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Abstract—Millimeter wave (mmWave) location systems not
only provide accurate positioning for location-based services, but
can also help optimize network operations, for example through
location-driven beam steering and access point association. In
this paper, we design and evaluate localization schemes that
exploit the characteristics of mmWave communication systems.
We propose two range-free algorithms belonging to the broad
classes of triangulation and angle difference-of-arrival. The
schemes work both with multiple anchors and with as few as
a single anchor, under the only assumption that the floor plan
and the positions of the mmWave access points are known.
Moreover, they are designed to be lightweight, so that even
computationally-constrained devices can run them. We evaluate
our proposed algorithms against two benchmark approaches
based on fingerprinting and angles of arrival, respectively. Our
results, obtained both by means of simulations and through
measurements involving commercial 60-GHz mmWave devices,
show that sub-meter accuracy is achieved in most of the cases,
even in the presence of only a single access point. The availability
of multiple access points substantially improves the localization
accuracy, especially for large indoor spaces.

Index Terms—Millimeter wave; localization; simulation; ray
tracing; measurements; commercial 60 GHz hardware

I. INTRODUCTION

Millimeter-wave (mmWave) communications in the 30 to

300 GHz range are a disruptive technology for future high-rate

wireless communications [2]–[4]. mmWaves are characterized

by crisp reflections carrying significant power with little

energy scattering around the direction predicted by the law

of reflection [5], [6], and a predominance of the line-of-sight

(LoS) component over reflected components in the absence

of blockage [7]. These channel effects have been studied in

great detail, e.g., in [6], [8], and the above characteristics

imply a quasi-optical propagation behavior, which enables

indoor localization methods based on geometrical propagation

assumptions [9].

Indoor localization is considered an enabling technology for

a range of applications [10], including people and asset track-
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ing, large-scale virtual reality, next-generation RFID tags [11],

assisted living [12], tracking of patients in protected areas,

as well as other functions related to social proximity and

environment-dependent customization of mobile devices [13].

This makes it a hot topic for current theoretical and practical

research, as proven by the broad participation to yearly lo-

calization competitions such as [14]. Recently, some indoor

localization algorithms have achieved remarkable accuracy.

For example, Chronos [15] achieves a median error of about

70 cm and 1 m in LoS and non-LOS (NLoS) environments, re-

spectively, using multi-channel WiFi signals. The competition

report in [16] also shows that a very good average accuracy

is achieved by some approaches such as [17] (infrastructure-

based, mixing angle and distance measurements) and [18]

(infrastructure-free, based on fingerprinting in dense WiFi

deployments). Other systems achieve sub-meter accuracy by

integrating WiFi signal processing with inertial sensors [19],

or by deploying ultra-wideband devices [20], [21].

Importantly, accurate localization and tracking can serve as

a proxy for physical mmWave communication functions, such

as beam training [22], handover and context switching. While

the degree of accuracy required for indoor localization may

vary widely depending on the specific application, we remark

that no extreme accuracy is required to assist, for example,

handover and beam training/tracking in mmWave networks.

In fact, the typical beamwidth of current mmWave hardware

ranges between 7 and 10 degrees or more [23]. Such apertures

translate into a horizontal span between 60 and 90 cm at

5 meters from the access point (AP), or between 90 and

180 cm at 10 meters. In this context, sub-meter accuracy would

be more than sufficient to help choose the right sector for

link establishment, or to help detect sector changes as a client

moves.

Still, several characteristics of mmWave links require to

rethink the typical localization methods employed in indoor

environments. For example, according to the Friis equation,

due to the short wavelength the path loss can easily exhibit 30

to 40 dB higher attenuation compared to microwave signals

over typical link distances. Moreover, in some bands the

spectrum has further absorption peaks (e.g., at 60 GHz, due

to oxygen absorption) [9], [24]. While this implies that a

LoS propagation path is easily distinguishable from NLoS

paths, it also limits the range of indoor mmWave communi-

cations, which is often confined to a single room or a portion

thereof [25]. For communications, these effects are typically

compensated for via antenna arrays that permit to form narrow

and very directional beams, implying that LoS and NLoS

components can be discriminated in the angle domain.

It is desirable that mmWave localization algorithms can

run on terminals with limited computational capabilities or



energy constraints. This requires to achieve sufficient accuracy

without complex signal processing through a low-overhead

design. The localization process can be aided in part by the

anchor APs, which can simplify the environment estimation

by broadcasting constraints such as room boundaries (walls,

ceiling height, etc.) as well as their own position. Besides this

information, the localization algorithms should rely only on

the information that is available locally on the device, i.e.,

provided by the device’s RF interface.

In this paper, we propose two localization schemes for

mmWave systems that work solely based on the angle mea-

surements implicitly provided by the beam training process

of mmWave devices. One of the schemes uses these measure-

ments for a form of triangulation, and the other one uses them

to compute angle difference of arrival (ADoA) values. The

two algorithms offer different tradeoffs between accuracy and

environment awareness requirements. They are designed to

work with as many APs as are available in the indoor mmWave

network, and leverage indoor multipath propagation in order to

improve the localization accuracy. In conditions of particularly

low coverage, these characteristics make it possible to localize

a node with only a single AP. Note that, even in case the

PHY layer of the mmWave devices cannot be easily modified

to directly make angle of arrival (AoA) information available,

sector information of the highly directional antenna arrays is

available at the MAC layer [26], making very it easy to pass

such angle-related information to higher-layer protocols. Our

algorithms assume to know the indoor area’s floor plan and the

location of the mmWave APs. This is a common assumption

for indoor localization [27]–[31] and can be realized by means

of map-based services [32]. However, we do not require

the knowledge of temporary obstructions, such as human

bodies blocking mmWave propagation paths. As long as such

obstructions do not lead to a very low number of visible

paths for the client, the loss of a few propagation paths does

not hamper the functionality of the algorithms. Additionally,

spurious paths originating from temporary reflections are very

likely to be filtered out by the validation or optimization

steps of the algorithms. The feasibility and practicality of

our schemes is demonstrated through both simulations and

experiments with commercial mmWave systems operating in

the 60 GHz band, in two different indoor scenarios.

This paper substantially extends several aspects of our

previous work [1]. First, while [1] is concerned with single-

anchor localization, this work focuses on realistic mmWave

deployments with multiple APs and extends all localization

algorithms to work with multiple anchors. In this sense, the

algorithms in [1] are a special case of those presented in this

paper. When designing these improved algorithms, we adhere

to the initial design requirement that localization should be

achieved using only angle information as provided by the

mmWave hardware (e.g., through sector information) and that

the algorithms should have limited computational complexity.

Moreover, we present several additional simulation results both

for multiple and for a single anchor AP. These simulations are

complemented by two sets of experimental results obtained

with commercial mmWave hardware, including a multi-AP

deployment in a realistic office space.

The remainder of this paper is organized as follows. Sec-

tion II surveys related work. Section III describes the proposed

algorithms. Section IV discusses simulation results and draws

initial conclusions on the performance of the algorithms, and

Section V presents an experimental campaign involving actual

mmWave hardware, which characterizes the performance of

our localization algorithms in real-world environments. Fi-

nally, Section VI draws concluding remarks.

II. RELATED WORK

We subdivide related work on localization into a general

review of classical schemes (Section II-A) and more recent

advances (Section II-B).

A. Classical localization schemes

Trilateration and multilateration are among the most com-

mon range-based localization methods [33]. Ranging can be

provided via the evaluation of the Time of Arrival (ToA) or of

the received signal strength (RSS) [34], if a path loss model is

available. However, range-based approaches may suffer from

inaccurate ranging in typical scenarios. Triangulation [33]

requires the knowledge of the distance between two anchor

nodes and of the angles of departure from the anchors.

