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Abstract—Owing to severe path loss and unreliable transmis-
sion over a long distance at higher frequency bands, this paper
investigates the problem of path selection and rate allocation for
multi-hop self-backhaul millimeter wave (mmWave) networks.
Enabling multi-hop mmWave transmissions raises a potential
issue of increased latency, and thus, this work aims at addressing
the fundamental questions: “how to select the best multi-hop
paths and how to allocate rates over these paths subject to
latency constraints?”. In this regard, a new system design, which
exploits multiple antenna diversity, mmWave bandwidth, and
traffic splitting techniques, is proposed to improve the downlink
transmission. The studied problem is cast as a network utility
maximization, subject to an upper delay bound constraint, net-
work stability, and network dynamics. By leveraging stochastic
optimization, the problem is decoupled into: (i) path selection
and (ii) rate allocation sub-problems, whereby a framework
which selects the best paths is proposed using reinforcement
learning techniques. Moreover, the rate allocation is a non-
convex program, which is converted into a convex one by using
the successive convex approximation method. Via mathematical
analysis, a comprehensive performance analysis and convergence
proof are provided for the proposed solution. Numerical results
show that the proposed approach ensures reliable communication
with a guaranteed probability of up to 99.9999%, and reduces
latency by 50.64% and 92.9% as compared to baseline models.
Furthermore, the results showcase the key trade-off between
latency and network arrival rate.

Index Terms—Ultra-low latency and reliable communication
(URLLC), self-backhaul, mmWave communications, multi-hop
scheduling, ultra-dense small cells, stochastic optimization, rein-
forcement learning.

I. INTRODUCTION

The fifth generation (5G) wireless systems are expected
to reach multiple gigabits per second (Gbps) and to serve
a massive number of wireless-connected devices [2], [3]. In
this regard, both academia and industry have paid tremen-
dous attention to the underutilized mmWave frequency bands
(30−300 GHz) due to the current scarcity of wireless spectrum
[2], [4], [5]. Moreover, the above challenges can be achieved
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by; (i) advanced spectral-efficient techniques, e.g., massive
multiple-input multiple-output (MIMO) [6]; and (ii) ultra-
dense self-backhauled small cell (SC) deployments [5], [7],
[8]. Indeed, massive MIMO has been recognized as one of
the promising 5G techniques, which allows to form highly
directional beamforming to utilize the mmWave frequency
bands and to provide wireless backhaul for SC deployment [7],
[8]. Ultra dense SC effectively increases network capacity
and coverage in which advanced full-duplex (FD) potentially
doubles spectral efficiency and reduces latency [5], [9], [10].
In addition to the unprecedented growth of data traffic and
devices, the issues of low-latency and high-reliability represent
other important concerns in 5G networks and beyond [2], [11],
[12], [13], [14], [15], [16].

This paper investigates the above 5G enablers, namely
mmWave communication, massive MIMO, and ultra-dense SC
deployment, envisaged as the key promoters for providing
Gbps data rate, low latency, and highly reliable communi-
cation [2], [5]. In particular, an in-band access and wireless
backhauling are considered to enable the ultra-dense SC
deployment [7], [8], [17], [18] by combining massive MIMO
and mmWave to provide Gigabits capacity for both access
and wireless backhaul [6], [19]. Owing to the short wave-
length, mmWave frequency bands allow for packing a massive
number of antennas into highly directional beamforming over
a short distance [19], [20], [21]. Besides that, transmitting
over a long distance, mmWave communication requires higher
transmit power and is very sensitive to blockage [4], [8],
[5]. Hence, instead of using a single hop [8], [11], a multi-
hop self-backhauling architecture is a promising solution to
enable transmissions over long distances in 5G mmWave net-
works [3], [22]. However, using multi-hop transmissions raises
the critical issue of increased delay, which has been generally
ignored [22], [23], [24], [25], [26], [27], [28]. Unavoidably,
ultra-dense SC network is mainly operated based on the multi-
hop multi-path transmission fashion [5], [9], [3]. Hence, there
is a need for fast and efficient multi-hop scheduling with
respect to traffic dynamics and channel variances in 5G self-
backhauled mmWave networks [3], [29]. These previous works
focused on addressing one or few issues, have not studied the
problem a joint path selection (PS) and rate allocation (RA) in
mmWave networks to ensure Gbps data rate and low latency
with reliable communications. Thus far, to the best of our
knowledge, we are perhaps the first to provide a theoretical and
practical framework for addressing all these above concerns.

A. Main contributions

In this work, a new system design, which exploits multi-hop
transmission, multiple antenna diversity, mmWave bandwidth,
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and dynamic PS with traffic splitting techniques, is proposed
to overcome the severe path loss and mitigate the impact of
blockage. The main contributions of the work are listed as
follows:
• A joint PS and RA optimization for multi-hop multi-path

scheduling is formulated, whereby self-backhauled FD
SCs act as relay nodes to forward data from the macro BS
to the intended UEs. Multi-hop transmission technique
enables reliable mmWave communications over a long
distance. However, there is a probability that the mmWave
signal can be blocked by the human body. Hence, we
also introduce the multi-path selection scheme in which
the transmitter smartly selects a subset of the best paths
among the possible paths.

• In the proposed system design, leveraging massive array
antenna, hybrid beamforming is adopted to provide Gbps
data rate at mmWave bands. In addition, we impose a
probabilistic latency bound to ensure URLLC with high
data rate. For this purpose, the studied problem is cast
as a network utility maximization (NUM), subject to a
bounded latency constraint and network stability.

• Leveraging stochastic optimization framework [30], the
studied problem is decoupled into two sub-problems,
namely PS and RA. By utilizing the benefits of historical
information, a reinforcement learning (RL) is used to
build an empirical distribution of the system dynamics
to aid in learning the best paths to solve PS [31],
[32]. Therein, the concept of regret strategy is employed,
defined as the difference between the average utility when
choosing the same paths in previous times, and its average
utility obtained by constantly selecting different paths
[31], [32]. The premise is that regret is minimized over
time so as to choose the best paths. Second, to solve a
non-convex RA sub-problem, the concept of successive
convex approximation (SCA) method is applied due to its
low complexity and fast convergence [33], [34].

• The proposed approach answers the following fundamen-
tal questions: (i) over which paths should the traffic flow
be forwarded? and (ii) what is the data rate per flow/sub-
flow?, while ensuring a probabilistic delay constraint, and
network stability. By using a mathematical analysis, a
comprehensive performance of our proposed stochastic
optimization framework is scrutinized. It is shown that
there exists an [O(1/ν),O(ν)] utility-queue backlog trade-
off, which leads to an utility-delay balancing [30], where
ν is a control parameter. In addition, a convergence
analysis of both two sub-problems is studied. Finally,
the performance of the proposed solution is validated by
extensive set of simulations.

B. Related work

A tractable rate model was proposed to characterize the rate
distribution in self-backhauled mmWave networks [35]. Few
efforts have been made to study the mmWave network oper-
ation regime, noise-limited or interference limited, depending
on the density of interferers, transmission strategies, or channel
propagation models [36], [37], [38]. A large body of research
work has attempted to study the joint RA, congestion control,

routing, and scheduling for multi-hop wireless networks, in-
corporating the proportional delay based on the sum of queue
backlogs [23], applying the concept of back-pressure algorithm
[39], [40], exploiting the potential of multiple gateways [25].

The authors in [41] considered a problem of joint scheduling
and congestion control in a multi-hop mmWave network
using a NUM framework in which the proposed solution is
verified under three interference models, namely graph-based
actual interference, free-interference (IF), and the worse-case
interference. [41] also showed that the IF model provides
very tight upper bound for a realistic system evaluation in
mmWave cellular networks as long as the optimal through-
put can be guaranteed. However, [41], [42] was concerned
only with the network capacity maximization and single path
streaming, a tight latency and reliable constraint should be
investigated together with dynamic path diversity. Moreover,
the authors in [43] designed a multi-hop wireless backhaul
scheme with delay guarantee in which a link activation scheme
was proposed to avoid interference and minimize the latency.
A rate allocation problem to minimize the application layer
video/end-to-end distortion subject to quality of service con-
straints (delay, backhaul) was considered in [44], [45] for
multi-path networks. However, other important aspects in 5G
networks such as low-latency and high-reliability are generally
ignored when maximizing the network performance (capacity,
energy efficiency and spectral efficiency) [28], [35], [46], [47].

