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Abstract—Massive multiple-input multiple-output (MIMO) is
expected to be a vital component in future 5G systems. As such,
there is a need for new modeling in order to investigate the
performance of massive MIMO not only at the physical layer,
but also higher up the networking stack. In this paper, we present
general optimization models for massive MIMO, based on mixed-
integer programming and compatible sets, with both maximum
ratio combing and zero forcing precoding schemes. We then
apply our models to the case of joint device scheduling and
power control for heterogeneous devices and traffic demands,
in contrast to existing power control schemes that consider only
homogeneous users and saturated scenarios. Our results show
substantial benefits in terms of energy usage can be achieved
without sacrificing throughput, and that both signalling overhead
and the complexity of end devices can be reduced by abrogating
the need for uplink power control through efficient scheduling.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is slated to
be a key enabling technology for 5G [1], [2], in particular in
order to meet the ambitious goal of a thousandfold increase in
data traffic [3]. For the enhanced mobile broadband use case,
where the required increase in capacity is induced by relatively
few users executing demanding applications, the ability of
massive MIMO systems to serve many users simultaneously
with the same frequency resources is a clear advantage.
However, in the massive machine-type communication case, it
becomes impossible even for a massive MIMO base station to
serve all devices at once, leading to new resource allocation
problems in how to assign the limited number of available
pilot signals to devices [4]. This is particularly challenging
in cases where the devices are heterogeneous, with differing
traffic volumes and quality of service requirements.

For massive machine-type communications, arising for ex-
ample in Internet of Things (IoT) use cases, where the number
of users per cell is larger than the number of pilot signals,
it is not possible for each device to be assigned a pilot. If
traffic demands are sporadic, then random access protocols
may be the the most appropriate access method, and some
work has been conducted on designing such protocols for
massive MIMO capable of resolving pilot collisions [5]–[7].
However, these protocols suffer from the usual inefficiencies
present in any random access protocol; in particular the above
protocols require that devices transmit multiple copies of data

in order to resolve collisions through successive interference
cancellation, resulting in less efficient use of resources. For
high offered load scenarios and/or those with less variable
traffic demands — especially in the most extreme case of
periodic traffic — scheduled access may be more appropriate.

Regardless of the access protocol used, there is a need
for new models based on the physical layer technology of
massive MIMO, but appropriate for investigating higher-layer
performance. In this paper we develop such a model, based
on mixed-integer programming, and apply it to the case of
end device scheduling for maximal throughput, with heteroge-
neous traffic demands (different data volumes to transmit and
different data rates for different users). Here, we optimize not
only the allocation of pilot resources to devices, but also trans-
mission power control on both the uplink and downlink, and
investigate whether it is possible to avoid the need for complex
power control schemes through efficient scheduling of end
device transmissions. We consider two widely-used precoding
schemes: maximum ratio combining (MRC) and zero forcing
(ZF). These can be seen as the two corner cases for precoding:
one where no regard is paid to minimizing mutual interference
but rather only maximizing receiver power levels for all uses,
and one where mutual interference is completely nulled out (in
the ideal case), respectively. In practice, a compromise such
as minimum mean-square error or regularized zero-forcing is
used, but it is still of interest to investigate the two extreme
cases. We also consider three different methods for power
control. We have performed systematic numerical studies to
investigate the performance of our models, in terms of solution
time, achievable throughput, and energy usage.

The contributions of this paper are the following:
• We present new optimization models suitable for massive

MIMO systems that allow for heterogeneous users and
traffic, as well as a greater number of users than available
pilots, as is typical of IoT scenarios. In particular, we
provide formulations based on compatible sets, previously
used for optimization of wireless mesh networks, based
on the massive MIMO physical layer.

• We develop an efficient solution approach based on
column generation, capable of handling complex prob-
lems with non-compact formulations and integer decision
variables. Both our models and solution approach are
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general and can be applied to a wide range of different
objectives.

• We provide formulations for two widely used precoding
schemes (maximum ratio combining and zero forcing),
as well as three power control schemes. These are the
existing max-min fair SINR power control scheme, a new
version of this scheme taking into account scheduling,
and fully optimised power control. Further, we investigate
a variant of fair power control performed only on the
downlink.

• We apply our models and solution approach to the prob-
lem of joint scheduling and power control for through-
put maximization for a large number of heterogeneous
devices (more than the available pilots). We conduct an
extensive numerical study to investigate and compare the
performance of the different precoding and power control
schemes, as well as of the optimization itself. In doing
so, we identify which cases are most suitable for different
scheduling and power control methods.

• We create an efficient heuristic that provides similar
performance to full optimization, while substantially re-
ducing the solution time of the main integer programming
problem.

• We show that for IoT scenarios, where each device does
not aim for maximum throughput but rather has its own
traffic and QoS parameters, the existing power control
methods are much worse for energy efficiency than when
the transmission power is optimized taking into account
each device’s traffic demand and desired rate. Further,
we show that joint optimization of power control and
scheduling greatly improves throughput in cases where
the channel quality of devices is unbalanced, with a small
group of devices with good channels, and a larger group
with poor channels.

• We show that it is possible to achieve the same perfor-
mance in terms of throughput without power control on
the uplink by scheduling devices efficiently. This saves
significant signalling overhead and complexity on end
devices, which is important for resource-constrained IoT
devices.

The rest of this paper is organized as follows. Section II
describes related work in this area. Section III elaborates our
targeted scenario and system models. Section IV then details
our optimization problems and solution approach. A discussion
of the complexity and efficiency of our approach follows in
Section V. In Section VI we present our numerical study, along
with results and discussion. In Section VII we discuss future
work, and, finally, in Section VIII we conclude this paper.

II. RELATED WORK

Massive MIMO, first proposed in [8], refers to multiple-
antenna deployments in which the number of antennas at the
base station is significantly higher than the number of user
antennas. This allows us to exploit favorable propagation,
that is, that the channel responses from each antenna at the
base station to the different user terminals are sufficiently
different to allow separation of the users’ data streams by

digital pre- and post-processing. In the presence of favorable
propagation and a large number of antennas, an effect known
as channel hardening [9] arises, and a radical increase in
spectral efficiency is possible [10]. Channel hardening means
that each channel will be close to its expected value and
channel variation is negligible in both the time and frequency
domains. The increase in capacity gained from using massive
MIMO thus comes as a direct result of considerably increasing
the number of antennas and benefiting from the statistical
advantages derived from the resulting large number of different
channels to each user.

Channel models for massive MIMO can be divided into
two categories: correlation-based models and geometry-based
models [11], [12]. Geometry-based models [13], [14] can
be used for the performance evaluation of practical systems,
while theoretical performance analysis of these systems often
relies on correlation-based models. The latter type includes
correlation channel models [15], [16], where the correlation
between antennas is considered, and mutual coupling channel
models [17], where the coupling between each pair of antennas
is also taken into account. Perhaps the mostly widely used
models for performance analysis are however independent
and identically distributed Rayleigh fading models [8], [18],
[19]. Here, small-scale fading of the channel is modeled
by i.i.d. Gaussian variables. This makes the analysis more
tractable but nonetheless yields models that are sufficiently
powerful — despite their lack of realism — to demonstrate
important results for massive MIMO systems, including the
aforementioned channel hardening property [9], as well as the
effective SINR expressions we will use in this paper.

While the above models include small-scale fading of the
channel in individual coherence blocks, the effective SINR
characterizes the expected performance over a larger number
of blocks, and has been the subject of research since the early
days of massive MIMO [15], [20]–[23]. In our work, we are
primarily interested in performance of massive MIMO systems
over a larger time scale, and as such we take the effective SINR
as the basis for our models. In particular, the effective SINR
for the uplink in single cell systems was derived in [21], while
for the downlink it was analyzed in [22]. Although effective
SINR results are also available for multi-cell massive MIMO
systems, we do not consider these in this paper.

In our models, we also take into account transmission
power control for both the uplink and downlink. Most existing
work on power control for massive MIMO systems considers
homogeneous users. Max-min fair power control [24], in
which the minimum SINR amongst the users is maximized,
is a commonly adopted scheme. Although not true of max-
min optimization in general, in the case of massive MIMO
power control, this results in a common SINR value for all
users. Maximum (fair) SINR is however not the only objective
considered in previous work. Power control for mitigation of
pilot contamination, in which reuse of pilot signals (usually in
different cells) results in impaired channel estimation, has been
studied in [25], and energy efficiency has been considered in
[26]. In [27], joint power control is performed between cells,
and here users are not homogeneous, but rather each user has
an individual SINR target. However, different traffic demands
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for users are not considered. In our work here, we combine
power control with user scheduling, in which each user may
have a defined individual SINR target and demand, that is, the
amount of data the user wishes to send.

We achieve the above by applying optimization, specifi-
cally mixed-integer programming. Optimization methods have
already seen use for various purposes within the area of
massive MIMO systems. In [28], weighted-sum mean-square
error minimization and Rayleigh quotient methods were used
to determine pilot signals that reduce pilot contamination and
improve channel estimation. For the case where the number
of pilots is equal to the number of users, semi-definite pro-
gramming and convex optimization were used to find optimal
solutions. User scheduling in the case where the number
of users exceeds the number of pilots was not considered,
however. In [29], the optimal number of antennas, number
of active users, and transmission power were optimized for
maximal energy efficiency. The focus was on studying the
performance of massive MIMO systems, and closed-form
expressions were obtained for the above. However, in order
to do so, each parameter was considered one at a time, while
the other two were held constant. We instead aim to develop
methods for user scheduling and power control for specific
scenarios, and consider joint optimization of the two, since the
transmission power affects which users are able to transmit or
receive simultaneously.

Joint power optimization and user association in multi-cell
systems was studied in [30], where each user was associated
to a set of base stations that would then serve that user.
The models provided consist of efficient linear programming
formulations, however all users are always able to associate to
at least one base station, that is, there is no limit placed on the
number of available pilot signals. This means that user groups
are static — only a single association was performed, rather
than dynamic scheduling — resulting in a smaller solution
space. and since user selection is not required, no integer
variables are needed. For the scenario we consider here, with
many more users than pilot signals, mixed-integer program-
ming formulations are needed, and we use column generation
to deal with the large number of possible combinations of
simultaneously transmitting users.