Here, angle estimation errors negatively affect the accuracy,

especially if the distance between the client and the anchors

is large. Fingerprinting-based methods [33], [35] rely on the

assumption that measurable radio fingerprints are distinct for

a given location. While the definitions of fingerprint vary

broadly depending on the scenario and radio technology [36],

this method has the significant drawback that a very high

measurement effort is required for fingerprint collection (the

greater the desired accuracy, the more measurements must be

collected). The mathematical analysis of the error performance

of schemes based on TOA, TDoA, RSS, and AoA in an

NLoS environment is provided in [37] via Cramer-Rao bound

expressions, observing that the AoA distance error tends to

increase faster than TDoA or RSS errors. The fusion of ToA

and RSS measurements via an adaptive likelihood metric in

WiFi scenarios is advocated in [38]. The proposed algorithm

works with the empirical distribution of such measurements

and is robust to non-Gaussian noise, achieving a median error

of about 2 m.

The choice of range-based or range-free methods depends

on the availability of a precise path loss model: in general,

range-based methods achieve better accuracy, but require to

accurately tune the parameters of the path loss model in a

way that is environment-dependent, and can lead to large

errors if such parameters are wrongly estimated or updated

too infrequently. In these cases, angle-based methods are

preferable.

B. Recent advances in indoor localization

Recent work significantly advanced WiFi-based indoor

localization. For example, ArrayTrack [39] implements an

FPGA-based AoA localization system that estimates locations

via a maximum likelihood (ML) approach. The system is



shown to be accurate but sensitive to changes in orientation

and antenna height. CUPID [40] is a range-based system that

extracts the direct propagation path in multipath WiFi environ-

ments and locates a user using multiple RSSI measurements.

Centaur [41] fuses acoustic and radio-frequency ranging using

Bayesian inference to achieve better accuracy than with either

system alone. SAIL [42] exploits a single AP for localization,

and improves the accuracy of position estimates through dead

reckoning enabled by a smartphone’s sensors. The system

needs to estimate the gait of the user carrying the smartphone,

and is sensitive to pose changes. iLocScan [43] harnesses the

multipath propagation of WiFi signals in order to localize a

signal source and roughly estimate the surrounding boundaries.

The approach is demonstrated using a USRP implementation

of the algorithm and the related antenna array signal process-

ing. The common aspect of these works is that multi-antenna

signal processing is used to improve the performance of the

localization algorithms, even in scenarios where only a single

AP is available.

Especially mmWave technology is amenable to high-

accuracy indoor localization [44]. The shorter mmWave wave-

length, compared to microwave frequencies in the sub-6 GHz

range, makes it possible integrate larger antenna arrays in

a smaller space, enabling MIMO approaches for localiza-

tion. By leveraging a sparse representation of the MIMO

channel matrix, a localization technique based on ML was

designed in [45]. However, such techniques are computation-

ally intensive, and efficient implementations usually require

programmable hardware such as FPGAs. The performance

of RSS-, TDoA- and AoA-based localization schemes in

mmWave systems is compared via simulations in [46], as-

suming the presence of several anchor nodes deployed over a

circumference around the receiver. It is observed that the AoA

approach achieves the smallest localization error because of

the broad AoA spectrum diversity originating from the circular

geometry. Under the assumption of no initial environment

knowledge, JADE [47] localizes a client based solely on

ADoA information, and maps the environment by leveraging

the relationship between physical and virtual anchors, where

virtual anchors correspond to the reflected paths of physical

anchors. While the method obtains sub-meter localization

accuracy in simulations, it requires several APs in order to

achieve a realistic map of the environment. A single-anchor

pseudo-lateration method is proposed in [48] that estimates

the position of a client by measuring the distance from a

physical anchor and from a corresponding virtual anchor.

Like other range-based methods, pseudo-lateration requires

environment-dependent calibration in order to achieve good

results. mmWave has been combined with different technolo-

gies to localize a client. In [49], the authors consider uplink

mmWave and downlink visible light communications, where

the lowest error obtained was about 6 cm. For mmWave

localization, the authors rely on a single multi-antenna anchor,

and exploit reflected paths.

While mmWave systems make it possible to discriminate

signals in the angular domain, ultra-wideband (UWB) systems

discriminate different propagation paths in time, and enable

accurate localization via time-of-arrival (ToA)-based ranging

techniques. In [50] the authors review UWB ranging tech-

niques together with the primary sources of TOA error (e.g.,

clock drift, and interference). Fundamental ToA bounds are

described in both ideal and multipath environments. UWB

can potentially enable concurrent ranging [21], which has the

potential to reduce the ranging time by allowing overlapping

transmissions.

By observing that deterministic multipath components typi-

cally bear up to 90% of the UWB channel impulse response’s

energy, the authors in [51] employ a single anchor node,

extract ToA information from the AoA spectrum, and estimate

the distance between the client and physical or virtual anchors

via an ML approach. The knowledge of the floor plan is

assumed in order to identify the location of virtual anchors.

In [52], the TDoA between different multipath components

is used to compute range estimates via an ML approach.

Filtering such estimates through a Kalman filter yields a

median localization error below 5 m in simulations.

Cooperative localization is also a promising paradigm that

improves the localization accuracy at the cost of exchanging

information among the network nodes [53]. In the iterative

algorithm DILOC [54], the nodes exchange location estimates

and derive their position as the convex combination of the co-

ordinated of a proper set of neighboring nodes. The process is

initialized by m+1 anchors in an m-dimensional environment.

DILAND [55] improves over DILOC by supporting noisy

distance measurements and unstable communication links. In

the network navigation framework [56], the nodes localize

themselves using internal measurements (e.g., inertial sensors)

and intra-node measurements (e.g., radio ranging). The paper

presents theoretical results to establish how navigation infor-

mation evolves in a cooperative network. In [57] and [58] the

authors develop a framework to characterize the fundamental

limits of localization accuracy for a single client and in a

wideband cooperative localization scenario, respectively. In the

latter, it is assumed that the nodes exchange whole waveforms,

instead of summary information such as ToA or RSS.

Our work differs from the above literature in that our algo-

rithms employ only angle information in mmWave scenarios

unlike, e.g., [40], [46], [48]. While incorporating RSS-based

ranging in the location system tends to achieve decimeter-

level accuracy [44], angle information is readily available

from the sector scanning carried out by the firmware of

mmWave devices for beam training and link establishment,

and does not require to build environment-specific path loss

models. Therefore, a distinctive feature of our algorithms is

that they do not require to change the communication standard

(unlike [15], [40], [45]), to incorporate additional hardware

or UWB systems (unlike [21], [39], [41], [49]–[51]), or to

collect large fingerprinting databases (as in [18], [35], [36]).

Additionally, we explicitly avoid the exchange of additional

messages for the purpose of localization (besides the ones

mandated by the mmWave standard), which is different from

collaborative localization approaches [54]–[58]. We design

our algorithms for low complexity, such that they can be

implemented on simple end devices: this avoids more complex

ML approaches [39], [45], [51], [52]. Finally, our algorithms

are tailored to typical mmWave scenarios, which normally



Table I
NOTATION EMPLOYED IN THE PAPER

Name Meaning Name Meaning

p, n, pn
tx Point, normal vector, location of AP n An Set of the virtual anchor locations

NAP Number of APs Ān Partition of set An ∪ {pn
tx}

Pn
p (α) AoA spectrum for AP n at point p An

µ Set of virtual anchors mirrored up to µ times for AP n

Nn
p Number of MPCs in Pn

p (α) Aµ Set defined as
⋃NAP

n=1 An
µ

M(n,p) 2×Nn
p matrix with MPCs in Pn

p (α) vmax Number of anchors used for validation in TV

M̆(p) Concatenation of all M(n,P) matrices β Vector such that AP βi generates MPC i in M̆(p)

δm Angle difference M̆
(p)
2,m − M̆

(p)
2,1 Dn Set of fingerprints for AP n

Z Set of obstacles F Set of fingerprint measurement locations

α0 Reference angle T(n,p) NLoS feature matrix (last Nn
p − 1 rows of M(n,p))

∆α Error on α0 (compass bias) σ AoA estimation error

feature a high density of APs in order to guarantee sufficient

coverage. Still, the algorithms also work under sparse deploy-

ment conditions, and even in the presence of only a single

access point.

