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Abstract

To improve signal-to-interference ratio (SIR) and make better use of file diversity provided by

random caching, we consider two types of linear receivers, i.e., maximal ratio combining (MRC) receiver

and partial zero forcing (PZF) receiver, at users in a large-scale cache-enabled single-input multi-output

(SIMO) network. First, for each receiver, by utilizing tools from stochastic geometry, we derive a

tractable expression and a tight upper bound for the successful transmission probability (STP). In the

case of the MRC receiver, we also derive a closed-form expression for the asymptotic outage probability

in the low SIR threshold regime. Then, for each receiver, we maximize the STP. In the case of the MRC

receiver, we consider the maximization of the tight upper bound on the STP by optimizing the caching

distribution, which is a non-convex problem. We obtain a stationary point, by solving an equivalent

difference of convex (DC) programming problem using concave-convex procedure (CCCP). We also

obtain a closed-form asymptotically optimal solution in the low SIR threshold regime. In the case of

the PZF receiver, we consider the maximization of the tight upper bound on the STP by optimizing the

caching distribution and the degrees of freedom (DoF) allocation (for boosting the signal power), which

is a mixed discrete-continuous problem. Based on structural properties, we obtain a low-complexity near

optimal solution by using an alternating optimization approach. The analysis and optimization results

reveal the impact of antenna resource at users on random caching. Finally, by numerical results, we

show that the random caching design with the PZF receiver achieves significant performance gains over

the random caching design with the MRC receiver and some baseline caching designs.
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I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered an unprecedented growth of the

global mobile data traffic. Motivated by the fact that a large portion of mobile data traffic is

generated by many duplicate downloads of a few popular files, recently, caching popular files at

the wireless edge, namely caching helpers (base stations and access points) has been proposed as

a promising approach for reducing delay and backhaul load [1]–[3]. When the coverage regions

of different helpers overlap, a user can fetch the desired file from multiple adjacent helpers, and

hence the performance can be increased by caching different files among helpers, i.e., providing

file diversity [4]. In [5]–[9], the authors consider caching in large-scale networks modeled using

stochastic geometry. Specifically, in [5], the authors consider caching the most popular files at

each helper, which does not provide file diversity. In [6], the authors consider random caching

with uniform distribution at each helper. In [7], the authors consider random caching with files

being stored at each helper in an i.i.d. manner according to the file popularity. In [8] and [9],

the authors consider random joint caching and multicasting on the basis of file combinations

consisting of different files, and analyze and optimize the joint design. Note that the random

caching schemes in [6]–[9] can provide file diversity. However, in [6]–[9], a user may associate

with a relatively farther helper when nearer helpers do not cache the requested file. In this case,

the signal is usually weak compared with the interference, and the user may not successfully

receive the requested file and benefit from file diversity offered by random caching.

To increase signal-to-interference ratio (SIR) under random caching, [10]–[13] study more

sophisticated transmission schemes in large-scale networks. In particular, to increase receive

signal power under random caching, [10]–[12] consider cooperative transmission schemes, where

multiple nearest helpers [10], [11] or all helpers [12] storing the requested file of a user transmit it

to the user, using non-coherent joint transmission [10], [12] and coherent joint transmission [11].

The successful transmission probability (STP) [10], [12] and the effective transmission rate [11]

are analyzed and optimized. To reduce interference under random caching, in [13], the authors

propose a periodic discontinuous transmission scheme, where each helper is on once every L

slots and serves all file requests received during the latest L slots via multicast, reducing the

interference to 1/L of that with all helpers being on. The STP is analyzed and optimized. Note

that the cooperative transmission schemes in [10]–[12] are applicable mainly in lightly loaded

networks, where multiple helpers can jointly serve a single user; the periodic discontinuous
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transmission scheme in [13] increases the STP at the cost of delay increase.

Note that [10]–[13] focus on improving SIR for SISO transmission with single-antenna trans-

mitters and receivers. Multi-antenna communication techniques provide another promising ap-

proach to increase SIR. In [14] and [15], the authors consider multi-input single-output (MISO)

transmission, where each multi-antenna transmitter adopts a coordinated beamforming scheme to

nullify inter-cell interference and increase receive signal power at single-antenna receivers, and

analyze the coverage probability in large-scale wireless networks. In addition, in [16]–[18], the

authors consider single-input multi-output (SIMO) transmission, where maximal ratio combining

(MRC) receiver [16], partial zero-forcing (PZF) receiver [17] and minimum mean-square error

(MMSE) receiver [18] are adopted at each multi-antenna receiver to increase the receive signal

power or suppress the interference, and analyze the scaling law of the spectrum efficiency [16],

the scaling law of the transmission capacity [17] and the outage probability [18] in large-scale

wireless networks. Note that [14]–[18] do not consider caching. Recently, [19] and [20] focus

on improving SIR under random caching in large-scale MISO networks. Specifically, in [19],

the authors consider maximal ratio transmission (MRT) beamforming to improve receive signal

power, and analyze and optimize the area spectrum efficiency. In [20], the authors consider

zero-forcing beamforming (ZFBF) to simultaneously serve multiple single-antenna users without

causing intra-cell interference, and analyze and optimize the STP and the area spectral efficiency.

Note that the MRT beamforming scheme in [19] and the ZFBF scheme in [20] require perfect

CSI at transmitters. In addition, [19] does not consider interference management, and [20] studies

interference management which may not be very efficient from the user’s point of view. Finally,

in [19], the performance expression involves inverse of matrices, which is difficult to evaluate

and provides little insight, and the adopted gradient projection method for solving the non-convex

caching optimization problem has high computation complexity and possibly slow convergence;

in [20], the authors analyze and optimize the STP and the area spectrum efficiency under several

approximations.

Note that [19] and [20] focus on revealing the impact of antenna resource at transmitters on

improving SIR under random caching. It is not known whether antenna resource at receivers can

achieve a similar or even more important role in SIR improvement under random caching. In

this paper, we would like to investigate how multiple receive antennas at users can help improve

SIR for content delivery when single-antenna helpers employ random caching in a large-scale

cache-enabled SIMO network. Specifically, we consider M-antenna users and study two types
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of linear receivers for two cases of CSI at users. First, we consider the direct CSI case where

each user has knowledge of the CSI of the direct link between its serving helper and itself, and

perform MRC at each user to increase the receive signal power. Next, we consider the local

CSI case where each user has knowledge of the CSI of the links between its nearby (at most

M − 1 nearest) interfering helpers and itself as well as the direct link, and perform PZF at each

user to simultaneously increase the receive signal power and suppress the interference. Note that

the two receive schemes only require CSI at receivers and do not require CSI at transmitters.

In addition, the PZF receiver can suppress interference from nearby interferers more efficiently

from the user’s point of view. Our main contributions are summarized bellow.

• First, we analyze the STP. In the case of the MRC receiver, by utilizing tools from stochastic

geometry and inequalities for the incomplete gamma function, we derive a tractable expres-

sion and closed-form upper and lower bounds for the STP. The two bounds are tight when

M = 1, and the upper bound is shown to be a good approximation for the STP at all M .

We also derive a closed-form expression for the asymptotic outage probability in the low

SIR threshold regime, utilizing series expansion of some special functions. In the case of

the PZF receiver, by utilizing tools from stochastic geometry and relative locations of the

serving helper and interferers, we derive a tractable expression and a simpler upper bound

for the STP. The upper bound is shown to be a good approximation for the STP at all M .

The analysis results reveal that the STPs with the MRC and PZF receivers both increase

with M .

• Next, we maximize the STP. In the case of the MRC receiver, we consider the maximization

of the simpler upper bound on the STP by optimizing the caching distribution, which is

a non-convex problem. By exploring structural properties of the problem, we successfully

transform the original non-convex problem into a difference of convex (DC) programming

problem, and obtain a stationary point of the original problem, using concave-convex

procedure (CCCP). We also obtain a closed-form asymptotically optimal solution in the

low SIR threshold regime. In the case of the PZF receiver, we consider the maximization of

the simpler upper bound on the STP by optimizing the caching distribution and the degrees

of freedom (DoF) allocation, which is a mixed discrete-continuous problem. By exploring

structural properties of the problem, we obtain a low complexity near optimal solution by

an alternating optimization approach. The optimization results indicate that files of higher
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popularity get more storage resources, and the optimized caching distributions for the MRC

and PZF receivers both become more flat when M is larger.

• Finally, we show that the proposed random caching design with the PZF receiver achieves

significant performance gains over the proposed random caching design with the MRC

receiver and some baseline caching schemes, using numerical results.

II. SYSTEM MODEL AND PERFORMANCE METRIC

A. Network Model

We consider a large-scale cache-enabled network,1 as shown in Fig. 1. The locations of caching

helpers are spatially distributed as a two-dimensional homogeneous Poisson point process (PPP)

Φh with density λh. The locations of users are distributed as an independent two-dimensional

homogeneous PPP with density λu. According to Slivnyak’s theorem [21], we focus on a typical

user u0, which we assume without loss of generality (w.l.o.g.) to be located at the origin. The

helpers are labeled in ascending order of distance from u0. Let di denote the distance between

helper i ∈ Φh and u0. Thus, we have d1 ≤ d2 ≤ · · · . We consider the downlink transmission.

Each helper has one transmit antenna with transmission power P . All helpers transmit over

the same frequency band. Each user has M receive antennas. That is, we focus on SIMO

transmission.2 Due to path loss, transmitted signals with distance d are attenuated by a factor

d−α, where α > 2 is the path loss exponent. Let hi,0 ∈ CM×1 denote the small-scale fading

vector between helper i ∈ Φh and u0. We assume that all entries of hi,0 are i.i.d. complex

Gaussian random variables, each with zero mean and unit variance, i.e., CN (0, 1).