Fair scheduling in multi-cell systems was investigated in
[31] with asymptotic analysis using large random matrix
theory and convex optimization. However, no solution was
provided for actually scheduling the users, but rather the
achievable fair rate was analyzed. Further, the analysis relies
on assumptions that we do not require in our work, namely that
the ratio of antennas to users is kept constant, and that users are
scheduled in co-located groups. Joint antenna and user selec-
tion has also been studied for massive MIMO, however using
only brute-force search [32], which has very high computation
complexity and is thus impractical for all but very small
problem instances, and a greedy algorithm [33], which is more
efficient but provides only suboptimal solutions in general.
Finally, user grouping and scheduling has also been studied
in frequency-division duplex (FDD) massive MIMO systems
[34], however users were placed in pre-beamforming groups,
and only users in the same group could be scheduled together.

These groups were formed using clustering algorithms that
do not provide optimal solutions, and user scheduling was
performed based on an SINR approximation that considers
only a single user at a time. Moreover, time-division duplex
(TDD) provides better performance for massive MIMO than
FDD [24], and as such is a more suitable candidate for
real implementations. In our work we consider a TDD-based
system.

Our optimization models presented in this paper are based
on the notion of compatible sets (c-sets), which were first
introduced in [35] for transmission scheduling in wireless
mesh networks. Wireless mesh networks, like massive MIMO
systems but unlike previous generations of cellular systems, al-
low multiple, simultaneous, possibly interfering transmissions.
A compatible set is then a set of simultaneous transmissions
that are able to be successfully decoded at the receivers
despite this possible interference, that is, where the SINR is
sufficiently high at all receivers.

Since their introduction, compatible sets have seen many
applications in optimization of wireless mesh networks. Ex-
tensions for multiple modulation and coding schemes (MCSs)
and power control were given in [36] and [37]. C-sets have
been applied to joint link rate assignment and transmission
scheduling [38], link scheduling [39], routing and scheduling
for throughput optimization [40], and multicast routing and
scheduling [41]. While the above were primarily focused on
throughput maximization, work using c-sets has also consid-
ered fairness [37], [42], delay minimization [43], [44] and
energy efficiency [45].

The notion of compatible sets thus provides a general and
flexible method for modeling and solving optimization prob-
lems for wireless systems. However, existing models for c-sets
are based on nodes equipped with omnidirectional antennas
where interference depends primarily on the distance between
receivers and transmitters. In massive MIMO systems, inter-
ference in simultaneous transmissions has different causes, for
example imperfect channel estimation, and so these models
cannot be applied to massive MIMO in their current form.
In this paper, we develop a new type of compatible set model
suitable for massive MIMO systems. We apply it to the specific
case of user scheduling and power control, however the model
we present here is general and can be readily used for other
types of objective functions.

III. SYSTEM MODELS

In the following, we use the channel models and effective
SINR expressions derived in [46], Chapter 3, based on the
work in [21] and [22]. The notation used is summarized in
Table I. We consider a scenario with a single-cell massive
MIMO system. There is one base station with an antenna array
with M antennas, and there is a set K of single-antenna end
devices in the cell, with the number of devices |K| = K.
We specifically consider the case where K is larger than the
number of devices that can be spatially multiplexed by the
base station. This will typically be the case in IoT scenarios,
especially for machine-type communication. The number of
devices that can be served simultaneously is limited by the



4

M number of antennas in the base station’s antenna array
K set of end devices
K number of end devices, K = |K|
r(k) distance of device k ∈ K from the base station
T duration of coherence block in seconds
B bandwidth of coherence block in Hertz
τ number of samples in each coherence block
τ̃ number of pilot samples in each coherence block
P number of available pilots in each coherence block
S length of each pilot, in samples
τ̂ number of uplink data samples in each coherence block
τ̌ number of downlink data samples in each coherence block

β(k) large-scale effects coefficient of end device k ∈ K
R reference distance in meters
α path loss exponent
γ(k) mean-square channel estimate for end device k ∈ K
ρ̂ uplink SNR
ρ̌ downlink SNR

ĥ(k) device k’s uplink demand in coherence blocks, k ∈ K
ȟ(k) device k’s downlink demand in coherence blocks, k ∈ K
µ(k) SINR threshold for successful reception for device k ∈ K
C family of all compatible sets
Ĉ(k) family of compatible sets in which end device k ∈ K is

a transmitter
Č(k) family of compatible sets in which end device k ∈ K is

a receiver
t(c) set of devices k ∈ K that transmit in compatible set c ∈ C
r(c) set of devices k ∈ K that receive in compatible set c ∈ C
Tc number of coherence blocks assigned to compatible set

c ∈ C.
π̂k, π̌k dual decision variable associated with end device k ∈ K

uk, ûk, ǔk whether or not end device k ∈ K is active in a generated
compatible set.

η̂k uplink power control coefficient for end device k ∈ K
η̌k downlink power control coefficient for end device k ∈ K
B the set {0, 1}

Z,Z+ the set of all, and all non-negative, integers, respectively
R,R+ the set of all, and all non-negative, real numbers, respec-

tively

TABLE I: Summary of notation.

number of available pilot signals, as well as the required
SINR for the devices being served. Here, we will not address
mobility of the end devices, so each end device k ∈ K has a
fixed location.

A. Channel Model

The channel for the massive MIMO cell can be divided into
coherence blocks, where each coherence block is of duration
T s and bandwidth B Hz. This gives τ = TB samples, taken
at intervals of 1/B seconds, in each coherence block (see
[46], Section 2.1.3 for further details — note that samples
as used here are not equivalent to OFDM samples). Of these
samples, τ̃ are used for pilot transmission, τ̂ for uplink data
transmission, and τ̌ for downlink data transmission. We thus
have τ = τ̃ + τ̂ + τ̌ . In each coherence block, channel state
information (CSI) is obtained for each scheduled end device
by the device sending a pilot signal of length S samples.
Using the example scheme for orthogonal pilots given in [46],
Section 3.1.1, we thus have a total of τ̃ = S orthogonal pilot

signals, but in general we have P pilots. 1 P is thus the
maximum number of devices for which CSI can be obtained
in each coherence block. The pilot length S and number of
pilots P are independent of the total number of end devices
that may be associated with the base station, however, if, as
in the scenarios we consider, the number of end devices K is
greater than P , user scheduling is required to assign users to
coherence blocks, with no more than P users active in each
block.

Each end device k ∈ K has a coefficient β(k) describing the
large scale effects on the device’s channel. We further denote
the uplink SNR by ρ̂ and the downlink SNR by ρ̌. These two
parameters are as defined in [46], Section 2.1.8, that is, they
can be interpreted as SNRs when the median of β is 1.0, but
in general ρ scales with β. For each end device, we also have
the mean-square channel estimate, γ(k). With perfect CSI, we
have γ(k) = β(k), otherwise γ(k) is given by

γ(k) =
Sρ̂β(k)2

1 + Sρ̂β(k)

for all k ∈ K.
On the uplink, each device k ∈ K transmits with a power

control coefficient η̂k, 0 ≤ η̂k ≤ 1, where a power control
coefficient of 0 indicates the device does not transmit at all,
while 1 indicates the device transmits with full power. On the
downlink, the power control coefficient η̌k indicates the power
that the base station allocates to transmission to device k. The
sum of the downlink power control coefficients gives the total
normalized power with which the base station transmits, and
so the η̌k must sum to at most 1, indicating full transmission
power from the base station.

We will consider two precoding schemes for the base sta-
tion: maximum ratio combining and zero forcing. In maximum
ratio combining, we seek to maximize the power of each
device signal at that device (downlink), or when recovering the
received signal (uplink). For zero forcing, we instead seek to
produce nulls in the channel at devices other than the relevant
one, thus creating zero interference between the device signals
if we have perfect CSI. However, there is still interference in
the case of imperfect CSI. The effective SINR for the uplink
and downlink for each of the two precoding schemes is shown
in Table II. For a more complete discussion of the precoding
schemes, as well as the derivation of these expressions, see
[46], Chapter 3.

Note that the expressions given in the table apply when all
K devices are active simultaneously, and there are sufficient
pilots for each device to be assigned one. For fewer active
devices, the expressions need to be adjusted accordingly,
as we will in our optimization formulations in Section IV.
Specifically, the summations in the denominators should be

1In the ideal case, for a large number of users K, we would expect to have
P = S, since S is the maximum number of mutually orthogonal vectors of
length S, and will thus also give the maximum number of simultaneous users
that can be allocated pilots and served by the base station. However, in some
cases the number of pilots used may be smaller. We may for example have
mobile users that require more frequent pilots than static users (due to their
channels having a shorter coherence time), or we may assign multiple pilots
within each coherence block to the same user in order to improve the quality
of the CSI obtained.
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Maximum Ratio Combining Zero Forcing

Mρ̂γ(k)η̂k

1 + ρ̂
∑

k′∈K β(k′)η̂k′

(M −K)ρ̂γ(k)η̂k

1 + ρ̂
∑

k′∈K (β(k′)− γ(k′)) η̂k′

Mρ̌γ(k)η̌k

1 + ρ̌β(k)
∑

k′∈K η̌k′

(M −K)ρ̌γ(k)η̌k

1 + ρ̌ (β(k)− γ(k))
∑

k′∈K η̌k′

TABLE II: Effective SINR expressions for precoding with
maximum ratio combining and zero forcing, for uplink (top)
and downlink (bottom) transmission (from [46], Section 3.4).

taken only over the set of active users, rather than all k ∈ K,
and the term (M−K) that appears in the numerator of the zero
forcing expressions should instead become (M − L), where
L is the number of active users. In this paper, we do not
consider pilot reuse — that is, multiple end devices using the
same pilot in the same coherence block — nor the resulting
pilot contamination.

