
1

Stochastic Control of Computation Offloading to a

Helper with a Dynamically Loaded CPU

Yunzheng Tao, Changsheng You, Ping Zhang, and Kaibin Huang

Abstract

Due to densification of wireless networks, there exist abundance of idling computation resources at

(network) edge devices (e.g., access points and handheld computers). These resources can be scavenged

by offloading heavy computation tasks from small IoT devices (e.g., sensors and wearable computing

devices) in proximity, thereby overcoming their limitations and lengthening their battery lives. However,

unlike dedicated servers, the spare resources offered by edge helpers are random and intermittent. Thus,

it is essential for a user (IoT device) to intelligently control the amounts of data for offloading and local

computing so as to ensure a computation task can be finished in time consuming minimum energy.

In this paper, we design energy-efficient control policies in a computation offloading system with a

random channel and a helper with a dynamically loaded CPU (due to the primary service). Specifically,

the policy adopted by the helper aims at determining the sizes of offloaded and locally-computed data for

a given task in different slots such that the total energy consumption for transmission and local CPU is

minimized under a task-deadline constraint. As the result, the polices endow an offloading user robustness

against channel-and-helper randomness besides balancing offloading and local computing. By modeling

the channel and helper-CPU as Markov chains, the problem of offloading control is converted into a

Markov-decision process. Though dynamic programming (DP) for numerically solving the problem does

not yield the optimal policies in closed form, we leverage the procedure to quantify the optimal policy

structure and apply the result to design optimal or sub-optimal policies. For different cases ranging from

zero to large buffers, the low-complexity of the policies overcomes the “curse-of-dimensionality” in DP

arising from joint consideration of channel, helper CPU and buffer states.

I. INTRODUCTION

Mobile edge computing has emerged as a promising technology for realizing the vision of

Internet of Things (IoT) by reducing computation latency and energy consumption of IoT devices.

Y. Tao and P. Zhang are with the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts

and Telecommunications, Beijing 100876, China. C. You and K. Huang are with the Department of Electrical and Electronic

Engineering, The University of Hong Kong, Hong Kong. Corresponding author: K. Huang (Email: huangkb@eee.hku.hk).

ar
X

iv
:1

80
2.

10
01

1v
1

 [
cs

.I
T

]
 2

7
Fe

b
20

18

2

These advantages are achieved by mobile-edge computation offloading (MECO), a primary

operation of edge computing, that offloads complex computation from small IoT devices to

nearby edge helpers (or servers) such as access points (APs) and smartphones [1], [2]. Among

edge helpers, while some are dedicated servers, others provide edge computing opportunistically

as a secondary service without affecting their primary functions. For example, the primary

function of a base station is to support radio access and networking and that of a smartphone

is personal computing. In other words, only when not performing the primary function, an

opportunistic helper offers its idling CPU for the intermittent use by an offloading user. Then

from the perspective of an offloading user, an opportunistic helper appears to be one with

a dynamically loaded CPU. The randomness in both the available computing resources and

wireless channel requires a user to adapt the offloading process to the states of the helper and

channel. Specifically, by observing the states, the user should control 1) the size of input-data

for a particular task to be computed in the current slot and 2) its partitioning for computing

“remotely” and “locally”, such that the task can be completed in time with the minimum energy

consumption. In this paper, we study this complex problem of optimal MECO control using

stochastic optimization theory.

A. Prior Works

1) Mobile-edge computation offloading: MECO is a key enabler for a wide range of computation-

intensive and latency-sensitive mobile applications, such as augmented/virtual reality, high-

definition video streaming and online gaming. This drives growing research interests in both the

academia and industry to design efficient computation-offloading systems and techniques [3]–

[7]. For single-user MECO systems, the energy-efficient binary offloading was investigated in

[3] where the CPU-cycle frequency and offloading rates were optimized for reducing the energy

consumption of local computing and offloading, respectively. This work was extended in [4] by

powering MECO with wireless energy. Subsequently, partial offloading allowing more flexible

offloading than binary offloading has been designed for enhancing the performance of energy

savings and latency reduction using diverse techniques such as adaptive program partitioning

[5], [6] and live prefetching based on computation prediction [7]. For multiuser MECO systems,

the radio-and-computational resource management has been intensively investigated [8]–[11].

Specifically, an optimization problem was formulated in [8] to minimize the weighted sum user-

energy consumption. The derived optimal centralized resource-allocation policy is shown to have

3

a simple threshold-based structure. Moreover, the distributed energy-efficient resource-allocation

for multiuser MECO systems was studied in [9], [10] by using game theory and decomposition

techniques, respectively. In addition, an energy-efficient multiuser MECO scheduling policy was

proposed in [11] by assigning different mobiles with diverse levels of priorities based on their

latency requirements. Last, the latency performance of large-scale MECO networks was analyzed

in [12] using stochastic geometry.

Recently, peer-to-peer (P2P) computation offloading between mobile devices has emerged to

be an active research area [13]–[19]. The technology can enhance the computing capabilities

of mobiles by sharing as well as equalizing the uneven distribution of computation workloads

and computation resources over heterogeneous devices. Specifically, an energy-efficient peer

computation offloading framework was proposed in [13], where mobiles cooperatively compute

tasks and share computation results to balance the energy consumption of mobile users. From

the perspective of wireless transmission, P2P computation offloading can be implemented by

device-to-device (D2D) communications [14]–[16]. The interplay between user incentives and

interdependent security risks in D2D offloading was investigated in [17] by leveraging tools from

game theory and epidemic theory. Last, a protocol for helper-assisted computation offloading to

a central cloud was proposed in [18] and designed for maximizing user energy efficiency via

the energy-efficient joint computation-and-communication control.

All of the above prior works assume dedicated helpers or servers (see e.g., [8], [16]). This,

however, overlooks the fact that many helpers in practice are opportunistic since their primary

functions are not edge computing. Recently, computation offloading to an opportunistic helper

was studied in [19] where the user exploits non-causal information on the helper-CPU state

to control offloaded data sizes in different slots. Computation prediction for acquiring such

information may not be accurate in practice and furthermore places an extra burden on the CPU.

In this work, the offloading is controlled instead based on the distribution of the dynamic helper

CPU, as such information can be easily inferred from historical data. The corresponding optimal

control policy can be derived using stochastic optimization theory.

2) Stochastic computation offloading: The stochastic control of MECO has been extensively

studied in the literature targeting a time-varying channel [20]–[26]. In the area of wireless

communications, energy-efficient data transmission over dynamic channels under a deadline

constraint is a classic topic where the optimal policies can be typically computed using dynamic

programming (DP) assuming the Markov-chain channel models (see e.g., [27]). However, for

4

stochastic control of computation offloading, the policy design is more complicated as it requires

the joint control of local computing and offloading (transmission), accounting for different types

of dynamics arising in channels, computation tasks and helper CPUs. The challenge has been

tackled recently by a series of research [20]–[26]. In [20], considering the joint mobile-and-

cloud task scheduling, the problem of optimal offloading control is formulated as a shortest

path problem and solving it reveals the “one-climb” policy structure (i.e., the tasks should only

migrate at most once between the mobile and the cloud). In the presence of random channel and

computation-data arrivals, a stochastic offloading algorithm for controlling offloading decision

and rate was designed in [21] using the approach of Markov decision process (MDP). Accounting

for different task-call graphs, a set of online task offloading algorithms were proposed in [22] to

minimize the completion time for sequential or concurrent tasks. Another line of research assumes

that only the instantaneous information (e.g., random channel, data arrival and renewable energy)

is available at the user and applies the Lyapunov optimization techniques to design the control

policies for controlling computation offloading [23], [24], integrated with the CPU-frequency

control for local computing [25] or server on/off switching [26].

Again, the prior works assume dedicated edge servers and do not consider opportunistic helpers

that widely exist in practice. Accounting for the corresponding randomness in computation

resources in addition to channel dynamics complicates the stochastic offloading control. This

work thus aims to bridge this gap by investigating stochastic offloading control targeting both

dynamic channel and dynamic helper CPU.

B. Contributions

To the best of the authors’ knowledge, this paper represents the first attempt on investigating the

optimal stochastic control of MECO to an opportunistic helper. In particular, the work addresses

two new design issues that are not addressed in the literature focusing on dedicated helpers.

• (Channel-and-helper dual opportunism) The dual opportunism refers to exploiting both

the channel temporal diversity and the random computation resources at the helper for

reducing transmission-energy and computing-latency, respectively. Note that the intermittent

computation resources at the helper can only be utilized in real time but not earlier or

later. Then the offloading control policy should be designed to balance the offloading of

sufficient input-data prior to the availability of random helper CPU and delaying offloading

5

so as to exploit channel temporal diversity. Thus the policy design is more complex than

the conventional ones without helper randomness (see e.g., [14]–[16]).

• (Curse of dimensionality) The second issue is the dramatic increasing in the complexity of

computing offloading control policy due to a larger state space including both the channel,

helper CPU and helper buffer, which is the effect of the well-known curse-of-dimensionality

in stochastic optimization. The problem is even more complicated given an adjustable CPU

frequency for local computing, as considered in the current work. In contrast, given non-

causal information on the helper state, the problem of optimal offloading control in [19] is

a convex problem and much simpler to solve.

