X

K∑

k=1

zk

(

|uk|2(‖ĥH
k X‖2 + σ2

e‖X‖2)− (ukĥ
H
k Xak + u∗

ka
T
kX

H ĥk)
)

+
1

2ρ

(

‖HRX− X̄+ ρλ4‖2 + ‖X− X̃+ ρλ5‖2 +
K∑

k=1

(‖X̂k −X+ ρλ9,k‖2)
)

.

(39)

min
Y

K∑

k=1

zk|uk|2σ2
R

(

‖ĥH
k Y‖2 + σ2

e‖Y‖2
)

+
1

2ρ

(
‖U2WU1 −Y + ρλ1‖2

+ ‖YGS− X̃+ ρλ3‖2 + ‖σRHRY − Ȳ + ρλ6‖2 + ‖σRY − Ỹ + ρλ7‖2

+

K∑

k=1

‖Ŷk −Y + ρλ10,k‖2
)
.

(41)

In each iteration of the the inner loop of the PDD-based

algorithm (i.e., Step 2 in Algorithm 1), we implement the

above four updating steps according to the block structure of

the optimization variables. The resulting algorithm to solve

(23) is summarized under the name of CCCP-based algorithm

in Algorithm 2.

Algorithm 2 Proposed CCCP algorithm in the inner loop

0. Define the tolerance of accuracy ǫ1 and the maximum

number of iterations Nmax. Initialize the algorithm with

a feasible point. Set the iteration number i = 0.

1. Repeat

2. – Update {uk}, (X̄, Ȳ), S̃,V,U1, {X̂k, Ŷk} in Step 1.

3. – Update (X̃, Ỹ), {zk}, U2 and F in Step 2.

4. – Update X and Y in Step 3.

5. – Update S and W in Step 4.

6. – Update the iteration number: i = i+ 1.

7. Until the difference between successive values of the

objective function is less than ǫ1 or the maximum number

of iterations is reached, i.e., i ≥ Nmax.

E. Summary of the proposed PDD-based algorithm

In each iteration of the PDD-based algorithm, after imple-

menting the CCCP optimization algorithm in Algorithm 2, we

adjust the penalty parameter ρ and the dual variables according

to Steps 4–10 in Algorithm 1. Specifically, we decrease the

penalty parameter by updating ρ← cρ, where 0 < c < 1, and

update the dual variables as

λ
m+1
1 = λ

m
1 +

1

ρm
(U2WU1 −Y) ,

λ
m+1
2 = λ

m
2 +

1

ρm
(VF− S) ,

λ
m+1
3 = λ

m
3 +

1

ρm

(

YGS− X̃
)

,

λ
m+1
4 = λ

m
4 +

1

ρm
(
HRX− X̄

)
,

λ
m+1
5 = λ

m
5 +

1

ρm

(

X− X̃
)

,

λ
m+1
6 = λ

m
6 +

1

ρm
(
σRHRY − Ȳ

)
,

λ
m+1
7 = λ

m
7 +

1

ρm

(

σRY − Ỹ
)

,

λ
m+1
8 = λ

m
8 +

1

ρm

(

S̃− S
)

,

λ
m+1
9,k = λ

m
9,k +

1

ρm

(

X̂k −X
)

,

λ
m+1
10,k = λ

m
10,k +

1

ρm

(

Ŷk −Y
)

, k ∈ K.

(49)

We define a constraint violation indicator h as

h =max{‖U2WU1 −Y‖, ‖VF− S‖, ‖YGS− X̃‖,
‖HRX− X̄‖, ‖X− X̃‖, ‖σRHRY − Ȳ‖,
‖σRY − Ỹ‖, ‖S̃− S‖, ‖X̂k −X‖,
‖Ŷk −Y‖, ∀k ∈ K}.

(50)

We terminate the algorithm when h < ǫ2, where ǫ2 denotes the

tolerance of accuracy of the outer loop. Furthermore, based on

the convergence analysis in [26] and the equivalence between

problems (13) and (17), we can conclude that the proposed

PDD-based joint optimization algorithm converges to the set

of stationary solutions of problem (13). To better guide the

reader, the internal structure of the PDD-based algorithm is

exposed in the form of a flow-chart in Fig. 3. In particular,

in the inner loop of the algorithm, the optimized variables

are divided into four blocks, which are updated sequentially.