B. Traffic Model

We now seek to schedule the traffic demands of the K
devices in as few coherence blocks as possible. For each
device k ∈ K, we define ĥ(k) as the device’s uplink demand,
and ȟ(k) as the device’s downlink demand. The demands are
expressed as a number of coherence blocks, that is, to satisfy
its uplink demand, device k must transmit during the entire
uplink phase (of τ̂ channel uses) in ĥ(k) coherence blocks,
and similarly for the downlink case. A device may transmit
in both the uplink and downlink phases of a given coherence
block, but a device may not transmit in either phase if it has
not been allocated a pilot during that coherence block. In order
to transmit successfully, a device k must also have an SINR
in the relevant transmission phase larger than or equal to its
SINR threshold, µ(k).

Different devices may have different SINR thresholds; this
means that the traffic volume for devices in absolute terms
(i.e. traffic volume in bytes) may not be equal, even when
devices have equal demands, as they may transmit at different
rates (achieved using different MCSs) during their assigned
coherence blocks. More precisely, if a device k has H(k)
bytes of data to transmit, and chooses an SINR threshold
µ(k) allowing for a data rate of m(µ(k)) bytes per coherence
block, then k’s traffic demand in coherence blocks is given
by H(k)

m(µ(k)) . In this way, devices can have both individual data
volumes and QoS requirements (specifically data rates).

The device demands could represent either the current
traffic queued at the devices, or recurring demands induced
by periodic traffic as is typical in sensor network monitoring
scenarios. In the former case, information about the device
demands needs to be updated regularly at the base station,
which places more stringent constraints on the time needed to
schedule the devices’ transmissions. With recurring demands,
on the other hand, a schedule can be established once and then
used for a long time, making longer scheduling times more
feasible. Varying demands also incur a signaling overhead in

order to transmit information about device demands to the
base station. However, this overhead can be quite small, for
example a single value representing the current queue length,
or may even be avoided by predicting traffic demands at the
base station. This is particularly feasible if the device traffic
is not delay sensitive, as it allows longer scheduling windows
and/or the possibility to not serve a device demand fully in a
given scheduling window in case of traffic prediction error.

C. Device Scheduling

We define a frame as the set of coherence blocks required
to meet all device demands in the current scheduling window.
We then seek to minimize the frame, that is, find the least
number of coherence blocks required for all devices to send
and receive all their traffic. Minimizing the frame thus maxi-
mizes the throughput for contiguous frames, or, alternatively,
maximizes the sleep time of devices if there is a delay (sleep
cycle) between successive frames. Minimizing the frame also
facilitates network slicing, an important component of the
5G architecture [47], by freeing more resources to be used
by other slices. The frame minimization problem consists of
allocating devices to coherence blocks in which they will
transmit.

A set of devices that can successfully transmit and/or receive
together during a coherence block form a compatible set. In
each c-set, each device may take the role of a transmitter, a
receiver, or both. If a node is a transmitter, it transmits data
during the uplink phase of the coherence block; if a node is
a receiver, it receives data during the downlink phase of the
coherence block. If a node has both roles, it is active in both
phases. Each node in the c-set must have a pilot assigned
to it in order to transmit or receive during a given coherence
block, and as such, the number of devices in a c-set is bounded
from above by P , regardless of the achievable SINRs when
transmitting or receiving simultaneously.

This definition of a c-set differs to that used in wireless mesh
networks (see Section II) in three ways. Firstly, the expressions
used here for the SINRs are different, as they are derived from
massive MIMO channel models and precoding schemes, rather
than the models for single omnidirectional antennas typically
used in mesh networks. Secondly, the number of available
pilots limits the number of nodes that may be placed in the
same c-set. No more nodes may be added to a c-set once all
pilots are assigned, even if all nodes’ SINR conditions would
be met. For a given number of pilots, this reduces the number
of possible c-set solutions, thus reducing the complexity of
c-set generation, which we will apply in order to solve the
frame minimization problem. Finally, in mesh network c-sets,
a node cannot be both a transmitter and receiver, whereas this
is possible in massive MIMO c-sets; this is a consequence of
the massive MIMO coherence block structure, which exploits
channel reciprocity (in the TDD case) to use uplink pilots for
both uplink and downlink channel estimation.

The family of all possible c-sets is denoted by C. The family
of c-sets in which device k ∈ K is a transmitter is denoted by
Ĉ(k), and the family of c-sets in which device k is a receiver is
denoted by Č(k). Note that Ĉ(k) and Č(k) are not necessarily
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disjoint. For a given c-set c ∈ C, t(c) denotes the set of nodes
that transmit in the uplink phase in coherence blocks allocated
to c, and r(c) denotes the set of nodes that transmit in the
downlink phase in coherence blocks allocated to c. Again,
t(c) and r(c) are in general not disjoint.

IV. FRAME MINIMIZATION PROBLEM AND SOLUTION
APPROACH

In this section we will formulate the main problem of this
paper and describe a suitable approach for its optimization.

A. Problem Formulation

The optimization problem studied in this paper — frame
minimization — is formulated as the following integer pro-
gramming (IP) problem. The problem will be referred to as
the main problem and denoted by MP/IP.

min
∑
c∈C

Tc (1a)∑
c∈Ĉ(k)

Tc ≥ ĥ(k), k ∈ K (1b)

∑
c∈Č(k)

Tc ≥ ȟ(k), k ∈ K (1c)

Tc ∈ Z+, c ∈ C. (1d)

Here, C is the family of all c-sets and Tc are (integer) decision
variables indicating the number of coherence blocks in which
the set of active devices (and their roles) is given by c-set
c ∈ C. The objective (1a) then seeks to minimize the total
number of coherence blocks used. Constraints (1b) ensure, for
each device k ∈ K, that the number of coherence blocks in
which the device will be active during the uplink phase of the
block will be sufficient to meet the device’s uplink demand.
Constraints (1c) are similar, but for the downlink demands.

Observe that in formulation (1), as in the remainder of
this paper, we follow the notational convention that variables
are indexed by subscripts (like index c in variable Tc), and
parameters (constants) by round brackets (like index k in
parameter ĥ(k)). This convention, used for example in [48],
makes it easier to distinguish variables from parameters in
problem formulations.

B. Solution Approach

In the solution approach presented below we will consider
restricted versions of MP/IP, denoted by MP/IP(C̄), where
only c-sets from a predefined subfamily C̄ of the family
C (of all c-sets) are allowed. In such a case the list of
variables in (1) is restricted to Tc, c ∈ C̄, and the families
Ĉ(k), Č(k), k ∈ K, are restricted accordingly. Below, the
linear relaxation of MP/IP(C̄) (where the decision variables
Tc, c ∈ C̄, are continuous rather than integer) will be denoted
by MP/LR(C̄). Note that with this notation, MP/IP(C) denotes
the main problem MP/IP (i.e., formulation (1)), and MP/LR(C)
its linear relaxation. The latter formulation will be simply
referred to as MP/LR.

Since the total number of c-sets (and hence the number of
variables Tc) grows exponentially with the number of devices

and pilots, the MP/IP formulation (and, for that matter, the
MP/LR(C) formulation also) becomes non-compact. Hence,
it is not feasible in general to solve the frame minimization
problem (1) using all possible c-sets. Instead, we apply column
generation [49].

The approach is to start (in Phase 1) by solving the linear
relaxation MP/LR(C) using column generation — in our
context column generation is referred to as c-set generation
[37], [41] since in formulation (1) columns, i.e., variables,
correspond to c-sets — and then (in Phase 2) solve MP/IP(C∗)
restricted to the family C∗ of the c-sets resulting from Phase 1.

1) Phase 1. Solving the linear relaxation of the main
problem by c-set generation: Consider the linear relaxation
MP/LR(C̄) for a given subfamily (list) C̄ of the family of
all c-sets C, i.e., the following linear programming problem
formulation:

min
∑
c∈C̄

Tc (2a)

[π̂k ≥ 0]
∑

c∈Ĉ(k)∩C̄

Tc ≥ ĥ(k), k ∈ K (2b)

[π̌k ≥ 0]
∑

c∈Č(k)∩C̄

Tc ≥ ȟ(k), k ∈ K (2c)

Tc ∈ R+, c ∈ C̄. (2d)

The above problem will be called the primal problem.
Now, using the (dual) variables specified in square brackets

to the left of constraints (2b) and (2c), we form the dual to the
(linear programming) primal problem (2) to give the following
linear programming problem formulation [50], [51]:

max
∑
k∈K

(
π̂kĥ(k) + π̌kȟ(k)

)
(3a)∑

k∈t(c)

π̂k +
∑
k∈r(c)

π̌k ≤ 1, c ∈ C̄ (3b)

π̂k, π̌k ∈ R+, k ∈ K. (3c)

(Recall that t(c) (r(c)) denotes the set of devices k ∈ K that
transmit (receive) in compatible set c; see Table I.) This dual
problem will be denoted by DP(C̄) and referred to as the master
problem in the column generation algorithm formulated below.

Consider a dual optimal solution π∗ = ((π̂∗k, π̌
∗
k), k ∈ K),

and suppose there exists a c-set, c′, say, outside the current list
C̄ with

∑
k∈t(c′) π̂

∗
k+
∑
k∈r(c′) π̌

∗
k > 1. When c′ is added to the

list (C̄ := C̄ ∪ {c′}) then the new dual has one more constraint
(3b) that corresponds to c′, and this particular constraint is
broken by the current optimal solution π∗. This means that the
new dual polytope (for the updated c-set list C̄) determined
by conditions (3b)-(3c) is a proper subset of the previous
dual polytope, as the current optimal dual solution is cut off
by the new dual constraint. Therefore, in the updated dual
the maximum of (3a) cannot be greater than the previous
maximum, and in fact in most cases it will be decreased. Thus,
taking into account that the maximum of the dual problem is
equal to the minimum of the primal problem (this is a general
property of convex problems, and thus linear programming
problems like MP/LR, called the strong duality property in
optimization theory [50], [51]), adding the c-set c′ will usually
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decrease the frame length. On the other hand, if no such new c-
set c′ exists, the final dual (and primal) solution thus obtained
is optimal even if C̄ were to be extended to the list of all
possible c-sets. The reason for this is that π∗ fulfills constraint
(3b) for all c ∈ C.