To address these issues, we consider an MECO system where a user is assisted by an

opportunistic helper to compute a fixed size of input-data before a deadline. To reduce energy

consumption, the user allocates the data over different slots for computation and furthermore

partitions the per-slot data for local computing with an adjustable local-CPU frequency and

offloading to an opportunistic helper. Both the dynamic channel and helper-CPU states are

modeled as Markov chains. The models allow the approach of transforming the considered

offloading control into stochastic optimization problems. The main results are summarized as

follows.

1) Opportunistic helper without a buffer: First, consider the case where the helper has no buffer

for storing the offloaded data from the user. We formulate a stochastic optimization problem

for minimizing the expected user-energy consumption and derive the optimal offloading

policy for controlling data partitioning (for local computing and offloading) in different

slots. The result shows that, in each slot, both the locally-computed and offloaded data

sizes are proportional to the remaining un-computed data size with the scaling factors

depending on the instantaneous channel and helper-CPU states.

2) Opportunistic helper with a large buffer: Solving the problem of stochastic offloading control

for the case of a large helper buffer is mathematically intractable. To overcome the difficulty,

we derive an approximated function for the expected future user-energy consumption. Based

on this, we propose an effective sub-optimal computation offloading policy, which is shown

to be close-to-optimal in simulations. Interestingly, the resultant policy has the similar

structure as that of zero-buffer counterpart but is much simpler to compute.

3 Opportunistic helper with a small buffer: Last, assume that the helper has a small buffer. The

6

Offloading

Mobile User

Input-data
Local

Computing

Opportunistic Helper

Offloading
Controller

Local (Primary) task

Task Info. & CSI

Opportunistic Offloading

Q

D -bit
Buffer

CPU

Offloading control

Figure 1: Computation offloading system with an opportunistic helper.

introduced buffer constraint renders the derivation for the optimal computation offloading

policies intractable. To address this challenge, we propose a practical offloading control

scheme that switches between two candidate policies for the earlier cases of zero buffer

and large buffer. The switching threshold can be computed by a simple bisection-search.

Despite its simplicity, the proposed scheme achieves close-to-optimality in terms of energy

savings as demonstrated by simulation results.

The rest of this paper is organized as follows. The system models and problem formulation

are presented in Section II and Section III, respectively. The optimal and suboptimal policies for

controlling computation offloading are designed for three cases, namely zero, large and small

buffers, in Sections IV, V, and VI, respectively. Section VII provides simulation results, followed

by concluding remarks in Section VIII.

II. SYSTEM MODEL

Consider an MECO system shown in Fig. 1, consisting of one user and one opportunistic

helper both equipped with a single-antenna. The user is required to compute D-bit input-data

with 1-bit data-size unit before a deadline T , which is divided into K slots, each with a duration

of t0 = T/K. Controlled by the helper, the user allocates data for computing in each slot and

further partitions the data for simultaneous local computing and computation offloading to the

helper. Models are described as follows.

A. helper CPU Model

The opportunistic helper is assumed to operate at a constant frequency. Due to intermit-

tent primary tasks, the helper-CPU states can be modeled by a random process denoted by

7

Idle Busy

111P

11P 00P

001P

(a) Helper-CPU model

Good Bad

1 ggP

ggP bbP

1 bbP

(b) Channel model

Figure 2: Markov-chain models of helper-CPU and channel.

{C1, · · · , CK}. In each slot k, the helper-CPU state ck ∈ C
4
= {0, 1}, where ck = 0 and ck = 1

denote the busy and idle states, respectively.

Assumption 1 (helper CPU Dynamics). As shown in Fig. 2(a), the process of the random

helper-CPU states, {Ck} for k = 1, · · · , K, is a finite-state stationary Markov chain.

This assumption means that for any slot k, the current helper-CPU state Ck only depends on

the previous random state Ck−1 and is independent of the past states {C1, · · · , Ck−2}. Let P00

and P11 denote the busy-to-busy and idle-to-idle transition probabilities, respectively. Then the

busy-to-idle and idle-to-busy transition probabilities, denoted by P01 and P10, are: P01 = 1−P00

and P10 = 1−P11, respectively. Last, the helper is assumed to reserve a Q-bit buffer for storing

the offloaded data before processing in the CPU.

B. Models of Local Computing and Computation Offloading

Let Lk denote the remaining data size for processing at the beginning of slot k. In this slot,

the user offloads u(of)k -bit data to the helper and computes u(lo)k -bit data using its local CPU.

First, consider local computing. Let fk denote the adjustable CPU-cycle frequency of the user

during slot k, and w the number of CPU cycles required for computing 1-bit input-data at the

user. Given a fixed data size for computing in a slot, operating at a constant CPU-cycle frequency

within the slot is most energy-efficient for local computing [28]. Thus the adjustable CPU-cycle

frequency of the user is chosen as fk = wu
(lo)
k /t0. Following the practical model in [29], the

energy consumption of each CPU cycle can be modeled by E(cyc) = γf 2
k , where γ is a constant

depending on the circuit. The energy consumption for local computing during slot k, denoted

by E(lo)
k , follows

(Local-computing energy consumption) E
(lo)
k = wγf 2

ku
(lo)
k = α(u

(lo)
k)3, (1)

8

Modulation Bits/symbol SNR/symbol

2 PAM 1 0.25

4 QAM 2 0.50

16 QAM 4 1.25

64 QAM 6 5.25d2

d2

d2

d2

� � � � � � �
�

�

�

�

�

�

�

� � � � � � � � � � �
 � � 	 �

��
�

�	

�

��
�

� � � 	 � � � � � � � � � �
 �

� � � � � � � � �

Figure 3: Modulation scheme given in the table is considered in [31], where d represents the minimum distance

between signal points and SNR is short for the signal-to-noise ratio. The corresponding plot shows 0.025r3 to the

scaled piecewise linear power-rate curve.

where α = γw3/t20.

Next, consider computation offloading. Let {H1, · · · , HK} denote the random process of the

channel (power) gain between the user and helper. The channel state is modeled by the widely-

used Gilbert-Elliott model (see e.g., [30]), where the channel with the power gain above or below

a given threshold is labeled as “good” or “bad”, with the average channel power gains denoted

by g and b, respectively. Mathematically, hk ∈ H
4
= {g, b}.

Assumption 2 (Channel Dynamics). As shown in Fig. 2(b), the process of the random channel

states, {Hk} for k = 1, · · · , K, is a finite-state stationary Markov chain.

Let Pgg and Pbb denote the transition probability from good-to-good and bad-to-bad respec-

tively, then the transition probabilities from good-to-bad and from bad-to-good, denoted by Pgb

and Pbg, are given as: Pgb = 1 − Pgg and Pbg = 1 − Pbb, respectively. Following the empirical

model in the literature [3], [7], [30], the transmission power in slot k, denoted by pk, can be

modeled by a monomial function with respect to the achievable transmission rate rk (in bits/s):

(Monomial offloading power) pk = λ0
(rk)m

hk
, (2)

where λ0 denotes the energy coefficient incorporating the effects of bandwidth and noise power,

and m is the monomial order determined by the modulation-and-coding scheme. This monomial

order is a positive integer, taking on values in the typical range of 2 ≤ m ≤ 5. Specifically,

considering the coding scheme for the targeted error probability less than 10−6 [31], the monomial

order of (m = 3) can approximate transmission energy consumption as shown in Fig. 3. Then

9

for tractability, the offloading energy consumption in slot k can be modeled by the following

monomial function of the offloaded data size u(of)k :

(Monomial offloading energy consumption) E(of)
k = pkt0 = λ

(u
(of)
k)3

hk
, (3)

where λ = λ0/t
2
0.

C. Model of Opportunistic Computation Offloading

Assume that the random helper CPU and channel states are independent and the helper has

the knowledge of channel-and-CPU distributions as given in Assumption 1 and 2. Using the

user’s information by feedback including the input-data size D, computation deadline T and

local-computing parameters {w, γ}, the helper computes the control policy and then controls the

offloading process so as to minimize user-energy consumption.

Assumption 3 (Causal State Information). The helper has causal information of the helper CPU

and channel state information (CSI), where CSI is obtained by feedback.

The opportunistic computation offloading is elaborated as follows. Consider slot k. At the

beginning of this slot, the user observes the helper CPU and channel states, and makes decisions

on the locally-computed and offloaded data sizes in this slot. The remaining data size in the next

slot, denoted by Lk+1 ∈ L
4
= {1, · · · , D}, evolves as:

(Remaining data size) Lk+1 = Lk − u(of)k − u(lo)k , ∀k = 1, · · · , K − 1, (4)

with L1 = D. For the offloaded data, it is assumed to be first stored in the helper buffer and

then fetched to the helper CPU for computing. Let Qk ∈ Q
4
= {1, · · · , Q} denote the buffered

data size at the beginning of slot k. Assume that the helper CPU has unlimited computation

capacity, such that it can compute all the buffered data if it is idle (not occupied by a primary

task). Mathematically, if ck = 1, it has Qk+1 = 0. Otherwise, if the helper CPU is busy (i.e.,

ck = 0), all the newly-offloaded data is stored in the buffer in the next slot. Then the buffered

data size evolves as follows:

(Buffered data size) Qk+1 =

Qk + u
(of)
k , ck = 0,

0, ck = 1,
∀k = 1, · · · , K − 1, (5)

with Q1 = 0, which can be rewritten as Qk+1 = (Qk + u
(of)
k)(1 − ck). To guarantee that all the

offloaded data is computed by the deadline, we propose a demand-computing scheme as follows.