III. MILLIMETER WAVE LOCALIZATION SCHEMES

We now present the localization algorithms, which are

designed such that the client can run them locally by mea-

suring only angle of arrival information. Such information is

inherently available in mmWave scenarios, which implement

directional communications through phased arrays, and run

beam training algorithms to identify the best steering direction

for the array’s main lobe [59], even in dynamic scenarios [60],

[61]. The algorithms presented in the following are represen-

tative of two broad classes of approaches, those based on

triangulation and those based on ADoA. Such classes have

different advantages and disadvantages. The first algorithm,

named Triangulate-Validate (TV), requires fewer anchors to

localize a client successfully, but is sensitive to errors in

the device orientation. The second one is based on ADoA

information, and has the advantage that it is inherently immune

to orientation biases, but requires a larger number of anchors

than TV. These algorithms will be compared against two

benchmark approaches from the literature: the first is based

on fingerprinting (FP) [1], [36], which is lightweight for the

client, but requires the setup of a fingerprint database, typically

implying a very significant measurement collection effort; the

second one is named CCAL and is based on the solution of

ADoA localization as a convex quadratic problem [62]. All

algorithms are designed to leverage the sparse AoA spectrum

that results from the quasi-optical mmWave propagation, and

can manage the multiple APs that are typically encountered

in indoor mmWave deployments. However, even if the indoor

space is illuminated by only a single AP (for example in

case other APs are blocked by obstacles), the algorithms can

leverage multipath propagation in order to localize a node

using both LoS and NLoS paths.

We now present the required background and notation.

The most important symbols and definitions are collected in

Table I. With focus on an indoor scenario, we define a three-

dimensional Cartesian coordinate system centered in one of

the corners of the room. The system is described by the

canonical vectors ex = (1, 0, 0), ey = (0, 1, 0) (oriented

orthogonally along the floor sides), and ez = (0, 0, 1) (oriented

along the height of the room), such that any point q =
qxex+qyey+qzez can be mapped to a triple (qx, qy, qz). The

room boundaries and any other permanent obstacles containing

radio-reflective surfaces are grouped in the reflective objects

set Z . Obstacles are modeled as three-dimensional polyhedra

with flat polygonal faces, straight edges and sharp vertices.

We treat each face as an oriented surface S, represented by

its normal vector

n =
(p2 − p1)× (p3 − p1)

‖(p2 − p1)× (p3 − p1)‖
, (1)

where p1, p2 and p3 are points of S, ‖ · ‖ denotes the

Euclidean norm, and × the cross-product. We assume that

one or more mmWave APs 1, . . . , n, . . . , NAP are installed

in the room at the locations p1
tx, . . . ,p

n
tx, . . . ,p

NAP
tx . These

APs act as reference nodes for localization purposes. We also

assume that each node trying to localize itself is aware of

the location of the APs and of the obstacles in Z . This is

in line with our assumption that localization must be attained

even by devices with limited computational power or hard

energy constraints. The algorithms are designed to leverage

the reflections of the AP signals off indoor boundaries in order

to compute location estimates. For every AP n, the input to

our algorithms is the AoA spectrum Pn
p (α), which records

the distribution (over the azimuthal plane) of the amplitude of

multipath components (MPCs) of the signal from AP n, as

seen at a given location p. The AoA spectrum is a function

of the azimuth α, measured relative to a reference angle

α0. For each AP n, Pn
p (α) is processed to yield a compact

representation of different MPCs at p. In particular, a peak in

the reception pattern is identified with an MPC [63]. An MPC

can be either a LoS or an NLoS path. We remark that, with

respect to the classical triangulation and angle-difference-of-

arrival localization algorithms, our schemes are unaware of the

correspondence between the APs and the MPCs, and do not

know a priori whether an MPC corresponds to a LoS or an

NLoS propagation path. Enacting procedures to estimate this

correspondence and localize a node is a distinctive feature of

our algorithms. Such procedures have been designed to have

low complexity, thus avoiding exhaustive search or maximum

likelihood approaches in the design of both TV and ADoA.

We collect the MPCs related to every AP n in a 2 × Nn
p

matrix M(n,p), where Nn
p is the number of detected MPCs

in Pn
p (α). The first row of M(n,p) contains the amplitude of



Figure 1. Example scenario, including the geometry of angle difference-of-
arrival localization.

each MPC sorted in decreasing order; the second row contains

the AoA of the MPC, relative to the reference α0. In this way,

each column M
(n,p)
:,k of M(n,p) (where the colon notation :,k

denotes all elements of the corresponding dimension, and in

this case it means all rows of column k) can be seen as a vector

in polar coordinates, departing from p, where M
(n,p)
1,k and

M
(n,p)
2,k are the amplitude and phase of the vector relative to

α0, respectively. Finally, we define M̆(p) as the 2×
∑NAP

n=1 Nn
p

concatenation of all matrices M(n,P), re-sorted in order of

decreasing MPC amplitude, and we call β the 1×
∑NAP

n=1 Nn
p

vector whose ith element βi indicates the index of the AP that

generates the ith MPC in M̆(p). For simplicity, we describe

the algorithms developed in this paper for the case of node

localization on the azimuthal plane, but their extension to the

3D case is straightforward.

A. Virtual anchors

The signals emitted by a given AP located at pn
tx generate

an AoA spectrum Pn
p (α) at location p. Each MPC in this

spectrum can be modeled as emitted by a virtual anchor that

would be the source of a LoS signal reaching p along the

same AoA of the MPC. The position of the virtual anchor can

be determined by mirroring the location of AP n with respect

to the surfaces where its signal incurs a reflection. Call An =
{an0 ,a

n
1 , . . . } the set containing the positions of the possible

virtual anchors for AP n, and call Ān = {An
0 , A

n
1 , A

n
2 , . . . }

a partition of the set An ∪ {pn
tx}. We let An

0 = pn
tx, whereas

each set An
i , i = 1, 2, . . . contains the virtual anchors that have

been mirrored i times with respect to any surface of the objects

in Z . Note that there is no limit to the number of times the

AP can be mirrored. However, in practice the mmWave signal

of the AP will fade quickly as it propagates and reflects off

multiple surfaces: this is a substantially different aspect with

respect to, e.g., UWB systems at lower frequencies, and allows

us to truncate An by considering a maximum reflection order

µ [63]. To this end, we define An
µ =

⋃µ
i=0 A

n
i .

Fig. 1 shows an indoor scenario with two walls (thick

gray lines) and two physical APs at locations p1
tx and p2

tx,

corresponding to anchors a1 and a2, respectively. Two virtual

anchors a3 and a4 correspond to a first- and a second-order

reflection, respectively, i.e., a3 ∈ A1
1 and a4 ∈ A1

2.

B. The Triangulate-Validate (TV) algorithm

With this algorithm, a node at an unknown position p

estimates its position via a number of triangulation steps

followed by a validation of the estimated locations. The

algorithm assumes that the mmWave client has measured the

AoA spectrum Pn
p (α) for each AP n, and has derived the

matrix M̆(p) and the vector β defined above. We recall that

the knowledge of the AP locations {pn
tx}

NAP
n=1 , of the obstacle

set Z and of the reference angle α0 is also assumed. If

the association between the anchors in each set An and the

MPCs in M̆(p) were known, it would be possible to directly

triangulate the position of p. However, we only assume to

know the ID of the APs from which the MPCs in M̆(p)

originate, but not the physical or virtual anchor they are

associated with. Hence, we have to estimate this association

via the procedure explained in the following, which is designed

to be significantly less complex than an ML approach [51].