Within each block however, the variables can be optimized in

parallel.
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Fig. 3: The flow chart exposing the internal structure of the proposed PDD-based algorithm.

V. PRACTICAL DESIGN CONSIDERATIONS

In this section, we first extend the proposed joint hybrid

transceiver design algorithm to the case where finite resolution

phase shifters are employed in the FD mmWave MIMO relay

system. We then present the detailed computational complexity

analysis of the proposed PDD-based algorithms for both cases

of infinite and finite resolution phase shifters.

A. Transceiver design with finite resolution phase shifters

In practice, the mmWave hardware for accurate phase

control could be very expensive. Thus, we need to consider

hybrid beamforming with finite resolution phase shifters, i.e.,

when the set of candidate phases for each phase shifter is

finite.

Let F denote the finite codebook of phases, with cardinality

|F| = 2B , where B denotes the number of bits used to

quantize the phases. The corresponding problem can be for-

mulated as (51). The proposed joint hybrid transceiver design

algorithm introduced in Section IV can be straightforwardly

adapted to the above case with finite phase resolution. The

modification lies strictly in the optimization of V, U1, and

U2 in the subproblems of Step 1 and Step 2, which in each

case amounts to a quadratic optimization with unit modulus

constraint. Therefore, by taking the constraint of finite discrete

phases into account, (28) can be reformulated as

min
V(i,j)∈F

Tr(VHVCV )− 2ℜ{Tr(VHBV )}, (52)

where we take the optimization of V as an example. Problem

(52) can be tackled by using the one-iteration block coordi-

nate descent type algorithm with one-dimensional exhaustive

search over F [28].

B. Computational complexity

In the following, we analyze the computational complexity

of the proposed PDD-based joint hybrid transceiver design

algorithm, where the number of complex multiplications is

used as a measure of complexity. We first focus our attention

on the computational complexity of updating (X̂k, Ŷk), ∀k
and W in Step 1 and Step 4, respectively, of the algorithm

introduced in Subsection IV-D. For the subproblem with

respect to (X̂k, Ŷk), ∀k, since ak ĥk, λ9,k and λ10,k are

invariant in the optimization, we can precalculate the cor-

responding terms such as (aja
T
j ) ⊗ ĥkĥ

H
k . Notwithstanding

the computation of these constant terms, the complexity of

this subproblem is dominated by the matrix inversion and the

bisection method used to search the Lagrangian parameter vk.

The number of iterations for the latter is log2(
θ0,s
θs

), where

θ0,s is the initial interval size and θs is the tolerance. The

calculation of X̂k and Ŷk involves the inverse of a matrix

based on Gauss-Jordan elimination, with complexity4 O
(
N3

r

)
.

Hence, the overall complexity of updating (X̂k, Ŷk), ∀k is

O
(

N3
r + log2(

θ0,s
θs

)
)

. For the subproblem with respect to

W, the computational complexity is dominated by the matrix

operations in (48), and is given by O(N6
RF ) +O(NRFN

2
r ).

By following similar steps as in the above analysis for the

subproblems with respect to (X̂k, Ŷk), ∀k and W, we can ob-

tain the computational complexity for the other subproblems,

as summarized in Table I. In addition, note that the proposed

one-iteration block coordinate descent type algorithm shown in

[28] has a complexity of O(n2), where n denotes the number

of input variables. Therefore, by retaining dominant terms the

4Due to the block diagonal structure of matrix Jx(vk) (see (66) in

Appendix C), the computation of X̂k can be decomposed into K parallel
components, which requires O

(

N3
r

)

complexity.



11

max
F,W,V,U1,U2

K∑

k=1

log

(

1 +
|ĥH

k U2WU1GVfk|2
∑K

k
′ 6=k |ĥH

k U2WU1GVfk′ |2 + σ2
R‖hH

k U2WU1‖2 +Nk

)

(51a)

s.t. (13b)− (13e) (51b)

V(i, j) ∈ F , U1(i, j) ∈ F , U2(i, j) ∈ F , ∀i, j. (51c)

overall complexity of the proposed joint hybrid transceiver

design is

O
(

I1I2

(

N3
r + log2(

θ0,s
θs

) + (NRFNr)
2 +N6

RF

))

, (53)

where I1 and I2 denote the maximum number of iterations

for the outer and inner loops, respectively. Similarly, we can

find that the computational complexity of the proposed design

algorithm with finite resolution phase shifters is

O
(

I1I2

(

N3
r + log2(

θ0,s
θs

) + (NRFNr + 2B)NRFNr +N6
RF

))

.