The problem of finding a c-set c′ that maximizes the
quantity

B(c;π∗) =
∑
k∈t(c)

π̂∗k +
∑
k∈r(c)

π̌∗k (4)

over the family C (i.e, the family of all c-sets) will be called the
pricing problem and denoted by PP(π∗). The pricing problem,
a crucial element of the column generation algorithm, will be
discussed in detail in Section IV-C.

The above observations lead to the following iterative c-set
generation algorithm that solves the linear relaxation of the
main problem MP/IP.

CG (c-set generation) algorithm
Step 1: Define initial C0 and let C̄ := C0.
Step 2: Solve the master problem DP(C̄) defined in (3); let

π∗ = ((π̂∗k, π̌
∗
k), k ∈ K) be the resulting optimal dual

solution.
Step 3: Solve the pricing problem PP(π∗); let c′ be a c-set

that maximizes the quantity B(c;π∗) defined in (4) over
c ∈ C.

Step 4: If B(c′) > 1, then C̄ := C̄ ∪ {c′} and go to Step 2.
Step 5: C∗ := C̄; solve the primal problem MP/LR(C∗) de-

fined in (2), and stop.

When the CG algorithm stops, the primal solution calculated
in Step 5 solves the linear relaxation, MP/LR(C), of the
main problem MP/IP. Certainly, for the CG algorithm to start
properly, the predefined initial list of c-sets, C0, appearing in
Step 1 must assure feasibility of MP/LR(C0). Observe also that
the pricing problem in Step 3 generates each new c-set c′ (if
any), whose constraint (3b) is maximally broken by π∗. More
information on the CG algorithm will be given in Section V-A.

2) Phase 2. Solving the main problem: After generating the
c-set list C∗, the main problem (1) restricted to C∗ (denoted
by MP/IP(C∗)), is solved by the branch-and-bound (B&B)
algorithm [52]. Note that the integer solution, t∗c , c ∈ C∗,
obtained thereby may in general be suboptimal, since there can
exist c-sets that are not necessary to solve the linear relaxation
(2) but are required for achieving the optimum of the MP/IP
(where all c-sets are considered). We will return to this issue
in Section V-C.

C. Pricing Problems
The form of the pricing problem will depend on the precod-

ing method used by the base station. Below, we give pricing
problems for both maximum ratio combining and zero forcing.
Both of these problems require variable multiplications (so-
called bi-linearities) that need to be resolved by adding auxil-
iary variables and constraints. We however omit these in the
following. In the appendix, we describe the necessary auxiliary
variables and accompanying constraints to render the pricing
problems as proper mixed-integer programming formulations.
Also, discussion of computational efficiency issues of the
pricing problems will be deferred to Section V-B.

1) Maximum Ratio Combining (MRC): The pricing prob-
lem for MRC can be formulated as follows:

max
∑
k∈K

(ûkπ̂
∗
k + ǔkπ̌

∗
k) (5a)

∆ (1− ûk) +Mρ̂γ(k)η̂k ≥

µ(k)
(

1 + ρ̂
∑
k′∈K

β(k′)η̂k′ ûk′
)
, k ∈ K (5b)

∆ (1− ǔk) +Mρ̌γ(k)η̌k ≥

µ(k)
(

1 + ρ̌β(k)
∑
k′∈K

η̌k′ ǔk′
)
, k ∈ K (5c)

uk ≥ ûk; uk ≥ ǔk; uk ≤ ûk + ǔk, k ∈ K (5d)∑
k∈K

uk ≤ P (5e)

ûk, ǔk, uk ∈ B, k ∈ K (5f)
η ∈ Θ, (5g)

where the decision variables u = (ûk, ǔk, uk, k ∈ K)
(called pilot variables) and η = (η̂k, η̌k, k ∈ K) (power
control variables) are listed in (5f) and (5g), respectively. The
constant ∆ appearing in constraints (5b)-(5c) is defined as
∆ = N (Kρ̂B + 1), for B = max{β(k) : k ∈ K} and
N = max{µ(k) : k ∈ K}. Note that in the above formulation
the constraint on the power control variables is not explicit and
involves a set Θ of allowable vectors η. This set, a parameter
of the pricing problem, will be defined in Section IV-D for
selected power control schemes. Note also the quantities π̂∗k
and π̌∗k (optimal values of the dual variables) appearing in
objective (5a) are basic parameters of the pricing problem.

The binary decision variable uk will be equal to 1 if, and
only if, end device k ∈ K is to be included in the new
c-set. Similarly, ûk and ǔk indicate whether end device k
is to be a transmitter and/or receiver, respectively, in the
new c-set. The objective (5a) selects a new c-set that will
maximally violate the corresponding constraint (3b) in the dual
problem. Constraints (5b) and (5c) ensure the SINR thresholds
are met for each device for the uplink and downlink phases,
respectively, and are based on the expressions given in Table
II.

Constraints (5d) ensure that a device k is included in the c-
set if it is set as a transmitter or receiver, and that the device is
not included in the c-set if it is inactive in both the uplink and
downlink phases. Finally, constraint (5e) ensures that the c-set
does not contain a greater number of devices than there are
pilots available to assign to them in a given coherence block.
Clearly, if u∗ is an optimal vector u, then the optimal c-set
c′ that solves the pricing problem is determined as follows:
c′ = {k ∈ K : u∗k = 1}, with t(c′) = {k ∈ K : û∗k = 1} and
r(c′) = {k ∈ K : ǔ∗k = 1}.

2) Zero Forcing (ZF): The pricing problem for ZF is similar
to that for MRC, but instead uses the zero forcing effective
SINR expressions.

max
∑
k∈K

(ûkπ̂
∗
k + ǔkπ̌

∗
k) (6a)

∆ (1− ûk) +
(
M − L̂

)
ρ̂γ(k)η̂k ≥
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µ(k)
(

1 + ρ̂
∑
k′∈K

(β(k′)− γ(k′)) η̂k′ ûk′
)
,

k ∈ K (6b)

∆ (1− ǔk) +
(
M − Ľ

)
ρ̌γ(k)η̌k ≥

µ(k)
(

1 + ρ̌ (β(k)− γ(k))
∑
k′∈K

η̌k′ ǔk′
)
,

k ∈ K (6c)

L̂ =
∑
k∈K

ûk (6d)

Ľ =
∑
k∈K

ǔk (6e)

uk ≥ ûk; uk ≥ ǔk; uk ≤ ûk + ǔk, k ∈ K (6f)∑
k∈K

uk ≤ P, (6g)

L̂, Ľ ∈ Z+ (6h)
ûk, ǔk, uk ∈ B, k ∈ K (6i)
η ∈ Θ. (6j)

Integer variables L̂ and Ľ are introduced and set to the
number of active nodes in the uplink and downlink phases,
respectively, via constraints (6d) and (6e). This is needed for
the SINR expressions in constraints (6b) and (6c), in order to
take the number of active users rather than the total number
of users on the left hand side.

D. Adding Power Control Optimization to Pricing

The pricing problems given above are incomplete since
the constraints on the power control coefficients η̂k and η̌k
are not explicitly defined. There are a number of different
possible power control schemes that may be used. Here, we
will consider three of them to compare, where each of these
schemes may optionally include power control on the uplink
or not. In all the considered cases power control optimization
is achieved by specifying the set Θ (appearing in constraints
(5g) and (6j)) by means of explicit constraints on variables η.

1) Joint Power and C-Set Composition Optimization:
The first scheme is to jointly optimize the power control
coefficients η and the c-set composition. This requires the
constraints

η̂k ≤ 1, k ∈ K (7a)∑
k∈K

η̌k ≤ 1 (7b)

η̂k, η̌k ∈ R+, k ∈ K (7c)

to be incorporated into both the pricing problems (5) (for
MRC) and (6) (for ZF) instead of (5g) and (6j), respectively.
The two constraints simply ensure that the devices and the
base station, respectively, do not exceed their maximum trans-
mission power.

2) Fair Power Control Optimization: The second power
control scheme is (max-min) fair power control, as defined
in [46], Section 5.3. In this scheme, nodes adjust their trans-
mission power so as to maximize the minimum SINR of any
node. It can be proven that this always results in all nodes

achieving a single, common SINR — see [46], Section 5.3.1.
Nodes adjust their power according to their relative channel
quality, such that the node(s) with the worst channel(s) will
transmit at full power, while nodes with good channels reduce
their transmission power. For this scheme, in the case of MRC
we need to replace (5g) with the following constraints.

η̂k =
ϕ

γ(k)
, k ∈ K (8a)

ϕ ≤ γ(k)ûk + (1− ûk)Γ, k ∈ K (8b)

ϕ ≥
∑
k∈K

γ(k)zk (8c)∑
k∈K

zkûk ≤ 1 (8d)∑
k′∈K

zk′ ûk′ ≥ ûk, k ∈ K (8e)

η̌kρ̌γ(k)

(
1

ρ̌

∑
k′∈K

ǔk′

γ(k′)
+
∑
k′∈K

β(k′)ǔk′

γ(k′)

)
=

(1 + ρ̌β(k)) ǔk, k ∈ K, (8f)
zk ∈ B, k ∈ K (8g)
η̂k, η̌k, ϕ ∈ R+, k ∈ K, (8h)

where Γ = max{γ(k) : k ∈ K}. Constraints (8b)–(8e)
select the lowest γ(k) of any node active in the uplink phase
to be the numerator in constraint (8a), with constraint (8b)
providing an upper bound, and constraints (8c)–(8e) providing
a lower bound by selecting one active device, if there are
any. If no devices are active in the uplink phase, ϕ will be
zero. Constraints (8f) are taken from the fair power control
expressions derived in [46], Section 5.3.1.

For fair power control in the case of ZF, we similarly need
to add the above constraints to the ZF pricing problem (6),
except that the following is used instead of constraint (8f).