Let N , {1, 2, · · · , N} denote the set of N files in the network. For ease of illustration,

we assume that all files have the same size. The popularity distribution among N is assumed

to be known apriori and is denoted by a , (an)n∈N . That is, u0 randomly requests one file,

which is file n ∈ N with probability an, where
∑

n∈N an = 1. In addition, w.l.o.g., we assume

a1 > a2 . . . > aN .

1The system model is similar to the one we considered in [8], except that here we consider multi-antenna users. Here, we

briefly illustrate the system model for completeness.

2Note that the analysis and optimization results in this paper can be extended to MIMO transmission with open-loop spatial

multiplexing, by treating one multi-antenna helper sending multiple data streams as multiple co-located virtual single-antenna

helpers, each sending one data stream, as illustrated in [22].
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Fig. 1. System model (N = 3, C = 2). There are three files in the network, represented by the red, yellow and

blue colors, respectively. Each circle represents a user, the color of which indicates the file requested by the user.

Each square represents a caching helper, the color of which indicates the two different files stored at the helper [8].

B. Random Caching Design

The network consists of cache-enabled helpers. In particular, each helper is equipped with

a cache of size C ≥ 1 (in files) and can serve any files stored locally. Assume each helper

cannot store all files in N due to the limited storage capacity, i.e., C < N . To provide spatial

file diversity (which can improve performance of dense wireless networks), we adopt a random

caching design at helpers [8]. In particular, each helper stores C different files out of all N files

in N with a certain probability. Let Tn denote the probability of file n being stored at each

helper. Then, we have

1 ≤ Tn ≤ 1, n ∈ N , (1)

∑

n∈N

Tn = C. (2)

Denote T , (Tn)n∈N , which is termed as the caching distribution. In this paper, we focus on

serving cached files to get first-order insights into the design of cache-enabled SIMO wireless

networks.

Each user requesting a file is associated with the nearest helper storing this file, referred to

as its serving helper, as this helper offers the maximum long-term average receive power for

this file. Suppose u0 requests file n. Let ℓ0,n ∈ Φh denote the index of the serving helper of u0.

Note that the serving helper of u0 may not be its geographically nearest helper, and the distance

between u0 and its serving helper is statistically determined by Tn. This association mechanism

is referred to as the content-centric association [8]. Different from the traditional connection-

based association [22], this association jointly considers the physical layer and content-centric

properties.
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C. Receive Filters

For analytical tractability, as in [4], [5] and [22], we assume that all helpers are active for

serving their own users (e.g., in the case of λu ≫ λh). Suppose u0 requests file n. Then, the

received signal of u0, denoted as yn ∈ CM×1, is given by

yn = d
−α

2

ℓ0,n
hℓ0,n,0sℓ0,n +

∑

i∈Φh\{ℓ0,n}

d
−α

2

i hi,0si + z0,

where si is the transmit signal of helper i with E[‖si‖
2] = P and z0 ∈ C

M×1 is complex

Gaussian noise vector at u0. As in [4], in the following, we consider an interference-limited case

(i.e., the noise power is negligible compared to the interference power) and ignore the noise.

Denote w0 ∈ CM×1 as the receive filter adopted by u0 for receiving the signal of its serving

helper. That is, u0 detects signal sℓ0,n based on wH
0,nyn, where wH

0,n denotes the conjugate

transpose of vector w0,n. The performance of the cache-enabled SIMO network depends on

the choices of the receive filter. In the following, we consider two types of linear receivers for

two different CSI cases, respectively.

First, we consider the case where each user has only knowledge of the CSI of its direct link,

i.e., the link between its serving helper and itself, referred to as direct CSI. Obtaining direct CSI

can be done using a control channel with a reasonable amount of pilot signal overhead [16].

Given direct CSI only, we consider the MRC receiver, which is the optimal receiving strategy to

maximize the signal power in SIMO transmission. In particular, the MRC receive filter is given

by wmrc
0,n =

hℓ0,n,0

‖hℓ0,n,0‖2
, and the corresponding SIR of u0 is given by

SIRmrc
n =

Hmrc
ℓ0,n,0

d−α
ℓ0,n

∑

i∈Φh\{ℓ0,n}
Hmrc

i,0 d
−α
i

, (3)

where Hmrc
ℓ0,n,0

, ‖(wmrc
0,n )

Hhℓ0,n,0‖
2
2 = ‖hℓ0,n,0‖

2
2 denotes the fading power of the direct link, and

Hmrc
i,0 , ‖(wmrc

0,n )
Hhi,0‖22 denotes the fading power of the link between helper i ∈ Φh \{ℓ0,n} and

u0. Here, Hmrc
ℓ0,n,0

d
∼ Gamma(M, 1) and Hmrc

i,0
d
∼ Exp(1) [17]. Note that MISO transmission with

the MRT beamformer can achieve a SIR of the same distribution as the one in (3), based on

CSI at transmitters [19].

Next, we consider the case where each user is able to learn the CSI of the links between its

nearby (at most M − 1 nearest) interfering helpers and itself as well as the direct link, referred

to as local CSI. Given local CSI, we adopt a PZF receiver, which uses a subset of the M DoF

for boosting signal power and the remainder for interference cancellation. In particular, at u0,

Kn DoF is allocated to boost the signal power for file n and M −Kn DoF is used to cancel the

interferences from the M −Kn nearest interfering helpers, where Kn satisfies

Kn ∈ M , {1, 2, · · · ,M}, n ∈ N . (4)
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Thus, the adopted PZF receiver depends on parameter K , (Kn)n∈N . Let ci denote the index

of the i-th nearest interfering helper. The PZF receive filter w
pzf
0,n is the projection of the

channel vector hℓ0,n,0 onto the subspace orthogonal to the one spanned by the channel vectors

hc1,0, hc2,0, · · · ,hcM−Kn ,0
of the M −Kn canceled interferers c1, c2, · · · , cM−Kn

. If the columns

of an M×Kn matrix U0 form an orthonormal bases of the subspace, then the PZF receive filter

is given by w
pzf
0,n =

U0U
H
0 hℓ0,n,0

‖U0U
H
0
hℓ0,n,0‖2

. By applying this filter, the interferences from the M − Kn

nearest interfering helpers c1, c2, · · · , cM−Kn
are suppressed and the corresponding SIR of u0 is

given by

SIRpzf
n =

H
pzf

ℓ0,n,0
d−α
ℓ0,n

∑

i∈Φh\{ℓ0,n,c1,c2,··· ,cM−Kn} H
pzf
i,0d

−α
i

, (5)

where Hpzf

ℓ0,n,0
, ‖(wpzf

0,n)
Hhℓ0,n,0‖

2
2 denotes the fading power of the direct link and Hpzf

i,0 ,

‖(wpzf
0,n)

Hhi,0‖22 denotes the fading power of the link between the caching helper i and u0. Here,

Hpzf

ℓ0,n,0

d
∼ Gamma(Kn, 1) and Hpzf

i,0
d
∼ Exp(1) [17]. The PZF receiver is more general than the

MRC receiver and reduces to the MRC receiver when Kn = M . Note that the PZF receiver

can efficiently cancel interference from the user’s point of view, as a user is aware of its nearby

interferers. Note that MISO transmission with a similar PZF beamformer may not achieve a SIR

of the same distribution as the one in (5), even with CSI at transmitters and information on

nearby interferers of users (obtained via feadback from users).

D. Performance Metric

When using the MRC receiver in the case of direct CSI, the transmission of file n to u0 is

successful if SIRmrc
n ≥ τ , where τ is the SIR threshold. When using the PZF receiver in the case

of local CSI, the transmission of file n to u0 is successful if SIRpzf
n ≥ τ . Therefore, the STPs of

file n ∈ N requested by u0 with the MRC receiver and the PZF receiver, denoted as qmrc
M,n(Tn)

and qpzf
M,n(Kn, Tn) respectively, are given by

qmrc
M,n(Tn) , Pr [SIRmrc

n ≥ τ ] ,

q
pzf

M,n(Kn, Tn) , Pr
[

SIRpzf
n > τ

]

,

where SIRmrc
n and SIRpzf

n are given by (3) and (5), respectively. Note that the distributions of

SIRmrc
n and SIRpzf

n depend on Tn and (Tn, Kn), respectively. Thus, we write qmrc
M,n and qpzf

M,n

as functions of Tn and (Tn, Kn), respectively. Requesters are mostly concerned about whether

their desired files can be successfully received. Therefore, as in [8], we consider the STP of

a file randomly requested by u0 as the network performance metric.3 According to the total

3Note that [19] considers random caching and MRT in MISO transmission for a large-scale cache-enabled network and studies

a different performance metric. Therefore, the analysis and optimization framework in this paper is different from that in [19].
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probability theorem, the STPs of a file randomly requested by u0 with the MRC receiver and

the PZF receiver, denoted as qmrc
M (T) and qpzf

M (K,T) respectively, are given by

qmrc
M (T) , Pr [SIRmrc ≥ τ ] =

∑

n∈N

anq
mrc
M,n(Tn), (6)

q
pzf

M (K,T) , Pr
[

SIRpzf ≥ τ
]

=
∑

n∈N

anq
pzf

M,n(Kn, Tn). (7)

III. PERFORMANCE ANALYSIS AND OPTIMIZATION FOR MRC RECEIVER

In this section, we consider the performance analysis and optimization of the random caching

design with the MRC receiver in the case of direct CSI. First, we analyze the STP in the general

SIR threshold regime and the low SIR threshold regime, respectively. Then, we optimize the

STP in these regimes.