(54)

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-

posed PDD-based joint hybrid transceiver design algorithm

for mmWave FD MIMO relay systems by means of computer

simulations.

In the simulations, we employ a widely used mmWave chan-

nel model with uniform linear antenna array configuration, as

in e.g., [43]–[46]. Specifically, based on the Saleh-Valenzuela

model [47], [48], the channel matrix between the BS and RS5

can be expressed as

G =
√

MtMrLp

Lp∑

l=1

αlar(θ
r
l )at(θ

t
l ) (55)

where Lp is the number of distinguishable paths, αl ∼
CN (0, 1) is the complex gain of the l-th path, ar(θ

r
l ) and

at(θ
t
l ) are the receive and transmit array response vectors,

where θrl ∈ [0, 2π) and θtl ∈ [0, 2π) are the azimuth angles

of arrival and departure (AoAs and AoDs), respectively. The

generic expression for the response vector is given by

a(θ) =
1√
M

[1, ejkodaπ sin(θ), . . . , ejkoda(M−1)π sin(θ)]T

(56)

where ko = 2π/λo, λo is the wavelength at the operating

frequency and da is the antenna spacing. The SI channel matrix

HR is generated based on the model described in [49].

We set the desired per user transmission rate in (13e) to

γk = 0.6 bits per channel use. We assume that the BS and

the RS are equipped with the same number of RF chains, i.e.,

R1 = R2 , NRF . The input SNR at the relay is defined as

SNR1 , P2

Nrσ2
r

while the SNR at the destination is defined

as SNR2 , P1

Kσ2

k

. In the simulations, we let SNR1 = 15 dB

and vary SNR2 for simplicity. All the results are obtained

5Here we provide the detailed mmWave channel matrix G of the link
between the BS and the RS, while the channel matrix H between the BS and
the users can be obtained similarly.
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Fig. 4: (a) Sum rate and (b) constraint violation versus the

number of iterations for the proposed PDD-based joint hybrid

transceiver design algorithm.

by averaging over 1000 independent Monte Carlo runs. The

tolerance parameters for the proposed algorithm are chosen as

ǫ1 = ǫ2 = 10−4 while Nmax = 400. The parameter c in the

PDD outer loop (see Algorithm 1) is set to c = 0.95. We

consider different variations of the proposed design algorithm

as well as other benchmark approaches, as indicated by the

following terminology:

• PDD: The proposed PDD-based joint hybrid transceiver

design algorithm.

• B bits: The proposed algorithm with finite resolution

phase shifters employing B bits, i.e., with a finite code-

book of size6 2B .

• B = ∞: The transceiver design with infinite resolution

phase shifters, i.e. without considering phase quantiza-

tion.

• FD: Full-duplex mode of operation.

• HD: Half-duplex mode of operation.

• Robust: The proposed PDD-based design relying on

worst-case sum rate maximization.

• Nonrobust: The PDD-based design without taking the

CSI errors into account.

Let us first study the convergence of the proposed PDD-

based robust joint hybrid transceiver algorithm versus the

number of outer iterations. Here, we set Nt = 8, Nr = 16,

NRF = 4, K = 3, σ2
e = 0.04 and SNR2 = 10 dB. In Fig. 4

(a), we show the sum rate performance versus the number

of iterations for the proposed algorithm, which is seen to

6The available phase values are uniformly distributed around the unit circle.
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TABLE I: Complexity analysis of the proposed CCCP algorithm in the inner loop

Subproblem Complexity

Step 1

{uk} O(N2
r )

(X̄, Ȳ) O(N3
r )

S̃ O(NtK)
V O((NRFNt)2)

U1 O((NRFNr)2)

{X̂k, Ŷk} O
(

N3
r + log

2
(
θ0,s

θs
)
)

Step 2

(X̃, Ỹ) O(N2
rNt)