η̌kρ̌γ(k)

(
1

ρ̌

∑
k′∈K

ǔk′

γ(k′)
+
∑
k′∈K

(β(k′)− γ(k′)) ǔk′

γ(k′)

)
=

(1 + ρ̌ (β(k)− γ(k))) ǔk, k ∈ K. (9)

Here, the difference to the MRC case is that β(k) is replaced
by (β(k)− γ(k)).

3) Static Power Control Optimization: Since the above
power control schemes require changing the power control
coefficients each time a new c-set becomes active, they add a
significant signaling overhead to inform the end devices of the
values of the power control coefficients they should use. At the
base station, new power control coefficients must be calculated
for each coherence block, or, alternatively, stored for each c-
set. To alleviate these problems, we may instead use a third
scheme, which we will call static power control, in which
the variables η̂k and η̌k are removed from the power control
constraints by replacing each of them with min{γ(k′):k′∈K}

γ(k) ,
thus calculating power control coefficients over the entire set
of K devices. The η̂k and η̌k then become constant parameters
instead of decision variables.

It is also possible to not perform any power control on the
uplink. This is simpler to implement on resource-constrained
end devices. In this case, all η̂k are set to 1 for each of the
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above schemes. However, the power control constraints for
the downlink must still be determined using one of the other
methods. Without power control on the uplink, near-far effects
must instead be mitigated by the assignment of devices to c-
sets.

V. COMPLEXITY AND EFFICIENCY OF THE SOLUTION
APPROACH

The solution approach presented in Section IV is, by the
very nature of the frame minimization problem MP/IP, quite
complicated. Although we cannot definitely say that MP/IP
is not polynomial, we may expect that its linear relaxation
MP/LR(C) is already NP-hard. Reasons for this include that
the linear relaxation in question is non-compact (it has an
exponential number of variables); that the pricing problems
required in the CG algorithm (formulated in Section IV-C) are
very similar to the NP-hard maximum clique problem [48];
and also that analogous pricing problems, for generating c-
sets in wireless mesh networks, are NP-hard (see [41], [53]).
Thus, assuming that the pricing problems used in this paper
are also NP-hard, we can expect, by polynomial equivalence
of separation and optimization [54], [55], polynomiality of
MP/LR(C) to be unlikely. Bearing this is mind, finding a
compact formulation for MP/LR(C) is also unlikely since
compact linear problems are solvable in polynomial time [54].

In the following we will discuss the efficiency issues related
to our proposed approach and comment on its heuristic as-
pects. The discussion of this section will be further illustrated
by the results presented in Section VI-A5.

A. Solving the Linear Relaxation

As already mentioned, the predefined initial list of c-sets,
C0, appearing in Step 1 of the CG algorithm must assure
feasibility of MP/LR(C0), which means that each k ∈ K must
be contained in at least one c-set in C0∩Ĉ and in at least one c-
set C0∩Č, unless k’s uplink or downlink demand (respectively)
is zero. An example of such a C0 is the family composed of
all c-sets in which only a single device transmits and receives
in the coherence block; this is always a valid c-set since there
will be no interference and only one pilot signal is needed for
the single device. Clearly, the minimal frame length for this
particular C0 is equal to

∑
k∈Kmax{ĥ(k), ȟ(k)}.

The final solution of the column-generation algorithm is
always optimal for any initial c-set list C0. Thus, the choice
of a particular C0 affects only the number of iterations of the
CG algorithm, but usually to a small extent. It turns out that
the CG algorithm achieves a solution close to the optimum
of MP/LR(C) very quickly (in fewer than 20 iterations in our
study, see Section VI-A1), no matter what the initial list C0

is. In effect, most of the iterations are spent on decreasing
such a quickly found suboptimal solution to eventually reach
the optimum which is not significantly smaller. Hence, the
choice of a particular initial c-set list is not really important.
This phenomenon is in fact typical for non-compact linear
programming problems solved by column generation; an il-
lustrative example can be found in [41].

The CG algorithm generates the columns of the primal
problem (corresponding to the c-sets) using the dual (3) as the
master problem in the main loop. This means that in every
iteration a new constraint (3b) corresponding to the c-set c′

found by the pricing problem is added to the master. Observe
that this is equivalent to classical column generation using
the simplex method [49]. If the primal problem MP/LR(C̄) is
solved by the simplex algorithm, then when a new column
(variable Tc′ ) is added to (2) and this column replaces one
of the current basic variables, the local rate of decrease
in the value of the primal objective (2a) will be equal to∑
k∈ĉ(π̂

∗
k+
∑
k∈č π̌

∗
k)−1 (in the simplex method this value is

called the reduced cost of variable Tc′ ), and thus maximal over
all c-sets. After column c′ enters the basis, the value of (2a)
will be decreased by (1−

∑
k∈ĉ π̂

∗
k+
∑
k∈č π̌

∗
k)t, where t is the

value assigned to variable Tc′ by the simplex pivot operation.
If the current basic solution happens to be degenerate then t
may have to stay at the zero value, and in effect the objective
function will not be decreased. Nevertheless, adding variable
Tc′ to the problem is necessary for the simplex algorithm to
proceed towards the optimal vertex solution. Certainly, primal
problem (2) could equally be used for the master problem
(instead of the dual) since optimal dual variables π∗, the
parameters of the pricing problem, can be straightforwardly
calculated from the optimal primal simplex basis [50].

It should be noted that the column generation method (and
hence the CG algorithm), just like the simplex algorithm, does
not guarantee a polynomial number of iterations to reach the
optimum (what is guaranteed is a finite number of iterations).
Fortunately, in practical applications (like ours) the simplex
algorithm is efficient and requires a polynomial number of
steps (typically proportional to the number of variables), and
so does column generation. In any case, however, there is
virtually no alternative to column generation when it comes
to solving non-compact linear programs.

As already mentioned in Section IV-B1, when the CG
algorithm terminates, the final c-set list, C∗, will contain
all c-sets necessary to solve the full linear relaxation of
the main problem. This means that any optimal solution of
MP/LR(C∗) is optimal for MP/LR(C), i.e., the linear relaxation
of the main problem MP/IP formulated in (1). Moreover, in
the final simplex solution of MP/LR(C∗) the optimal vertex
(optimal basic solution of the standard form of the primal
problem) will contain at most 2|K| non-zero values in t∗ =
(t∗c , c ∈ C∗). This observation implies that the gap between
the optimal solution of MP/IP and its lower bound computed
from MP/LR(C∗) is not greater than 2|K| because the vector
dt∗e := (dt∗ce, c ∈ C∗) is a feasible solution of the main
problem MP/IP. In fact, in practice this gap can be consider-
ably smaller than 2|K| because the actual number of non-zero
elements in t∗ is equal to 2|K| minus the number of non-
binding constraints in (2b)-(2c) for t∗. Moreover, if we assume
that the fractional parts of t∗c are random then the average
gap will be equal to

∑
c∈C∗

(
dt∗ce − t∗c

)
= K′

2 (where K ′ is
the number of non-zero elements in vector t∗). This means,
that the quality (strength) of the linear relaxation MP/LR(C∗)
will be good when the optimal value of the objective function
(2a) is large compared with 2|K|, which is the case when the
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demands ĥ(d) and/or ȟ(d) are large. Application scenarios
where this would occur include monitoring or factory control
networks, where traffic consists of regular updates with fixed
sizes, so that traffic can be reliably predicted over a long period
of time. Fortunately, it happens that even if this is not the case,
the quality of the lower bound is very good, as illustrated in
Section VI-A5.

B. Solving the Pricing Problems

The pricing problems formulated in Section IV-C and used
in successive iterations of the CG algorithm are mixed-integer
programming problems with the number of binary decision
variables proportional to |K| (including additional variables to
eliminate the bi-linearities, see the appendix). This is a reason-
able number and, as it turns out, treating the pricing problems
directly with the CPLEX mixed-integer programming solver,
which applies the branch-and-bound algorithm, is sufficiently
efficient compared to the remaining elements (i.e., the main
problem, and the master problem in the CG algorithm) of the
considered two-phase approach. Thus, we did not attempt to
apply additional integer programming means, like introducing
extra cuts to strengthen the linear relaxations of the pricing
problems or even using the branch-and-cut (B&C) version
of the B&B algorithm (see [52]) to improve the PP solution
process efficiency.

C. Solving the Main Problem

Solving the main problem (1) for a given (limited) list C̄
of c-sets requires a branch-and-bound algorithm [52]. Such a
B&B algorithm generates a rooted binary tree (called the B&B
tree) composed of nodes (called the B&B nodes). Each such
B&B node corresponds to a particular linear programming
subproblem obtained from the linear relaxation MP/LR(C̄) by
restricting the range of variables Tc, c ∈ C̄, through the B&B
node-specific lower and upper bounds. More precisely, extra
constraints of the form L(B, c) ≤ Tc ≤ U(B, c), c ∈ C̄, are
added to MP/LR(C̄) in the subproblem of the B&B node B,
where L(B, c), U(B, c) are the lower and upper bounds on Tc,
respectively, specific to B&B node B. The algorithm starts
with visiting the root of the B&B tree, where L(B, c) = 0
and U(B, c) = ∞ for all c ∈ C̄. In general, when the
algorithm visits a B&B node B, it solves the subproblem of
B, selects a fractional t∗c′ in the resulting optimal solution
t∗ = (t∗c , c ∈ C̄), and (provided there is a fractional component
in t∗) creates two new B&B nodes B′ and B′′ that are called
active nodes. In B′, the constraint L(B, c′) ≤ Tc′ ≤ U(B, c′)
is substituted by L(B′, c′) ≤ Tc′ ≤ bt∗c′c, and in B′′ by
dt∗c′e ≤ Tc′ ≤ U(B′′, c′). Note that if vector t∗ is integer, a
feasible integer solution (i.e., a feasible solution of MP/IP(C̄))
is achieved and the new B&B nodes are not created. Nor are
new B&B nodes created when the optimal objective of the
subproblem of B (i.e.,

∑
c∈C̄ t

∗
c ) is greater than or equal to

the current best feasible integer solution. After visiting a B&B
node B the algorithm proceeds to one of the other active B&B
nodes and B becomes inactive. There are several reasonable
ways of visiting the active nodes, among them depth-first
search (of the B&B tree).