With reference to the pseudo-code in Algorithm 1, we start

by considering virtual anchors from all APs up to a reflection

order µ (line 3). While a high value of µ would yield a richer

virtual anchor set Aµ, a low value is more meaningful for

triangulation: in fact, reflections weaken the signal, and virtual

anchors of higher order can be quite far from the receiver. In

turn, this distance would translate into a large triangulation

error, even for small angle errors in the AoA spectrum. In

addition, a signal at mmWave frequencies is usually so weak

after more than two reflections that it cannot be decoded.

Hence, we set µ=2 in the following.

We start by considering M̆
(p)
:,1 and M̆

(p)
:,2 which, due to

the sorting of M̆(p), correspond to the MPCs with highest

amplitude. Before using them to triangulate a position, we

need to transform these entries into vectors departing from

the position of any anchor, expressed relative to the reference

Cartesian coordinate system of the room. This yields two

vectors u1 = −QM̆
(p)
:,1 and u2 = −QM̆

(p)
:,2 , where Q is the

coordinate transformation (line 4). We now make an initial

guess that the anchors from which u1 and u2 emanate are

two points a1, a2 ∈ Aµ. Given that there exist NAP APs in

the environment, each of which can be associated to multiple

virtual anchors depending on the cardinality of set Z , we

exploit the ID of the AP generating a virtual anchor in β

by imposing that ai ∈ A
βi
µ and aj ∈ A

βj
µ (line 6). We then

triangulate a location by solving the following linear system

in two unknowns t1 ≥ 0 and t2 ≥ 0 (line 7):

ai + u1t1 = aj + u2t2 . (2)

Call pk, k ≥ 0 the position found. If pk is valid with respect



to the floor map constraints (line 8),1 we validate the position

by measuring how compatible the remaining MPCs are with

the positions of other virtual anchors in Aµ. We assign a

weight wk > wℓ to all anchors of partition subsets An
k and

An
ℓ , 0 ≤ ℓ < k ≤ µ, An

k , A
n
ℓ ⊂ Aµ, for all APs n. This

implements the consideration that the validations involving

virtual anchors closer to p should be given greater importance.

We now choose vmax further MPCs M̆
(p)
:,m, 3 ≤ m ≤ vmax+2,

to be involved in the validation process. For each MPC m, we

consider all virtual anchors in T = Aµr{ai,aj} and associate

a cost ck to pk as follows:

ck =

vmax+2
∑

m=3

min
a∈T ∩A

βm
µ

[

cos−1
(

− um ·
a− pk

‖a− pk‖

)

]2

wω(a), (3)

where um = −QM̆
(p)
:,m and ω(a) = ℓ if a ∈ An

ℓ for some

AP index n. We note that for a given MPC m, the argument

of the sum is identically zero if there exists an anchor a ∈ T

that lies exactly on the line leaving pk with direction M̆
(p)
:,m,

whereas it increases if the minimum angle, centered in pk,

between any anchor a ∈ T and M̆
(p)
:,m increases. The squaring

operation penalizes large discrepancies (lines 9 to 15). After

computing the argument of the min in (3), the anchor a that

minimizes the argument is removed from T (line 14).

The TV steps are repeated for all possible associations of

M̆
(p)
:,1 and M̆

(p)
:,2 to the anchors in the set Aµ, returning a total

of K estimates pk, k = 1, . . . ,K, and their related costs ck
(line 6). Note that K ≤ |Aµ|(|Aµ| − 1) since the algorithm

fails if a triangulated position is found to be outside the room,

or if the ensemble of the AoA spectra received from all APs,

M̆(p), contains fewer than 3 MPCs. The final estimate of p

returned by the TV algorithm is the one with the minimum

associated cost (line 16). In lines 13 and 14, the function

COST(pk,a,um), returns the argument of the min function

in (3). We remark that if NAP = 1, Algorithm 1 falls back to

the triangulate-validate algorithm presented in [1].

C. The Angle Differences-of-Arrival (ADoA) algorithm

The TV algorithm requires the knowledge of the reference

angle α0, or equivalently, of the coordinate transformation

matrix Q introduced in Section III-B. As this assumption

cannot always be met, and the measurement of α0 (e.g., as

provided by a smartphone’s digital compass) may be affected

by a significant error, we develop a second algorithm based on

the Angle Differences-of-Arrival (ADoA) among MPCs. This

algorithm is slightly more complex than TV, but is immune

both to errors in α0 and to variations thereof across the room

area.

We start by defining the angles δ1 = M̆
(p)
2,2 − M̆

(p)
2,1 and

δ2 = M̆
(p)
2,3 − M̆

(p)
2,1 . With reference to Fig. 1, that depicts

1The function ISVALID can be computed based on the winding number
Wz(p), which equals n if curve z revolves around p n times in the counter-
clockwise direction, and 0 if it does not enclose p. For indoor localization,
we can assume without loss of generality that the curves z ∈ Z are traveled
in the counter-clockwise direction by their parametric equations z = z(t),
0 ≤ t ≤ 1, and that they have no loops. The logical function ISVALID can
then be defined as ISVALID(p,Z) = 1

[
∑

z∈Z
Wz(p) = 1

]

, where 1[p] is
True if predicate p is true, and the sum is identically 1 only if the client is
inside the room, but outside any obstacle.

Algorithm 1: The Triangulate-Validate algorithm.

1 Function TRIANGVAL (Pn
p (α) ∀n, {pn

tx}
NAP
n=1 , Z , α0, µ,

vmax, β)

2 An
µ ←

⋃µ
ℓ=0 DETERMINEANCHORS(ℓ,pn

tx,Z)

3 Aµ ←
⋃NAP

n=1 A
n
µ

4 Map M̆(p) to canonical base, compute u1, u2

5 k ← 0

6 foreach pair (ai,aj),ai ∈ A
βi
µ ,aj ∈ A

βj
µ ,ai 6= aj do

7 pk ← point such that ai + u1t1 = aj + u2t2
8 if ISVALID(pk,Z) then

9 T ← Aµ r {ai,aj}
10 ck ← 0
11 for m = 3 to vmax + 2 do

12 um ← −QM̆
(p)
:,m

13 ck ← ck+min
a∈T ∩A

βm
µ

COST(pk,a,um)

14 T ←
T r {argmin

a∈T ∩A
βm
µ

COST(pk,a,um)}

15 k ← k + 1

16 return p̂ = pargmink(ck)

a typical ADoA localization scenario, the ADoA algorithm

is described as follows: given two points ai and aj , find the

locus of the points p such that the angle âipaj (where p is the

corner), is constant and equal to the angle δ1 defined above.

This locus is a circumference, of which the segment aiaj is

a chord. The client is then located on this circumference. We

assume the angle âipaj to be positive if ai follows aj in

the counterclockwise direction within the space of a semi-

circumference and |âipaj | < π, where the | · | operator

represents the absolute value of the angle measure. In Fig. 1,

consider the circumference C1. Given the angle â1pa2, we

have â1o1a2 = 2 â1pa2, where â1o1a2 is the central angle

that stands on the same chord a1a2. If â1pa2 > π/2, â1pa2
is concave, hence |â1o1a2| > π. In this case, we wrap the

angle back into the interval [−π, π) via the operator W (·).
The radius r1 of C1 can be found as

r1 =
‖a1 − a2‖

2 sin
(

∣

∣W (â1o1a2)
∣

∣/2
) . (4)

Finally, given ζ = r1 cos
(

W (â1o1a2)/2
)

and u = (a−b)×
(0, 0, 1), the center of the circumference C1 is found as

o1 = m1 + sgn
(

W (â1o1a2)
) ζu

‖u‖
, (5)

where sgn returns the angle sign, and m1 = (a1 + a2)/2 is

the middle point of a1a2. The vector

w1 =
(

o1 −m1

)

sgn
(

W (|â1o1a2|)
)

(6)

points to the section of C1 defined by the chord a1a2 where

the constant angle requirement is satisfied. We now consider

a second chord a1a3 and the circumference C2 as the locus

of the points q where the angle â1qa3 = δ2. The radius r2
and the center o2 of C2 can be computed in the same way as



Algorithm 2: The Angle Difference-of-Arrival algorithm.