A recent work in [26] has studied the multi-hop relaying
transmission challenges for mmWave systems, aiming at max-
imizing overall network throughput, and taking account of
traffic dynamics and link qualities. In our work, we also study
the NUM optimization problem, while considering channel
variations and network dynamics. Another recent work in [48]
has addressed the problem of traffic allocation for multi-hop
scheduling in mmWave networks to minimize the end-to-end
latency, in which the minimum latency is derived based on
the channel capacity to determine the portions of traffic over
channels such that all traffic fractions arrive simultaneously
at the destination. In addition, the problem of PS and multi-
path congestion control for data transfers was studied in [27]
in which the aggregate utility is increased as more paths are
provided. One important suggestion is to re-select randomly
from the set of paths and shift between paths with higher
payoff. However, splitting data into too many paths leads to
increased signaling overhead and causes traffic congestion.
While interesting, the preceding works do not address the
problem of high-data rate, low-latency and reliability com-
munication in multi-path mmWave networks. In this respect,
our proposed solution is to select the best paths to maximize
the network throughput, subject to a delay bound violation
constraint with a tolerable probability (reliability). Our pre-
vious work [11] studied URLLC-centric mmWave networks
for single hop transmission, and [8] proposed an integrated
access and backhaul architecture for two-hop relay without
considering the delay-sensitive constraint. Hence, in this work
the authors extend to the multi-hop wireless backhaul scenario,
and study a joint PS and RA problem focusing on URLLC. Via
mathematical analyses and extensive simulations, the authors
provide insights into the performance analysis of our proposed
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algorithm and the convergence characteristics of the learning
algorithm and the SOCP based iterative method.

The rest of the paper is organized as follows1. Section II
describes the system model and Section III provides the
problem formulation for a joint PS and RA optimization.
Section IV introduces a stochastic optimization framework to
decouple our studied problem, whereby two practical solu-
tions are proposed. A mathematical analysis of the proposed
framework is discussed in Section V. Section VI provides
extensive numerical results to compare again other baselines.
Conclusions are drawn in Section VII.

II. SYSTEM MODEL
A. Network Model

Let us consider a downlink (DL) transmission of a multi-
hop heterogeneous cellular network (HCN) which consists of
a macro base station (MBS), a set of B self-backhauled small
cell base stations (SCBSs), and a set K of K user equipments
(UEs) as shown in Fig 1. Let B = {0, 1, · · · , B} denote the
set of all BSs in which index 0 refers to the MBS. The in-
band wireless backhaul is used to provide backhaul among
BSs [17], [49]. A full-duplex (FD) transmission protocol is
assumed at SCBS with perfect self-interference cancellation
(SIC) capabilities [50], [49], [?]. Each BS b is equipped with
Nb transmitting antennas and Rb radio frequency (RF) chains,
such that 1 ≤ Rb ≤ Nb, ∀b ∈ B [20], [21], [51]. Similarly,
each UE k is equipped with Nk transmitting antennas and Rk

RF chains, such that 1 ≤ Rk ≤ Nk , Rk ≤ Rb , and Nk � Nb ,
∀k ∈ K, ∀b ∈ B. The network topology is modeled as a
directed graph G = (N, L), where N = B ∪K represents the
set of nodes including BSs and UEs. L = {(i, j)|i ∈ B, j ∈ N}
denotes the set of all directional edges (i, j) in which nodes i
and j are the transmitter and the receiver, respectively.

We consider a queuing network operating in discrete time
t ∈ Z+. There are F independent data flows at the MBS.
Each data traffic is destined for only one UE, whereas one UE
can receive up to Rk multiple data streams, i.e., F ≥ K . The
number of total data streams at the MBS is no greater than the
number of RF chains, such that F×Rk ≤ Rb , ∀k ∈ K, ∀b ∈ B
[21], [51]. Hereafter, we refer to data traffic as data flow. We
use F to represent the set of F data flows/sub-flows. The MBS
can split each flow f ∈ F into multiple sub-flows which are
delivered via disjoint paths and aggregated at UEs [52], [53].

We assume that there exists Z f number of disjoint paths
from the MBS to the UE for flow f . For any disjoint path
m ∈

{
1, · · · , Z f

}
, we denote Zm

f
as the path state, which

contains all path information such as topology and queue states
for every hop. Let Zf = {Z1

f , · · · ,Z
m
f
, · · · ,ZZ f

f
} denote the

path states/tables observed by flow f . We use the flow-split
indicator vector z f =

(
z1
f , · · · , zZ f

f

)
to denote how the MBS

1Notations: Throughout the paper, the lowercase letters, boldface lowercase
letters, (boldface) uppercase letters and italic boldface uppercase letters are
used to represent scalars, vectors, matrices, and sets, respectively. For a matrix
X, we use XT, X† and Rank(X) to denote its transpose, Hermitian and
rank, respectively. E[·] denotes the expectation operator, I{z} is the indicator
function for logic z, and [x]+ , max{x, 0}. The cardinality of a set S, is
denoted by |S |. We denote the previous hop and the next hop from node i
as i(I) and i(o), respectively. Pr(·) denotes the probability operator.

Macro BS

Self-backhauled SCBS

UE 1

UE 2

Traffic aggregation

Route 1

Route 2

Route 4

Route 3

Traffic split

Full-duplex communication

UE K
.....

UE k

One - hop transmission range

Fig. 1. Illustration of 5G multi-hop self-backhauled mmWave networks.

splits flow f , where zm
f
= 1 means path m is used to send

data for flow f ; otherwise, zm
f
= 0. Let N(o)i denote the set of

next hops from node i via a directional edge. We denote the
next hop and the previous hop of flow f from and to BS i
as i(o)

f
and i(I)

f
, respectively. Table I shows the notations, used

throughout this paper.

B. mmWave MIMO Channel Model

Due to limited spatial scattering in mmWave MIMO prop-
agation [4], [51], we assume that there are L(i, j) clusters
between transmitter i and receiver j, such that L(i, j) �
min(Ni, Nj). The channel matrix H(i, j) of link (i, j) can be
modelled as [51], [54], [55]

H(i, j) =

√
Ni × Nj

L(i, j)

L(i, j)∑
l=1

h(i, j)(l)Aj(αj,l)A†i (αi,l), (1)

where h(i, j)(l) denotes the small-scale fading coefficient of
the cluster l th. αj,l and αi,l denote the azimuth angles of
arrival and departure, respectively. Here, Ai(αi,l) and Aj(αi,l)
represent the transmitter and receiver response vectors, respec-
tively (Please refer [54], [55] for more details). We denote
H =

{
H(i, j) |(i, j) ∈ L

}
as the network channel matrix.

C. Rate Formulation

We denote p f

(i, j) as the transmit power of node i assigned to

node j for flow f , such that
∑

f ∈F
∑

j∈N(o)i

p f

(i, j) ≤ Pmax
i , where

Pmax
i is the maximum transmit power of node i. We have the

following power constraint

P =
{

p f

(i, j) ≥ 0, i, j ∈ N,
��� ∑
f ∈F

∑
j∈N(o)i

p f

(i, j) ≤ Pmax
i

}
. (2)

Vector p = (p f

(i, j) |∀i, j ∈ N, ∀ f ∈ F) denotes the transmit
power over all flows.

Based on the hybrid beamforming and combining model
[21], [51], with c(i, j) ∈ CN j×1 as the RF combining and
baseband equalizer and v(i, j) ∈ CNi×1 as hybrid analog/digital
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TABLE I
NOTATIONS FOR SYSTEM MODEL.