In fact, to assure true optimality, problem MP/IP should
be solved using the branch-and-price (B&P) algorithm [52]
instead of the price-and-branch (P&B) algorithm that underlies
the two phase approach described in Section IV. The basic
difference between B&P and P&B is that in the latter the CG
algorithm is invoked only once, at the root node of the B&B
tree, and then the linear subproblem solved at each of the
subsequent B&B nodes assumes the subfamily C∗ computed
at the root. B&P in turn, would apply the CG algorithm
at each B&B node. This would consume excessive overall
computational time already for medium size MIMO systems
because of executing the CG algorithm at every B&B node.

With P&B the linear subproblems solved at the B&B nodes
(obtained, as explained above, by adding constraints on the
range of (continuous) variables Tc, c ∈ C∗, to MP/LR(C∗)),
are solved quickly by the CPLEX linear programming solver,
provided the number of c-sets in C∗ is reasonable (this is the
case in the numerical examples considered in Section VI).
Moreover, the limited number of decision variables Tc, c ∈ C∗,
and good quality of the linear relaxations (tight lower bounds
on the objective value of the corresponding MP/IP(C∗)) make
the P&B solution process sufficiently efficient for our pur-
poses. Here we could also allow decreasing the family C∗
used for solving MP/IP by letting the CG algorithm stop
after relatively few iterations when the slope of the gain in
the optimal value of the master is becoming flat and the
current master solution is close to its final, optimal, value (see
Section VI-A1).

It is important that the optimal solutions obtained with our
P&B two-phase approach, i.e., optimal solutions of MP/IP(C∗),
are close to the lower bound on MP/IP (obtained with
MP/LR(C)), as shown in Section VI-A5. It is also worth notic-
ing that good quality solutions of the main problem (1) can be
obtained by solving MP/IP(C′), where C′ = {c ∈ C∗ : t∗c > 0},
C∗ is the family of c-sets obtained in Phase 1, and t∗ is
the final optimal solution of Phase 1, i.e., of MP/LR(C∗).
This observation is illustrated in Section VI-A5. As already
mentioned, the number of the c-sets in family C′ is not greater
than 2K and can be much smaller than the number of the c-
sets in family C∗. Hence, the number of (integer) variables in
MP/IP(C′) can be much smaller than in MP/IP(C∗).

To end this section we note that it is possible to write down a
(compact) mixed-integer problem formulation for MP/IP with
the number of variables and constraint polynomial in K and
the maximum frame length. In such a formulation, the c-
sets for the consecutive coherence blocks of the optimized
frame are specified explicitly by means of additional binary
variables and constraints (for each coherence block) in the
way used in the pricing problems. Such a formulation could
be solved directly, using a mixed-integer programming solver,
for example the solver available in CPLEX. However, the
formulation in question would involve a number of binary
variables (and constraints) that is far beyond the reach of
IP solvers. Therefore, the c-set generation algorithm (where
the pricing problem for finding the improving c-set in each
iteration of the CG algorithm is used only once per iteration)
applied in the proposed two-phase approach seems to be
the only reasonable option for reaching good quality (near
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optimal) solutions of the main problem MP/IP.

VI. NUMERICAL STUDY

For our numerical study, formulations (1)–(9) were im-
plemented in AMPL and experiments carried out using the
CPLEX solver on an Intel Core i7-3770K CPU (3.5 GHz)
with 8 virtual cores (4 cores with 2 threads each), and 8 GB
RAM. The parameters used for our experiments are shown
in Table III, and are based on the LuMaMi massive MIMO
testbed [56], which has 100 antenna elements and uses a
coherence block structure similar to that used in LTE, that
is, 12 OFDM subcarriers and 7 symbols per coherence block.
In practice, a coherence block can be larger, depending on the
environment and device mobility, however these parameters
ensure coherence across time and frequency during the block
for practical scenarios of interest. The first symbol is used
for pilots, resulting in 12 available pilots in each coherence
block. We set the pilot length S to 1, giving the minimum
channel estimation quality and thus the most challenging case
for device scheduling.

In general, the large scale channel effects β(k) may in-
clude both path loss and large scale fading caused by, for
example, shadowing from objects. (We assume that channel
hardening has eliminated small scale effects on the channel
[57].) However, for this study we derive the values of β(k)
only from path loss based on the distance of each user from
the base station. Since our optimization models rely only on
the actual value of β(k), placing nodes at a greater distance
from the base station, such that they have greater path loss, is
entirely equivalent to nodes placed closer to the base station
but subject to shadowing or other large scale effects that
reduce the channel gain. The path loss may be modeled
as a function of the distance r(k) of each device k ∈ K
to the base station, β(k) =

(
r(k)
R

)−α
for some path loss

exponent α and reference distance R. Theoretically, the choice
of reference distance is immaterial. However, large differences
in magnitude between the different parameters can lead to
floating point calculation errors while solving the optimization
problems, so we choose a reference distance that keeps the
values used in our scenarios within reasonable ranges.

For simplicity, we model the location of the base station as
a single point, that is, each end device has the same distance
to all antenna elements. The SNR and path loss exponent
used are based on typical values for outdoor, non line-of-sight
transmission. For these experiments, we gave all devices the
same SINR threshold, and so in the following we will without
loss of generality refer to the threshold as simply µ.

We conducted six different experiments, according to the
configurations shown in Table IV. Parameters not mentioned
in the table are as shown in Table III. Experiments 1–3 explore
different near and far distances for the device groups, while
Experiment 4 tests the effect of the SINR threshold, and
Experiment 5 varies the number of devices. Experiment 6 tests
an unbalanced scenario in which there are a small number of
nodes with good channel conditions (close to the base station),
and a larger group of nodes with much poorer channels (far
from the base station).

Parameter Value
Uplink SNR ρ̂ 10 dB

Downlink SNR ρ̌ 10 dB
Number of antennas M 100

SINR threshold µ 1.0 (0 dB)
Pilot length S 1

Number of pilots P 12
Path loss exponent α 3.7
Reference distance R 200 m
Number of users K 40

TABLE III: Parameters used for experiments.

Experiment Near
distance

Far
distance

Other
parameters

1 50 m 200 m
2 200 m 400 m
3 50 m 100 m

4 50 m 100 m µ: 1, 5. . . 50; step 5,
K: 20

5 50 m 100 m K: 4. . . 40, step 4
6 50 m 500 m K: 40 total: 8 near, 32 far

TABLE IV: Experiment configurations.

We defined six different scenarios for the experiments,
shown in Table V. In each scenario, the nodes are divided
into two groups, a near group and a far group, with K

2 nodes
in each group, except for Experiment 6, where there are K

5
nodes in the near group, and 4K

5 nodes in the far group. The
distances of the near and far groups from the base station
are different for different experiments, but in each case the
near group is closer. There are two traffic demand levels, high
demand (10 coherence blocks) and low demand (2 coherence
blocks). The scenarios provide different combinations of low
and high uplink and downlink demands for nodes close to
and far from the base station. The distances of the devices are
important for power control, since close devices will have a
stronger signal than far devices.

Scenario 1
Group Uplink demand ĥ Downlink demand ȟ
Near 10 10
Far 2 2

Scenario 2
Group Uplink demand ĥ Downlink demand ȟ
Near 2 2
Far 10 10

Scenario 3
Group Uplink demand ĥ Downlink demand ȟ
Near 2 10
Far 10 2

Scenario 4
Group Uplink demand ĥ Downlink demand ȟ
Near 10 2
Far 2 10

Scenario 5
Group Uplink demand ĥ Downlink demand ȟ
Near 10 2
Far 10 2

Scenario 6
Group Uplink demand ĥ Downlink demand ȟ
Near 2 10
Far 2 10

TABLE V: Scenarios for experiments.
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Metric Definition
Frame size The objective of our optimization functions: the

number of coherence blocks required to satisfy all
end devices’ traffic demands. Smaller frame sizes
yield higher throughput.

Total power The sum of the transmission power control coeffi-
cients for all end devices, for all coherence blocks
in the frame.

Max node power The sum of the transmission power control coef-
ficients, for all coherence blocks in the frame, for
the end device that had the highest such sum.

Solution time The time, in seconds, required to solve each opti-
mization problem.

Total solution time The sum of the solution times of all optimization
problems solved to reach the final solution.

TABLE VI: Definition of performance metrics used in the
experimental results.

We tested all six scenarios for each experiment configuration
For all experiments, we found the minimal frame size for each
of the power control schemes (optimal, fair, and static). We
also tested optimal power control with no uplink power con-
trol, which we will hereafter call the downlink power control
scheme. For downlink power control, all uplink power control
coefficients were set to 1.0 (0 dB). Both maximum ratio
combining and zero forcing were evaluated. Our experiments
generated a large amount of data, although in many cases
the results were as would be expected and/or were similar
across the different scenarios and experiments. Because of
this, in the following sections, we give only a summary of
key experimental results. The full results are available in [58].
In our results, the power values obtained are not the actual
energy used by the nodes, but rather represent sums of the
power control coefficients used in the coherence blocks in the
frame. Total power is thus the sum of all the power control
coefficients (both uplink and downlink) for all nodes active in
each allocated block. Similarly, max node power is the sum
of the power coefficients in all blocks in which a node was
active, for the node with the highest such sum, that is, the total
power for the node with the highest total power. This gives
an initial comparison of the energy efficiency of the different
power control schemes. For a more comprehensive analysis,
an energy model would need to be applied to the allocated
transmissions of the nodes and the base station.

A. Results

We use a number of different performance metrics to
evaluate our experimental results. For reference, these are
summarized in Table VI.

1) Experiments 1–3: First, we will discuss the results from
Experiments 1–3. All the results shown in the figures in
this section are from Experiment 1, however, the results for
Experiments 2 and 3 were similar and are omitted from further
discussion.