{zk} O(N2
r )

U2 O((NRFNr)2)
F O(N2

RF
Nt)

Step 3
X O(N3

r )
Y O(N3

r )

Step 4
S O(N3

t
)

W O(N6

RF
) +O(NRFN2

r )
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Fig. 5: Comparison of sum rate performance versus SNR for

the proposed robust and nonrobust joint hybrid transceiver

design algorithms.

convergence within less than 200 iterations.7 Fig. 4 (b) shows

the corresponding value of the constraint violation indicator,

i.e., penalty term (50), versus the iteration number. We find

that the penalty terms decrease to a value below 10−6 after 200
iterations, which supports our claim that the proposed PDD-

based algorithm can effectively tackle the equality constraints.

Next, we investigate the robustness of the proposed PDD-

based joint hybrid transceiver design against CSI errors. The

PDD-based joint design without taking CSI errors into account

is also implemented for comparison. Fig. 5 shows the sum

rate performance of these schemes versus SNR2, where we

set Nt = 8, Nr = 16, NRF = 4 and K = 3. From the

results, we can see that the proposed robust joint transceiver

design outperforms its nonrobust counterpart by a significant

margin, where the performance degradation of the nonrobust

design is due to the CSI mismatch. These results demonstrate

the effectiveness of the proposed design approach based on

7Due to the parameter adjustment in the outer loop of the proposed PDD-
based algorithm, the value of the objective function at each iteration does not
change monotonically. However, the proposed algorithm does converge to a
stationary solution of the original problem, and the equality constraints are
guaranteed.
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Fig. 6: Sum rate performance versus the number of RF chains

for the proposed PDD-based FD and conventional HD design

algorithms.

the worst-case sum rate maximization, as a means to handle

CSI errors. In particular, the performance gain with the robust

design increases with the variance of the CSI errors. The

performance of the perfect CSI case is provided as an upper

bound reference.

Fig. 6 shows the sum rate performance versus the number

of RF chains for the proposed robust joint transceiver design

for FD mmWave relaying versus the conventional transceiver

design for HD mmWave relaying, as per [7], [24], [25]. For

these experiments we set σ2
e = 0.04, Nt = Nr = 16, K = 3

and SNR2 = 5 dB. In Fig. 6, we can see that the sum

rate performance of the proposed FD and conventional HD

designs increases with the number of RF chains increases.

However, compared to the proposed FD scheme, the conven-

tional scheme suffers from a significant performance loss due

to the HD operation. The performance of the HD scheme

does not increase as dramatically as that of the proposed

FD algorithm, we here consider the scenario with a small

number of users and the performance gain of the proposed

FD algorithm compared to the conventional HD algorithm

is almost doubled with the increasing of the number of RF

chains. The performance of the fully digital FD scheme is



13

SNR (dB)

0 2 4 6 8 10 12 14 16 18 20

S
u

m
 r

a
te

 (
b

it
s
 p

e
r 

c
h

a
n

n
e

l 
u

s
e

)

4

6

8

10

12

14

16

18

20

22

Fully digital FD

PDD FD (N
RF

=8)

PDD FD (N
RF

=4)

Separate design FD (N
RF

=8)

Separate design FD (N
RF

=4)

Conventional HD (N
RF

=8)

Conventional HD (N
RF

=4)

Fig. 7: Sum rate performance versus SNR2 for the proposed

FD and conventional algorithms.

provided as a reference. In Fig. 7, we show the sum rate

performance as a function of SNR2 for the proposed FD

joint hybrid transceiver design, the FD separate transceiver

design8 and the conventional HD scheme, where we set

Nt = 8, Nr = 16 and K = 3. The performance of the fully

digital transceiver is provided as a reference. It is observed

that the fully digital scheme achieves the best performance,

followed by the proposed FD joint transceiver design, the FD

separate transceiver design, and the conventional HD scheme.

In particular, thanks to the FD operation of the proposed

algorithm, the sum rate performance is approximately doubled

compared to the HD scheme. Since we jointly optimize the

analog and digital beamforming matrices and the proposed

algorithm can converge to a stationary solution of the original

problem, the performance of the FD algorithm is much better

than that of the heuristic separate design. Fig. 8 shows the

sum rate performance versus SNR2 for the case of large-scale

antenna arrays, where we set Nt = Nr = 64, NRF = 8 and

K = 3. From the results, we note that the proposed design

achieves the best performance amongst the systems using a

reduced number of RF chains, and this by a significant margin.