Notations Descriptions
B,K Sets of (B + 1) base stations, K user equipments

N = B ∪ K Set of nodes including BSs and UEs
L Set of all directional edges (i, j) |i ∈ B, j ∈ N
F Set of F flows
Zf Set of Z f disjoint paths observed by flow f
Zm

f
Disjoint path state/table m observed by flow f

N(o)i Set of the next hops from node i

i
(I)
f

Previous hop of flow f to BS i

i
(o)
f

Next hop of flow f from BS i

p
f

(i, j) Transmit power of node i to node j for flow f

zm
f
= 1 Path m is used to send data for flow f

πm
f

Probability of choosing path m for flow f

precoding, the Ergodic achievable rate2 Ür (i, j) at the receiver
j from the transmitter i can be calculated as (3). Here
p(i, j) is the transmit power from the transmitter i assigned
to the receiver j, and the thermal noise of receiver j is
ηj ∼ CN

(
0, σ2

j

)
. In addition, w denotes the system bandwidth

of the mmWave frequency band. For a given channel state and
transmit power, the data rate in the edge (i, j) over flow f can
be posed as a function of channel state and transmit power,
i.e., rf (i, j) (H, p), such that

∑
f ∈F rf (i, j) = r (i, j). We denote

r = (rf (i, j) |∀i, j ∈ N, ∀ f ∈ F) as a vector of data rates over
all flows.

As studied in [58], the previous works on mmWave hybrid
beamforming are mainly focused on the physical layer or
signal processing aspects [20], [21], [51], [59]. The authors
in [58] developed an accurate analytical model that captures
the essence of mmWave hybrid beamforming, while tractable
enough to analyze the throughput-delay performance. In our
work, we adopt the model in [58] to formulate the network
utility maximization subject to the congestion control and
network stability. In particular, let g

(t)
(i, j) and g

(r)
(i, j) denote

the transmitter and receiver analog beamforming gain at the
transmitter i and the receiver j, respectively. In addition, we
use ω(t)(i, j) and ω(r)(i, j) to represent the angles deviating from the
strongest path between the transmitter i and the receiver j.
Also, let θ(t)(i, j) and θ(r)(i, j) denote the beamwidth at the transmitter
i and the receiver j, respectively. We adopt the widely used
antenna radiation pattern [54], [58], [60], [61] to determine
the beamforming gain as

g(i, j)
(
ω(i, j), θ(i, j)

)
=

{ 2π−(2π−θ(i, j))Γ
θ(i, j)

, if |ω(i, j) | ≤
θ(i, j)

2 ,

Γ, otherwise,

where 0 < Γ � 1 is the side lobe gain. After the beam
alignment is done, the receiver sends the pilot sequences to the
transmitter. The transmitter estimates the channel and precodes
signals, throughout this paper, the effective data rate of link

2Note that we omit the beam search/tracking time, since it can be done fast
and is negligible compared to the transmission time [56]. Due to the disjoint
path assumption and directional beamforming, the interference associated to
transmissions from transmitter i to other receivers j′, received at j, is assumed
to be negligible or can be mitigated by designing the two-layer precoder at
the transmitter i [8], [57]. For the sake of simplification, the impact of this
interference is left for future work.

(i, j) r (i, j) is calculated as (4) in which g
(s)
(i, j) denotes the spatial

channel gain of link (i, j) [54], [55], [60]. Note that after the
beam-searching and alignment are done [54], [60], [62], [63]
the receiver broadcasts pilot sequences to the transmitters,
each transmitter estimates the channel to the corresponding
receiver and precodes transmit signal in the DL. With multiple
Nj antennas and Rj RF chains, each receiver is capable of
receiving multiple data streams from different transmitters
using either the main beam or the side lope beam. We assume
that the traffic split and aggregation are done ideally, the
multiple data streams can be transmitted via different paths.

D. Network Queues

Let Qi
f
(t) denote the queue length at a BS i at time slot t

for flow f . The queue length evolution at the MBS i = 0 is

Qi
f (t + 1) =

[
Qi

f (t) −
Z f∑

m=1,i(o)
f
∈Zm

f

rf
(i,i(o)

f
)(t), 0

]+
+ a f (t), (5)

where a f (t) is the data arrival at the MBS during slot t, which
is i.i.d. over time with a mean value ā f and is bounded by
a f (t) ≤ amax

f < ∞. Due to the disjoint paths, for each flow
f the incoming rate from the previous hop i(I)

f
at the SCBS i

is either from another SCBS or the MBS, and thus, the queue
evolution at the SCBS i = {1, · · · , B} is given by

Qi
f (t + 1) =

[
Qi

f (t) − rf
(i,i(o)

f
)(t), 0

]+
+ rf

(i(I)
f
,i)(t). (6)

Definition 1. For any vector x (t) = (x1 (t) , ..., xK (t)), let x̄ =
(x̄1, · · · , x̄K) denote the time average expectation of x (t), where
x̄ , limt→∞

1
t

∑t−1
τ=0 E [x (τ)].

Definition 2. For any discrete queue Q (t) over time slots
t ∈ {0, 1, . . .} and Q (t) ∈ R+,

• Q (t) is strongly stable if
limt→∞ sup 1

t

∑t−1
τ=0 E [|Q (τ) |] < ∞.

• Q (t) is mean rate stable if limt→∞
E[ |Q(t) |]

t = 0.
A queuing network is stable if each queue is stable.

III. PROBLEM FORMULATION

Assume that the MBS determines which paths to split
data flow f with a given probability distribution, i.e., π f =
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Ür (i, j) = EH, p

w log ©«1 +
p(i, j) |c†(i, j)H

T
(i, j)v(i, j) |

2∑
i′,i

∑
j′∈N(o)

i′
p(i′, j′) |c†(i, j)H

T
(i′, j)v(i′, j) |2 + σ

2
j ‖c(i, j)‖2

ª®¬
 . (3)

r (i, j) = EH, p

w log
©«1 +

p(i, j)g
(t)
(i, j)g

(s)
(i, j)g

(r)
(i, j)∑

i′,i
∑

j′∈N(o)
i′

p(i′, j′)g
(t)
(i′, j)g

(s)
(i′, j)g

(r)
(i′, j) + σ

2
j

ª®®¬
 . (4)

(
π1
f , · · · , π

Z f

f

)
, where for each m ∈ Zf we have πm

f
=

Pr
(
z f = zm

f

)
. Here, π f is the probability mass function (PMF)

of the flow-split vector, i.e.,
∑Z f

m=1 Pr
(
zm
f

)
= 1. We denote

π =
{
π1, · · · , π f , · · · , πF

}
∈ Π as the global probability

distribution of all flow-split vectors in which Π is the set of all
possible global PMFs. Let x̄ f denote the achievable average
rate of flow f such that

x̄ f , lim
t→∞

1
t

t−1∑
τ=0

x f (τ) ,

and

x f (τ) =
Z f∑

m=1,i(o)
f
∈Zm

f

EH,p
[
πmf rf

(i,i(o)
f
)(τ)

] ���
i=0
.

We assume that the achievable rate is bounded, i.e.,

0 ≤ x f (t) ≤ amax
f , (7)

where amax
f is the maximum achievable rate of flow f at every

time t. Vector x̄ = (x̄1, · · · , x̄F ) denotes the time average of
rates over all flows. Let R denote the rate region, which is
defined as the convex hull of the average rates, i.e., x̄ ∈ R.

We define U0 as the network utility function, i.e., U0 (x̄) =∑
f ∈F U

(
x̄ f

)
[27], [8]. Here, U(·) is assumed to be a twice

differentiable, concave, and increasing L-Lipschitz function
for all x̄ ≥ 0. According to Little’s law [64], the average
queuing delay is defined as the ratio of the queue length to
the average arrival rate. By taking account of the probabilistic
delay constraints for each flow/subflow, the network utility
maximization (NUM) is formulated as follows:

OP: max
π, x, p

U0(x̄) (8a)

subject to Pr
(Qi

f
(t)

ā f
≥ dmax

)
≤ ε, ∀t, f ∈ F, i ∈ B, (8b)

lim
t→∞

E
[
|Qi

f
|
]

t
= 0, ∀ f ∈ F, ∀i ∈ B, (8c)

x(t) ∈ R, (8d)
π ∈ Π, (8e)
and (2), (7),

where dmax reflects the delay threshold required for UEs, and
ε � 1 is the target probability for reliable communication3.

3The UEs can have different delay and reliability requirements.