A. Performance analysis for MRC Receiver

1) Performance Analysis in General SIR Threshold Regime: Note that different from [22],

in the cache-enabled wireless network considered, there are two types of interferers, namely, i)

interfering helpers storing the file requested by u0 (which are farther than the serving helper of

u0), and ii) interfering helpers without the desired file of u0 (which can be closer to u0 than

the serving helper of u0). Different from [8], u0 has M receive antennas and performs MRC to

detect its desired signal. By carefully handling these two types of interferers and characterizing

the impact of MRC, we obtain qmrc
M,n(Tn) using stochastic geometry. Substituting qmrc

M,n(Tn) into

(6), we have the following result.

Theorem 1 (STP with MRC Receiver in General SIR Threshold Regime): The STP with the

MRC receiver is given by qmrc
M (T) =

∑

n∈N anq
mrc
M,n(Tn), where

qmrc
M,n(Tn) = 2πλhTn

∫ ∞

0

x exp
(

−πλhTnx
2
)

M−1
∑

m=0

1

m!

m
∑

k=0

(

m

k

)

L̃k
I (Tn, x, x)L̃

m−k
I (1− Tn, x, 0)dx, (8)

LI(T, x, y) = exp

(

−
2πλhTτ

2
αx2

α
B′

(

2

α
, 1−

2

α
,

1

1 + τ(x
y
)α

))

, (9)

L̃k
I (T, x, y) = LI(T, x, y)

∑

(bj)kj=1
∈Mk

k!
∏k

j=1 bj !

k
∏

j=1

(

2πλTτ
2
αx2

α
B′

(

2

α
+ 1, j −

2

α
,

1

1 + τ(x
y
)α

))bj

. (10)

Here, Mk , {(mj)
k
j=1|mj ∈ N0,

∑k

j=1 j ·mj = k}, N0 denotes the set of nonnegative integers

and B
′
(a, b, z) ,

∫ 1

z
ua−1(1− u)b−1du (0 < z < 1) denotes the complementary incomplete beta

function.

Proof: Please refer to Appendix A.
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From Theorem 1, we can see that the STP qmrc
M (T) is an increasing function of the number of

receive antennas M at each user. In particular, when increasing the number of receive antennas

from M − 1 to M , the increase of the STP of file n is

qmrc
M,n(Tn)− qmrc

M−1,n(Tn)

=
2πλhTn

(M − 1)!

∫ ∞

0

x exp
(

−πλhTnx
2
)

M−1
∑

k=0

(

M − 1

k

)

L̃k
I (Tn, x, x)L̃

M−1−k
I (1− Tn, x, 0)dx > 0. (11)

From Theorem 1, we also see that the impact of the physical layer parameters α, τ , λh and the

impact of the caching distribution T on qmrc
M (T) are coupled in a very complex manner. Fig. 2

plots qmrc
M (T) versus τ at different M . From Fig. 2, we can see that each “analytical” curve

(plotted using Theorem 1) closely matches the corresponding “Monte Carlo” curve, verifying

Theorem 1. In addition, from Fig. 2, we can see that qmrc
M (T) increases with M .

When M = 1, by Theorem 1, we can obtain a simplified closed-form expression for qmrc
1 (T).

Corollary 1 (STP with MRC Receiver for M = 1): For M = 1, the STP with the MRC

receiver is qmrc
1 (T) =

∑

n∈N anq
mrc
1,n (Tn), where

qmrc
1,n (Tn) =

Tn

c1,1(1)Tn + c2,1(1)
.

Here, c1,k(x) and c2,k(x) are given by

c1,k(x) ,
2

α
(kxτ)

2
α

(

B′

(

2

α
, 1−

2

α
,

1

1 + kxτ

)

−B

(

2

α
, 1−

2

α

)

)

+ 1, (12)

c2,k(x) ,
2

α
(kxτ)

2
α B

(

2

α
, 1−

2

α

)

, (13)

where B(a, b) ,
∫ 1

0
ua−1(1− u)b−1du denotes the beta function.

Note that Corollary 1 coincides with Corollary 4 of our previous work [8], which considers

single-antenna users. From Corollary 1, we can see that the impact of the physical layer param-

eters α and τ (captured by c1,1(1) and c2,1(1)) and the impact of the caching distribution T on

the STP qmrc
1 (T) can be easily separated. In addition, qmrc

1,n (Tn) is a concave increasing function

of Tn. This is because the average distance between a user requesting file n and its serving

helper decreases with Tn.

To facilitate the characterization of the STP qmrc
M (T) for M ≥ 2, we next derive its closed-

form upper and lower bounds, based on the upper and lower bounds on the incomplete gamma

function, i.e.,
(

1− e−Sab
)a

< γ(a,b)
Γ(a)

<
(

1− e−b
)a

for a > 1, where Sa , Γ(a + 1)−
1

a [23].

Lemma 1 (Upper and Lower Bounds): The upper bound is given by qmrc,u
M (T) =

∑

n∈N anq
mrc,u
M,n (Tn),

where

q
mrc,u
M,n (Tn) , 1−

M
∑

k=0

(

M

k

)

(−1)kTn

c1,k(SM )Tn + c2,k(SM )
,
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Fig. 2. STP with the MRC receiver versus SIR threshold τ . N = 5, C = 3, α = 4, λ = 10−3,

T = [1, 0.8, 0.6, 0.4, 0.2], and an = n−γ
∑

n∈N n−γ with γ = 1.

and the lower bound is given by qmrc,l
M (T) =

∑

n∈N anq
mrc,l
M,n (Tn), where

q
mrc,l
M,n (Tn) , 1−

M
∑

k=0

(

M

k

)

(−1)kTn

c1,k(1)Tn + c2,k(1)
.

Here, c1,k(x) and c2,k(x) are given by (12) and (13), respectively.

Proof: Please refer to Appendix B.

Note that the upper bound qmrc,u
M (T) and the lower bound qmrc,l

M (T) coincide when M = 1, i.e.,

qmrc,u
M (T) = qmrc,l

M (T) = qmrc
M (T), implying that the two bounds are tight at M = 1. Similarly,

for M ≥ 2, the impact of the physical layer parameters α and τ (captured by c1,k(k), c2,k(k),

k ∈ {0, · · · ,M}) and the impact of the caching distribution T on qmrc,u
M (T) and qmrc,l

M (T) can

be easily separated.

Fig. 2 plots qmrc,u
M (T), qmrc,l

M (T) and qmrc
M (T) versus τ at different M . From Fig. 2, we can

see that when M = 1, qmrc
M (T), qmrc,u

M (T) and qmrc,l
M (T) coincide; when M ≥ 2, qmrc,u

M (T)

and qmrc,l
M (T) bound qmrc

M (T) from above and below, respectively. In addition, qmrc,u
M (T) tightly

matches qmrc
M (T) over the entire range of SIR threshold τ of interest, demonstrating that qmrc,u

M (T)

can serve as a good approximation for qmrc
M (T).

2) Performance Analysis in Low SIR Threshold Regime: Although the impacts of the physical

layer parameters and the caching distribution can be separated in qmrc,u
M (T), how these parameters

affect qmrc,u
M (T) is still not clear. To further obtain insights, we analyze the outage probability

qmrc
M (T) , Pr [SIRmrc < τ ] = 1− qmrc

M (T) in the low SIR threshold regime, i.e., τ → 0.4

4The downlink transmission in the LTE system supports an SINR about −7 dB. Thus, τ can be very small and the asymptotic

analysis is applicable in certain scenarios [24].
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Fig. 3. Outage probability with the MRC receiver versus SIR threshold τ . N = 5, C = 3, α = 4, λ = 10−3,

T = [1, 0.8, 0.6, 0.4, 0.2], and an = n−γ
∑

n∈N n−γ with γ = 1.

Lemma 2 (Outage Probability with MRC Receiver in Low SIR Threshold Regime): As τ → 0,

qmrc
M (T) = qmrc

M,0(T) + o(τ
2

α ), where

qmrc
M,0(T) =

∑

n∈N

anq
mrc
M,0,n(Tn), (14)

qmrc
M,0,n(Tn) = τ

2
α
2

α

(

1

Tn

− 1

) ∞
∑

m=M

B

(

2

α
+ 1,m−

2

α

)

. (15)

Proof: Please refer to Appendix C.

First, we introduce the order gain of the outage probability, defined as the exponent of the

outage probability as SIR threshold τ decreases to 0 [24], i.e., dmrc , limτ→0
logPr[SIRmrc<τ ]

logτ
. Then,

we define the coefficient of the asymptotic outage probability, i.e., emrc , limτ→0
Pr[SIRmrc<τ ]

τd
mrc .

Leveraging its order gain and the coefficient, we now characterize the key behavior of the outage

probability qmrc
M (T) in the low SIR threshold regime based on Lemma 2. Specifically, the order

gain dmrc is 2
α

, which does not depend on the number of receive antennas M and the caching

distribution T. The coefficient emrc is affected by M and T. Specifically, when increasing the

number of receive antennas from M − 1 to M , the decrease of the coefficient emrc is

2

α

∑

n∈N

an

(

1

Tn

− 1

) ∞
∑

m=M−1

B

(

2

α
+ 1,m−

2

α

)

−
2

α

∑

n∈N

an

(

1

Tn

− 1

) ∞
∑

m=M

B

(

2

α
+ 1,m−

2

α

)

=
2

α
B

(

2

α
+ 1,M − 1−

2

α

)

∑

n∈N

an

(

1

Tn

− 1

)

> 0.

Fig. 3 plots qmrc
M (T) and qmrc

M,0(T) versus the SIR threshold τ in the low SIR threshold regime.