In the following, we focus on the performance of the

proposed robust FD joint hybrid transceiver design with finite

resolution phase shifters, where the PDD-based algorithm in-

troduced in Section IV is modified as explained in Subsection

V-A. Fig. 9 shows the convergence behavior of this algorithm

using B = 6 bits for phase quantization, where we set Nt = 8,

Nr = 16, NRF = 4, K = 3, σ2
e = 0.04 and SNR2 = 10dB.

In particular, Fig. 9 (a) and Fig. 9 (b) illustrate the sum

rate and constraint violation versus the number of iterations,

respectively. In this case, the proposed algorithm converges

within 300 iterations, while the penalty term decreases to a

value below 10−4. Fig. 10 depicts the sum rate performance

versus SNR2 for the proposed algorithm with finite resolution

phase shifters for different numbers of quantization bits, i.e.,

8For the separate design, the analog beamforming matrices are determined
by using the channel matching method and the baseband beamforming
matrices are optimized based on the proposed PDD-based algorithm.
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Fig. 8: Sum rate performance versus SNR2 for the proposed

FD and conventional algorithms in the case of large-scale

antenna arrays.
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Fig. 9: (a) Sum rate and (b) constraint violation versus the

number of iterations for the proposed joint hybrid transceiver

design with finite resolution phase shifters (B = 6 bits).
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B = 4, 6, and 8. In this simulation, we set Nt = 8, Nr = 16,

NRF = 4, K = 3 and σ2
e = 0.04, while the performance of

the proposed FD joint hybrid transceiver design with infinite

resolution phase shifters is provided as a reference. We first

note that due to the finite resolution of phase shifters, the sum

rate performance degrades monotonically when the number B
of quantization bits is reduced, allowing a trade-off between

complexity and transmit power. For instance, for a sum rate

level of 18 bits per channel use, the proposed algorithm with

B = 8 bits can save up to 4 dB in transmit power when

compared to that with B = 4 bits. We also observe that

the performance of the proposed PDD-based algorithm with

finite resolution phase shifters nearly achieves that of the

infinite resolution phase shifters for B = 8 quantization bits,

which demonstrates the effectiveness of the proposed design

algorithm in practice.

VII. CONCLUSIONS

In this paper, we have investigated the robust joint hybrid

beamforming design for a multiuser mmWave FD relay sys-

tem. To tackle this challenging problem, where the design vari-

ables are highly coupled through the objective and constraint

functions, a novel PDD-based algorithm has been proposed

to jointly optimize the BS digital and analog beamforming

matrices, the RS receive and transmit analog beamforming

matrices, and the RS digital AF beamforming matrix under

the transmit power constraints, the residual self-interference

power constraint at the RS, the per user QoS constraint, along

with the unit modulus constraints on the elements of analog

beamforming matrices. The proposed PDD-based algorithm

performs double-loop iterations: the inner loop update the

optimization variables in a block coordinate descent fashion;

while the outer loop adjusts the Lagrange multipliers and

penalty parameter. The convergence of the proposed PDD-

based algorithm has been discussed, along with its extension

to the case of finite resolution phase shifters. A detailed

computational complexity analysis was also provided. Our

simulation results have demonstrated that the proposed PDD-

based algorithm for robust joint design of hybrid FD relay

systems can achieve better performance than the conventional

hybrid beamforming algorithms.

APPENDIX A

DERIVATION OF (12)

The Woodbury matrix identity is given by [50]

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,
(57)

where A, B, C and D denote matrices of appropriate di-

mensions. Let us assign A ← I, B ← ĥk, C ← Υ−1
k and

D← hH
k Qk, then by using (57), we have

I− ĥkĥ
H
k Qk

ĥH
k Qkĥk +Υk

=

(

I+
ĥkĥ

H
k Qk

Υk

)−1

. (58)

Therefore, the left hand side (LHS) of (10) can be rewritten

as

1

2
logdet

(

2πeQk

(

I− ĥkĥ
H
k Qk

ĥH
k Qkĥk +Υk

))

=
1

2
log det

(

2πeQk

(

I+
ĥkĥ

H
k Qk

Υk

)−1)

.