The probabilistic delay constraint (8b) implies that the prob-
ability that the delay for each flow at node i is greater than
dmax is very small, which captures the constraints of ultra-low
latency and reliable communication [11], [65]. It is also used
to avoid congestion for each flow f at any point (BS) in the
network, since the queue length is ensured less than dmaxā f

with probability 1 − ε . Hence, (8b) forces the transmission
of all BSs without building large queues, and (8c) maintains
network stability.

The above problem has a non-linear probabilistic constraint
(8b), which cannot be solved directly. Hence, we replace the
non-linear constraint (8b) with a linear deterministic equiv-
alent by applying Markov’s inequality [66], [11] such that
Pr (X ≥ x) ≤ E [X] /x for a non-negative random variable X
and x > 0. Thus, we relax (8b) as

E
[
Qi

f (t)
]
≤ ā f εdmax. (9)

Assuming that a f (t) follows a Poisson arrival process [66], we
derive the expected queue length in (5) for i = 0 as

E[Qi
f (t)] = tā f −

t∑
τ=1

∑
m=1,i(o)

f
∈Zm

f

πmf rf
(i,i(o)

f
)(τ), (10)

and the expected queue length in (6), for each SCBS, i.e.,

E[Qi
f (t)] =

t∑
τ=1

∑
m

πmf

(
rf
(i(I)
f
,i) (τ) − rf

(i,i(o)
f
)(τ)

)
. (11)

Subsequently, combining the constraints (9) and (10), we
obtain the following linear constraint (12) of instantaneous
rate requirements, which helps to analyse and optimize the
URLLC problem [11], [65], for MBS i = 0,

ā f (t − εdmax) −
t−1∑
τ=1

∑
m=1,i(o)

f
∈Zm

f

πmf rf
(i,i(o)

f
)(τ) ≤

∑
m=1,i(o)

f
∈Zm

f

πmf rf
(i,i(o)

f
)(t).

(12)

Similarly, for each SCBS i = {1, · · · , B}, we have

−ā f εdmax +

t−1∑
τ=1

∑
m

πmf

(
rf
(i(I)
f
,i) (τ) − rf

(i,i(o)
f
) (τ)

)
≤∑

m

πmf

(
rf
(i,i(o)

f
) (t) − rf

(i(I)
f
,i) (t)

)
,

(13)

by combining (9) and (11). With the aid of the above
derivations, we consider (12) and (13) instead of (8b) in the
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original problem (8). In practice, the statistical information
of all candidate paths to decide π f , ∀ f ∈ F, is not available
beforehand, and thus solving (8) is challenging. One solution
is that paths are randomly assigned to each flow which
does not guarantee optimality, whereas applying an exhaustive
search is not practical. Therefore, in this work, the stochastic
optimization is pertained to characterize the queuing latency
in the presence of randomness (mmWave wireless channels
and arbitrary arrivals). As a result, (8) is decoupled into sub-
problems, which can be solved by low-complexity and efficient
methods. In particular, RL is leveraged to find the best paths
without requiring the statistic information, and SCA method
obtains a locally efficient solution for assigning rate over the
flows.

IV. PROPOSED PATH SELECTION AND RATE ALLOCATION
ALGORITHM

In this section, we propose a Lyapunov stochastic optimiza-
tion based framework to solve our predefined problem (8) with
relaxed latency constraints. To do that, we first introduce a set
of auxiliary variables to refine the original problem (8). Next,
we convert the constraints into virtual queues and write the
conditional Lyapunov drift function. Finally, the solution of the
equivalent problem is obtained by minimizing the Lyapunov
drift and a penalty from the objective function. Let us start by
rewriting (8) equivalently as follows:

RP: max
ϕ̄,π,p

U0(ϕ) (14a)

subject to ϕ̄ f − x̄ f ≤ 0, ∀ f ∈ F, (14b)
(2), (7), (8c), (8e), (12), (13),

where the new constraint (14b) is introduced to replace the rate
constraint (8d) with new auxiliary variables ϕ = (ϕ1, · · · , ϕF ).
In (14b), ϕ̄ , lim

t→∞
1
t

∑t−1
τ=0 E [|ϕ(τ)|]. In order to ensure the

inequality constraint (14b), we introduce a virtual queue vector
Yf (t) , which is given by

Yf (t + 1) =
[
Yf (t) + ϕ f (t) − x f (t)

]+
, ∀ f ∈ F. (15)

Let Ξ(t) = (Q(t), Y(t)) denote the queue backlogs. We first
write the conditional Lyapunov drift for slot t as

∆(Ξ(t)) = E
[
L (Ξ(t + 1)) − L (Ξ(t)) |Ξ(t)

]
, (16)

where L
(
Ξ(t)

)
, 1

2

[ ∑F
f=1

∑B
i=0 Qi

f
(t)2 + ∑F

f=1 Yf (t)2
]

is the
quadratic Lyapunov function of Ξ(t) [30]. By applying the
Lyapunov drift-plus-penalty technique [8], [30], the solution
of (14) is obtained by minimizing the Lyapunov drift and a
penalty from the objective function, i.e.,

min ∆(Ξ(t)) − νE [U0 (ϕ) |Ξ(t)] . (17)

Here, ν is a control parameter to trade off utility optimality and
queue length [8], [30]. Moreover, the stability of Ξ(t) ensures
that the constraints of problem (8c) and (14b) are held. Noting
that

(
[a]+

)2 ≤ a2 and (a ± b)2 ≤ a2 ± 2ab + b2 for any real

positive number a, b, and thus, by neglecting other indexes
t, f , . . ., we have the following inequalities(
[Q − R(o)]+ + R(I)

)2 −Q2 ≤ 2Q(R(I) − R(o)) + (R(I) − R(o))2,(
[Q − R(o)] + a

)2 −Q2 ≤ 2Q(a − R(o)) + (a − R(o))2,(
[Y + ϕ − x]+

)2 − Y2 ≤ 2Y (ϕ − x) + (ϕ − x)2.

Subsequently, following the calculations of the Lyapunov
optimization [30], choosing that ϕ ∈ R and a feasible π and
all possible Ξ(t) for all t, we obtain

(17) ≤
F∑
f=1

B∑
i=1

Qi
f E

[∑
m

πmf (rf
(i(I)
f
,i) − rf

(i,i(o)
f
))|Ξ(t)

]
−

F∑
f=1

Qi |i=0
f
E
[ ∑
m=1,i(o)

f
∈Zm

f

πmf rf
(i,i(o)

f
) |Ξ(t)

]
(18)

+

F∑
f=1
E
[
Yf ϕ f − νU

(
ϕ f

)
− Yf x f |Ξ(t)

]
+ Ψ.

Here, Ψ is a finite constant that satisfies Ψ ≥
1
2
∑F

f=1
∑B

i=1 E
[ ∑

m π
m
f
(rf (i

(I)
f
,i) − rf

(i,i(o)
f
))2 |Ξ(t)

]
+

1
2
∑F

f=1 E
[ ∑

m=1,i(o)
f
∈Zm

f

πm
f
(a f − rf

(i,i(o)
f
))2 |Ξ(t)

]
+

1
2
∑F

f=1 E
[
(ϕ f − x f )2 |Ξ(t)

]
[30], [8]. The solution to

(14) can be obtained by minimizing the upper bound in (18).
For every slot t, observing Ξ(t), we have three decoupled
subproblems and provide the solutions for each subproblem as
follows. The flow-split vector and the probability distribution
are determined by

SP1 : min
π

F∑
f=1
ℵ f

subject to (8e),

where

ℵ f =

B∑
i=1

Qi
f

∑
m

πmf

(
rf
(i(I)
f
,i) − rf

(i,i(o)
f
)
)

−Qi |i=0
f

∑
m=1,i(o)

f
∈Zm

f

πmf R f

(i,i(o)
f
)
.

1

Then, we select the optimal auxiliary variables by solving

SP2: min
ϕ |π

F∑
f=1

[
Yf ϕ f − νU

(
ϕ f

) ]
subject to ϕ f (t) ≥ 0, ∀ f ∈ F.