1 Function ADOA(P (α), {pn
tx}

NAP
n=1 , Z , µ, vmax, β)

2 Aa
µ ←

⋃µ
ℓ=0 DETERMINEANCHORS(ℓ,pa

tx,Z)

3 Aµ ←
⋃NAP

n=1 A
n
µ

4 Map M̆(p) to canonical base, compute δ1, δ2
5 ℓ← 0
6 foreach triple

(ai,aj ,ak),a∈A
βi
µ ,aj ∈ A

βj
µ ,ak ∈ A

βk
µ , i 6= j 6= k

do

7 C1 ← DETERMINECIRC(i, j, δ1)

8 C2 ← DETERMINECIRC(i, k, δ2)

9 pℓ ← DETERMINEINTERSEC(C1, C2)r{p
n
tx}

NAP
n=1

10 if ISVALID(pk,Z) then

11 T ← Aµ r {ai,aj ,ak}
12 cℓ ← 0
13 for m = 4 to vmax + 3 do

14 cℓ ←
cℓ +min

a∈T ∩A
βm
µ

COST(pℓ,a,ai, δm)

15 T ← T r

{argmin
a∈T ∩A

βm
µ

COST(pℓ,a,ai, δm)}

16 ℓ← ℓ+ 1

17 return p̂ = pargminℓ(cℓ)

above. The intersection p between C1 and C2 is considered a

feasible location estimate whenever it is located on the sections

of C1 and C2 pointed to by the orientation vectors w1 and

w2. This means that, given the two chord centers m1 and m2,

it must hold that w1 · (p−m1) > 0 and w2 · (p−m2) > 0.

The pseudo-code of the procedure that provides an estimate

p̂ of the location of a node based on ADoA is given in

Algorithm 2. The algorithm starts by determining Aµ, M̆(p),

δ1 and δ2 (lines 3 and 4). As with the Triangulate-Validate

algorithm, we are initially unable to map each detected MPC

to its related anchor node. Therefore, the ADoA algorithm

collects a set of eligible positions which are the result of

the intersection between the circumferences determined by

the angle differences δ1 and δ2 and the chords aiaj and

ajak, ai,aj ,ak ∈ Aµ. Lines 7 to 9 determine the center

and radius of C1 and C2 via (4) and (5), and compute their

intersection pℓ by checking that it is feasible based on the

orientation vectors w1 and w2 (see Eq. (6)). At this point,

as for the TV algorithm, we pick vmax additional anchors

m = 4, . . . , vmax + 3 from M̆(p) (line 13), and for each of

them we compute δm = M̆
(p)
2,m − M̆

(p)
2,1 . The contribution

of MPC m to the cost of location pℓ (lines 14 and 15)

then depends on how well an anchor among those in set

T = Aµ r {ai,aj ,ak} approaches the angle difference δm.

This cost is defined as follows:

COST(pℓ,a,ai, δm) =
(

|âpkai| − δm
)2

(7)

The ADoA procedure is repeated for different triples

(ai,aj ,ak) ∈ Aµ (line 6), and the position with the minimum

associated cost is returned as the node location estimate

(line 17).

Algorithm 3: ADoA fingerprinting-based localization.

1 Function FINGERPRINT(P (α), Dn, β)

2 Compute M(n,p), extract T(n,p)

3 foreach f ∈ F do

4 cf ← 0
5 foreach 1 ≤ n ≤ NAP do

6 P(n) ←

CLOSESTPAIRS
(

T
(n,p)
2,: ,T

(n,f)
2,: −T

(β1,f)
2,1

)

7 foreach pair (i, j) ∈ P(n) do

8 cf ←

cf + MPCCOST
(

T
(n,p)
:,i ,T

(n,f)
:,j −T

(β1,f)
2,1

)

9 return p̂← argminf cf

D. Benchmark: Localization based on ADoA fingerprinting

(FP)

We now present a fingerprint-based localization algorithm.

Unlike TV and ADoA, FP does not strictly require that pn
tx,

n = 1, . . . , NAP and Z are known to the node to be localized.

We assume that the area has been previously characterized

by creating a database Dn of AoA spectra for all APs,

measured at a set of different locations F = {f1, f2, . . .}.
Given a spectrum Pn

p (α) related to AP n and measured at

location p, the algorithm looks up the most similar spectrum

in Dn (according to some proximity measure) and returns its

corresponding location. In order to be fair to the TV and

ADoA schemes, we assume we can identify the LoS path,

and define the fingerprint of Pn
p (α) in terms of the ADoA of

any NLoS path, computed relative to AoA of the LoS path.

This choice is based on the fact that the strongest MPC is

typically the LoS path [7], [63], and that we wish to make

the feature matching process resilient to position-dependent

errors in the reference angle α0. Given the pattern Pn
p (α) and

its MPC matrix M(n,p), call T(n,p) the NLoS feature matrix

that collects the last Nn
p −1 rows of M(n,p), where Nn

p is the

number of rows of M(n,p). From all elements of T
(n,p)
2,: , we

finally subtract the angle of the LoS path M
(n,p)
2,1 , in order to

create a vector of ADoA NLoS features, which is finally used

as a fingerprint. Note that with this definition, fingerprints are

also immune to a non-zero bias on the reference angle α0. In

the pseudo-code in Algorithm 3, the above step corresponds

to line 2.

The AoA spectra received at any two different points

typically have one LoS feature, and may have a different

number of NLoS features. For each entry of Dn measured

at location f (line 3), we execute an adapted instance of the

closest point algorithm [64] which returns the indices i and

j of the NLoS features in T(n,p) and T(n,f), respectively,

whose angle differences are most similar. The similarity of

the patterns at p and f is finally conveyed by the cost

cf = −

NAP
∑

n=1

∑

∀(i,j)∈P(n)

∣

∣T
(n,p)
2,i − (T

(n,f)
2,j −T

(β1,f)
2,1 )

∣

∣ , (8)

The function MPCCOST repeatedly called within the cycle at
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Figure 2. Simulation scenario.

lines 7 and 8 computes the inner term of the sum in (8).

These steps are repeated separately for each AoA spectrum

corresponding to each of the APs. Finally, the algorithm

returns the estimated position p̂ as the the location of the

entry f ∈ F that has minimum cost (line 9).

E. Benchmark: a Convex-Combination based AoA Localiza-

tion (CCAL)

We now describe the Convex-Combination based AoA

Localization (CCAL) scheme [62]. This algorithm works

based only on AoA information and exploits the presence of

virtual anchors, hence it constitutes a good benchmark for our

localization algorithms. CCAL develops from the observation

that, in the presence of noisy angle measurements, client

localization can be casted as an optimization problem with

a non-convex objective function. The authors then propose a

linear approximation to the objective function that makes the

localization problem amenable to be solved. The use of virtual

anchors makes it possible to bound the area where the source

can be located in the presence of angle errors.

F. Complexity of the algorithms

The TV algorithm loops twice over the set of anchors and

once over the total combination of AoAs and anchors in the

MPC set. Therefore its complexity is O(maxn |A
n|3 · vmax),

where maxn |A
n| is the maximum number of physical and

virtual anchors associated to any AP. The ADoA algorithm

loops three times over the number of anchors and once over the

number of AoAs and anchors in the MPC set. Its complexity is

O(maxn |A
n|4 ·vmax). FP cycles once over the measurements

data set, once over the APs, and once to find the closest pairs of

MPCs, which leads to a complexity of O(|D| ·maxn |A
n|2).