We can see from Fig. 3 that when τ decreases, the gap between each “General” curve qmrc
M (T),

which is plotted using Theorem 1, and the corresponding “Asymptotic” curve qmrc
M,0(T), which

is plotted using Lemma 2, decreases, verifying Lemma 2. In addition, from Fig. 3, we can

see that “Asymptotic” curves with different M have the same slope (implying the same order

gain), and there is a shift between two “Asymptotic” curves with different M (implying different

coefficients).
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B. Performance Optimization for MRC Receiver

1) Performance Optimization in General SIR Threshold Regime: In the general SIR threshold

regime, we would like to optimize T to maximize the STP with the MRC receiver. Recall that

the closed-form upper bound qmrc,u
M (T) provides a good approximation for qmrc

M (T), as shown in

Fig. 2. In addition, qmrc,u
M (T) has a much simpler form than qmrc

M (T). Thus, in the following, we

maximize qmrc,u
M (T) instead of directly maximizing qmrc

M (T).

Problem 1 (Performance Optimization for MRC Receiver):

max
T

q
mrc,u
M (T)

s.t. (1), (2).

When M = 1, Problem 1 is a convex optimization problem, and its closed-form optimal

solution is given in Theorem 4 of our previous work [8]. When M ≥ 2, Problem 1 is in general

a non-convex optimization problem with a differentiable non-convex objective function and a

convex constraint set. The gradient projection method can be applied to obtain a stationary point

of Problem 1.5 However, the rate of convergence of the gradient projection algorithm is strongly

dependent on the choices of the stepsize and initial point. If they are chosen improperly, it may

take a large number of iterations to meet some convergence criterion [25]. To address this issue,

in the following, we propose a more efficient algorithm to obtain a stationary point of Problem 1.

First, we can see that Problem 1 is equivalent to the minimization of the difference of two

convex functions Ro(T) , −
∑

n∈N an
∑⌈M

2
⌉−1

i=0

(

M

2i+1

)

Tn

C1,2i+1(SM )Tn+C2,2i+1(SM )
and Re(T) ,

−
∑

n∈N an
∑⌊M

2
⌋

i=0

(

M

2i

)

Tn

C1,2i(SM )Tn+C2,2i(SM )
subject to the constraints in (1) and (2), which is

given below.

Problem 2 (Equivalent Problem of Problem 1):

min
T

Ro(T)−Re(T)

s.t. (1), (2).

Problem 2 is a DC programming problem [26].6 Note that constructing an algorithm to find a

globally optimal solution of a DC programming problem is in general an open problem. We use

5Note that a stationary point is a point that satisfies the necessary optimality conditions of a non-convex optimization problem,

and it is the classic goal in the design of iterative algorithms for non-convex optimization problems.

6An optimization problem is called a DC programming problem if its variables are restricted to a convex set and its objective

function and its inequality constraint functions are DC functions [26].
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CCCP to obtain a stationary point of Problem 2 [27]. The main idea of CCCP is to approximate

the objective DC function by replacing the second term (i.e., Re(T)) with its first order Taylor

expansion, and then solve a sequence of convex problems successively. Specifically, at iteration

t of CCCP, we have the following problem.

Problem 3 (Problem at Iteration t of CCCP):

min
T

Ro(T) +
∑

n∈N

anfe(T
†
n(t− 1))Tn

s.t. (1), (2),

where fe(x) , − 1
an

∂Re(T)
∂Tn

∣

∣

∣

Tn=x
=
∑⌊M

2
⌋

i=0

(

M

2i

) C2,2i(SM )

(C1,2i(SM )x+C2,2i(SM ))2
, and T†(t) denotes the opti-

mal solution of the problem at iteration t of CCCP.

It can be easily seen that Problem 3 is a convex optimization problem and Slater’s condition

is satisfied, implying that strong duality holds. Using KKT conditions, we can solve Problem 3.

Lemma 3 (Optimal Solution of Problem 3): The optimal solution T†(t) of Problem 3 is

T †
n(t) =























0, fo(0) < fe(T
†
n(t− 1)) + v†(t)

an

1, fo(1) > fe(T
†
n(t− 1)) + v†(t)

an

x(T †
n(t− 1), an, v

†(t)), otherwise

, n ∈ N ,

where fo(x) , − 1
an

∂Ro(T)
∂Tn

∣

∣

∣

Tn=x
=
∑⌈M

2
⌉−1

i=0

(

M

2i+1

) C2,2i+1(SM )

(C1,2i+1(SM )x+C2,2i+1(SM ))2
, x(T †

n(t−1), an, v
†(t))

denotes the solution of equation fo(x) = fe(T
†
n(t−1))+ v†(t)

an
, and v†(t) satisfies

∑

n∈N

T †
n(t) = C.

Proof: Please refer to Appendix D.

Algorithm 1 Stationary Point of Problem 2 based on CCCP

1: Initialize t = 1, T †
n(1) =

C
N

for n ∈ N , ǫ = 10−4.

2: repeat

3: Obtain T†(t+ 1) according to Lemma 3.

4: Set t = t+ 1.

5: until q
mrc,u
M (T†(t))− q

mrc,u
M (T†(t− 1)) < ǫ

Since fo(x) is a decreasing function, for given v†(t) and T †
n(t−1), x(T †

n(t−1), an, v
†(t)) can

be efficiently obtained by bisection search. In addition, since
∑

n∈N T †
n(t) decreases with v†(t),

v†(t) can also be efficiently obtained by bisection search. The details for solving Problem 2

using CCCP are summarized in Algorithm 1. Different from the gradient projection method,

Algorithm 1 does not rely on any stepsize. From [27], we know that Algorithm 1 converges

to a stationary point of Problem 2, denoted by T†. Thus, Algorithm 1 may have more robust
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Fig. 4. Optimized caching probability T †
n versus file index n. N = 5, C = 2, α = 4, τ = 0.5, λ = 10−3, and

an = n−γ
∑

n∈N n−γ with γ = 0.4.

convergence performance than the gradient projection method. By analyzing structural properties

of the stationary point T† of Problem 2 obtained by Algorithm 1, we have the following result.

Lemma 4 (Property of Stationary Point): The stationary point T† of Problem 2 obtained by

Algorithm 1 satisfies T †
1 ≥ · · · ≥ T †

n.

Proof: Please refer to Appendix E.

Lemma 4 reveals that files of higher popularity get more storage resources. Fig. 4 shows T† at

different M . From Fig. 4, we can see that files of higher popularity get more storage resources,

verifying Lemma 4. In addition, T †
n decreases with n more slowly when M is larger, i.e., T†

becomes more flat when M is larger. This is because when M increases, u0 can receive its

desired file from the serving helper at a larger distance from u0. Storing more different files

(corresponding to a more flat caching distribution) can increase the STP with the MRC receiver.

2) Performance Optimization in Low SIR Threshold Regime: In this part, we consider the min-

imization of the asymptotic outage probability qmrc
M,0(T) (i.e., the maximization of the asymptotic

STP) in the low SIR threshold regime.

Problem 4 (Performance Optimization for MRC Receiver in Low SIR Threshold Regime):

min
T

qmrc
M,0(T)

s.t. (1), (2).

Let T∗
0 , (T ∗

0,n)n∈N denote the optimal solution.

Problem 4 is a convex optimization problem and Slater’s condition is satisfied, implying that

strong duality holds. Using KKT conditions, we can solve Problem 4.

Lemma 5 (Optimal Solution of Problem 4): The optimal solution T∗
0 of Problem 4 is

T ∗
0,n = min

{√

an

ν0
, 1

}

,
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Fig. 5. Outage probabilities with the MRC receiver qmrc
M (T†) and qmrc

M (T∗
0) versus SIR threshold τ . N = 5, C = 3,

M = 4, α = 4, λ = 10−3, and an = n−γ
∑

n∈N n−γ .

where ν0 satisfies
∑

n∈N min
{
√

an
ν0
, 1
}

= C.

Proof: Lemma 5 can be proved in a similar way to Lemma 3. We omit the details due to

page limitation.

Note that ν0 can be efficiently obtained by bisection search. From Lemma 5, we can see that

T∗
0 is not affected by the number of receive antennas M . Fig. 5 plots qmrc

M (T†) and qmrc
M (T∗

0)

versus the SIR threshold τ at different Zipf exponent γ. From Fig. 5, we can see that when τ

decreases, the gap between each “General” curve qmrc
M (T†) and the corresponding “Asymptotic”

curve qmrc
M (T∗

0) decreases. Thus, Fig. 5 verifies Lemma 5 and the optimality of T† in the low

SIR threshold regime.

IV. PERFORMANCE ANALYSIS AND OPTIMIZATION FOR PZF RECEIVER

In this section, we consider the performance analysis and optimization of the random caching

design with the PZF receiver in the case of local CSI. First, we analyze the STP in the general

SIR threshold regime. Then, we optimize the STP.

A. Performance Analysis for PZF receiver

Note that when requesting file n, u0 can cancel the interferences from the M −Kn nearest

interfering helpers, using the PZF receiver parameterized by K. Specifically, when ℓ0,n > M −

Kn, the interferences from the helpers in {1, 2, · · · ,M−Kn} are canceled. When ℓ0,n ≤ M−Kn,

the interferences from the helpers in {1, 2, · · · ,M −Kn+1} \ {ℓ0,n} are canceled. By carefully

handling these two scenarios, we can obtain qpzf

M,n(Kn, Tn) using stochastic geometry. Substituting

qpzf

M,n(Kn, Tn) into (5), we have the following result.
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Theorem 2 (STP with PZF Receiver in General SIR Threshold Regime): The STP with the

PZF receiver parameterized by K is given by qpzf

M (K,T) =
∑

n∈N anq
pzf

M,n(Kn, Tn), where

q
pzf

M,n(Kn, Tn)

=























(1 − Tn)
M−Kn

∫∞

0

∫ x

0 gdℓ0,n
,dM−Kn

(Tn, x, y)
∑Kn−1

m=0
1
m!