Let ϕ∗f be the optimal solution obtained by the first order
derivative of the objective function of SP2. Assuming a
logarithmic utility function, we have ϕ∗f (t) = max

{
ν
Yf
, 0

}
.

Finally, the RA is done by assigning transmit power, which is
obtained by
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SP3: min
x,p |π

F∑
f=1
−Yf x f

subject to (2), (7), (12), (13).

A. Path Selection

Recall that z f represents the flow-split vector given to flow
f and zm

f
= 1 when path m is used to send data for flow f .

The MBS selects paths for each flow with a given probability
(mixed strategy) [31]. We denote um

f
= u f

(
zm
f
, z−m

f

)
as a utility

function of flow f when using path m. The vector z−m
f

denotes
the flow-split vector excluding path m. The MBS can choose
more than one path to deliver data, from SP1, the utility gain
of flow f is

u f =
∑
m

um
f = −ℵ f .

To exploit the historical information, the MBS determines a
flow-split vector for each flow f from Zf based on the PMF
from the previous stage t − 1, i.e.,

π f (t − 1) =
(
π1
f (t − 1) , · · · , πZ f

f
(t − 1)

)
. (19)

Here, we define Φ f (t) = (Φ1
f (t) , · · · ,Φ

m
f (t) · · · ,Φ

Z f

f
(t)) as a

regret vector of determining flow-split vector for flow f . The
MBS selects the flow-split vector with highest regret in which
the mixed-strategy probability is given as

πmf (t) =

[
Φm

f (t)
]+

∑
m′∈Zf

[
Φm′

f
(t)

]+ . (20)

Let Φ̂ f (t) = (Φ̂1
f (t) , · · · , Φ̂

m
f (t) · · · , Φ̂

Z f

f
(t)) be the estimated

regret vector of flow f . Basically, with the goal of maximizing
the cumulative reward in SP1, the MBS (agent) has to discover
the possible paths (action set) in order to find the best paths
(distribution of actions with higher pay-off) in the long run
[31]. If the MBS spends much time on discovering paths
(called exploration), it leads to longer convergence time. If
the MBS only exploits an action (called exploitation), which
gave the highest pay-off at the beginning, it may loose a
chance to obtain higher reward later. Hence, balancing the
trade-off between exploration and exploitation is fundamental
of efficient learning. For these purpose, we have adopted the
logit of Boltzmann-Gibbs (BG) kernel to efficiently learn the
best paths [31], [32], βm

f

(
Φ̂ f (t)

)
, given by

βm
f

(
Φ̂ f (t)

)
= argmax

π f ∈Π

∑
m∈Zf

[
πmf (t) Φ̂

m
f (t)

−κ f πmf (t) ln(π
m
f (t))

]
,

(21)

where the trade-off factor κ f is used to balance between
exploration and exploitation [67], [32], [68]. If κ f is small,
the MBS selects z f with highest payoff. For κ f → ∞ all
decisions have equal probability.

For a given set of Φ̂ f (t) and κ f , we solve (21) to find the
probability distribution in which the solution determining the
disjoint paths for each flow f is given as

βmf (Φ̂ f (t)) =
exp

(
1
κ f

[
Φ̂m

f (t)
]+)

∑
m′∈Zf

exp
(

1
κ f

[
Φ̂m′

f
(t)

]+) . (22)

We denote û (t) as the estimated utility of flow f at time instant
t with action z f , i.e, û f (t) = (û1

f (t) , · · · , û
m
f (t) · · · , û

Z f

f
(t)).

Upon receiving the feedback, ũ f (t) denotes the utility observed
by flow f , i.e., ũ f (t) = u f (t − 1), we propose the learning
mechanism at each time instant t as follows.

Learning procedure: The estimates of the utility, regret,
and probability distribution functions are performed, and are
updated for all actions per path m as follows:

ûm
f (t) = ûm

f (t − 1) + ι(1)
f
(t)I{z f =zm

f
}
(
ũ f (t) − ûm

f (t − 1)
)
,

Φ̂m
f (t) = Φ̂

m
f (t − 1) + ι(2)

f
(t)

(
ûm
f
(t) − ũ f (t) − Φ̂m

f (t − 1)
)
,

πm
f
(t) = πm

f
(t − 1) + ι(3)

f
(t)

(
βm
f
(Φ̂ f (t)) − πmf (t − 1)

)
,

(23)
Here, ι(1)

f
(t), ι(2)

f
(t), and ι(3)

f
(t) are the learning rates (please see

Section V for more details and convergence proof). Based on
the probability distribution as per (23), the MBS determines
the flow-split vector for each flow f . The learning-aided PS
is performed in a long-term period to ensure that the paths do
not suddenly change, and thus, the SCBSs have sufficient time
to deliver data. For instance, at the beginning of the large time
scale, the best paths are selected, and will be used for the rest
of these large scale time slots as shown in Fig. 2.

B. Rate Allocation

Consider rf (i, j) = log(1+p f

(i, j) |g(i, j)(h)|
2) as the transmission

rate, where the effective channel gain4 for mmWave channels
can be modeled as |g(i, j)(h)|2 =

|g̃(i, j)(h) |2
1+Imax [19], [8]. Here,

g̃(i, j)(h) and Imax denote the normalized channel gain and the
maximum interference, respectively. Denoting the left hand
side (LHS) of (12) and (13) as D f

i for simplicity, the optimal
values of flow control x and transmit power p in the sub-
problem 3 (SP3) are found by minimizing

min
x,p |π

F∑
f=1
−Yf x f (24a)

subject to 1 + p f

(i,i(o)
f
)
|g(i,i(o)

f
) |

2 ≥ ex f , ∀ f ∈ F, i = 0, (24b)

1 + p f

(i,i(o)
f
)
|g(i,i(o)

f
) |

2

1 + p f

(i(I)
f
,i)
|g(i(I)

f
,i) |2
≥ eD

f
i , f ∈ F, ∀i = 1 : B,

(24c)∑
f ∈F

p f

(i,i(o)
f
)
≤ Pmax

i , ∀i ∈ B, ∀ f ∈ F. (24d)

4The effective channel gain captures the path loss, channel variations, and
interference penalty (Here, the impact of interference is considered small due
to highly directional beamforming and high pathloss for interfered signals at
mmWave frequency band, and thus a multi-hop directional transmission can
be operated at dense mmWave networks [35], [36], [38], [41], [37]).
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The constraint (24c) is non-convex, motivated by the low-
complexity of SCA method, we solve (24) by replacing (24c)
with its proper convex approximation [69], [8], [49]. Since it
is very hard to find the convex approximation of (24c) [33],
[70], we introduce the slack variable y to transform (24c) into
equivalent constraints, which having a proper bound satisfying
the conditions in [33, Property A] as

2 + p f

(i,i(o)
f
)
|g(i,i(o)

f
) |

2

2
≥

√√√
y2 +

( p f

(i,i(o)
f
)
|g(i,i(o)

f
) |2

2

)2
, (25)

y2

1 + p f

(i(I)
f
,i)
|g(i(I)

f
,i) |2
≥ eD

f
i . (26)

Here, the constraint (25) holds a form of the second-order cone
inequalities [70], [33], [71], while the LHS of constraint (26)
is a quadratic-over-affine function which is iteratively replaced
by the first order to achieve a convex approximation as follows:

2yy(l)

1 + p f (l)
(i(I)
f
,i)
|g(i(I)

f
,i) |2
−

y(l)2
(
1 + p f

(i(I)
f
,i)
|g(i(I)

f
,i) |

2
)

(
1 + p f (l)

(i(I)
f
,i)
|g(i(I)

f
,i) |2

)2 ≥ eD
f
i . (27)

Here, the superscript l denotes the lth iteration. Hence, we
iteratively solve the approximated convex problem of (24) as
Algorithm 1 in which the approximated problem5 is given as

min
x,p |π

F∑
f=1
−Yf x f (28)

subject to (7), (24d), (24b), (25), (27).