10

Definition 1 (Demand-Computing). In the last slot K, if the helper CPU is busy, demand-

computing refers to the scheme at the user that receives feedback from the helper on the un-

computed data as offloaded by the user and then computes it completely using the local CPU

by adjusting its frequency.

III. PROBLEM FORMULATION

In this section, the energy-efficient stochastic control of opportunistic computation offloading

is formulated as a finite-horizon MDP problem for minimizing the expected user-energy con-

sumption. Solving the problem yields policies for the helper to control the offloading process.

The formulated problem consists of the following components.

1) State space: Let xk = (x
(C)
k , x

(H)
k , x

(L)
k , x

(Q)
k) denote the system state in each slot k, where

x
(C)
k , x(H)

k , x(L)k and x
(Q)
k redenote the helper-CPU state ck, channel state hk, remaining data

size Lk, and buffered data size Qk, respectively. Then system state space is the product space

X = C ×H × L×Q.

2) Action space: Let uk = (u
(of)
k , u

(lo)
k) denote the action in slot k with u(of)k ≥ 0 and u(lo)k ≥ 0.

The action space is L × L. Given a specific system state xk, the feasible action uk depends on

the state, that is, uk ∈ U(xk) for all xk ∈ X where U(xk) is the space of all feasible actions in

slot k satisfying the following constraints. First, the data constraints require:

(Data constraints) u
(of)
k + u

(lo)
k ≤ x

(L)
k , ∀k = 1, · · · , K − 1. (6)

Next, in the last slot K, the demand-computing enforces the following constraint:

(Demand-computing constraint)

u
(of)
K = 0, u

(lo)
K = x

(L)
K + x

(Q)
K , x

(C)
K = 0,

u
(of)
K + u

(lo)
K = x

(L)
K , x

(C)
K = 1.

(7)

Last, the finite helper buffer leads to:

(Buffer constraints)

u
(of)
k ≤ Q− x(Q)

k , x
(C)
k = 0,

u
(of)
k ≤ x

(L)
k , x

(C)
k = 1,

∀k. (8)

Based on the above discussion, the feasible action space can be summarized as

U(xk) =

{
uk
∣∣ (6), (8), u(of)k ≥ 0, u

(lo)
k ≥ 0

}
, k = 1, · · · , K − 1;{

uk
∣∣ (7), (8), u(of)k ≥ 0, u

(lo)
k ≥ 0

}
, k = K.

(9)

11

3) State transition probability: The state transition probability, denoted by Pr(xk+1|xk, uk), is

the probability that the system will be in the state xk in slot (k+1), given the current state xk and

the action uk. Since x(C)
k , x

(H)
k , x

(L)
k and x

(Q)
k are independent, the controllable state transition

probability can be written as:

Pr(xk+1

∣∣xk, uk) = Pr(x
(C)
k+1

∣∣x(C)
k)× Pr(x

(H)
k+1

∣∣x(H)
k)

× I
[
x
(L)
k+1 = x

(L)
k − u

(of)
k − u(lo)k

]
× I
[
x
(Q)
k+1 = (x

(Q)
k + u

(of)
k)(1− x(C)

k)
]
, ∀ xk+1 ∈ X , (10)

where I[·] denotes the indicator function. According to (4) and (5), the state transition probability

is positive only when x(L)k+1 = x
(L)
k −u

(of)
k −u

(lo)
k and x(Q)

k+1 = (x
(Q)
k +u

(of)
k)(1−x(C)

k), simultaneously,

for which Pr(xk+1

∣∣xk, uk) = Pr(x
(C)
k+1

∣∣x(C)
k)× Pr(x

(H)
k+1

∣∣x(H)
k).

4) Cost function, control rule and policy: The cost function is specified by the function

R(xk, uk), giving the total energy consumption in each slot k:

(Cost function) R(xk, uk) = α(u
(lo)
k)3 + λ

(u
(of)
k)3

x
(H)
k

. (11)

Let the function πk denote the control rule that maps state xk to the action uk = πk(xk) such

that πk(xk) ∈ U(xk). An admissible policy is a sequence of control rules in each slot, π =

{π1, · · · , πK}. The set of all admissible policies is denoted by Π.

Then given any initial state x1, the optimization problem for the minimum expected sum

user-energy consumption can be formulated as:

(P1) min
π∈Π

E

[
K∑
k=1

R(Xk, πk(Xk))

∣∣∣∣x1
]
,

where the expectation is taken with respect to the system state vector Xk = {X1, · · · , XK}.

Denote the minimum expected sum user-energy consumption as J∗(x1). To solve Problem P1,

note that the optimization for πk(xk) in different slots cannot be performed independently, since

the action in slot k affects the system transition probability in subsequent slots [see (10)] and

thus the future energy cost. This difficulty is overcome in the following lemma according to the

Principle of Optimality [32].

Lemma 1 (DP Approach). For any initial state x1 = (x
(C)
1 , x

(H)
1 , D, 0) where x

(C)
1 ∈ C and

x
(H)
1 ∈ H, the minimum expected sum user-energy consumption J∗(x1) is equal to J1(x1), which

can be recursively solved based on the Bellman Equation, starting from JK(xK), JK−1(xK−1) to

J1(x1) by evaluation all possible states in each slot k = 1, · · · , K. Specifically, Jk(xk) denotes

12

the cost-to-go function that gives the minimum expected user-energy cost from slot k to K,

which is defined as:

Jk(xk) =

min

uk∈U(xk)
{R(xk, uk) + E [Jk+1(Xk+1)|xk, uk]} , k < K,

min
uK∈U(xK)

R(xK , uK), k = K,
(12)

where U(xk) is defined in (9). Furthermore, if u∗k = π∗k(xk) is the optimal control rule for solving

(12) for each xk and k, the optimal policy for solving Problem P1 is given by π∗ = {π∗1, · · · , π∗K}.

Denote the problem for deriving J1(x1) [or J∗(x1)] as Problem P2. The resultant optimal

computation-offloading policy for solving Problem P2 can be computed numerically, but the

result yields little insight into the policy structure, which is important for practical policy

computation and design. Thus, we quantify the policy structure and develop low-complexity

schemes for offloading control in the following sections. The analysis involves solving convex

problems using the Lagrange method. For simplicity, we assume in the analysis that data is

continuously divisible, following a common approach in the literature (see e.g., [30]). In practice,

the derived data sizes are rounded to bits.

IV. COMPUTATION OFFLOADING CONTROL: NO HELPER BUFFER

In this section, we derive the optimal offloading-control policy for the case where the helper

has no buffer for storing the offloaded data. To this end, we first derive the optimal computation

offloading policy for the last slot and then build on the result to obtain the optimal policy for

multi-slots.

In this case, due to the zero buffer, the state of buffered data size is x(Q)
k = 0,∀k. Consider

the offloading control in the last slot K given the system state xK . The user can offload partial

data if the helper CPU is idle, but can only perform local computing if the helper CPU is busy.

Thus the problem for JK(xK) can be simplified as follows.

(P3) JK(xK) =

min

uK∈U(xK)

{
α(u

(lo)
K)3 + λ

(u
(of)
K)3

x
(H)
K

}
, x

(C)
K = 1,

α(x
(L)
K)3, x

(C)
K = 0,

where U(xK) is defined in (9), which can be explicitly written as

U(xK) = {uK | u(lo)K ≥ 0, u
(of)
K ≥ 0, u

(lo)
K + u

(of)
K = x

(L)
K }. (13)

13

It is easy to prove that Problem P3 is a convex optimization problem. Applying the Lagrange

method yields the optimal solution given the following lemma.

Lemma 2 (Optimal Control for Last Slot). For the last slot, the optimal locally-computed and

offloaded data sizes u(lo)∗K and u(of)∗K for solving Problem P3 are given by

u
(lo)∗
K =

(
1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)−1
x
(L)
K and u

(of)∗
K =

(
1 +

√
λ

αx
(H)
K

)−1
x
(L)
K x

(C)
K . (14)

The minimum user-energy consumption JK(xK) is

JK(xK) = α(x
(L)
K)3

(
1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)−2
. (15)

Proof: See Appendix A. �

Remark 1 (Channel-Aware Proportional Offloading). Lemma 2 shows that when the helper CPU

is idle, the offloaded data size is proportional to the remaining data size with the scaling factor(
1 +

√
λ/(αx

(H)
K)

)−1
, which is determined by the channel state x

(H)
K . In particular, the user

offloads more data when the channel is in a good state. Moreover, one can observe from (15) that,

compared with no offloading (i.e., only local computing), the current opportunistic offloading

can help reduce user’s energy consumption by the proportional factor
(

1 +

√
αx

(H)
K /λ

)−2
when

the helper CPU is idle.

Lemma 2 gives the minimum energy consumption in the last slot, which is expressed in a

compact form accounting for different system states. This key observation facilitates the stochas-

tic computation offloading policy design. Specially, using Lemma 2 and applying backward

induction for solving Problem P2, the optimal offloading policy can be derived as shown below.