The minimum frame sizes obtained were 21 coherence
blocks for scenarios 1 and 2, and 35 blocks for scenarios 3–
6. In some isolated cases, most often when using static power
control, the minimum frame size was greater by one coherence
block. This can be caused by more restrictive power control
schemes being unable to accommodate the c-sets needed for

the smaller frame size, although in one case this even occurred
for optimal power control. This is a result of the different c-sets
generated when solving the pricing problems. As discussed in
Sections IV-B2 and V-C, the c-sets needed to optimally solve
the main problem may differ from those needed to optimally
solve its linear relaxation. In some cases, this can result in
(slightly) suboptimal final solutions.

Based on the scenarios tested, smaller frame sizes result
from situations where the device groups are well separated in
terms of demand, that is, where the near and far nodes do not
compete — all high demand nodes are at the same distance
to the base station and thus have similar channels. Whether
high demand nodes compete on the uplink or downlink does
not appear to affect the frame size in these cases.

All power control schemes gave similar performance in
terms of frame size, including downlink power control. This
means that we can achieve similar throughput performance
without uplink power control, if we schedule the nodes
effectively. This can reduce signaling overhead as well as
simplify the implementation of resource-constrained IoT end
devices. Transmitting at full power on the uplink will of course
consume more energy, however this may be mitigated by
efficient scheduling resulting in longer sleep times between
transmissions. A full investigation of energy efficiency is
however beyond the scope of this paper.

Nonetheless, the total power, shown in Figure 1a, gives an
indication of the comparative energy usage for the different
configurations tested. As would be expected, the closer the
devices are to the base station, the lower the power needed.
Performing full optimal power control can result in significant
energy savings; note that the power values shown in the figures
for optimal power control are not zero, but rather very small
relative to the other values. Fair power control gives the worst
energy efficiency, even higher than static power control. This
is because this power control scheme was designed to give
the maximum fair SINR to all devices. Static power control,
since it is fair power control performed over all devices, not
just those in the current c-set, can only result in a lower
or equal SINR, and uses less power for nodes with good
channel quality. Both of these schemes in effect over-estimate
the transmission power needed, as they are not designed
with limited traffic demands in mind, but rather for saturated
scenarios where all devices seek to maximize their throughput.
The maximum node power results, not shown here, followed
a similar pattern.

The number of pricing problem iterations in the CG algo-
rithm required to generate all needed c-sets was less than 100
in most cases, with notable exceptions being fair, downlink,
and optimal power control in scenarios 1 and 2, where more
than 500 iterations were needed. Figure 1b shows the total
solution time, broken down into the time needed for (all
iterations of) the pricing problem, and the time needed for
the main problem, i.e., the final MP/IP(C∗). As would be
expected, static power control takes the least amount of time,
as here the power control coefficients are not decision variables
to be optimized. Optimal power control also performs quite
well, in most cases solving faster than fair power control.
This is because for optimal power control, the power control
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Fig. 1: Experiment 1 results.

constraints are linear, whereas fair power control requires
additional integer variables. Scenarios 1 and 2, which had the
smallest frames, required a much higher number of pricing
problem iterations for all power control schemes except static
power control.

In most cases, the main problem constitutes a large pro-
portion of the solution time, but in a few cases the pricing
problem instead takes significant time. However, the objective
becomes close to its final, optimal, value after relatively few
iterations: fewer than 20 iterations for the frame size to drop
below 50 from initial values of between 200 and 400. This
indicates that a good, albeit suboptimal, list of c-sets can be
achieved by only performing a small number of iterations,
which would dramatically reduce the time spent solving the
pricing problem.

2) Experiment 4: In Experiment 4, we varied the SINR
threshold µ. This can equivalently be interpreted as worsening
the channel quality of all the nodes, for example by moving
them further away from the base station. This allows us to
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Fig. 2: Experiment 4 results.

investigate how the frame size, power, and solution times
are affected by solving the optimization problem under more
challenging channel conditions. The results presented are from
scenario 1, however the overall behavior observed in the other
scenarios as the SINR threshold was increased was similar.

Figure 2a shows the frame size vs. SINR for all power
control and precoding schemes tested. From the figure, we can
see that the power control scheme makes little difference to the
frame size over different SINR threshold values, however the
behavior for the two precoding schemes is very different. With
maximum ratio combining, the frame size increases monotoni-
cally with increasing SINR threshold. We can observe regions
where the frame size is held steady, before jumping up to
its next value; this is because the SINR threshold reaches a
critical point where one or more devices are no longer able
to be accommodated in the same c-set, resulting in a different
scheduling configuration with a larger frame.

However, zero forcing is able to maintain a steady frame
size across all SINR threshold values, and even for higher
threshold values tested in experiments not reported here. This
is because the effectiveness of zero forcing, unlike MRC, does
not depend on the relative quality of the devices’ channels, but
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rather on the accuracy of the channel estimation, which is not
affected by increasing the SINR threshold. Zero forcing is thus
able to maintain simultaneous transmission using the c-sets
needed for the optimum frame size, essentially up until the
point where the SINR threshold is so high that transmission
is not possible to the devices at all. In terms of total and max
node power, we again observed the same dichotomy between
the two precoding schemes, with zero forcing maintaining
steady performance across all SINR threshold values tested,
while for MRC the power increases with increasing SINR
threshold.

Figure 2b shows the total solution time as the SINR
threshold is varied. Here we see a dramatic spike in solution
times for intermediate SINR threshold values, especially for
MRC with fair and optimal power control, but even with the
other power control schemes. For ZF, the solution times are
more consistent, but do vary with the power control scheme.
The increase in solution time for MRC is likely due to the
larger number of possible solutions in this region that need to
be eliminated by the solver during branch-and-bound. In the
intermediate SINR threshold region, there are many candidate
c-sets where some or all nodes would achieve SINR close to
the threshold value for some or all power coefficient values.
Meanwhile, at high SINR thresholds, there are few c-sets that
can satisfy the SINR constraints; in fact, at very high SINR
thresholds, only singleton c-sets are possible, where only one
device is served at a time. In the low SINR threshold region,
most or all nodes are easily able to be accommodated in
the same c-set. Increased solution times in the intermediate
SINR region occurred for both the main and pricing problems.
However, these longer solution times were not due to an
increased number of iterations of the pricing problem. Rather,
the individual iterations took longer to solve.

These results indicate that, particularly for MRC, optimal
solutions may be most suitable for cases where devices have
either quite high or quite poor channel quality, whereas for
intermediate cases, other approaches may be more suitable.
Such approaches could include the variations on our solution
algorithm discussed in Section V-C, or other approximation
algorithms. The development of such algorithms will be the
subject of our future work.

3) Experiment 5: In Experiment 5, we varied the number
of devices. Again, the results presented here concern scenario
1, but similar behavior was observed for the other scenarios.
Figure 3 shows the frame size as the number of devices
increases. Below a certain point, more devices can be added
without increasing the minimum frame size, however after that
the frame size increases with the number of devices. This is
unsurprising, since with a fixed SINR threshold the viable c-
sets and thus frame size are largely determined by the number
of available pilots.

In terms of the power used, the total power increased
steadily with the number of devices, while the max node power
did not show any clear trend in relation to the number of
devices. The total solution time increased exponentially with
the number of devices, and this was the case for the time for
both the pricing problem and the main problem. This behavior
is typical of this kind of optimization problem. The number
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Fig. 3: Frame size, Experiment 5, scenario 1.

of pricing problem iterations also increased with the number
of devices, however here there was more variation.

4) Experiment 6: In Experiment 6, since the near and far
groups are unbalanced, with four times as many nodes in the
near group as in the far group, the frame sizes (Figure 4a were
more varied between the different scenarios than in the other
experiments. Here, the frame size was primarily determined
by the total downlink demand, so that in scenarios where the
larger (far) group had higher downlink demands, the frame
size was also larger. This is because in this experiment, the
far group had a very poor channel, making it more difficult
for the base station to share its power across the different
simultaneous devices in such a way as to achieve an acceptable
SINR for all devices.

This is particularly evident when looking at the frame sizes
when using static power control. With this power control
scheme, the base station effectively allocates some of its
transmission power to the nearby nodes, even when they are
not scheduled to receive any data in a given coherence block.
The remaining power allocated to the far nodes is then not
enough to achieve a good SINR, preventing those nodes from
being scheduled simultaneously, and resulting in much larger
frame sizes. With power control optimization, however, the
base station tailors its power allocation to the nodes that are
actually active in each block, and is thus able to provide more
power (and therefore a higher SINR) to the far nodes when
they are scheduled on their own, without any close nodes
active. The long frame sizes in these cases also resulted in
higher total and max node power. For such a scenario, then,
where the majority of nodes have poor channels, and especially
when there are large downlink demands, transmission power
control optimization becomes very important to ensure the
efficient use of resources.

The solution times for Experiment 6 (Figure 4b) were
mostly short, except for Scenario 1. In this case, the near
group had higher demands than the far group. As discussed
above, scheduling even one node from the near group at the
same time as nodes from the far group significantly affects the
transmission power allocation. This results in a more difficult
scheduling problem when the majority of the traffic to be
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scheduled belongs to the near group.
5) Heuristic Methods: Table VII shows the performance of

the different phases of our solution approach for Experiment
6, Scenario 1, as well as the performance when solving the
main problem on a selected family of c-sets C′ consisting of
only those used in the optimal solution to the linear relaxation
(rightmost column). From the table, we can see that the lower
bound provided by the linear relaxation is very good, deviating
by only two coherence blocks at most from the final IP solution
of MP/IP(C∗). Our proposed heuristic, using only c-sets in
C′, also achieved objective values very close to those using
the entire generated family C∗, while substantially reducing
the time required to solve the main problem. These times are
short, both for the heuristic and the full MP/IP(C∗), thanks to
the high quality lower bound produced by the linear relaxation.
However, as seen in the results from Experiment 5, the times
will grow exponentially as the size of the network grows. As
the solution times increase, a timeout can be used to attempt
solution of the main problem for family C∗, and fall back to

using only selected c-sets, i.e., family C′, if the main problem
cannot be solved in a reasonable time.