∑m

k=0

(

m
k

)

L̃k
I (Tn, x, x)L̃

m−k
I (1− Tn, x, y)dydx

+
∑M−Kn

m=1 Tn(1− Tn)
m−1

∫∞

0

∫ y

0
fdm,dM−Kn+1

(x, y)
∑Kn−1

k=0
L̃k

I (1,x,y)
k! dxdy, Kn < M

qmrc
M,n(Tn), Kn = M

gdℓ0,n
,dj

(Tn, x, y) =
4πj+1λ

j+1
h Tnxy

2j−1

(j − 1)!
exp

(

−πλhTnx
2 − πλh(1− Tn)y

2
)

, (16)

fdi,dj
(x, y) =

4πjλ
j
hx

2i−1y(y2 − x2)j−i−1

(i− 1)!(j − i− 1)!
exp(−πλhy

2). (17)

Here, qmrc
M,n(Tn) is given by (8) and L̃k

I (T, x, y) is given by (10).

Proof: Please refer to Appendix F.

Note that when Kn = M for all n ∈ N , Theorem 2 reduces to Theorem 1, also verifying that

the MRC receiver is a special case of the PZF receiver parameterized by K. From Theorem 2,

we can see that the STP qpzf

M (K,T) is an increasing function of the number of receive antennas

M at each user. In particular, for Kn = M , when increasing the number of receive antennas

from M − 1 to M and the number of DoF for file n from Kn − 1 to Kn, the increase of the

STP of file n is given by (11); for Kn < M , when increasing the number of receive antennas

from M − 1 to M and the number of DoF for file n from Kn − 1 to Kn, the increase of the

STP of file n is given by

q
pzf

M,n(Kn, Tn)− q
pzf

M−1,n(Kn − 1, Tn) =

M−Kn
∑

m=1

Tn(1− Tn)
m−1

(Kn − 1)!

∫ ∞

0

∫ y

0

fdm,dM−Kn+1
(x, y)L̃Kn−1

I (1, x, y)dxdy

+
(1 − Tn)

M−Kn

(Kn − 1)!

∫ ∞

0

∫ x

0

gdℓ0,n
,dM−Kn

(Tn, x, y)

Kn−1
∑

k=0

(

Kn − 1

k

)

L̃k
I (Tn, x, x)L̃

Kn−1−k
I (1− Tn, x, y)dydx > 0.

In addition, from Theorem 2, we see that the impact of the physical layer parameters α, τ , λh,

the impact of the caching distribution T and the impact of the DoF allocation K on qpzf

M (K,T)

are coupled in a very complex manner; the impact of the caching distribution T on qpzf
M (K,T)

is not clear. Fig. 6 plots qpzf

M (K,T) versus τ at different M and K. From Fig. 6, we can see that

each “analytical” curve closely matches the corresponding “Monte Carlo” curve. Thus, Fig. 6

verifies Theorem 2. In addition, from Fig. 6, we can see that qpzf
M (K,T) increases with M .

To facilitate the characterization of the STP qpzf
M (K,T) and decouple the impacts of the caching

distribution T and the physical layer parameters on qpzf

M (K,T), we then derive a tractable upper

bound on qpzf

M (K,T), based on Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

> Pr
[

SIRpzf
n > τ |ℓ0,n = k

]

for any

k > m and the lower bound on the incomplete gamma function, i.e.,
(

1− e−Sab
)a

< γ(a,b)
Γ(a)

[23].
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Fig. 6. STP with the PZF receiver versus SIR threshold τ . N = 5, C = 3, α = 4, λ = 10−3, L = 3, T =

[1, 0.8, 0.6, 0.4, 0.2], and an = n−γ
∑

n∈N n−γ with γ = 1.

Note that the upper bound is parameterized by L ∈ {1, 2, · · · }. A larger value of L corresponds

to a tighter upper bound and higher computation complexity for calculating the upper bound.

The upper bound qpzf,u
M (K,T) on qpzf

M (K,T) is given below.

Lemma 6 (Upper Bound): The upper bound parameterized by L ∈ {1, 2, · · · } is given by

qpzf,u
M (K,T) =

∑

n∈N anq
pzf,u
M,n (Kn, Tn), where

q
pzf,u
M,n (Kn, Tn) =

M−Kn+L−1
∑

m=1

Tn(1 − Tn)
m−1RM,Kn,m + (1 − Tn)

M−Kn+L−1RM,Kn,M−Kn+L, (18)

RM,K,m =



























































∫∞

0

∫ y

0 fdm,dM−K+1
(x, y)

∑K

k=1(−1)k+1LI(1, (kSK)
1
αx, y)dxdy, m ∈ {1, · · · ,M −K}

∫∞

0
hdM−K+1

(x)
∑K

k=1(−1)k+1LI(1, (kSK)
1
αx, x)dx, m = M −K + 1

∫∞

0

∫ x

0

∫ x

y
· · ·
∫ x

y
fdM−K+1,dm

(y, x)
(

∏m−M+K−2
i=1

2ri
x2−y2

)

∑K

k=1

(

K
k

)

(−1)k+1

×LI(1, (kSK)
1
αx, x)

∏m−M+K−2
i=1

1

1+kSKτ
(

x
ri

)α

× 1

1+kSKτ(x
y )

α dr1 · · · drm−M+K−2dydx, m ∈ {M −K + 2, · · · ,M −K + L}

. (19)

Here, hdj (x) , 2πjλjx2j−1

(j−1)!
exp (−πλx2), L̃k

I (T, x, y) is given by (10) and fdi,dj(x, y) is given

by (17).

Proof: Please refer to Appendix G.

Note that RM,Kn,m represents an upper bound on Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

, where m ∈

{1, · · · ,M − Kn + L}. Similarly, for M ≥ 2, the impact of the physical layer parameters

α, τ and λh (captured by RM,K,m) and the impact of the caching distribution T on qpzf,u
M (K,T)

are separated. Moreover, by exploring structural properties of qpzf,u
M (K,T), we have the following

result.

Lemma 7 (Properties of Upper Bound): The upper bound qpzf,u
M (K,T) is a concave increasing

function of the caching distribution T.

Proof: Please refer to Appendix H.
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Fig. 6 plots qpzf,u
M (K,T) and qpzf

M (K,T) versus τ at different M and K. From Fig. 6, we can

see that qpzf,u
M (K,T) bounds qpzf

M (K,T) from above and tightly matches qpzf

M (K,T). In addition,

the gap betweeen qpzf,u
M (K,T) and qpzf

M (K,T) decreases as τ increases. Thus, qpzf,u
M (K,T) can

serve as a good approximation for qpzf

M (K,T).

B. Performance Optimization for PZF Receiver

We would like to optimize K and T to maximize the STP with the PZF receiver. Recall

that the tractable upper bound qpzf,u
M (K,T) provides a good approximation for qpzf

M (K,T), as

shown in Fig. 6. In addition, qpzf,u
M (K,T) has a much simpler form than qpzf

M (K,T). Thus, in

the following, we maximize qpzf,u
M (K,T) instead of directly maximizing qpzf

M (K,T).

Problem 5 (Performance Optimization for PZF Receiver):

max
K,T

q
pzf,u

M (K,T)

s.t. (1), (2), (4).

Let (K∗,T∗) denote the optimal solution.

Since qpzf,u
M,n (Kn, Tn) is an increasing function of Tn, by contradiction, we can easily show that

files of higher popularity get more storage resources.

Lemma 8 (Property of Optimal Solution): The optimal solution (K∗,T∗) of Problem 5 satisfies

T ∗
1 ≥ · · · ≥ T ∗

n .

When M = 1, Problem 1 is a convex optimization problem, and its closed-form optimal

solution is given in Theorem 4 of our previous work [8]. When M ≥ 2, Problem 5 is a mixed

discrete-continuous problem with two main challenges. One is the choice of the number of DoF

allocated to boost the signal power, i.e., K (discrete variables), and the other is the choice of

the caching distribution of the random caching scheme, i.e., T (continuous variables). We thus

propose an equivalent alternative formulation of Problem 5 which naturally subdivides Problem 5

according to these two aspects.

Problem 6 (Equivalent Problem of Problem 5):

q
pzf,∗
M = max

K

q
pzf,∗
M (K) (20)

s.t. (4),

where qpzf,∗
M (K) is given by

q
pzf,∗
M (K) , max

T

q
pzf,u

M (K,T) (21)

s.t. (1), (2).
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The optimal solution to the optimization in (20) is K∗ and the optimal solution to the optimization

in (21) is denoted as T∗(K). The optimal solution to Problem 6 is given by (K∗,T∗(K∗)). Note

that T∗(K∗) = T∗.

To solve Problem 6, we need to search K among MN possible choices of the optimization

in (20). For each possible choice of K, we need to obtain T∗(K) by solving the convex opti-

mization problem in (21). Thus, the brute-force optimal solution to Problem 6 using exhaustive

search is not acceptable when N and M are large.

In the following, we obtain a low-complexity solution to Problem 6 (Problem 5) with superior

performance by an alternating optimization approach. In the alternating optimization approach,

the parameters K and T are optimized in turn while fixing the other parameter, and the procedure

is repeated iteratively until qpzf,u
M (K,T) cannot be improved. Specifically, at the t-th iteration, for

given K(t), we obtain the optimal solution T(t) = T∗(K(t)) to the convex optimization in (21),

by any off-the-shelf interior-point solver (e.g., CVX [28]). Then, for given T(t), we obtain the

optimal solution K(t+ 1) of the following discrete problem:

max
K

q
pzf,u

M (K,T(t)) (22)

s.t. (4).

Note that qpzf,u
M,n (Kn, Tn) is a function of Kn and is not affected by any Kn′ , n′ 6= n. Therefore,

the discrete optimization in (22) can be decoupled into N discrete subproblems, i.e.,

max
Kn∈M

q
pzf,u

M,n (Kn, Tn(t)), n ∈ N . (23)

Let Kn(t+1) denote the optimal solution to the discrete optimization in (23). Note that K(t+1) =

(Kn(t + 1))n∈N . The complexity for solving the N separate subproblems in (23) is O(MN).