Finally, CCAL needs to solve a convexified quadratic prob-

lem with O(N2
AP) variables and O(N2

AP) constraints, for

which there exists a polynomial-time interior point algorithm.

CCAL’s complexity is thus O(N12
AP).We remark that the

algorithmic complexity of TV, ADoA and FP is perfectly

acceptable in typical indoor mmWave deployments.
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Figure 3. Statistics of the localization error for all algorithms as a function
of the number of APs, NAP. The solid boxes indicate the quartiles of the
error distribution, the dashed error bars convey the 10th and 90th percentiles.
σ = 2◦, ∆α = 0.

IV. NUMERICAL RESULTS

A. Simulation setup and scenario

In this section, we evaluate the performance of the proposed

localization algorithms by means of simulation. We proceed by

first describing an indoor space representing the network area

as the input to a ray tracer; this includes the location of the APs

and of the client, as well as the location of all walls. Second,

for each position of the client, we run the ray tracer to simulate

indoor mmWave propagation, and thereby retrieve the AoA

spectra. Third, we run the localization algorithms of Section III

using these AoA spectra and evaluate the localization error

with respect to the true position of the client. We remark that

no change is required to the algorithms with respect to the

description in Section III.

The ray tracer is the same as described in [65, Section VI-

B], and deterministically reproduces all relevant mmWave

propagation phenomena, including path loss, material- and

frequency-dependent reflection losses, shadowing and block-

age. The output of the ray tracer collects the rays that lead

to an actual received power contribution at the receiver (or

eigenrays). Such output is translated into the AoA spectrum

Pn
p (α) measured by the receiver at its location p. The AoA

spectrum is derived for every transmitting AP n, and is the

input to all localization algorithms.

The simulation scenario consists of an L-shaped room, as

depicted in Fig. 2. The vertical leg on the left is 5×15 m2,

whereas the top-right section is 5×5 m2. We set α0 = π/2, i.e.,

angles are measured in a counterclockwise direction starting

from the south-to-north direction. Up to four APs are located

in the room at coordinates pA
tx = (2, 13) m, pB

tx = (8, 13) m,

pC
tx = (2, 2) m, and pD

tx = (3.5, 8.5) m. In the following,

when we set NAP = 1, we activate only the AP at pA
tx. For

NAP = 2 we activate the APs at pB
tx and pC

tx; for NAP = 3
those at pA

tx, pB
tx, and pC

tx. Finally, for NAP = 4, all of the

four APs in the room will be active.

For all algorithms, we truncate A to Aµ =
⋃NAP

n=1 A
n
µ by

considering only the virtual anchor nodes that correspond to

up to µ = 1 reflections. We recall that different APs and

virtual anchors become visible to the user as it moves. The

fingerprinting algorithm has been trained through a reasonably

dense set of measurements Dn for n = 1, . . . , NAP, which
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(b) ADoA
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(c) FP
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(d) CCAL

Figure 4. CDF of the localization error for TV, ADoA and FP as a function of the standard deviation of the MPC angle estimation error, σ. NAP = 2,
∆α = 0.

includes a uniform matrix of 8×4 points in the vertical room

section on the left, and 4×4 points over the top-right section.

We simulate the fact that the measurement of the AoA

spectrum by the node to be localized is not ideal, but rather

may be affected by errors ∆α on the reference angle α0

as well as on the AoA estimates of the MPCs, e.g., as a

consequence of small changes in the propagation environment,

or due to imperfect beamforming of the phased antenna array

at the receiver. This non-ideal behavior is modeled for a given

position p by first estimating the true AoA spectrum, by

extracting the MPC matrix M(n,p) for any AP n, and by

adding a different random Gaussian-distributed displacement

of standard deviation σ to the elements of M
(n,p)
2,: . To derive

realistic MPC angle estimation errors, we synthesize beam

patterns for a uniform linear antenna array with 8, 16 and 32

elements. For typical signal-to-noise ratios, these correspond

to zero-mean Gaussian-distributed errors of standard deviation

σ = 5◦, σ = 2◦, and σ = 1◦, respectively.

B. Simulation Results

We characterize the performance of the algorithms through

the statistics of the localization error, as well as via the median

location error experienced at different locations throughout the

room. In our analysis, we explore the effect of different values

of NAP, σ and of the bias on the reference angle α0, denoted

as ∆α and called compass bias for short in the following. In

Fig. 3 we show a box plot for the localization error incurred

by ADoA, FP and TV for different values of NAP, for the

case of σ = 2◦ and ∆α = 0.

We observe that even with one AP, TV, ADoA and FP

achieve a sub-meter localization accuracy in at least 50% of

the cases. However, since for NAP = 1 the illumination of the

room is sub-optimal, the dispersion of the error is significant

for both ADoA and FP, whereas 95% of TV’s errors are within

less than 1.5 m. Conversely, CCAL does not perform well.

While some positions experience small localization errors,

these constitute a minor fraction of the cases, and the median

error is about 8 m. The main reason behind this is that

CCAL is not very robust to angle errors larger than those

presented in [62], i.e., up to ±0.1◦. Increasing NAP improves

the mmWave illumination across the room and some of the

algorithms benefit from this. TV’s localization error decreases

for increasing NAP, and levels off for NAP ≥ 3. Since

ADoA requires a larger number of MPCs in order to fix

the client’s location, it only reaches the good performance of

TV for 4 APs. FP’s performance is limited by the number

of locations at which a training fingerprint is measured or,

more precisely, by the fingerprint density. For this reason,



the statistics of FP’s localization error improve marginally for

increasing NAP. CCAL’s performance improves for NAP = 2,

but then the error increases if additional APs are included. The

reason is that, with an increasing number of APs, the set of

virtual anchors grows, breaking the assumptions behind the

linear approximation of the angles in [62]. We remark that the

above results cannot be achieved by the TV, ADoA, and FP

algorithms originally presented in [1], as they cannot leverage

the presence of multiple APs.

We now consider the effect of MPC estimation errors on the

performance of the algorithms. Fig. 4 presents four graphs, one

for each of the TV, ADoA, FP and CCAL algorithms. In each

panel, we plot the cumulative distribution function (CDF) of

the localization error, for σ = 1◦, σ = 2◦ and σ = 5◦. We

remark that the latter represents a very unfavorable case, with

97% of the angle estimation errors comprised in an interval

of ±15◦ around the true AoA of each MPC. For this analysis,

we set NAP = 2 (which is also the best case for CCAL)

and ∆α = 0. From panel 4a, we observe that while the

performance of TV decreases for increasing σ, the localization

error statistics remain very good even for σ = 5◦: in this case,

the probability of achieving a sub-meter localization error is

about 0.8, and decreases to 0.93 and 0.99 for σ = 2◦ and

σ = 1◦, respectively. The situation is slightly different with

ADoA (panel 4b), as an error of variance σ2 on the MPC

angle estimation translates into an error of variance 2σ2 on

angle differences. This adds to ADoA’s need to observe a

higher number of MPCs than TV, and results in a higher

maximum error. The probability of sub-meter accuracy for

ADoA is 0.88 for σ = 1◦, but decreases to about 0.35 for

σ = 5◦. The FP algorithm (panel 4c) behaves differently:

depending on the value of σ, the probability of achieving a

sub-meter localization accuracy ranges between 0.5 and 0.62.