=
1

2
log det

(

2πeQk

)

− 1

2
log det

(

I+
ĥkĥ

H
k Qk

Υk

)

.

(59)

Using (59) and invoking the identity det(I+AB) = det(I+
BA), (10) can be rewritten as

H(pk|yk, Ĥ) ≤ 1

2
log det

(

2πeQk

(

I− ĥkĥ
H
k Qk

ĥH
k Qkĥk +Υk

))

=
1

2
log det

(

2πeQk

)

− 1

2
log det

(

1 +
ĥH
k Qkĥk

Υk

)

.

(60)

Finally, substituting (60) into (8) yields

H(pk; yk|Ĥ) ≥ 1

2
log

(

1 +
|ĥH

k U2WU1GVfk|2
Υk

)

. (61)

APPENDIX B

PROOF OF EQUIVALENCE BETWEEN (13) AND (17)

Note that uk and zk only appear in the objective function

of (17). Hence, by fixing the other variables, the optimum uk

for minimizing (17) is given in (62). It can be seen that the

objective function of (17) is convex with respect to zk when

fixing the other variables. Hence, the optimum zk in (17) can

be obtained based on the first order optimality condition as

follows,

zk = e−1
k , ∀k. (63)

By substituting (62) and (63) in (17), we have the equivalent

optimization problem shown in (64). It is readily seen that

(64c) is equivalent to (13e). Finally, we obtain problem (13).

This completes the proof.

APPENDIX C

SOLUTION TO PROBLEM (32)

Note that (32) can be solved in closed form based on

the Lagrange multipliers method. By attaching a Lagrange

multiplier vk to constraint (22), we then obtain the following

Lagrange function

L(X̂k, Ŷk, vk) ,

K∑

k=1

(‖X̂k −X+ ρλ9,k‖2 + ‖Ŷk −Y + ρλ10,k‖2))

+ vk(

K∑

j 6=k

|ĥH
k X̂kaj |2 + σ2

R‖ĥH
k Ŷk‖2

+ σ2
e

(
K∑

j=1

‖X̂kaj‖2 + σ2
R‖Ŷk‖2

)
+ σ2

k

+
1

γ
′

k

|ĥH
k X̂

(i)
k ak|2 −

2

γ
′

k

ℜ{aHk X̂
(i)H
k ĥkĥ

H
k X̂kak})
(65)
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uk =
fHk VHGHUH

1 WHUH
2 ĥk

∑K
j=1 |ĥH

k U2WU1GVfj |2 + σ2
R‖ĥH

k U2WU1‖2 +Nk

, ∀k. (62)

max
F,W,U1,U2,V

K∑

k=1

log

(

1 +
|ĥH

k U2WU1GVfk|2
∑K

k
′ 6=k |ĥH

k U2WU1GVfk′ |2 + σ2
R‖hH

k U2WU1‖2 +Nk

)

(64a)

s.t. (13b)− (13d), (13f) (64b)

|ĥH
k U2WU1GVfk|2

∑K
j 6=1 |ĥH

k U2WU1GVfj |2 + σ2
R‖ĥH

k U2WU1‖2 +Nk

≥ γ
′

k. (64c)

By vectorizing X̂k and examining the first order optimality

condition of L(X̂k, Ŷk, vk) with respect to vec(X̂k(vk)), we

obtain

vec(X̂k(vk)) = Jx(vk)
−1rx(vk), (66)

where Jx(vk) , I+ vk
(∑K

j 6=k(aja
T
j )⊗ (ĥkĥ

H
k ) + σ2

eI
)

and

rx(vk) , vec(X− ρλ9,k + vk

γ
′

k

vec(ĥkĥ
H
k X̂

(i)
k aka

T
k )).

By examining the first order optimality condition of

L(X̂k, Ŷk, vk) with respect to Ŷk, we have

Ŷk(vk) = Jy(vk)
−1Ry, (67)

where Jy(vk) , I+vkσ
2
R(ĥkĥ

H
k +σ2

eI) and Ry , Y−ρλ10,k.

The optimal multiplier vk should be determined such that

the complementarity slackness condition of the constraint is

satisfied.