Theorem 1 (Optimal Policy for Multi-Slots). Consider that the helper has no buffer. For k =

1, · · ·K, the optimal computation offloading policy allocates u(of)∗k and u(lo)∗k bits for offloading

and local computing, respectively, which satisfy the following relation:

u
(of)∗
k

u
(lo)∗
k

=

√
α

λ
x
(C)
k

√
x
(H)
k . (16)

Specifically, u(lo)∗k and u(of)∗k are given by:

u
(lo)∗
k =x

(L)
k

1+
1√

Sk(x
(C)
k , x

(H)
k)

+

√
α

λ
x
(C)
k

√
x
(H)
k

−1 and u(of)∗k =

√
α

λ
x
(C)
k

√
x
(H)
k u

(lo)∗
k , (17)

14

where Sk(x
(C)
k , x

(H)
k) is defined as

Sk(x
(C)
k , x

(H)
k)=

∑
x
(C)
k+1∈{0,1}

∑
x
(H)
k+1∈{g,b}

Pr(x
(C)
k+1

∣∣x(C)
k) Pr(x

(H)
k+1

∣∣x(H)
k)

1 +
1√

Sk+1(x
(C)
k+1, x

(H)
k+1)

+

√
α

λ
x
(C)
k+1

√
x
(H)
k+1

−2 , k < K,

∞, k = K.

(18)

The corresponding minimum expected user-energy consumption is

J1(x1) = αD3

1 +
1√

S1(x
(C)
1 , x

(H)
1)

+

√
α

λ
x
(C)
1

√
x
(H)
1

−2 . (19)

Proof: See Appendix B. �

Theorem 1 shows that in each slot, the optimal computation offloading control is not only

determined by the current state xk, but also the future energy cost from slot (k + 1) to K by

the term of Sk(x
(C)
k , x

(H)
k). Specifically, a smaller Sk(x

(C)
k , x

(H)
k) indicates less expected energy

consumption for computing per bit data in future slots. In this case, the user should reduce both

the locally-computed and offloaded data sizes. Moreover, if the helper-CPU state is idle in slot

k, the fraction between the optimal offloaded and locally-computed data sizes is determined by

the channel state. Specifically, u(of)∗k /u
(lo)∗
k =

√
αx

(H)
k /λ. This result implies that given the sum

processed data in one slot, more data should be offloaded if the local-computing complexity is

higher and channel is better, which is aligned with intuition.

Remark 2 (Low-Complexity Algorithm). The computational complexity for the direct DP ap-

proach depends on the dimensions of state space, action space and finite horizon. As the

dimensions of the state space and action space are O(2 × 2 × D) and O(D2), respectively,

the total computational complexity has the order of O(16D2 ×D2 ×K), which is impractical

for large K and D. This curse of dimensionality [32] is overcome by deriving the closed-form

expression for the optimal solution as in Theorem 1, avoiding the exhausted search for the optimal

control in the action space in each slot. Specifically, the optimal control is directly determined by

the observed system state xk and Sk(x
(C)
k , x

(H)
k), which essentially depends on the dimensions of

helper CPU and channel state spaces and the number of slots. Thus the computational complexity

for the proposed algorithm is the complexity for calculating S1(x
(C)
1 , x

(H)
1), which is O (4K)

and much lower than that of the brute-force DP approach.

15

V. COMPUTATION OFFLOADING CONTROL: LARGE HELPER BUFFER

In this section, we consider the design of computation offloading policy for the case where

the helper has a large buffer with a size Q sufficient for storing the maximum offloaded data

D: Q ≥ D. The direct application of iterative DP results in complexity linearly scaling with Q.

To tackle this challenge, a low-complexity policy with close-to-optimality is designed based on

approximating the minimum expected energy cost function and found to have a similar structure

as the zero-buffer counterpart studied in the preceding section.

A. Optimal Policy Computation

In this subsection, we derive the procedure for computing the optimal offloading policy using

DP, which facilitates the low-complexity policy design in the sequel. To begin with, consider

computation offloading in the last slot K. Note that compared with the case of no buffer (see

Section IV), the current case requires an additional constraint that, if the helper CPU is busy

and x
(Q)
K -bit uncomputed data is buffered, the demand-computing requires local computing to

finish all the remaining computation, yielding the energy consumption of α(x
(L)
K +x

(Q)
K)3. Thus,

Problem P3 can be rewritten as

(P4) JK(xK) =

min

uK∈U(xK)

{
α(u

(lo)
K)3 + λ

(u
(of)
K)3

x
(H)
K

}
, x

(C)
K = 1,

α(x
(L)
K + x

(Q)
K)3, x

(C)
K = 0,

where U(xK) is given in (13). Following the same procedure as for solving Problem P3 leads

to the optimal solution to Problem P4 as follows.

Lemma 3 (Optimal Policy for Last Slot). For the K-th slot, the optimal locally-computed and

offloaded data sizes for solving Problem P4 are given by:

u
(lo)∗
K =

(
1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)−1[
x
(L)
K + (1− x(C)

K)x
(Q)
K

]
, (20)

u
(of)∗
K =

(
1 +

√
λ

αx
(H)
K

)−1
x
(C)
K x

(L)
K . (21)

The corresponding minimum user-energy consumption is

JK(xK) = α
[
x
(L)
K + (1− x(C)

K)x
(Q)
K

]3(
1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)−2
. (22)

Comparing Lemma 3 and Lemma 2, we can observe that offloading policies in the last slot

for the two scenarios of large and zero buffers are the same, while the local computing policy

16

for the case of large buffer should compute more data than the zero-buffer counterpart when the

helper CPU is busy, due to the demand-computing constraint.

Though the last-slot policy has a closed form, the optimal multi-slot policy is intractable due

to the helper buffer. Based on DP, the backward iterative computation of the minimum expected

user-energy cost in slot (K − 1) is given as

JK−1(xK−1) = min
uK−1∈U(xK−1)

{R(xK−1, uK−1) + E [JK(XK)|xK−1, uK−1]} , (23)

where the action space U(xK−1) is defined in (9). In particular, using (10) and Lemma 3, the

expected conditional energy cost in slot (K − 1) is obtained as

E[JK(XK)|xK−1, uK−1]

=
∑

x
(C)
K ∈{0,1}

∑
x
(H)
K ∈{g,b}

Pr(x
(C)
K

∣∣x(C)
K−1) Pr(x

(H)
K

∣∣x(H)
K−1)

αF (xK−1, uK−1, x
(C)
K)(

1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)2 , (24)

where the function F (·) is defined as

F (xK−1, uK−1, x
(C)
K)=

[
(x

(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1) + (1− x(C)

K)(1− x(C)
K−1)(x

(Q)
K−1 + u

(of)
K−1)

]3
. (25)

One can observe from (24) and (25) that the total computed data in the last slot depends on

the random helper-CPU state X(C)
K , which, however, is equal to (x

(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1) for the

counterpart of zero buffer. This is due to that for the large buffer, the user can offload data in

slot (K − 1) even when the helper CPU is busy (i.e, x(C)
K−1 = 0) and the buffered data should be

computed locally in the last slot if the helper CPU is busy (i.e, x(C)
K = 0). It is difficult to derive

a closed-form expression for the optimal offloading-control policy for the (K − 1)-th slot. This

is also true for all of the 1 to (K−1)-th slots. Alternatively, computing the optimal policy has to

rely on the numerical method of DP, based on iterations similar to that in (12). The complexity,

however, is high as discussed in the following remark.

Remark 3 (Curse of Dimensionality). The computational complexity for the numerical of DP

is similar to the case of zero buffer. Due the large buffer (i.e., Q > D), the state space of the

buffered data size can be bounded as D. Thus, the dimensions of the state space and action

space are O(2× 2×D2) and O(D2), respectively. Then the total computational complexity for

the optimal policy can be derived as O(16D4×D2×K), which incurs prohibitive computation

complexity if K and D are large.

17

B. Sub-Optimal Policy Design

To address the above complexity issue in computing the optimal policy, we design a tractable

sub-optimal offloading-control policy by approximation the expected future energy-cost function

as follows.

1) Approximate Energy Cost Function: To approximate the expected conditional energy cost

in (24), the function E[JK(XK)|xK−1, uK−1] is firstly bounded as follows.

Lemma 4. The expected conditional energy-cost function, E[JK(XK)|xK−1, uK−1], in (24) can

be lower-bounded as

E[JK(XK)|xK−1, uK−1] ≥ αF̃ (xK−1, uK−1)S(x
(C)
K−1, x

(H)
K−1), (26)

where the two functions F̃ (·) and S(·) are defined as

F̃ (xK−1, uK−1)=
[
(x

(L)
K−1−u

(lo)
K−1−u

(of)
K−1) + V (x

(C)
K−1)(x

(Q)
K−1 + u

(of)
K−1)

]3
, (27)

S(x
(C)
K−1, x

(H)
K−1) =

∑
x
(C)
K ∈C

∑
x
(H)
K ∈H

Pr(x
(C)
K |x

(C)
K−1) Pr(x

(H)
K |x

(H)
K−1)

(√
α

λ
x
(C)
K

√
x
(H)
K + 1

)−2
, (28)

and the function V (·) is defined as

V (x
(C)
K−1) = (1− x(C)

K−1)P00. (29)

The equality in (26) holds if the user has non-causal information of channel and helper-CPU

states.