Specifically, for low values of σ, the limiting factor is the

density of points in FP’s training data set; for σ = 5◦, instead,

the effect of wrong MPC angle measurements dominates, and

makes the AoA spectra measured by the client more similar to

fingerprint database entries associated to farther positions. The

results of CCAL (Fig. 4d) are aligned with those in Fig. 3, as

the algorithm achieves sub-meter accuracy in less than 10%

of the cases, and is characterized by a very high maximum

error, above 4 m in at least 50% of the simulated estimates.

Considering that FP requires to actually collect and maintain

a training database, and given that FP’s performance is worse

than TV’s and ADoA’s even for σ = 1◦, we conclude that FP is

not a competitive algorithm for indoor mmWave localization.

The same conclusion can be drawn for CCAL due to its

unsatisfactory performance.

Finally, in Fig. 5 we evaluate the effect of a non-zero value

of the compass bias ∆α on the performance of TV for the case

NAP = 3, σ = 2◦. We remark that ADoA and FP are immune

to non-zero values of ∆α by design. Compared to Fig. 4a,

the average and maximum errors achieved by TV increase.

While 98% of the estimated locations are within 1 m of the

true client location for ∆α = 1◦, for higher values of ∆α
we observe that the minimum error increases to about 30 cm,

and the fraction of location estimates with sub-meter accuracy

decreases to about 82%.
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Figure 5. CDF of the localization error for TV as a function of the client’s
compass bias, ∆α. NAP = 3, σ = 2◦.

In order to investigate the source of the errors observed

for the TV, ADoA, FP, and CCAL localization methods in

our simulation scenarios, we depict in Fig. 6 a heat map

of the median localization error throughout the simulation

area for NAP = 2 and ∆α = 0◦. Dark-blue hues represent

near-zero error, whereas yellow hues represent high error.

Fig. 6 reveals that TV achieves the lowest error throughout

the map. A few areas of uncertainty exist for TV, mainly

close to the walls. In these regions, the location of the

client is estimated to be outside the boundaries of the area,

therefore the validation step of the TV algorithm discards

the estimate. For ADoA, we observe a generally very good

performance, but high-error areas around both APs. These are

the areas where the three strongest anchors and the client’s

location tend to lie on the same circumference. As a result,

the ADoA localization problem becomes ill-conditioned, and

the localization error increases. The FP algorithm (Fig. 6c)

also achieves a remarkably good error in this case. In some

areas, this error increases significantly due to the similarity

among arrival patterns throughout the room. Further results

obtained with a four times-denser training set (not included

due to lack of space) show that FP’s performance improves, but

not substantially, leaving areas affected by significant errors

close to the bottom and leftmost walls. CCAL’s error (Fig. 6d)

shows that acceptable errors concentrate near the bottom-right

and top-right corners of the L-shaped room: in these areas,

the assumptions behind CCAL are verified and the linear

approximation to its cost function is accurate. Otherwise, large

errors occur as also noted above. These results confirm our

preliminary conclusion that FP and CCAL are not preferred

solutions for indoor mmWave localization.

While TV shows generally good performance under most

conditions considered here and tends to outperform both

ADoA and FP in a number of cases, it remains very sensitive

to a biased reference angle α0, which instead does not affect

ADoA and FP. We show this through the TV error maps

in Fig. 7. As expected, we observe that the performance of

TV decreases noticeably for increasing σ and ∆α: in fact,

erroneous AoA MPCs translate into higher localization error

for any triangulation-based method. For σ = 2◦, even a
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Figure 6. Median localization error maps for all methods, σ = 2◦, NAP = 2, ∆α = 0.
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Figure 7. Median localization error maps for TV, for different values of σ and ∆α. NAP = 3.

significant reference angle bias ∆α = 5◦ leads to acceptable

errors, mostly below 1 m (Fig. 7b). For σ = 5◦, instead,

the superposition of inaccurate AoA estimates and a high

∆α implies that the error remains generally high, with small

regions of sub-meter errors, mainly close to the three APs.

V. EXPERIMENTAL RESULTS

We now perform experiments with actual mmWave hard-

ware in realistic propagation scenarios, in order to validate the

simulation results described in Section IV. We focus only on

TV and ADoA for our experimental results, due to the worse

performance shown by CCAL and FP. Furthermore, collecting

and updating a training database in a fully operational and

time-varying environment involves a significant effort and is

very cumbersome for practical deployments.

We consider two scenarios: an empty room of size

6.3× 8.9 m with a single AP installed (also considered in [1]

and re-evaluated here to compare our new algorithms); and a

more complex, fully functional L-shaped office area with typ-

ical open-space furniture, including workstations and screens,

as well as building elements such as columns and glass

walls with metal frames. In the L-shaped room, we install

up to 5 APs in order to achieve good coverage. The latter is

representative of dense mmWave AP deployments as are en-

visioned in the literature to provide adequate indoor mmWave

performance [24]. The empty room was chosen so that the

LoS mmWave signal can be received clearly at all locations

in the room, whereas the L-shaped room is representative of

an actual working environment with signal blockage, such that

the localization algorithms have to rely more heavily on both

the real and virtual anchors they can observe at a given time.

A. Empty room with a single AP

We start our evaluation with the empty room. The room is

unfurnished, but does contain fixtures and appliances which

cause reflections. This includes metal plumbing, heating ra-

diators, wall-mounted rack cabinets, and metal floor-mounted

cable leads. In one of the corners of the room, we install

a Dell D5000 wireless docking station. This consumer-grade

mmWave equipment operates according to the WiGig protocol,

and creates a 60-GHz mmWave data link between a nearby

computer and the peripherals attached to the station. To

establish the link, the D5000 periodically carries out a device

discovery process, involving the transmission of 32 discovery

frames, each corresponding to a different configuration of the

station’s 2×8 phased antenna array. An example of the signal

received during this process is shown in Fig. 8. These device
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Figure 9. AoA spectrum in the empty room at coordinates
(1.85, 5.75) m. (Adapted from [1].)

discovery frames are sent every 102.4 ms. For additional

details, we refer the interested reader to [66].

For the receiver we use a 60-GHz VubIQ development sys-

tem, connected to an Agilent MSO-X 3034 oscilloscope and

equipped with a standard 25 dBi-gain horn antenna mounted

on an Arduino-controlled rotating stage. The VubIQ reveals

LoS paths as well as any MPC reflected off the boundaries

of the room at any given position. We input the VubIQ’s

down-converted, 1.8 GHz-bandwidth, analog modulated I/Q

output signals directly into the oscilloscope, which digitizes

and stores the traces for analysis. In this way, we collect

the amplitude of each of the 32 discovery frames over the

azimuthal plane. We control the rotating stage to take measure-

ments at orientations spaced 3◦ apart. For every orientation,

the receiver captures all 32 frames as in Fig. 8, where each

frame is received with a different amplitude in each position,

depending on the antenna patterns used by the D5000 for

each frame and the mmWave signal propagation throughout

the room. From these traces, an AoA spectrum is extracted by

measuring the amplitude of the strongest frame. This replicates

the behavior of a typical mmWave beam training handshake,

where two devices would try several combinations of the

beam pattern configurations available to them, until the best

transmit and receive beam patterns are found. Fig. 9 shows one

of the experimental patterns (in gray), measured at position

(1.85, 5.75) m (see also Fig. 10 for a reference about the

location). We observe that the LoS path between the D5000

and the VubIQ has an AoA of 215◦. Strong reflections are

detected with AoAs of 125◦ and 340◦, and a weaker reflection

has an AoA of 30◦. For comparison, we also plot an AoA

spectrum simulated via ray tracing (in black), which proves

the very good agreement between ray tracing simulations and

measurements.