The details of the alternating optimization approach are summarized in Algorithm 2. Note that

Algorithm 2 stops in a finite number of iterations (which is smaller than MN ) due to the increase

of the STP at each iteration of the alternating optimization approach. Let (K†,T†) denote the

near optimal solution of Problem 6 obtained by Algorithm 2.

Algorithm 2 Near Optimal Solution to Problem 6 (Problem 5)

1: Initialize t = 1 and K(1) where Kn(1) = M − 1 for all n ∈ N .

2: repeat

3: Obtain T(t) = T∗(K(t)) by solving (21) with an interior-point method.

4: Obtain Kn(t+ 1) = arg max
Kn∈M

q
pzf,u
M,n (Kn, Tn(t)) for all n ∈ N by solving (23).

5: Set t = t+ 1.

6: until K(t) = K(t− 1)

January 10, 2018 DRAFT



21

SIR Threshold τ (dB)
-10 -5 0 5 10 15 20

S
u

cc
es

sf
u

l T
ra

n
sm

is
si

o
n

 P
ro

b
ab

ili
ty

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal (M=4)
Near Optimal (M=4)
Optimal (M=3)
Near Optimal (M=3)

Fig. 7. STP with the PZF receiver versus SIR threshold τ . N = 5, C = 3, α = 4, λ = 10−3, M = 4, L = 3, and

an = n−γ
∑

n∈N n−γ with γ = 1.

We now use a numerical example to compare the optimal solution obtained by exhaustive

search and the proposed near optimal solution obtained by Algorithm 2 in both STP and

computation complexity. Fig. 7 plots the STP versus the SIR threshold τ at different M . We

can see that the STP of the proposed near optimal solution nearly coincide with that of the

optimal solution. In addition, when M = 4, the numbers of convex problems we need to solve

for obtaining the optimal solution and the near optimal solution are 45 = 1024 and at most 2,

respectively. These demonstrate the applicability and effectiveness of the near optimal solution.

In addition, Fig. 4 shows T† obtained by Algorithm 2 at different M . From Fig. 4, we can see

that files of higher popularity get more storage resources, and T †
n decreases with n more slowly

when M is larger, i.e., T† becomes more flat when M is larger.

V. NUMERICAL RESULTS

In this section, we compare the proposed random caching designs with the PZF and MRC

receivers with three baseline schemes [5]–[7]. Baseline 1 (most popular) adopts the caching

design in which each helper selects the C most popular files to store, i.e., Tn = 1 for n ∈

{1, · · · , C} and Tn = 0 for n ∈ {C + 1, · · · , N} [5]. Baseline 2 (i.i.d. file popularity) adopts

the caching design in which each helper randomly selects C files to store in an i.i.d. manner

with file n being selected with probability an [7]. Baseline 3 (uniform dist.) adopts the caching

design in which each helper randomly selects C different files to store, according to the uniform

distribution, i.e., Tn = C
N

for all n ∈ N [6]. The three baseline schemes all consider the MRC

receiver as in the proposed random caching design with the MRC receiver. In the simulation,

the popularity follows the Zipf distribution, i.e., an = n−γ
∑

n∈N n−γ , where γ is the Zipf exponent.

We choose N = 100, τ = 1 and λ = 10−3.
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(a) Number of receive antennas at C =

30, α = 4 and γ = 0.6.
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(b) Cache size at M = 6, α = 4 and

γ = 0.6.
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(c) Pathloss Exponent at M = 6, C =

30 and γ = 0.6.
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(d) Zipf Exponent at M = 6 C = 30

and α = 4.

Fig. 8. STP versus number of receive antennas M , cache size C, pathloss exponent α and Zipf exponent γ.

Fig. 8 plots the STP versus M , C, α and γ. We can observe that the proposed designs with the

MRC and PZF receivers outperform all the three baseline schemes. This is because the proposed

designs can wisely exploit the storage resource. In addition, the proposed design with the PZF

receiver outperforms the proposed design with the MRC receiver. This is due to the fact that the

proposed design with the PZF receiver can also wisely exploit antenna resource besides storage

resource. The STP gap between the two proposed designs is relatively large at large number

of receive antennas M , large cache size C, large pathloss exponent α and small Zipf exponent

γ. This demonstrates the significant benefit of making good use of antenna resource in these

regions.

Specifically, from Fig. 8 (a), we can see that the STP of each of the five schemes increases

with M . This is because the receive signal power increases with M for the MRC receiver, and the

receive signal power increases or the interference power decreases with M for the PZF receiver.

From Fig. 8 (b), we can see that the STP of each of the five schemes increases with C. This is

due to the fact that as C increases, each helper can store more files, and the average distance
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between a user and its serving helper decreases. From Fig. 8 (c), we can see that the STP of

each of the five schemes increases with α. This is because as α increases, the attenuation of the

receive signal power is relatively smaller than that of the interference power. From Fig. 8 (d),

we can see that the STP of each scheme except Baseline 3 increases with γ. This is because as

γ increases, the tail of the popularity distribution becomes small, and a randomly requested file

by a user is stored at a nearby helper with a higher probability under popularity-aware caching

designs.

VI. CONCLUSION

In this paper, we considered random caching at helpers and MRC and PZF receivers at users

in a large-scale cache-enabled SIMO network. First, we analyzed the STP. For each receiver, we

derived a tractable expression and a tight upper bound for the STP. The analytical results showed

that for each receiver, the STP increases with the number of receive antennas M . Then, for each

receiver, we considered the STP maximization via maximizing the tight upper bound on the STP.

In the case of the MRC receiver, the optimization problem is non-convex, and we obtained a

stationary point by solving an equivalent DC programming problem using CCCP. In the case

of the PZF receiver, the optimization problem is a mixed discrete-continuous problem, and we

obtained a low-complexity near optimal solution by an alternating optimization approach. The

optimization results indicated that files of higher popularity get more storage resources, and the

optimized caching distribution becomes more flat when M is larger.

APPENDIX A: PROOF OF THEOREM 1

First, we calculate the STP of file n:

qmrc
M,n(Tn) = Pr [SIRmrc

n ≥ τ ] =

∫ ∞

0

Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

fdℓ0,n
(x)dx, (24)

where fdℓ0,n (x) denotes the probability density function (pdf) of random variable dℓ0,n . Note that

we have fdℓ0,n (x) = 2πλhTnx exp (−πλhTnx
2), as the helpers storing file n form a homogeneous

PPP with density λhTn. To calculate qmrc
M,n(Tn), it remains to calculate Pr

[

SIRmrc
n ≥ τ |dℓ0,n = x

]

.

We rewrite SIRmrc
n =

Hmrc
ℓ0,n,0

d−α
ℓ0,n

In+I−n
, where In ,

∑

i∈Φh,n\{ℓ0,n}
Hmrc

i,0 d−α
i and I−n ,

∑

i∈Φh,−n
Hmrc

i,0 d
−α
i .

Here, Φh,n denotes the point process generated by helpers storing file n and Φh,−n , Φh \Φh,n.

Due to independent thinning, point processes Φh,n and Φh,−n are two independent homogeneous

PPPs with density λhTn and λh(1− Tn), respectively. Therefore, we have:

Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

= Pr
[

Hmrc
ℓ0,n,0 ≥ s(In + I−n)

]

(a)
= EIn,I−n

[

exp (−s(In + I−n))

M−1
∑

m=0

sm(In + I−n)
m

m!

]
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=

M−1
∑

m=0

sm

m!

m
∑

k=0

(

m

k

)

EIn

[

Ikn exp (−sIn)
]

EI−n

[

Im−k
−n exp (−sI−n)

]

=

M−1
∑

m=0

(−s)m

m!

m
∑

k=0

(

m

k

)

L
(k)
In

(s)L
(m−k)
I−n

(s),

(25)

where s = τxα, (a) is due to Hmrc
ℓ0,n,0

d
∼ Gamma(M, 1), and L(k)

I (s) , EI

[

(−I)k exp (−sI)
]

denotes the nth-order derivative of the Laplace transform of random variable I , i.e., LI(s) ,

EI [exp(−sI)].

Then, we calculate L(k)
In
(s) and L(k)

I−n
(s), respectively. LIn(s) can be calculated as follows.

LIn(s) = EΦh,n,{Hmrc
i,0}



exp



−s
∑

i∈Φh,n\{ℓ0,n}

Hmrc
i,0 d

−α
i







 = EΦh,n





∏

i∈Φh,n\{ℓ0,n}

EHmrc
i,0

[

exp
(

−sHmrc
i,0 d

−α
i

)]





(b)
= EΦh,n





∏

i∈Φh,n\{ℓ0,n}

1

1 + sd−α
i





(c)
= exp

(

−2πλhTn

∫ ∞

x

(

1−
1

1 + sr−α

)

rdr

)

(d)
= exp

(

−
2πλhTns

2
α

α
B′

(

2

α
, 1−

2

α
,

1

1 + τ

)

)

, (26)

where (b) is due to Hmrc
i,0

d
∼ Exp(1), (c) is obtained by using the probability generating functional

of a PPP, (d) is obtained by first replacing s−
1

α r with t, and then replacing 1
1+t−α with w. Similar

to LIn(s), we have

LI−n
(s) = exp

(

−
2πλh(1− Tn)s

2
α

α
B

(

2

α
, 1−

2

α

)

)

. (27)

Based on (26) and utilizing Faà di Bruno’s formula, L(k)
In
(s) can be calculated as follows.

L
(k)
In

(s) = LIn(s)
∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

(

2πλhTn

j!