Proof: See Appendix C. �

It can be observed that the function of F̃ (xK−1, uK−1) in (27) has a similar form with

F (xK−1, uK−1, x
(C)
K) in (25). The key difference is that, (1−x(C)

K−1)(1−x
(C)
K) in (25) is replaced

with V (x
(C)
K−1) in (27), which helps derive the closed-form expression for the lower-bound

of E[JK(XK)|xK−1, uK−1] as shown in (26). Intuitively, V (x
(C)
K−1) can be interpreted as the

conditional probability that the buffered data in slot (K−1) will be locally-computed in slot K.

In particular, if x(C)
K−1 = 1, all the buffered data is computed by the helper within this slot and

thus V (x
(C)
K−1) = 0. On the other hand, if x(C)

K−1 = 0, V (x
(C)
K−1) = P00 showing that the probability

of demand-computing for (x
(Q)
K−1 + u

(of)
K−1)-bit is the conditional busy probability in slot K.

Given the objective of energy minimization, though it is desirable to obtain a tight and tractable

upper bound on the expected energy cost, finding such a bound is difficult. For this reason, we

18

instead approximate the function using its lower bound in Lemma 4 as follows and verify the

close-to-optimality by simulation.

E[JK(XK)|xK−1, uK−1] ≈ αF̃ (xK−1, uK−1)S(x
(C)
K−1, x

(H)
K−1). (30)

The approximate form decomposes the energy-cost function into two product factors, depending

on the state xK−1 and action uK−1. This simplifies the sub-optimal policy design in the sequel.

2) Design Sub-Optimal Offloading-Control Policy: Using (30), the cost-to-go function JK−1(xK−1)

can be approximated as

JK−1(xK−1) ≈ min
uK−1∈U(xK−1)

{
R(xK−1, uK−1) + αF̃ (xK−1, uK−1)S(x

(C)
K−1, x

(H)
K−1)

}
. (31)

Denote the optimization problem in (31) as Problem P5. It can be easily proved that Problem

P5 is convex optimization problem. Applying the Lagrange method yields the optimal solution

for Problem P5, which is also the sub-optimal policy for slot (K − 1).

Lemma 5 (Sub-Optimal Policy for slot (K − 1)). By approximating the expected conditional

energy-cost as in (30), the sub-optimal offloading-control policy for solving the optimization

problem JK−1(xK−1) is:

u
(lo)∗
K−1 =

(
x
(L)
K−1+V (x

(C)
K−1)x

(Q)
K−1

)1+
1√

S(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ

(
1−V (x

(C)
K−1)

) 3
2

√
x
(H)
K−1

−1 , (32)

u
(of)∗
K−1 =

√
α

λ
x
(H)
K−1

(
1− V (x

(C)
K−1)

)
u
(lo)∗
K−1, (33)

where S(x
(C)
K−1, x

(H)
K−1) and V (x

(C)
K−1) are defined in (28) and (29), respectively. The corresponding

minimum expected user-energy consumption is approximated as

JK−1(xK−1) ≈α
(
x
(L)
K−1 + V (x

(C)
K−1)x

(Q)
K−1

)3
1 +

1√
S(x

(C)
K−1, x

(H)
K−1)

+

√
α

λ

(
1− V (x

(C)
K−1)

) 3
2

√
x
(H)
K−1

−2 . (34)

Proof: See Appendix D. �

Remark 4. Computation offloading can potentially save energy when the buffer is sufficient and

the channel is favorable, but it may cause more energy consumption due to demand computing.

Recall that if x(C)
K−1 = 0, V (x

(C)
K−1) represents the conditional probability of the helper-CPU busy

state in slot K. It can be obtained from Lemma 5 that the ratio between u(of)∗K−1 and u(lo)∗K−1 decreases

19

with the increase of V (x
(C)
K−1). This indicates that it is energy efficient to allocate more data for

local computing when the helper CPU is more likely to be busy in slot K. In particular, the user

should not offload data if P00 = 1. Moreover, it can be obtained from (34) that JK−1(xK−1)

monotonically increases with V (x
(C)
K−1), since a larger probability of the helper-CPU busy state

tends to stop input-data offloaded to the helper and thus increases the expected user-energy

consumption.

Note that using (29), the approximated minimum expected user-energy consumption JK−1(xK−1)

in (34) has the similar form as JK(xK) in (22). This suggests that by performing backward

induction, the sub-optimal offloading-control policy in each slot k is expected to have closed-

form expressions similar to (32) and (33) by using the similar approximation techniques as

for deriving (30). To this end, following the similar procedure as for deriving Theorem 1, the

sub-optimal offloading-control policy in each slot k for the large-buffer case can be derived as

follows.

Theorem 2 (Sub-Optimal Policy for Multi-Slots). Given a large buffer (Q ≥ D) at the helper,

for k = 1, 2, . . . , K − 1, the sub-optimal offloading-control policy is given as follows by

approximating the expected conditional energy-cost:

u
(lo)∗
k =

(
x
(L)
k + Vk(x

(C)
k)x

(Q)
k

)1 +
1√

S̃k(x
(C)
k , x

(H)
k)

+

√
α

λ

(
1− Vk(x

(C)
k)
) 3

2

√
x
(H)
k

−1 , (35)

u
(of)∗
k =

√
α

λ
x
(H)
k

(
1− Vk(x

(C)
k)
)
u
(lo)∗
k , (36)

where Vk(x
(C)
k) , (1− x(C)

k)PK−k
00 , and the function S̃k(x

(C)
k , x

(H)
k) is defined as

S̃k(x
(C)
k , x

(H)
k)=

∑
x
(C)
k+1∈{0,1}

∑
x
(H)
k+1∈{g,b}

Pr(x
(C)
k+1|x

(C)
k) Pr(x

(H)
k+1|x

(H)
k)

1+
1√

S̃k+1(x
(C)
k+1, x

(H)
k+1)

+

√
α

λ

(
1− Vk+1(x

(C)
k+1)

) 3
2

√
x
(H)
k+1

−2 , k < K,

∞, k = K.

Note that for slot (K−1), S̃K−1(x
(C)
K−1, x

(H)
K−1) and VK−1(x

(C)
K−1) reduce to S(x

(C)
K−1, x

(H)
K−1) and

V (x
(C)
K−1) in (28) and (29), respectively. Moreover, one can observe that the above sub-optimal

offloading-control policy has the similar structure with the optimal policy in Theorem 1. The key

20

difference resides in that for the large-buffer case, the offloading-control policy should account

for the potential energy consumption arising from demanding computing if offloading data given

helper CPU’s busy state.

Remark 5 (Approximation Accuracy and Dimensionality Reduction). Similar to Lemma 4, the

approximation is accurate if the user has the non-causal information of x(C)
k and x

(H)
k for all

k. In addition, note that if x(C)
k = 0, we have Vk

(
x
(C)
k

)
= PK−k

00 , which can be interpreted

as the conditional helper-CPU all-busy probability. This reflects the key fact that when the

helper CPU is busy in slot k, the offloaded and buffered bits at the helper will consume energy

from demand-computing by the local CPU, only if the helper CPU is constantly busy until

the last slot. Furthermore, the proposed sub-optimal policy can achieve close-to-optimality as

shown by simulation in the sequel, but it considerately reduce the computation complexity from

O(16D4 ×D2 ×K) to O(4K).

Remark 6 (Effects of Buffer). The large helper buffer affects both the offloading and local-

computing policies as follows. First, for offloading, in the case of zero buffer, the user does not

offload data when the helper CPU is busy as indicated in (17). Instead, due to the large buffer at

the helper, the user can offload partial data for potentially utilizing future helper CPU resources

and thus reducing transmission-energy consumption in favorable channels, which can be inferred

from (35). Next, for local computing, with a large buffer, the user computes less data with the

local CPU than in the case of zero buffer, due to a larger offloaded data size in the busy states.

These properties are confirmed by simulation results in the sequel.

VI. COMPUTATION OFFLOADING CONTROL: SMALL HELPER BUFFER

In this section, the solution approach for the energy-efficient stochastic computation offloading

developed in the preceding sections is extended to the case of a small buffer at the helper (i.e.,

Q < D). The closed-form expression for the optimal policy is intractable due to the buffer

constraints in each slot [see (8)]. To address this issue, by exploiting the insight from policies

for the earlier cases of zero and large buffers, we design a sub-optimal offloading-control policy

that sheds light on the optimal policy structure and can achieve close-to-optimality as confirmed

by simulation.

The derivation for the optimal policy for multi-slots encounters the following two key chal-

lenges. The first one is the difficulty for deriving a closed-form expression for the expected future

21

energy cost, which is elaborated in Section V-A. The second one lies in the buffer constraint

(i.e., x(Q)
k +u

(of)
k ≤ Q, if x(C)

k = 0), which bounds the amount of offloaded data according to the

instantaneous buffered data size. To tackle these challenges, we propose a tractable buffer-aware

candidate-policy selection (BACS) scheme, which is defined as follows.