Let us define

Pk(X̂k, Ŷk) ,

K∑

j 6=k

|ĥH
k X̂kaj |2 + σ2

R‖ĥH
k Ŷk‖2

+ σ2
e

(
K∑

j=1

‖X̂kaj‖2 + σ2
R‖Ŷk‖2

)
+ σ2

k

+
1

γ
′

k

|ĥH
k X̂

(i)
k ak|2 −

2

γ
′

k

ℜ{aHk X̂
(i)H
k ĥkĥ

H
k X̂kak}.
(68)

When Pk(X̂k(0), Ŷk(0)) ≤ 0, we have the optimal X̂k =
X̂k(0) and Ŷk = Ŷk(0), otherwise we must have

Pk(X̂k(vk), Ŷk(vk)) = 0, which results in the following

equation:

rx(vk)
HJx(vk)

−1ŨJx(vk)
−1rx(vk)

+ Tr(RH
y Jy(vk)

−1ÛJy(vk)
−1Ry)

− 1

γ
′

k

(
qH
k Jx(vk)

−1rx(vk) + rx(vk)
HJx(vk)

−1qk

)

+ tk = 0,
(69)

where Ũ ,
∑K

j 6=k(aja
T
j )⊗ (ĥkĥ

H
k )+σ2

eI, Û , σ2
R(ĥkĥ

H
k +

σ2
eI), qk , ĥkĥ

H
k X̂

(i)
k aka

T
k and tk , σ2

k + 1
γ
′

k

|ĥH
k X̂

(i)
k ak|2.

Furthermore, (69) is equivalent to

Tr
(
Jx(vk)

−1ŨJx(vk)
−1rx(vk)rx(vk)

H
)

+Tr
(
Jy(vk)

−1ÛJy(vk)
−1RyR

H
y

)

− Tr
( 1

γ
′

k

(Jx(vk)
−1rx(vk)q

H
k

+ Jx(vk)
−1qkrx(vk)

H)
)
+ tk = 0.

(70)

Due to the fact that

Jx(vk) = I+ vkŨ = Ũ
1

2 (Ũ−1 + vkI)Ũ
1

2 , (71)

Jy(vk) = I+ vkÛ = Û
1

2 (Û−1 + vkI)Û
1

2 , (72)

(70) can be rewritten as

Tr
(
(Ũ−1 + vkI)

−2Ũ− 1

2 r(̂vk)r(̂vk)
HŨ− 1

2

)

+Tr
(
(Û−1 + vkI)

−2Û− 1

2RyR
H
y Û− 1

2

)

− Tr
( 1

γ
′

k

((Ũ−1 + vkI)
−1Ũ− 1

2 (rx(vk)q
H
k

+ qkrx(vk)
H)Ũ− 1

2 )
)
+ tk = 0.

(73)

Finally, (73) can be equivalently expressed as

KNr∑

i=1

di(vk)

(si + vk)2
+

Nr∑

i=1

d̃i
(s̃i + vk)2

− 1

γ
′

k

N2

r∑

i=1

gi(vk)

si + vk
+ tk = 0,

(74)

where

di(vk) = [ṼHŨ− 1

2 rx(vk)rx(vk)
HŨ− 1

2 Ṽ]i,i,

d̃i = [V̂HÛ− 1

2RyR
H
y Û− 1

2 V̂]i,i,

gi(vk) = [ṼHŨ− 1

2 (r(vk)q
H
k + qkr(vk)

H)Ũ− 1

2 Ṽ]i,i.

(75)

Here, Ṽ denotes a unitary matrix consisting of the eigenvec-

tors of Ũ−1, V̂ denotes a unitary matrix consisting of the

eigenvectors of Û−1, and si denotes the corresponding eigen-

values of Ũ−1, so that Ũ−1 = ṼHdiag{s1, s2, . . . , sKNr
}Ṽ,

and s̃i denotes the corresponding eigenvalues of Û−1, so that

Û−1 = V̂Hdiag{s̃1, s̃2, . . . , s̃Nr
}V̂. Note that the optimal

vk must be positive, hence (74) can be solved using a one

dimensional search. Finally, by substituting the optimal vk in

(66) and (67), we obtain the solution for {X̂k, Ŷk}.
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