Finally, the information flow diagram of the learning-aided

Algorithm 1 Iterative RA
Initialization: set l = 0 and generate initial points y(l).
repeat

Solve (28) with y(l) to get the optimal value y(l)?.
Update y(l+1) := y(l)?; l := l + 1.

until Convergence

PS and RA approach is shown in Fig. 2, where the RA is
executed in a short-term period. Note that the PS and RA
are both done at the MBS, in this work we assume that the
information is shared among the base stations by using the
X2 interface. As opposed to a brute-force approach yielding
the global optimal solution, the proposed iterative solution that
uses time scale separation remarkably reduces the search time
and computational complexity, while obtaining an efficient
suboptimal solution.

V. PERFORMANCE ANALYSIS

In this section, we provide a comprehensive performance
analysis of our proposed Lyapunov optimization based frame-
work. We show that there exists an [O(1/ν), O(ν)] utility-
queue backlog trade-off, where ν is the Lyapunov control

5Note that the problem of finding the global optimality is outside the scope
of our study. The effectiveness of SOCP method was verified in the literature
and shown to be robust in practical scenarios [70].

π(t− 1), Q(t− 1),Y(t− 1)

û(t), Φ̂(t);π(t)

z(t)

Learning in long-term period Rate allocation in short-term period

Regret learning based

path selection: SP1

Path distribution

estimation

DL transmission

Queue update

Auxiliary variable selection

SP2

Iterative rate allocation

SP3

'
∗ p∗

Fig. 2. Information flow diagram of the learning-aided PS and RA approach.

parameter [30]. Next, we present the conditions that ensure
that the proposed learning-based PS converges with proba-
bility one. Finally, a convergence analysis and a complexity
computation of the SOCP based approximation method for
RA sub-problem are studied.

A. Queue and Utility Performance

We scrutinize the performance analysis of our proposed
algorithm and prove that the queues are stable as per the
following theorem.

Theorem 1. [Optimality] Assume that all queues are initially
empty. For arbitrary arrival rates, the PS and RA are chosen
to satisfy (18) and the rate regime. For a given constant χ ≥ 0,
the network utility maximization with any ν > 0 provides the
following utility performance with χ − approximation

U0 ≥ U∗0 −
Ψ + χ

ν
,

where U?
0 is the optimal network utility over the rate regime.

Proof: We first prove the queues are bounded. Let <f
denote the largest right derivative of U

(
x̄ f

)
, the Lyapunov

framework can guarantee the following strong stability of the
virtual queues and the network queues as follows

Qi
f (t) ≤ ν<f + amax

f , (29)

Yf (t) ≤ ν<f + amax
f . (30)

Here, we first prove the bound of the virtual queues, and then
the bound of the network queues are proved similarly. Suppose
that all queues are initially empty at t = 1, this clearly holds
for t = 1. Suppose these inequalities hold for some t > 1, we
need to show that it also holds for t + 1.

From (15), if Yf (t) ≤ ν<f then Yf (t+1) ≤ ν<f +amax
f and the

bound holds for t + 1 due to the rate constraint x f (t) ≤ amax
f .

Else, if Yf (t) ≥ ν<f ; since the value of auxiliary variables is
determined by maximized

∑F
f=1 Yf (t) ϕ f (t) −νU0 (ϕ (t)), ϕ (t)

is then forced to be zero. From (15), Yf (t + 1) is bounded by
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Yf (t). Since the virtual queues are bounded for t, we have the
following inequalities

Yf (t + 1) ≤ Yf (t) ≤ ν<f + amax
f , (31)

Hence, the bounds of the virtual queues hold for all t.
Similarly, we can prove that the network queue (29) is stable
with network queues in (5) and (6).

We have established the network bounds, we are now going
to show the utility bound. Since our solution of (8) is to
minimize the Lyapunov drift and the objective function every
time slot t, we have the following inequality given all existing
Ξ(t) for all t,

∆(Ξ(t)) − νE [U0(ϕ(t))|Ξ(t)] ≤
F∑
f=1

B∑
i=1

Qi
f E

[∑
m

πm∗f

(
rf
(i(I)
f
,i) − rf

(i,i(o)
f
)
)
|Ξ(t)

]
−

F∑
f=1

Qi |i=0
f
E
[ ∑
m=1,i(o)

f
∈Zm

f

πm∗f rf
(i,i(o)

f
)
���Ξ(t)]

+

F∑
f=1
E
[
Yf ϕ

∗
f − νU

(
ϕ∗f

)
− Yf x∗f |Ξ(t)

]
+ Ψ,

where ϕ∗f (t), and x∗f (t) are the optimal values of the sub-
problems SP2 and SP3, respectively. Here, πm∗

f
and zm∗

f
are

the optimal values of the sub-problem SP1. Since the queues
are bounded, for a given χ ≥ 0, we obtain

∆(Ξ(t)) − νE [U0(ϕ(t))|Ξ(t)] ≤
Ψ − νE [U0(ϕ∗(t))|Ξ(t)] + χ.

(32)

By taking expectations of both sides of the above inequality
and choosing x∗ (t) = ϕ∗ (t), it yields for all t ≥ 0,

E [L(Ξ(t + 1)) − L(Ξ(t))|Ξ(t)] − νE [U0(ϕ(t))|Ξ(t)] ≤
Ψ + χ − νE [U0(x∗(t)).]

(33)

By taking the sum over τ = 1, . . . , t and dividing by t, (using
the fact that U0 (x∗ (t)) = U∗0 ), yielding

E
[
L(Ξ(t + 1)) − L(Σ(0))|Ξ(t)

]
t

− ν
t

t∑
τ=1
E [U0(ϕ(t))|Ξ(t)] ≤ Ψ + χ − νU∗0 .

(34)

By using the fact that L (Ξ (t + 1)) ≥ 0 and L (Ξ (τ = 1)) = 0,
and applying Jensen’s inequality in the concave function and
rearranging the terms yields

U0(ϕ(t)) ≥ U∗0 −
Ψ + χ

ν
.

Since the network utility function is a non-decreasing concave
function, the auxiliary variable is chosen to satisfy x f (t) ≥
ϕ f (t). Hence U0 (x (t)) ≥ U0(ϕ(t)) ≥ U∗0 −

Ψ+χ
ν , which means

that the solution is closed to the optimal as increasing ν. Which
completes the proof of the Theorem 1.

Hence, there exists an [O(ν), O(1/ν)] utility-queue length
trade-off, which leads to an utility-delay balancing. We now
prove that all queues are stable, the bound (34) can be rewritten
as

∆(Ξ(t)) ≤ C,

where C is any constant that satisfies for all t and Ξ(t): C ≥
Ψ + χ − ν(U∗0 − E[U0(ϕ(t))|Ξ(t)]). By using the definition of
the Lyapunov drift and taking an expectation, obtaining

E
[
L(Ξ(t))

]
≤ Ct.

As the definition of the Lyapunov function L(Ξ(t)), ∀i ∈ B
we have

E[Qi
f (t)]

2,E[Yf (t)]2 ≤ 2Ct.

Dividing both sides by t2, and taking the square roots shows
for all t > 0 and ∀i ∈ B:

E[Qi
f
(t)]

t
,
E[Yf (t)]

t
≤

√
2C
t
.

As t →∞, taking the limit, we prove the queues are stable.

B. Learning Convergence Conditions

Due to the space limitation, the complete convergence
conditions can be found in [32]. Here, we briefly establish the
convergence conditions to the O-coarse correlated equilibrium
for the reinforcement learning based algorithm, where O is a
very small positive value [72]. The complete proof was studied
in [32], [68], the learning rates ι(1)

f
(t), ι(2)

f
(t), and ι(3)

f
(t) are

chosen to satisfy the convergence conditions as follows:

lim
t→∞

∑t
τ=0 ι

(1)
f
(τ) = +∞, lim

t→∞

∑t
τ=0 ι

(2)
f
(τ) = +∞,

lim
t→∞

∑t
τ=0 ι

(3)
f
(τ) = +∞, lim

t→∞

∑t
τ=0 ι

(1)2 (τ) < +∞,
lim
t→∞

∑t
τ=0 ι

(2)2 (τ) < +∞, lim
t→∞

∑t
τ=0 ι

(3)2 (τ) < +∞,

lim
t→∞

ι(3)
f
(t)

ι(2)
f
(t)
= 0, lim

t→∞

ι(2)
f
(t)

ι(1)
f
(t)
= 0.