We carried out AoA spectrum measurements at a total of

44 points throughout the room. Figs. 10a and 10b show the

localization performance of TV and ADoA, respectively, for

all of the measurement points. The color of each circle conveys

the accuracy of the position estimate: blue hues correspond

to low error, whereas green and yellow hues correspond to

increasingly higher errors. A red cross in the bottom-right

corner of the room represents the location of the D5000

docking station, i.e., the mmWave AP. The validity of each

position estimate is checked against the room boundaries

(this corresponds to the ISVALID(·) function in Algorithms 1

and 2). The 30 cm × 30 cm area surrounding the location of

the AP is also marked as an invalid location.

In general, TV achieves better localization performance than

ADoA, with most estimated positions within 1 m of the true

client location. The largest localization errors are primarily

due to the large widths of some arrivals in the measured

AoA spectra, which make it difficult to accurately estimate

the corresponding AoA. Specifically, for the locations near

the transmitter, this is the case for the LoS AoA. For TV,

wrong AoA estimates result in wrong triangulated positions,

which are found to be outside valid room boundaries. For this

reason, TV is unable to localize the node at seven locations

out of 44: two close to the AP, two concentrating around the

measurement point at (3.8, 2.5), and three at the opposite end

of the room. As ADoA requires at least three MPCs in the

AoA spectrum to work properly, the weakness of the received

signal and the presence of mainly low-SNR second-order re-

flections in some measurements throughout the room explains

why ADoA incurs a large error at such locations. Fig. 10c

summarizes the results by showing the cumulative distribution

function (CDF) of the localization error, for the points for

which a valid position can be estimated. We observe that both

TV and ADoA achieve a sub-meter median error. While the

probability to compute a very accurate location estimate is

similar for both algorithms, overall TV has significantly higher

location accuracy: its probability to obtain a sub-meter location

error is about 0.8, against about 0.5 for ADoA.

B. L-shaped working area with multiple APs

This second scenario is an L-shaped work place with an

open area, six small offices and two labs, all of which are

in active use. The walls are made of brick and have glass

windows. Six columns are present in the open area. Glass

panels divide the offices from the open area. Office and lab

furniture (including tables, chairs, screens, as well as metal

door frames and cupboards) make the propagation setting

realistically complex.
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Figure 10. Map and CDF of the localization error of TV and ADoA in the empty room with a single AP.
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Figure 11. Photo of the open space measurement setup of Fig. 12, showing
the client, AP2 and AP5.

AP5

Figure 12. Multi-AP measurement setup in the L-shaped room area. Five
different APs are deployed, each using one of three different antenna types
(omnidirectional, 120◦-aperture and 80◦-aperture).

As the room is larger and contains different types of

obstacles, a single AP cannot cover the whole area. We there-

fore investigate scenarios including up to five APs deployed

throughout the room. We remark that using D5000 docking

stations would make it difficult to differentiate among the

signals transmitted by each AP. We solve this issue by using

the following five transmitters: one Pasternak VubIQ, two

SiversIMA DC1005V/00 and two SiversIMA CO2201A. In

order to be able to separate each platform’s signal at the

receiver, we tune the local oscillator of each device to a

different frequency within the 60 GHz band. Each transmitter

is equipped with antennas of different beam widths, depending

on the location of the transmitter, with the general objective

of covering as much space as possible, so that the maximum

number of transmitter signals can be seen and simultaneously

sampled from every location in the room.

To emulate the user, we use the same Pasternak VubIQ

receiver as before, equipped with a 7◦, 25 dBi-gain horn

antenna. However, instead of connecting the VubIQ output

to the oscilloscope, we use an Agilent EXA N9010A signal

analyzer, capable of recording the mmWave signal and of

differentiating between the different frequencies of the trans-

mitters. We take measurements at angular steps of 0.45◦,

which covers the azimuthal plane with 800 measurements in

total. We use pseudo omni-directional transmitters in order

to speed up the collection of the measurements and capture

all available paths of a given AP at the same time. As a

general rule-of-thumb, we equipped APs located in open areas

with an omni-directional antenna; where omni-directionality

is not needed we employed wide-beam antennas (e.g., 80◦-

aperture horn antennas for APs near corners, and open wave-

guide terminations translating into a 120◦ antenna aperture for

APs located near walls). After collecting the measurements for

the different locations, we retrieve the AoA patterns for each

AP by isolating the corresponding frequencies throughout all

rotation steps. Different peaks in each pattern correspond to

the LoS arrival (when available) and to one or more NLoS

arrivals. Fig. 11 shows a view of the deployment.

Fig. 12 shows the deployment setup superimposed to the

floor plan. Each AP has a unique identifier, and is depicted as a

circle arc representing the aperture and direction of its antenna.

The omni-directional transmitters were placed centrally in the

open area, whereas the 80◦ horn antennas were positioned

in the two west corners of the open area, and the 120◦
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Figure 13. CDF of the localization error for TV and ADoA for the multi-AP deployment in the L-shaped room, for different numbers of active APs.

transmitter in the lower east corner. We measured the AoA

pattern from all visible APs at 66 different positions, with

an average separation of 1.3 m between nearest measurement

points. Note that the furniture constrained the measurements,

which were taken around the work stations, in empty areas,

and along the corridors. The opacity of glass to mmWaves and

the resulting lack of coverage prevented us to do measurements

in the offices and labs surrounding the open area.

We evaluate the performance of TV and ADoA in the above

scenario for different numbers of active APs between 1 and 5.

For the cases of 1 to 3 APs, we test the outcome of all possible

choices of active and inactive APs, and select the combination

that yields the best results. For example, for a single active

AP, the best choice is AP 2 in Fig. 12, which provides the

maximum area coverage compared to all other APs. For the

case of two active APs, the best APs are AP 2 and AP 4, where

the latter provides additional coverage especially around the

top-left corner of the open area.

Fig. 13 shows the CDF of the localization error for the

best combination of 1, 2, 3, and 5 active APs. As expected,

when NAP = 1 (only AP 2 is active), the localization error is

good in some cases, but still significant: sub-meter accuracy is

achieved in roughly 30% of the estimates for TV and 5% of the

cases for ADoA, and the maximum error of both algorithms

is large as well. Increasing the number of APs improves the

mmWave coverage throughout the room, so that the accuracy

of both TV and ADoA increases. For example, sub-meter

accuracy is achieved by TV in about 60% of the cases with 2

active APs, and up to 85% of the cases with 5 APs. ADoA’s

performance increases similarly with additional active APs, up

to a 70% probability of sub-meter accuracy with 5 active APs.

This confirms that, in a realistic deployment, ADoA needs

additional anchors (hence better mmWave coverage) in order

to be able to compute the client location correctly.

In those locations where the localization outcome is in-

accurate, the cause of the errors is typically traced back

to insufficient mmWave illumination, as is the case in the

top left and rightmost sections of the room. In some cases,

the validation step fails because localization errors make the

predicted location exceed the room boundaries. Other possible

sources of error are the alignment of anchors with the location

of the users (which makes the triangulation problem ill-

conditioned), or the case where the three strongest anchors

and the client’s location lie on the same circumference (which

makes the ADoA problem ill-conditioned).

VI. CONCLUSIONS

In this paper, we developed two localization algorithms

tailored to the characteristics of mmWave propagation: one

based on a Triangulate-Validate (TV) procedure, and one

based on Angle Difference-of-Arrival (ADoA) information.

We characterized the performance through measurements in-

volving commercial 60-GHz mmWave hardware, both in an

empty room and in a fully operational work environment that

was in use during the measurements. Our results show that

unless a large error affects AoA estimates, our algorithms

achieve a very good localization performance. Specifically,

they achieve sub-meter accuracy with high probability in the

presence of sufficient mmWave illumination. An extensive

set of simulations that compare TV and ADoA against an

algorithm based on fingerprinting and an ADoA and virtual

anchor-based algorithm from the literature show that TV is

in general a better choice, especially when the orientation of

the client can be accurately estimated. Conversely, the ADoA

algorithm is immune to any compass bias, and is thus a better

choice if the device orientation is affected by large errors.
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