∫ ∞

x

dj

dsj

(

1

1 + sr−α

)

rdr

)bj

(e)
= (−1)kLIn(s)

∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

(

2πλhTn

∫ ∞

x

r−jα+1

(1 + sr−α)j+1
dr

)bj

(f)
=

(

−
1

s

)k

LIn(s)
∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

(

2πλhTn

α
s

2
αB′

(

2

α
+ 1, j −

2

α
,

1

1 + τ

))bj

, (28)

where (e) is due to dj

dsj
1

1+sr−α = (−1)j (j!)r−jα

(1+sr−α)j+1 and
∏k

j=1(−1)jbj = (−1)
∑k

j=1
jbj = (−1)k, and (f)

is obtained by first replacing s−
1

α r with t and then replacing 1
1+t−α with w. Similar to L(k)

In
(s),

we have

L
(k)
I−n

(s) =

(

−
1

s

)k

LI−n
(s)

∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

(

2πλh(1− Tn)

α
s

2
αB

(

2

α
+ 1, j −

2

α

))bj

. (29)

Finally, substituting (28) and (29) into (25), we have

Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

=

M−1
∑

m=0

1

m!

m
∑

k=0

(

m

k

)

L̃
(k)
In

(s)L̃
(m−k)
I−n

(s), (30)
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where L̃(k)
In
(s) , L(k)

In
(s)/

(

−1
s

)k
and L̃(k)

I−n
(s) , L(k)

I−n
(s)/

(

−1
s

)k
. Substituting (30) into (24), we

can obtain qmrc
M,n(Tn). According to total probability theorem, we complete the proof of Theorem 1.

APPENDIX B: PROOF OF LEMMA 1

We obtain an upper bound on the STP of file n as follows.

qmrc
M,n(Tn) = 1−

∫ ∞

0

Pr
[

SIRmrc
n < τ |dℓ0,n = x

]

fdℓ0,n
(x)dx

(a)
= 1−

∫ ∞

0

EIn,I−n

[

γ(M, s(In + I−n))

Γ(M)

]

fdℓ0,n
(x)dx

(b)
< 1−

∫ ∞

0

EIn,I−n

[

(1 − exp (−SMs(In + I−n)))
M
]

fdℓ0,n
(x)dx

= 1−

∫ ∞

0

EIn,I−n

[

M
∑

k=0

(

M

k

)

(−1)k exp(−kSMs(In + I−n))

]

fdℓ0,n
(x)dx

= 1−
M
∑

k=0

(

M

k

)

(−1)k
∫ ∞

0

LIn(kSMs)LI−n
(kSMs)fdℓ0,n

(x)dx , q
mrc,u
M,n (Tn), (31)

where (a) is due to Hmrc
ℓ0,n,0

d
∼ Gamma(M, 1) and (b) is based on a lower bound on the incomplete

gamma function, i.e.,
(

1− e−Sab
)a

< γ(a,b)
Γ(a)

for a > 1. Note that LIn(kSMs) and LI−n
(kSMs)

are given by (26) and (27), respectively. Substituting (26) and (27) into (31), we have

q
mrc,u
M,n (Tn) = 1−

M
∑

k=0

(

M

k

)

(−1)k2πλhTn

∫ ∞

0

x exp(−(πλhTn +A)x2)dx
(c)
= 1−

M
∑

k=0

(

M

k

)

(−1)k
πλhTn

πλhTn +A
,

where A , 2
α
(kSMτ)

2

αB′( 2
α
, 1− 2

α
, 1
1+kSMτ

) + 2
α
( 1
Tn

− 1)(kSMτ)
2

αB( 2
α
, 1− 2

α
) and (c) is due to

∫∞

0
x exp(−cx2)dx = 1

2c
. After some algebraic manipulations, we can obtain qmrc,u

M,n (Tn) and the

corresponding upper bound qmrc,u
M (T) on qmrc

M (T).

APPENDIX C: PROOF OF LEMMA 2

First, we calculate the conditional outage probability of file n conditioned on dℓ0,n = x. Similar

to the calculation of Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

in Appendix A, we have

Pr
[

SIRmrc
n < τ |dℓ0,n = x

]

= Pr
[

Hmrc
ℓ0,n,0 < s(In + I−n)

]

(a)
= EIn,I−n

[

exp (−s(In + I−n))

∞
∑

m=M

sm(In + I−n)
m

m!

]

=

∞
∑

m=M

(−s)m

m!

m
∑

k=0

(

m

k

)

L
(k)
In

(s)L
(m−k)
I−n

(s) =

∞
∑

m=M

1

m!

m
∑

k=0

(

m

k

)

L̃
(k)
In

(s)L̃
(m−k)
I−n

(s),

where (a) is due to Hmrc
ℓ0,n,0

d
∼ Gamma(M, 1). Then, by removing the condition of Pr[SIRmrc

n <

τ |dℓ0,n = x] on dℓ0,n = x, we obtain the outage probability of file n:

qmrc
M,n(Tn) =

∫ ∞

0

fdℓ0,n
(x)

∞
∑

m=M

1

m!

m
∑

k=0

(

m

k

)

L̃
(k)
In

(s)L̃
(m−k)
I−n

(s)dx.

Next, we calculate the asymptotic outage probability of file n in the low SIR threshold regime,

i.e., limτ→0 q
mrc
M,n(Tn). According to dominated convergence theorem, we have:

lim
τ→0

qmrc
M,n(Tn) = lim

τ→0

∫ ∞

0

fdℓ0,n
(x)

∞
∑

m=M

1

m!

m
∑

k=0

(

m

k

)

L̃
(k)
In

(s)L̃
(m−k)
I−n

(s)dx
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=

∫ ∞

0

lim
τ→0

fdℓ0,n
(x)

∞
∑

m=M

1

m!

m
∑

k=0

(

m

k

)

L̃
(k)
In

(s)L̃
(m−k)
I−n

(s)dx. (32)

We note that B
′
(a, b, z) = (1−z)b

b
+o
(

(1− z)b
)

as z → 1. Then, as τ → 0, we have B
′ ( 2

α
, 1− 2

α
, 1
1+τ

)

=
(τ)1−

2
α

1− 2

α

+ o
(

τ 1−
2

α

)

and B
′ (

1 + 2
α
, a− 2

α
, 1
1+τ

)

= (τ)a−
2
α

a− 2

α

+ o
(

τa−
2

α

)

. Based on these two

asymptotic expressions, as τ → 0, we have:

L̃
(k)
In

(s) = τk
∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

( 2π
α
λhTnx

2

j − 2
α

)bj

+ o(τk). (33)

On the other hand, as τ → 0, we have

L̃
(k)
I−n

(s) = LI−n
(s)

∑

(bj)kj=1
∈Mk

τ
2
α

∑k
j=1

bj
k!

b1!b2! · · · bk!

k
∏

j=1

(

2πλh(1 − Tn)x
2

α
B

(

2

α
+ 1, j −

2

α

))bj

(a)
= τ

2
α k!

2πλh(1− Tn)x
2

α
B

(

2

α
+ 1, k −

2

α

)

+ o(τ
2
α ), (34)

where (a) is due to the fact that b1 = · · · = bk−1 = 0 and bk = 1 is the dominant term in
∑

(bj)kj=1
∈Mk

τ
2

α

∑k
j=1 bj as τ → 0. Substituting (33) and (34) into (32), we have

lim
τ→0

qmrc
M,n(Tn) =

∞
∑

m=M

1

m!

m
∑

k=0

(

m

k

)

τk+
2
α

∫ ∞

0

fdℓ0,n
(x)





∑

(bj)kj=1
∈Mk

k!

b1!b2! · · · bk!

k
∏

j=1

( 2π
α
λhTnx

2

j − 2
α

)bj




×

(

(m− k)!
2πλh(1 − Tn)x

2

α
B

(

2

α
+ 1,m− k −

2

α

))

dx+ o(τk+
2
α )

(b)
= τ

2
α
2πλh(1− Tn)

α

∞
∑

m=M

B

(

2

α
+ 1,m−

2

α

)∫ ∞

0

x2fdℓ0,n
(x)dx + o(τ

2
α ) = qmrc

M,0,n(Tn) + o(τ
2
α ), (35)

where (b) is due to the fact that k = 0 is the dominant term in
∑m

k=0 τ
k+ 2

α as τ → 0.

Finally, based on (35), we have limτ→0 q
mrc
M (T) = qmrc

M,0(T) + o(τ
2

α ).

APPENDIX D: PROOF OF LEMMA 3

The Lagrange function of Problem 3 is given by

L(T,η,λ, v) = Ro(T) +
∑

n∈N

anfe(T
†
n(t− 1))Tn −

∑

n∈N

ηnTn +
∑

n∈N

λn(Tn − 1) + v

(

∑

n∈N

Tn − C

)

,

where η , (ηn)n∈N and λ , (λn)n∈N are the Lagrange multipliers associated with the inequality

constraints Tn ≥ 0, n ∈ N and Tn ≤ 1, n ∈ N , respectively. v is the Lagrange multiplier

associated with the equality constraint
∑

n∈N Tn = C. Thus, we have

∂L(T,η,λ, v)

∂Tn

= −anfo(Tn) + anfe(T
†
n(t− 1))− ηn + λn + v.

Since strong duality holds, primal optimal T†(t) and dual optimal η∗, λ∗ and v†(t) satisfy KKT

conditions: (i) primal constraints (1) and (2); (ii) dual constraints ηn ≥ 0 and λn ≥ 0 for all

n ∈ N ; (iii) complementary slackness ηnTn = 0 and λn(Tn − 1) = 0 for all n ∈ N ; and (iv)
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∂L(T,η,λ,v)
∂Tn

= 0. By (i)-(iv), we have the following results: if v > an(fo(0)− fe(T
†
n(t− 1))), then

Tn = 0; if v < an(fo(1) − fe(T
†
n(t − 1))), then Tn = 1; if an(fo(1) − fe(T

†
n(t − 1))) < v <

an(fo(0)− fe(T
†
n(t − 1))), then Tn satisfies fo(Tn) = fe(T

†
n(t− 1)) + v

an
. Combining with (2),

we can prove Lemma 3.