C. Convergence Analysis of SOCP based Algorithm 1

We establish a convergence result for Algorithm 1 based
on the SOCP approach. By using the SOCP approach, we
have approximated the original non-convex problem (24) by
a strongly convex problem (28). We briefly describe the
convergence for the sake of completeness since it was stud-
ied in [33]. We assume that the Algorithm 1 obtains the
solution of problem (28) at iteration l + 1 th. The updating
rule in Algorithm 1 ensures that the optimal values y(l) at
iteration l satisfy all constraints in (28) and are feasible to
the optimization problem at iteration l + 1. Therefore, the
objective obtained in the l + 1st iteration is less than or equal
to that in the in the lth iteration, since we minimize the linear
function. In other words, Algorithm 1 yields a non-increasing
sequence. Due to the transmit power constraints and rate
constraints, the objective is bounded, and thus Algorithm 1
converges to some local optimal solution of (28). Moreover,
Algorithm 1 produces a sequence of points that are feasible
for the original problem (24) and this solution satisfies the
Karush–Kuhn–Tucker (KKT) condition of the original prob-
lem (24) as discussed in [33].
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VI. NUMERICAL RESULTS

In this section Monte Carlo simulations are carried out in
order to evaluate the system performance of our proposed
algorithm. To solve Algorithm 1, we use YALMIP toolbox
to model the optimization problem with MOSEK as internal
solver [73]. For simulations, we assume that there are two
flows from the MBS to two UEs, while the number of available
paths for each flow is four [27]. The MBS selects two paths
from four most popular paths6. Each path contains two relays,
the total number of SCBSs is 8, and the one-hop distance is
varying from 50 to 100 meters. The maximum transmit power
of MBS and each SC are 43 dBm and 30 dBm, respectively,
and the SC antenna gain is 5 dBi. The number of antennas
Nb at each BS is set to 8 and 64 for small and large antenna
arrays, respectively. The number of antennas Nk at UE is set
to 2 and 16, for small and large antenna arrays, respectively.
The number of RF chains at BS Rb and UE Rk are set to 8
and 2, respectively.

For simulations purposes, the general channel model for
arbitrary antenna arrays is used. In particular, the estimate
channel matrix Ĥ(i, j) ∈ CNi×N j of the channel matrix H(i, j) ∈
CNi×N j between the transmitter i and the receiver j can be
modeled as [57], [74]

Ĥ(i, j) =
√

Ni × NjΘ
1/2
(i, j)

(√
1 − τ2

j W(i, j) + τjŴ(i, j)
)
,

where W(i, j) =
[
w1
(i, j), · · · ,w

n j

(i, j), · · · ,w
N j

(i, j)
]
∈ CNi×N j is the

small-scale fading channel matrix, which is independent and
identically distributed (i.i.d.) with zero mean and variance

1
Ni×N j

in which wn j

(i, j) ∈ C
Ni×1 is the small-scale fading chan-

nel vector between the transmitter antenna array and the nth
j

antenna of receiver j. Here, τj ∈ [0, 1] reflects the estimation
accuracy for receiver j, if τj = 0, then Ĥ(i, j) = H(i, j), the
perfect channel state information is assumed at the transmitters
[75]. Ŵ(i, j) ∈ CNi×N j is the estimated noise, also modeled as
a realization of the circularly symmetric complex Gaussian
distribution matrix with zero mean and variance of 1

Ni×N j
[8],

[57]. Moreover, Θ(i, j) ∈ CNi×Ni depicts the antenna spatial
correlation matrix that accounts for the path loss and shadow
fading, such that Rank(Θ(i, j)) � Ni .

We generate the spatial correlation matrix as Θ(i, j) =
PL(i, j)Θ̌(i, j) with Rank(Θ(i, j)) = Ri , and the normalized spatial
correlation matrix with Tr(Θ̌(i, j)) = Ni [74]. The mmWave path
loss PL(i, j) is modeled as a distance-based path loss for urban
environments at 28 GHz with a 1 GHz system bandwidth [76],
[77], which may exist as a line-of-sight (LOS), non-LOS
(NLOS), or blockage states. We adopt the mmWave channel
model used in the system level simulation in [76], given by

PL(d) = Pr(d)PLLOS(d) + (1 − Pr(d))PLNLOS(d),

where PLLOS(d) and PLNLOS(d) are the distance-based path
loss for LOS and NLOS states at distance d, respectively [76].
Here, Pr(d) denotes a boolean random variable that is 1 with
some probability. For the general blockage channel model,

6As studied in [27], it suffices for a flow to maintain at least two paths
provided that it repeatedly selects new paths at random and replaces if the
latter provides higher throughput.

TABLE II
PARAMETER SETTINGS

Path loss model [76], [77] Values in dB Bandwidth (W)
LOS @ 28 GHz 61.4 + 20 log(d) 1 GHz
NLOS @ 28 GHz 72 + 29.2 log(d) 1 GHz

the LOS probability is defined as exp(−0.006d), then the
NLOS probability is 1 − exp(−0.006d) [76], [77]. For the
analog beamforming, the side lobe gain Γ is set to 1

4 , and
the beamwidths at the transmitter and receiver are set to π

4
and π

3 radians, respectively.
We assume that the traffic flow is divided equally into two

sub-flows, the arrival rate for each sub-flow is varying from
2 to 5 Gbps for small antenna array case. The maximum
delay requirement β and the target reliability probability ε are
set to be 10 ms and 5%, respectively [11]. For the learning
algorithm, the Boltzmann temperature (trade-off factor) κ f is
set to 5, while the learning rates ι(1)

f
(t), ι(2)

f
(t), and ι(3)

f
(t) are

set to 1
(t+1)0.51 , 1

(t+1)0.55 , and 1
(t+1)0.6 , respectively [68], [12].

The parameter settings7 are summarized in Table II. To that
end, we would like to notice that our work contains some
main features: (i) NUM [30], [40], (ii) dynamic path selection
learning [32], and (iii) URLLC-aware rate allocation [11]. We
consider the following baselines: Baseline 1 employs features
(i) and (ii) , whereas Baseline 2 applies features (i) and (iii),
finally Baseline 3 considers only feature (i). We benchmark
our work and these baselines to assess the impact of the
dynamic path selections and of the URLLC-constrained rate
allocation, which has not been addressed in the literature in
the context of mmWave communications. In addition, Single
hop scheme considers that the MBS delivers data to UEs over
one single hop at long distance in which the probability of
LOS communication is low, and then the blockage needs to
be taken into account [76].

A. Small Antenna Array System

We first evaluate the network performance under the small
antenna array setting, i.e., Ni = 8, Nj = 2. In Fig. 3, we
report the average one-hop delay8 versus the mean arrival
rates µ̄. As we increase µ̄, baselines 3 , 2, and 1 violate the
latency constraints at µ̄ = 3.5, 4.5, and 5 Gbps, respectively.
While the average delay of our proposed algorithm is gradually
increased with µ̄, but under the warming level, β = 10 ms.
The reason is that the delay requirement is satisfied via the
equivalent instantaneous rate by our proposed algorithm as
per (12) and (13), while the baselines 1 and 3 use the
traditional utility-delay trade-off approach without considering
the latency constraint, and the baseline 2 considers the random
PS mechanism only. The benefit of applying the learning path
algorithm is that selecting the path with high payoff and less
congestion, results in small latency. Let us now take a look
at µ̄ = 4.5 Gbps, the average one-hop delay of baseline 1

7A simulation source code can be found in [78], which consists of a set of
simple functions that allows to learn the path/route and allocate the transmit
power in our paper.

8The average end-to-end delay is defined as the sum of the average one-hop
delay of all hops.
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Fig. 3. Average one-hop delay versus mean arrival rates.
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Fig. 4. CCDF of one-hop latency, small antenna array.

with learning outperforms baselines 2 and 3, whereas our
proposed scheme reduces latency by 50.64%, 81.32% and
92.9% as compared to baselines 1, 2, and 3, respectively.
When µ̄ = 5 Gbps, the average delay of all baselines increases
dramatically, violating the delay requirement of 10 ms, while
our proposed scheme is robust to the latency requirement.