Definition 2 (Buffer-Aware Candidate-Policy Selection). The BACS scheme chooses one of the

two candidate policies as the sub-optimal computation offloading policy, namely, truncated large-

buffer based policy (TLBP) and zero-buffer based policy (ZBP) defined in the sequel, depending

on the helper buffer size Q. To be specific, the BACS scheme selects the TLBP or ZBP policy,

if the buffer size Q is above or below a switching threshold Qth that is specified in the sequel.

The key idea of the proposed BACS is to exploit the useful structures in the developed policies

for the earlier cases of zero buffer and large buffer, and use them to design the sub-optimal

policy for the case of small helper buffer. Intuitively, if the buffer size is relatively large (i.e.,

Q → D−), modifying the sub-optimal policy for the large buffer (see Section V) is expected

to achieve desirable energy-savings performance. This modified policy, however, is unsuitable

for the case of a relatively small buffer (i.e., Q → 0+), as it is based on the assumption of a

large buffer. This suggests to choose another candidate policy that is modified from the optimal

policy for the zero buffer. In the following, we elaborate both the TLBP and ZBP policies, and

characterize the switching threshold.

1) Truncated Large-Buffer based Policy: This candidate policy is designed by applying the

relaxation-and-truncation (RT) approach for the solution approach of the large-buffer counterpart,

accounting for the limited buffer size. To this end, in each slot, we first relax the buffer constraint

and thus the problem reduces to the large-buffer counterpart. The corresponding sub-optimal

policy can be derived in Theorem 2, denoted by
{
û
(lo)∗
k , û

(of)∗
k

}
. Next, to account for the small

buffer size, the control policy is further given by

u
(lo)∗
k = û

(lo)∗
k , and u

(of)∗
k =

û
(of)∗
k , x

(C)
k = 1,〈

û
(of)∗
k

〉Q−x(Q)
k

0
, x

(C)
k = 0,

(37)

where 〈·〉z2z1 denotes the truncation below z1 and above z2. Note that the offloaded data only

needs to be truncated if the helper CPU is busy.

2) Zero-Buffer based Policy: Recall that the optimal policy for the case of zero buffer (see

Section IV) does not offload data when the helper CPU is busy. This key fact allows directly

22

Algorithm 1 Proposed Bisection-Search Algorithm for the Switching Threshold

Step 1: Calculate the expected user-energy consumption over 104 realizations for ZBP using

the results in Theorem 1, denoted by ĒZ .

Step 2 [Bisection-search for Qth]: Initialize Q` = 0, Qh = D/2, and ε > 0. Repeat

(1) Set Qm = (Q` + Qh)/2, and calculate the expected user-energy consumption over 104

realizations for TLBP, denoted as ĒT .

(2) If ĒT < ĒZ , let Qh = Qm; otherwise, Q` = Qm.

Until |ĒT − ĒZ | ≤ ε. Return Qth = Qm.

using the solution approach for the zero-buffer counterpart to the current case of a small buffer.

3) Switching Threshold: Let G1(Q) and G2(Q) denote the expected user-energy consump-

tion with a K-slot deadline by using TLBP and ZBP, respectively, which can be numerically

computed. First, the existence of the switching threshold is established in the following lemma.

Lemma 6 (Existence of the Switching Threshold). There exists a switching threshold Qth in

the range of 0 ≤ Qth ≤ D, which satisfies G1(Qth) = G2(Qth).

Proof: See Appendix E. �

In addition, though the expected user-energy consumption using TLBP, G1(Q), is intractable

due to the RT procedure, it can be evaluated by simulation that G1(Q) is non-increasing with

the buffer size Q. This is expected since a larger buffer size allows more data to be offloaded, if

offloading consumes less energy than local computing. The effects of the computing deadline on

the switching threshold are evaluated by simulation in the sequel. The switching threshold can

be efficiently computed by a proposed bisection-search procedure as detailed in Algorithm 1.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are presented for evaluating the performance of the proposed

stochastic computation offloading policies. The parameters are set as follows unless stated

otherwise. The user is required to compute 3000-bit given a 5-slot deadline, each slot with

a time duration t0 = 100 ms. For local computing, γ = 10−28 and the required CPU cycles for

computing 1-bit data is w = 105 cycle/bit [4], [8]. For offloading, the channel gain Hk between

the user and the helper follows a stationary Markov chain with the transition probabilities set as

23

� �
� � � � �

� � � � �

� � � � �

� � � � 	

� � � �

� � � � �

� � � � �

��
�	

��
	�

��
�	

��
	

	�

�

��
�

��
�

��
��

�
��

�

� � � � � � � � � � �
 � 	 � � �
 � �

� �
� �
� �
� �

Figure 4: Close-to-optimality of proposed policies.

Pgg = 0.8 and Pbb = 0.7. The channel gains of the two channel states are set as g = 10−3 and

b = 10−5, respectively. The energy coefficient is λ = 10−15. The helper-CPU state follows another

Markov chain with P11 = 0.8 and P00 = 0.7. For the case of small buffer, the helper buffer

size is Q = 300 bits. For performance comparison, the optimal policy is numerically computed

by DP. Furthermore, a baseline algorithm is considered, called equal-allocation policy, which

first equally allocates the total data into K slots and then optimizes the locally-computed and

offloaded data sizes in each slot.

A. Close-to-Optimality

Fig. 4 shows close-to-optimal performance of the proposed sub-optimal policies. It is observed

that for the case of a large buffer, the expected user-energy consumption of the sub-optimal policy

is close to that of the optimal one, especially when the data size is small. Moreover, even in the

large-data regime e.g., D = 5000 bits, the sub-optimal policy only results in additional 7% of

the user-energy consumption. Next, for the case of small buffer, the proposed sub-optimal policy

also achieves close-to-optimal performance and has slightly larger user-energy consumption in

the large-data regime.

B. Effects of Parameters

The curves of the expected user-energy consumption versus the input-data size are plotted in

Fig. 5(a). Several observations are made as follows. First, as the input-data size increases, the

expected user-energy consumption of each policy grows at an increasing rate. Next, for the case

of zero buffer, the optimal policy has less user-energy consumption than the equal-allocation

24

� � � � � 	 � � � � � � � 	 � � � � � � � 	 � � 	 � � �
� � � � �

� � � � 	

� � � � �

� � � � 	

� � � � �

� � � � 	

� � � � �

��
�	

��
	�

��
�	

��
	

	�

�

��
�

��
�

��
��

�
��

�

� � � � � � � � � � �
 � 	 � � �
 � �

� � � � � � � � � � � � � �
 � � � � � � � � �
�
 � � � � � � � � �
� � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � �
�
 � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � �
�
 � � � � � � � � � � � � �

(a) Effects of data size

� 	
 � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � 	

� � � �

� � � � �

� � � � �

� � � �

� � � � �

��
�	

��
	�

��
�	

��
	

	�

�

��
�

��
�

��
��

�
��

�

� � � �
 � 	 � � � � � � � � � 	 � �

� � � " � � � � � � � � � � $ � � � � � � # � � � !
� � # � � � � � � � � � " � � � � � � � � � $ � � � � � � # � � � !
� � # � � � " � � � � � � � � � � $ � � � � ! � � � � # � � � !
� � # � � � � � � � � � " � � � � � � � � � $ � � � � ! � � � � # � � � !
� � # � � � " � � � � � � � � � � $ � � � � � � � � � # � � � !
� � # � � � � � � � � � " � � � � � � � � � $ � � � � � � � � � # � � � !

(b) Effects of computing deadline

� � � � � � � � � � � � � � 	 � �
 � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � 	

� � � �

� � � � �

� � � � � � � � ! � � � � � � � � � � # � � � � � " � � �
� � � " � � � � � � � � � ! � � � � � � � � � # � � � � � " � � �
� � " � � � ! � � � � � � � � � � # � � � � � � � " � � �
� � � " � � � � � � � � � ! � � � � � � � � � # � � � � � � � " � � �
� � " � � � ! � � � � � � � � � � # � � � � � � � � " � � �
� � � " � � � � � � � � � ! � � � � � � � � � # � � � � � � � � " � � �

��
�	

��
	�

��
�	

��
	

	�

�

��
�

��
�

��
��

�
��

�

�
 � �
 � � � � � � � 	 �
 � � � � � � � � � � �

(c) Effects of the helper-CPU idle probability

� � � � � � �
 � � � � � � � � � � � � � � � � �
� � � � �

� � � � �

� � � � �

� � � � �

� � � � 	

� � � �

� � � � �

� � � � ! � � � � � � � ! � � � � � �

t hQ
��

�	
��

	�
��

�	
��

	
	�

�
��

�
��

�
��

��
�

��
�

� � � � � 	 �
 � � � � � � �
 �

� � ! � � � � � � � � � � � � � "
� � � � � � � � � � � � � "
� � ! � � � � � � � � � � � � � � � � � � "

� � � � � � � ! � � � � � � � ! � � � � � �

(d) Effects of buffer size

Figure 5: The effects of parameters on the expected user-energy consumption for the three cases: (a) input-data size

with K = 5; (b) computing deadline with D = 3000 bits; (c) helper-CPU idle probability with D = 3000 bits and

K = 5; (d) buffer size with D = 3000 bits and K = 5.

policy, especially in the large-data regime. Similarly, the proposed sub-optimal policies for the

case of large/small buffer achieve significant performance gains, both of them achieving about

30% reduction of energy consumption compared with the equal-allocation policies at D ≈ 5000

bits. Moreover, for the proposed optimal/sub-optimal policies, the policy of the large-buffer case

consumes less user-energy consumption than the case of small buffer; and the case of zero buffer

consumes the largest user-energy consumption. This shows that increasing the buffer size can

potentially reduce the user-energy consumption, as it allows more data to be offloaded to the

helper for energy savings.