APPENDIX E: PROOF OF LEMMA 4

We prove Lemma 4 by mathematical induction. First, according to the initialization, we have

T †
n(1) = T †

n′(1) = C
N

for all n′ > n. Assume T †
n(t) ≥ T †

n′(t) for all n′ > n, where t ≥ 1. Next,

we show T †
n(t+1) ≥ T †

n′(t+1) for all n′ > n. Since an > an′ and T †
n(t) ≥ T †

n′(t) for all n′ > n,

and fe(x) is a decreasing function, we have fe(T
†
n(t))+

v†(t+1)
an

< fe(T
†
n′(t))+

v†(t+1)
an′

. Combining

with the fact that fo(x) is a decreasing function, we have (i) if fo(0) ≤ fe(T
†
n′(t))+

v†(t+1)
an′

, then

T †
n(t+1) ≥ T †

n′(t+1) = 0; (ii) if fo(1) ≥ fe(T
†
n(t))+

v†(t+1)
an

, then T †
n′(t+1) ≤ T †

n(t+1) = 1; (iii)

if fo(1) < fe(T
†
n(t))+

v†(t+1)
an

< fe(T
†
n′(t))+

v†(t+1)
an′

< fo(0), then 0 < T †
n′(t+1) < T †

n(t+1) < 1.

Therefore, we can show Lemma 4.

APPENDIX F: PROOF OF THEOREM 2

When Kn = M , the PZF receiver reduces to the MRC receiver and qpzf
M,n(Kn, Tn) = qmrc

M,n(Tn).

When Kn < M , by the law of total probability, we have

q
pzf

M,n(Kn, Tn) = Pr [ℓ0,n > M −Kn] Pr
[

SIRpzf
n > τ |ℓ0,n > M −Kn

]

+

M−Kn
∑

m=1

Pr [ℓ0,n = m] Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

, (36)

where Pr[ℓ0,n = m] = Tn(1−Tn)
m−1 and Pr[ℓ0,n > m] = (1−Tn)

m−1. To calculate qpzf

M,n(Kn, Tn),

it remains to calculate Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

and Pr
[

SIRpzf
n > τ |ℓ0,n > M −Kn

]

.

When ℓ0,n > M −Kn, we have

Pr
[

SIRpzf
n > τ |ℓ0,n > M −Kn

]

=

∫ ∞

0

∫ x

0

gdℓ0,n
,dM−Kn

(Tn, x, y) Pr

[

H
pzf

ℓ0,n,0
d−α
ℓ0,n

In + I−n

> τ
∣

∣

∣dℓ0,n = x, dM−Kn
= y

]

dydx, (37)

where In ,
∑

i∈Φh,n\{ℓ0,n}

Hpzf
i,0 d

−α
i , I−n ,

∑

i∈Φh,−n\{1,2,··· ,M−Kn}

Hpzf
i,0 d

−α
i and gdℓ0,n ,dM−Kn

(Tn, x, y)

denotes the joint pdf of dℓ0,n and dM−Kn
when ℓ0,n > M − Kn. Similar to the calculation of

Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

in (25) in Appendix A, we have

Pr

[

H
pzf

ℓ0,n,0
d−α
ℓ0,n

In + I−n

> τ
∣

∣

∣dℓ0,n = x, dM−Kn
= y

]

=

Kn−1
∑

m=0

1

m!

m
∑

k=0

(

m

k

)

L̃k
I (Tn, x, x)L̃

m−k
I (1− Tn, x, y). (38)

Now, we calculate gdℓ0,n ,dM−Kn
(Tn, x, y). Note that the pdf of the distance of the i-th nearest
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point in a homogeneous PPP with density λ is hdi(x, λ) =
2πiλix2i−1

(i−1)!
exp(−πλx2). Due to the

independence between Φh,n and Φh,−n, we have

gdℓ0,n
,dM−Kn

(Tn, x, y) =
hd1

(x, λhTn)hdM−Kn
(y, λh(1 − Tn))

Pr[ℓ0,n > M −Kn]
. (39)

When ℓ0,n = m ∈ {1, 2, · · · ,M −Kn}, we have

Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

=

∫ ∞

0

∫ y

0

fdm,dM−Kn+1
(x, y) Pr

[

H
pzf
m,0d

−α
m

I−
> τ

∣

∣

∣dm = x, dM−Kn+1 = y

]

dxdy, (40)

where I− ,
∑

i∈Φh\{1,··· ,M−Kn+1} H
pzf
i,0 d

−α
i and fdm,dM−Kn+1

(x, y) denotes the joint pdf of dm and

dM−Kn+1 when m < M − Kn + 1. Similar to the calculation of Pr
[

SIRmrc
n ≥ τ |dℓ0,n = x

]

in

(25) in Appendix A, we have

Pr

[

H
pzf
m,0d

−α
m

I−
> τ

∣

∣

∣dm = x, dM−Kn+1 = y

]

=

Kn−1
∑

m=0

1

m!

m
∑

k=0

(

m

k

)

L̃k
I (Tn, x, x)L̃

m−k
I (1− Tn, x, y). (41)

Now, we calculate fdm,dM−Kn+1
(x, y). Consider four non-overlapping areas A1 = B(0, dm), A2 =

B(0, dm+dr1)\B(0, dm), A3 = B(0, dM−Kn+1)\B(0, dm+dr1) and A4 = B(0, dM−Kn+1+dr2)\

B(0, dM−Kn+1), where B(0, d) denotes the ball centered at the origin with radius d. According

to the definition of PPP, the joint probability that nodes m and M −Kn + 1 belong to A2 and

A4, respectively, is given by

Pr[node m in A2, node M −Kn + 1 in A4] =











P1P2P3P4 dm ≤ dM−Kn+1

0 otherwise

, (42)

where P1 = Pr[m− 1 nodes in A1] = (πλhd
2
m)m−1

(m−1)!
exp(−πλhd

2
m), P2 = Pr[1 node in A2] =

πλh((dm+dr1)
2−d2m) exp(−πλh((dm+dr1)

2−d2m)), P3 = Pr[M −Kn −m+ 1 nodes in A3] =
(πλh(d

2
M−Kn+1

−(dm+dr1)2))M−Kn−m+1

(M−Kn−m+1)!
exp(−πλh(d

2
M−Kn+1−(dm+dr1)

2)) and P4 = Pr[1 node in A4] =

πλh((dM−Kn+1 + dr2)
2 − d2M−Kn+1) exp(−πλh((dM−Kn+1 + dr2)

2 − d2M−Kn+1)). By (42), we

have

fdm,dM−Kn+1
(x, y) = lim

dr1,dr2→0

Pr[node m in A2, node M −Kn + 1 in A4]

dr1dr2

=











4(πλh)
M−Kn+1d2m−1

m dM−Kn+1(d
2
M−Kn+1−d2

m)M−Kn−m exp(−πλhd
2
M−Kn+1)

(m−1)!(M−Kn−m)! dm < dM−Kn+1

0 otherwise

. (43)

Substituting (38) and (39) into (37) and substituting (41) and (43) into (40), we can obtain

Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

and Pr
[

SIRpzf
n > τ |ℓ0,n > M −Kn

]

, respectively. Then, based on (36),

we can obtain qpzf
M,n(Kn, Tn). According to total probability theorem, we can show Theorem 2.

Appendix G: Proof of Lemma 6

By the law of total probability, we have
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q
pzf
M,n(Kn, Tn) =

∞
∑

m=1

Pr [ℓ0,n = m] Pr
[

SIRpzf
n > τ |ℓ0,n = m

]
(a)

≤
M−Kn+L−1

∑

m=1

Pr [ℓ0,n = m] Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

+

∞
∑

m=M−Kn+L

Pr [ℓ0,n = m] Pr
[

SIRpzf
n > τ |ℓ0,n = M −Kn + L

]

,

(b)

≤
M−Kn+L−1

∑

m=1

Tn(1− Tn)
m−1RM,Kn,m + (1 − Tn)

M−Kn+L−1RM,Kn,M−Kn+L

where (a) is due to Pr
[

SIRpzf
n > τ |ℓ0,n = m

]

> Pr
[

SIRpzf
n > τ |ℓ0,n = k

]

for any k > m, (b) is

due to the fact that RM,Kn,m is an upper bound on Pr[SIRpzf
n > τ |ℓ0,n = m] obtained by adopting

the lower bound on the incomplete gamma function, i.e.,
(

1− e−Sab
)a

< γ(a,b)
Γ(a)

[23]. RM,Kn,m

can be calculated in a similar way to qmrc,u
M,n (Tn) in Lemma 1. We omit the details due to page

limitation. Therefore, we complete the proof of Lemma 6.

APPENDIX H: PROOF OF LEMMA 7

By denoting Pn = 1− Tn, we have

q
pzf,u
M,n (Kn, 1− Pn) =

M−Kn+L−1
∑

m=1

(1− Pn)P
m−1
n RM,Kn,m + PM−Kn+L−1

n RM,Kn,M−Kn+L

= RM,Kn,1 −
M−Kn+L−1

∑

m=1

Pm
n (RM,Kn,m −RM,Kn,m+1).

Since RM,Kn,m −RM,Kn,m+1 > 0, qpzf,u
M,n (Kn, 1−Pn) is a decreasing function of Pn. In addition,

since qpzf,u
M,n (Kn, 1−Pn) is not affected by any Pn′ , n′ 6= n and

d2q
pzf,u
M,n

(Kn,1−Pn)

dP 2
n

< 0, qpzf,u
M (K, 1−P)

is a concave function of P. Therefore, qpzf,u
M (K,T) is a concave increasing function of T.
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