In Fig. 4, we report the tail distribution (complementary cu-
mulative distribution function (CCDF)) of latency to showcase
how often the system achieves a delay greater than the target
delay levels [79] as µ̄ = 4.5 Gbps, ε = 5%, β = 10 ms. In
contrast to the average delay, the tail distribution is an impor-
tant metric to reflect the URLLC characteristic. For instance, at
µ̄ = 4.5 Gbps, by imposing the probabilistic latency constraint,
our proposed approach ensures reliable communication with
better guaranteed probability, i.e, Pr(delay > 10ms) < 10−6.
In contrast, baseline 1 with learning violates the latency con-
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Fig. 5. Average MBS queue length versus mean arrival rate.

straint with high probability, where Pr(delay > 10ms) = 0.08
and Pr(delay > 25ms) < 10−6, while the performance of
baselines 2 and 3 gets worse. For instance, as shown in
Fig. 4, baselines 2 and 3 obtain Pr(delay > 10ms) > 0.12
and Pr(delay > 10ms) > 0.24, respectively. For throughput
comparison, we observe that for µ̄ = 4.5 Gbps, our proposed
algorithm is able to deliver 4.4874 Gbps of average network
throughput per each sub-flow, while the baselines 1, 2, and 3
deliver 4.4759, 4.4682, and 4.3866 Gbps, respectively. Here,
the Single hop scheme only delivers 3.55 Gbps due to the
high path loss, causing large latency.

Note that in this work we mainly focus on the low latency
scale, i.e., 1−10 ms, the target achievable rate for all schemes
is very high and close to each other. Hence, we report the
average MBS queue length instead of the average achievable
rate. Generally speaking, as per (5), the average achievable
rate can be extracted from the average MBS queue length
and the mean arrival rate, i.e., x̄ f = µ̄ f − Q̄ f . In Fig 5, we
plot the average queue length of the MBS as a function of
mean arrival rates. As we increase the mean arrival rate from
2 to 5 Gbps, the average MBS queue length of our proposed
algorithm is increased from 0.01 Gb to 0.04 Gb, which means
that the average delay at the MBS is increased from 5 ms to
8 ms, which meet the latency constraint (8b). In contrast, the
average queue length of the baselines is increased up to 16
ms, which violates the latency constraint (8b).

In Fig. 6, we report the tail distribution of the one-hop
latency (in logarithmic scale) versus the guaranteed probability
ε as β = 10 ms, κ = 5, and µ̄ = 4.5 Gbps. By varying ε
from 0.05 to 0.15, the system is allowed to achieve a delay
greater than the target latency with higher probability. As can
be seen in Fig. 6, the probability that the system achieves a
latency greater than 4 ms increases from less than 1 % to 8 %
when increasing ε from 0.05 to 0.15. This indicates the trade-
off between reliability and latency, if we loose the reliability
requirement, latency is higher.
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B. Large Antenna Array System

In order to achieve higher beamforming gain, large antenna
arrays are employed at both transmitter and receiver, i.e.,
Ni = 64, Nj = 16. In this setting, the maximum transmit power
at the MBS is adjusted to 41 dBm only and the transmitter
beamwidth is reduced to 0.5 radian. Our proposed algorithm
is evaluated under both LOS and blockage channel states,
whereas all baselines are using the LOS communication model
[76], [77], [80], [81]. First, in Fig. 7 we plot the the CCDF
of one-hop latency (in logarithmic scale) of all schemes when
the mean arrival rate is 4.5 Gbps, which is the same mean
admission rate as used in Fig. 4. Interestingly, due to higher
antenna gains all schemes do not violate the latency constraint
with an upper bound of 10 ms and a target probability of 5%
as illustrated in Fig. 7. However, baseline 3 does not employ
the two important features (ii) dynamic path selection learning,
and (iii) URLLC-aware rate allocation, and thus, baseline 3
has a longer tail of latency distribution.

Next we increase the mean arrival rate to showcase the
trade-off between latency and network arrival rate. Fig. 8
reports the CCDF of one-hop latency of all schemes with
the increasing mean arrival rate, i.e., µ̄ = 9.5. It can be
observed that the performance of our proposed algorithm is
degraded under the impact of blockage channels in which
the distribution of the latency has a longer tail than baseline
1. With increasing the mean arrival rate, baselines 2 and 3
violate the latency constraint with high probabilities, such that
Pr(delay > 10ms) > 10% for baseline 2 and Pr(delay >
10ms) > 20% for baseline 3. The latency of all schemes
increases as we increase the network arrival rate, which states
the trade-off between the latency and network arrival rate.

C. Convergence Characteristics

We plot the learning convergence of the PS scheme, based
on the reinforcement leaning algorithm as shown in Fig. 9.
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Fig. 7. CCDF of one-hop latency, large antenna array, µ̄ = 4.5 Gbps.
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In this work, we have applied the Boltzmann-Gibbs technique
to capture the trade-off between exploration and exploitation
as per (21). We run the simulations for different values of
κ ∈ {2, 5, 10, 20} for all flow f . As expected, with a small
value of κ, the MBS decides to use the paths with highest
payoff, selected at the beginning (a small probability of
exploration). In this case, the algorithm converges faster, but
lacks exploration, the MBS will not try other paths, which
may exploit path diversity; as shown in Fig. 11, small value
of κ, results in higher delay in the long run. By increasing
κ, the MBS exploits the network environment with higher
probability. The benefits of exploration are to utilize the path
diversity, improving the performance, i.e., low latency and
reducing congestion at the BSs. As shown in Fig. 11, average
of latency is decreased with κ, and a large value of κ incurs
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slow convergence.
Next, we plot the convergence of the iterative algorithm as

a function of the number of hops as shown in Fig. 10. Here,
we provide the distribution of the number of iterations of the
SOCP-based algorithm in which the convergence criteria stops
running with an accuracy of 10−2. With increasing the number
of hops, the number of constraints and variables is increased,
and thus the number of iterations required by the algorithm
for convergence is higher. Intuitively, our proposed algorithm
only needs few iteration to converge at each time slot t as
shown in Fig. 10. For example, for three hop transmission,
the probability that the number of iterations takes a value less
than or equal to 7 is 90%.

D. Impact of the Learning Temperature

In addition to the previous discussion on the impact of
the trade-off parameter on the convergence, in Fig. 11, we
report the average one-hop latency versus the learning trade-
off parameter κ as ε = 5%, β = 10 ms, and µ̄ = 3.5 Gbps. It
can be observed that at small κ, slowly increasing κ the MBS
is allowed to explore other paths to get higher gain in the long
run. Hence, the average one-hop latency gradually reduces
with small increased κ. However, when κ is very large, four
paths are determined uniformly for two flows, which becomes
random PS. For instance, when κ = 50, the average delay is
much higher. Hence, it can be observed that the average delay
is a convex function of κ in which there exists an optimal
value for κ.

VII. CONCLUSION

In this paper, the authors proposed a multi-hop multi-path
scheduling to support reliable communication by incorporating
the probabilistic latency constraint and traffic splitting tech-
niques in 5G mmWave networks. In particular, the problem
was modeled as a network utility maximization subject to a
bounded latency with a guaranteed reliability probability, and

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

5 Hops - 21 BSs
3 Hops - 9 BSs

Fig. 10. The iterative algorithm convergence.

2 5 10 20 30 40 50
Impact of 

0.4

0.5

0.6

0.7

0.8

0.9

1
A

ve
ra

ge
 o

ne
-h

op
 la

te
nc

y 
[m

s]
Proposed Algorithm

Fig. 11. Average one-hop delay versus the temperature parameter κ.

network stability. The authors employed massive MIMO and
mmWave communication techniques to further improve the
DL transmission of a multi-hop self-backhauled small cells. By
leveraging stochastic optimization, the problem was decoupled
into PS and RA, which are solved by applying the reinforce-
ment learning and successive convex approximation methods,
respectively. A comprehensive performance analysis of our
proposed algorithm was mathematically provided. Numerical
results shown that our proposed framework reduces latency
by 50.64% and 92.9% as compared to the baselines with and
without learning, respectively.
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