Fig. 5(b) depicts the curves of expected user-energy consumption versus the computing dead-

25

lines. Observe that the expected user-energy consumption of each policy is monotonically de-

creasing with the increasing of number of slots, which is aligned with intuition. In particular, the

decreasing rate is larger at a shorter deadline (i.e., smaller number of total slots), indicating that

it is highly energy-efficient to extend the deadline for energy savings when the current deadline

requirement is stringent. In addition, for the case of no buffer, the optimal policy has almost

constant performance gain compared with the equal-allocation policy, while the gain deceases

with the number of slots for the cases of large and small buffer. Moreover, the proposed policy

for the case of large buffer has much smaller user-energy consumption than the counterparts

with a small buffer and no buffer.

The effects of the helper-CPU idle probability on the expected user-energy consumption are

evaluated in Fig. 5(c). It can be observed that as the helper-CPU idle probability increases, the

user-energy consumptions of the proposed policies are almost linearly decreasing. The reason

is that, with a higher idle probability, the helper CPU is more likely at the idle state in the

whole slots, allowing the user to offload more data to the helper for energy savings. Again,

the performances of proposed sub-optimal policies significantly outperform the corresponding

equal-allocation policies. Other observations are similar to those of Fig. 5(b).

The curves of expected user-energy consumption versus the buffer size are shown in Fig. 5(d).

It is observed that enlarging the buffer size can considerably help reduce the expected user-energy

consumption of the proposed sub-optimal policy when the buffer size is small. However, after the

buffer size exceeds a threshold (about 1000 bits), the performance cannot be further improved

and converges to that of the large-buffer counterpart. The reason is that the buffer size is no

longer the bottleneck for offloading data, when the buffer size is sufficiently large. Next, the

switching threshold Qth is quite small (about 40 bits), which means that for the helper with a

moderate buffer size, the ZBP policy outperforms the TLBP policy. In addition, the proposed

sub-optimal policy has close-to-optimal performance, especially in the large-buffer size regime.

C. Buffer Gain

To quantify the amount of energy-consumption reduction obtained from the helper buffer, we

define a performance metric, called buffer gain, as the expected user-energy consumption ratio

between the computation offloading policies without and with a buffer Q.

Fig. 6(a) shows the effects of buffer size on the buffer gain with different computing deadlines.

It is observed that the buffer gains for different deadlines see a fast increase in the small buffer-

26

� �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�

��

�	
��

��
�

� � � � � 	 �
 � � � � � � �
 �

� � � �
� � � �
� � � �

(a) Effects of buffer size

� � � � � � � � � � � � � � � � � 	 � �

� � �

� � �

� � 	

� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�

��

�	
��

��
�

�
 � �
 � � � � � � � 	 �
 � � � � � � � � � � �

� � � � � � � � 	 �

� � � � � � � � 	 �

� � � � � � � � 	 �

(b) Effects of the helper-CPU idle probability

Figure 6: The effects of parameters on the buffer gain: (a) buffer size with D = 3000 bits; (b) helper-CPU idle

probability with D = 3000 bits and K = 5.

size regime and then converge gradually to a constant corresponding to the case of a large buffer.

It implies that the maximum buffer gain is finite and independent of the buffer size. Moreover,

the proposed policy with a longer computing deadline has a relatively larger buffer gain.

The curves of buffer gain versus the helper-CPU idle probability are depicted in Fig. 6(b).

Observe that given a fixed buffer size, as the helper-CPU idle probability increases, the buffer

gain firstly slowly increases and then sees a fast and almost-linear increase when the helper-CPU

idle probability is larger than 0.3. The reason is that, with a higher idle probability, the buffered

data is more likely to be computed by the helper. On the other hand, given a fixed helper-CPU

idle probability, the larger buffer size enjoys a larger buffer gain, which is expected.

VIII. CONCLUDING REMARKS

This paper investigates the stochastic computation offloading to a helper with a dynamically

loaded CPU. Assuming that the user only has statistical information of the helper CPU and

channel states, one MDP optimization problem is formulated to minimize the expected user-

energy consumption by controlling the offloaded and locally-computed data sizes in different

slots. We first characterize the optimal policy structure for the case of zero buffer at the helper.

Then for the cases of large and small helper buffer, we propose effective sub-optimal computation

offloading policies by using approximation techniques and candidate-policy selection scheme,

respectively, which are shown to have close-to-optimal performance in simulation. This work

can be extended in several interesting directions. First, the current work focusing on one-shot

27

task arrival can be generalized to the case of bursty data arrivals. Second, P2P computation

offloading can be integrated with advanced computing techniques such as parallel computing to

achieve higher energy savings gain. Last, it is interesting to extend the current helper-assisted

computation offloading system to a more complex one, e.g., finite computation capacity at helpers

and collaborative offloading among mobiles.

APPENDIX

A. Proof of Lemma 2

First, if x(C)
K = 0, computation offloading is not allowed and thus the user-energy consumption

is directly given by JK(xK) = α(x
(L)
K)3. Next, if x(C)

K = 1, taking the first-order derivative of

the objective function in Problem P3 and setting it to zero yields the optimal local computed

data size u(lo)∗K =

(
1 +

√
αx

(H)
K /λ

)−1
x
(L)
K . The corresponding minimum energy consumption

JK(xK) = α(x
(L)
K)3

(
1 +

√
αx

(H)
K /λ

)−2
. Last, combining the results for x(C)

K = 0 and x(C)
K = 1

together leads to the desired results.

B. Proof of Theorem 1

We first derive the minimum expected user-energy from slot (K − 1) to K for both the cases

of x(C)
K−1 = 1 and x

(C)
K−1 = 0 as follows. If x(C)

K−1 = 0, the input-data cannot be offloaded, i.e.,

u
(of)
K−1 = 0. Then the optimization problem reduces to

JK−1(xK−1) = min
0≤u(lo)

K−1≤x
(L)
K−1

{
α(u

(lo)
K−1)

3 + E
[
JK(XK)

∣∣∣xK−1, u(lo)K−1

]}
.

(i)
= min

0≤u(lo)
K−1≤x

(L)
K−1

{
α(u

(lo)
K−1)

3 + α(x
(L)
K−1 − u

(lo)
K−1)

3 × SK−1(x
(C)
K−1, x

(H)
K−1)

}
, (38)

where (i) is according to Lemma 2 and

SK−1(x
(C)
K−1, x

(H)
K−1) =

∑
x
(C)
K ∈{0,1}

∑
x
(H)
K ∈{g,b}

Pr(x
(C)
K |x

(C)
K−1) Pr(x

(H)
K |x

(H)
K−1)

(
1 +

√
α

λ
x
(C)
K

√
x
(H)
K

)−2
.

Taking the first-order derivative of the objective function in (38) and setting it to zero, we have

u
(lo)∗
K−1 =

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

−1 x(L)K−1. (39)

28

Substituting (39) into (38) yields:

JK−1(xK−1) = α(x
(L)
K−1)

3

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

−2 , if x
(C)
K−1 = 0. (40)

If x(C)
K−1 = 1, both the locally-computed and offloaded data sizes should be optimized. The

optimization problem reduces to

JK−1(xK−1) = min
uK−1∈U(xK−1)

{
α(u

(lo)
K−1)

3 + λ
(u

(of)
K−1)

3

x
(H)
K−1

+ α
(
x
(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1

)3
SK−1(x

(C)
K−1, x

(H)
K−1)

}
.

Using the Lagrange method leads to the following optimal local computing and offloading policy:

u
(lo)∗
K−1 =

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(H)
K−1

−1 x(L)K−1, and u
(of)∗
K−1 =

√
α

λ
x
(H)
K−1u

(lo)∗
K−1. (41)

The corresponding minimum expected user-energy consumption is:

JK−1(xK−1) = α(x
(L)
K−1)

3

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(H)
K−1

−2 , if x(C)
K−1 = 1. (42)

Then combining (39) and (41) leads to the optimal offloading-control policy in slot (K − 1):

u
(lo)∗
K−1 =

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(C)
K−1

√
x
(H)
K−1

−1 x(L)K−1, (43)

u
(of)∗
K−1 =

√
α

λ
x
(C)
K−1

√
x
(H)
K−1u

(lo)∗
K−1. (44)

The minimum expected user-energy consumption for slot (K−1) to K can be derived as below

by combining (40) and (42):

JK−1(xK−1) = α(x
(L)
K−1)

3

1 +
1√

SK−1(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(C)
K−1

√
x
(H)
K−1

−2 . (45)

Observe that the expected user-energy consumption from slot (K− 1) and K, given in (45), has

the similar form with that in slot K as given in (15). Therefore, using the backward induction

and the similar procedure as for deriving (45), we can derive the optimal computation offloading

policy in each slot k and the minimum expected user-energy consumption, as expressed in

Theorem 1, completing the proof.

29

C. Proof of Lemma 4

We prove this lemma by deriving the minimum expected user-energy for both the cases of

x
(C)
K−1 = 1 and x(C)

K−1 = 0 respectively, and then combining the results together. First, if x(C)
K−1 = 1,

we have F (xK−1, uK−1, x
(C)
K) = (x

(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1)

3 where F (xK−1, uK−1, x
(C)
K) is defined

in (25), and thus

E
[
JK(XK)

∣∣xK−1, uK−1] = α(x
(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1)

3 × S(x
(C)
K−1, x

(H)
K−1), if x(C)

K−1 = 1, (46)

where S(x
(C)
K−1, x

(H)
K−1) is defined in (28). Next, if x(C)

K−1 = 0, the newly-offloaded data in slot

(K − 1) is stored at the buffer and thus

F (xK−1, uK−1, x
(C)
K)=

[
(x

(L)
K−1 − u

(lo)
K−1 − u

(of)
K−1) + (1− x(C)

K)(x
(Q)
K−1 + u

(of)
K−1)

]3
.

Then it follows

E
[
JK(XK)

∣∣xK−1, uK−1]
(i)
≥ αE

[
F (xK−1, uK−1, X

(C)
K)

∣∣∣∣xK−1, uK−1]× E

[(
1 +

√
α

λ
X

(C)
K

√
X

(H)
K

)−2 ∣∣∣∣xK−1
]

(ii)
≥ α

(
E

[
(x

(L)
K−1 − u

(lo)
K−1 − u

(lo)
K−1) + (1−X(C)

K)(x
(Q)
K−1 + u

(of)
K−1)

∣∣∣∣xK−1, uK−1])3

× S(x
(C)
K−1, x

(H)
K−1)

(iii)
= α

(
x
(L)
K−1 − u

(lo)
K−1 − u

(lo)
K−1) + P00(x

(Q)
K−1 + u

(of)
K−1)

)3
× S(x

(C)
K−1, x

(H)
K−1), if x

(C)
K−1 = 0, (47)

where (i) is due to that F (xK−1, uK−1, X
(C)
K) and

(
1 +

√
α

λ
X

(C)
K

√
X

(H)
K

)−2
are positively cor-

related; (ii) follows from Jensen’s inequality; and (iii) is due to that E[(1−X(C)
K)|xK−1, uK−1] =

P00, if x(C)
K−1 = 0. Last, combining the results of (46) and (47) and using the definition of

V (x
(C)
K−1) in (29) lead to the desired results.

D. Proof of Lemma 5

We prove this lemma by solving Problem P5 for both the cases of x(C)
K−1 = 1 and x

(C)
K−1 = 0

respectively, and then combining the results together. First, if x(C)
K−1 = 1, the optimal solution

for solving Problem P5 is same as that of zero-buffer case, given as

u
(lo)∗
K−1 =x

(L)
K−1

1+
1√

S(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(H)
K−1

−1 and u
(of)∗
K−1 =

√
α

λ
x
(H)
K−1u

(lo)∗
K−1. (48)

30

The minimum expected user-energy consumption is

JK−1(xK−1) = α(x
(L)
K−1)

3

1 +
1√

S(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
x
(H)
K−1

−2 , if x
(C)
K−1 = 1. (49)

Next, if x(C)
K−1 = 0, we have F̃ (xK−1, uK−1) =

[
(x

(L)
K−1−u

(lo)
K−1−u

(of)
K−1) + P00(x

(Q)
K−1 + u

(of)
K−1)

]3
.

Substituting it into Problem P5 and solving it by the Lagrangian method, the optimal policy for

Problem P5 is

u
(lo)∗
K−1 =

(
x
(L)
K−1 + P00x

(Q)
K−1

)1 +
1√

S(x
(C)
K−1, x

(H)
K−1)

+

√
α

λ
(1− P00)

3
2

√
x
(H)
K−1

−1 ,
u
(of)∗
K−1 =

√
α

λ
x
(H)
K−1(1− P00)u

(lo)∗
K−1,

(50)

The corresponding minimum expected user-energy consumption is

JK−1(xK−1) = α
(
x
(L)
K−1 + P00x

(Q)
K−1

)3
1 +

1√
ŜK−1(x

(C)
K−1, x

(H)
K−1)

+ (1− P00)
3
2

√
α

λ
x
(H)
K−1

−2 , if x
(C)
K−1 = 0.

(51)

Last, combining the policies for the cases of x(C)
K−1 = 1 (see (48)) and x(C)

K−1 = 0 (see (50)) gives

the sub-optimal policy in slot (K − 1), as presented in the lemma. The expected user-energy

consumption in slot (K − 1) can be expressed as (34) by combining (49) and (51), completing

the proof.

E. Proof of Lemma 6

Assume that both G1(Q) and G2(Q) are continuous functions with Q. First, when Q = 0, we

can obtain that G1(0) < G2(0), since it corresponds to the case of zero buffer and ZBP leads to

the optimal policy. On the other hand, when Q = D, we have G1(D) > G2(D) as it refers to the

case of large buffer and TLBP yields the better solution. Then, applying the intermediate-value

theorem leads to the desired result.

REFERENCE

[1] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., “Mobile-edge computing introductory technical

white paper,” White Paper, Mobile-edge Computing (MEC) industry initiative, Sep. 2014.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication

perspective,” IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

31

[3] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing under stochastic

wireless channel,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[4] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud computing powered by wireless energy transfer,” IEEE

J. Sel. Areas Commun., vol. 34, no. 5, pp. 1757–1771, May 2016.

[5] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint scheduling and cloud offloading for mobile

applications,” IEEE Trans. on Cloud Comput., vol. PP, no. 99, pp. 1–1, Apr. 2016.

[6] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: Partial computation offloading using dynamic

voltage scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[7] S.-W. Ko, K. Huang, S.-L. Kim, and H. Chae, “Live prefetching for mobile computation offloading,” IEEE Trans. Wireless

Commun., vol. 16, no. 5, pp. 3057–3071, May 2017.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation for mobile-edge computation offloading,”

IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE

Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[10] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading and resource optimization in proximate clouds,”

IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[11] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partitioning for latency sensitive mobile cloud applications,”

IEEE Trans. Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[12] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge computing: Spatial modeling and latency analysis

(extended version),” [Online]. Available: https://arxiv.org/pdf/1709.01702.pdf.

[13] J. Song, Y. Cui, M. Li, J. Qiu, and R. Buyya, “Energy-traffic tradeoff cooperative offloading for mobile cloud computing,”

in Proc. IEEE Int. Symp. Quality of Service (IWQoS), pp. 284–289, May 2014.

[14] Y. Li, L. Sun, and W. Wang, “Exploring device-to-device communication for mobile cloud computing,” in Proc. IEEE Int.

Conf. Commun. (ICC), pp. 2239–2244, Jun. 2014.

[15] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive D2D collaboration for energy-efficient mobile edge

computing,” [Online]. Available: https://arxiv.org/pdf/1703.10340.pdf.

[16] N. T. Ti and L. B. Le, “Computation offloading leveraging computing resources from edge cloud and mobile peers,” in

Proc. IEEE Int. Conf. Commun. (ICC), pp. 1–6, May 2017.

[17] J. Xu, L. Chen, K. Liu, and C. Shen, “Less is more: Participation incentives in D2D-enhanced mobile edge computing

under infectious ddos attacks,” [Online]. Available: https://arxiv.org/pdf/1611.03841.pdf.

[18] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and communication cooperation for mobile edge

computing,” [Online]. Available: https://arxiv.org/pdf/1704.06777.pdf.

[19] C. You and K. Huang, “Exploiting non-causal CPU-state information for energy-efficient mobile cooperative computing,”

[Online]. Available: https://arxiv.org/pdf/1704.04595.pdf.

[20] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in mobile cloud computing under a stochastic wireless

channel,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 81–93, Jan. 2015.

[21] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling for mobile-edge computing

systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1451–1455, Jul. 2016.

[22] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for computation-intensive applications in mobile

cloud computing,” in Proc. IEEE INFOCOM Workshops, pp. 352–357, Apr. 2014.

[23] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile computing,” IEEE Trans. Wireless

Commun., vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

32

[24] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge computing with energy harvesting

devices,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[25] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and task allocation for energy minimization in mobile

cloud systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[26] L. Chen, S. Zhou, and J. Xu, “Energy efficient mobile edge computing in dense cellular networks,” [Online]. Available:

https://arxiv.org/pdf/1701.07405.pdf.

[27] A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission scheduling over a fading channel with energy and deadline

constraints,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 630–641, Mar. 2006.

[28] B. Prabhakar, E. U. Biyikoglu, and A. El Gamal, “Energy-efficient transmission over a wireless link via lazy packet

scheduling,” in Proc. IEEE INFOCOM, vol. 1, pp. 386–394, Apr. 2001.

[29] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital design,” IEICE Trans. Electron., vol. 75,

no. 4, pp. 371–382, Apr. 1992.

[30] M. Zafer and E. Modiano, “Minimum energy transmission over a wireless channel with deadline and power constraints,”

IEEE Trans. Autom. Control, vol. 54, no. 12, pp. 2841–2852, Dec. 2009.

[31] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and routing for time-varying wireless networks,”

IEEE J. Sel. Areas Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[32] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1. Athena scientific Belmont, MA, 1995.