B. Discussion

Somewhat surprisingly, most of the experiments we con-
ducted did not give any substantial differences in frame size
between either the different power control schemes, or the
different precoding schemes. However, the other performance
measures investigated, namely power and solution time, do
vary greatly, which indicates there are benefits to choosing
one scheme over another depending on the specific network
configuration. In the case of a large group of nodes with a poor
channel, optimizing transmission power did show substantial
benefits in frame size, with static power control performing
much worse than the other power control schemes. This is a
fairly typical, realistic scenario, especially in situations such
as urban environments where there is significant variation in
channel gains resulting in a long tail distribution of channel
gain among the devices. Our results here show a substantial
improvement in throughput by jointly optimizing power con-
trol along with device scheduling.

Although a full energy model is needed to obtain concrete
energy values, using optimal power control provided clear
benefits in terms of energy savings. This is true for both the
total power of the whole network, as well as the maximum
individual power for any device node. Zero forcing with
optimal power control consistently used the least power, two
orders of magnitude lower than the others in most cases for
Experiment 4, and three orders of magnitude in the case of
Experiment 5. However, our experiments are insufficient to
provide comprehensive guidance on which precoding scheme
to use, since some important aspects of their performance, as
well as intermediate schemes such as minimum mean-square
error and regularized zero-forcing, are not considered here. For
example, some research has shown that MRC outperforms ZF
for multi-cell systems, depending on the number of devices
and antennas, and the pilot reuse factor [23].

The fair power control schemes widely adopted in the
literature on massive MIMO (see Section II) are targeted
towards use cases with homogeneous devices and traffic,
where the primary goal is high throughput. Our results here
however show clear benefits in tailoring power control for
heterogeneous devices and traffic demands, especially where
energy efficiency is of concern, as is usually the case for IoT
scenarios, or where there are large discrepancies in channel
qualities between devices. IoT devices are also often resource
constrained, and our results show that power control on
the uplink may be avoided by employing efficient schedul-
ing without sacrificing throughput. This interaction between
scheduling and power control is not taken into account in
previous schemes, but rather the uplink and downlink are
treated similarly.

VII. FUTURE WORK

There are many possible extensions to this work, both
to further develop and validate our models, as well as to
apply them to other problems and application scenarios. Here
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Configuration Time
MP/LR |C∗| Objective

MP/LR
Time

MP/IP(C∗)
Objective

MP/IP(C∗)
Time

MP/IP(C′) |C′| Objective
MP/IP(C′)

MRC downlink 0.045 359 15.333 14.016 17 0.051 45 17
MRC fair 0.033 518 12.245 0.341 13 0.074 67 14

MRC optimal 0.053 572 12.235 1.347 13 0.123 67 14
MRC static 0.015 46 74.0 0.015 74 0.016 33 74

ZF downlink 0.021 247 14.0 2.790 16 0.143 70 16
ZF fair 0.053 526 12.235 1.074 13 0.069 61 14

ZF optimal 0.041 517 12.235 0.177 13 0.068 62 14
ZF static 0.007 43 144.0 0.015 144 0.018 40 144

TABLE VII: Results for Experiment 6, Scenario 1, using all generated c-sets (C∗)or only those required for the optimal linear
solution (C′). All times are in seconds.

we have tested systematically constructed scenarios intended
to illuminate how the performance of both the underlying
massive MIMO system and our optimization formulations
changes with different system parameters. An important step
for future work is then to also test our formulations with real
network traces and/or randomly generated network scenarios.
The channel models could also be made more realistic, as
those used here are relatively simple, with only path loss
considered in our experiments, and only large scale effects
taken into account in our model. In future work, channel
models for multi-cell systems could also be used. This would
significantly increase the complexity of the models, but would
allow for performance of larger massive MIMO systems to be
studied, as well as phenomena such as inter-cell cooperation
and pilot contamination.

Energy usage is a critical performance measure for many
IoT systems, and here we have not optimized for energy
efficiency, but rather for overall system throughput. However,
our model can also be applied to different objective functions,
including minimal energy usage, fair energy usage, or delay
minimization, which may be important for mission critical
systems or tactile internet applications. In order to accommo-
date these new objectives, new versions of the main problem
need to be formulated that model these performance measures,
and from there the dual problems and thus pricing problem
objectives can be derived. The pricing problem constraints we
have formulated here, and which constitute the most difficult
part of the formulations, will however still apply.

In our experiments we have investigated the solution times
to find the optimal frame size. In some application scenarios,
it would be feasible to use the optimal solutions, or a modified
version of our solution algorithm where the time to solve is
improved by either reducing the number of iterations, applying
time limits, or using heuristic methods as discussed in Section
V-C. This is especially true in the case of periodic traffic,
where the optimization problem need only be solved once,
and the solution can then be used for a long time. However,
for cases where it is not feasible to apply our optimization
formulations, there is a need to develop new, more efficient
approximation algorithms.

VIII. CONCLUSION

In this paper we have developed a new model adapting
the concept of compatible sets to massive MIMO systems,
which allows for the efficient solution of a variety of types of
optimization problems relating to network performance. We

have applied our model to the case of joint device scheduling
and power control for maximum throughput, considering two
different precoding schemes and three power control schemes.
Our results show substantial benefits in terms of energy usage
when treating the power control coefficients as optimization
variables, and large gains in throughput in jointly optimizing
power control and device scheduling in scenarios with a large
spread in channel qualities between devices. On the other
hand, much simpler power control can also be applied without
loss of throughput. In particular, the same throughput can be
achieved without performing any power control on the uplink
at all, which may reduce the complexity needed in resource-
constrained IoT end devices, as well as reduce the signaling
overhead between the base station and the devices.

With the advent of 5G driving the adoption of massive
MIMO, there is a need for new modeling to analyze the
performance of these systems, as well as provide practical
solutions for implementation, for the broad range of different
application scenarios and performance goals encompassed
under the umbrella of the 5G requirements. In this work,
we have targeted the case of a large number of devices with
heterogeneous demands, and our models provide a flexible and
general method for network optimization in such scenarios.
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APPENDIX

In order to remove the variable multiplications in formula-
tions (5), (6), (8), and (9), we need to introduce the following
auxiliary variables and constraints. In formulation (5), we
introduce auxiliary variables x̂k, x̌k ∈ R+, k ∈ K, for the
uplink and downlink respectively. Constraints (5b) are then
replaced with the following constraints:

∆ (1− ûk) +Mρ̂γ(k)η̂k ≥

µ(k)

(
1 + ρ̂

∑
k′∈K

β(k′)x̂k′

)
, k ∈ K (10a)

x̂k ≤ ûk; x̂k ≤ η̂k; x̂k ≥ η̂k + ûk − 1 + ∆(ûk − 1),
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k ∈ K. (10b)

Variable x̂k thus represents the product ûkη̂k. For a valid
power control scheme, η̂k should always be at most 1, how-
ever, in fair power control, this does not necessarily hold in
cases where uk = 0: a node can be assigned a power control
coefficient greater than 1 when the node is not included in the
c-set. This is because the coefficients η̂k, η̌k are defined for
all nodes (as all nodes can potentially be included in a c-set),
but their values are calculated relative to the node in the c-set
with the worst channel, that is, the lowest value of γ(k) such
that ûk = 1. This means that nodes which have lower values
of γ(k) than any of the nodes in the c-set will have η̂k > 1.

While this would have no affect on practical power control
— nodes with η̂k > 1 do not transmit — it would cause some
of the constraints in (10b) to be infeasible (no acceptable value
can be found for x̂k) without the final term in (10b), which
simply cancels the lower bound on x̂k when ûk = 0. In such
cases x̂k will be forced to zero.

Constraints (5c) are replaced with

∆ (1− ǔk) +Mρ̌γ(k)η̌k ≥

µ(k)

(
1 + ρ̌β(k)

∑
k′∈K

x̌k′

)
, k ∈ K (11a)

x̌k ≤ ǔk; x̌k ≤ η̌k; x̌k ≥ η̌k + ǔk − 1. k ∈ K. (11b)

Here, the extra term is not required as η̌k will always lie in
the interval [0, 1].

In the case of zero-forcing, we replace constraints (6b) and
(6d) with the following:

∆ (1− ûk) + ρ̂γ(k)
(
Mη̂k − L̂k

)
≥

µ(k)

(
1 + ρ̂

∑
k′∈K

(β(k′)− γ(k′)) x̂k′k′

)
, k ∈ K (12a)

L̂k =
∑
k′∈K

x̂kk′ , k ∈ K (12b)

x̂kk′ ≤ ûk; x̂kk′ ≤ η̂k′ ; x̂kk′ ≥ η̂k′ + ûk − 1 + ∆(ûk − 1),

k, k′ ∈ K. (12c)

Again, we need to consider the case where η̂k > 1 for nodes
with ûk = 0, which is handled as for the MRC case with the
final term in (12c). For the downlink, we replace constraints
(6c) and (6e) with the following:

∆ (1− ǔk) + ρ̌γ(k)
(
Mη̌k − Ľk

)
≥

µ(k)

(
1 + ρ̌ (β(k)− γ(k))

∑
k′∈K

x̌k′k′

)
, k ∈ K (13a)

Ľk =
∑
k′∈K

x̌kk′ , k ∈ K (13b)

x̌kk′ ≤ ǔk; x̌kk′ ≤ η̌k′ ; x̌kk′ ≥ η̌k′ + ǔk − 1,

k, k′ ∈ K. (13c)

Variable multiplications also occur in the formulations for
fair power control. We thus introduce auxiliary uplink vari-
ables ŷk ∈ B, k ∈ K, and, in the case of MRC, auxiliary
downlink variables y̌kk′ ∈ R+, k, k

′ ∈ K. Note that the uplink
variables are binary, while the downlink variables are real-
valued. In the case of zero-forcing, we do not need auxiliary

variables for the downlink, since we can use variables xkk′
that were already required for the main pricing problem.

We then replace constraints (8d) and (8e) with the following:

∑
k∈K

ŷk ≤ 1 (14a)∑
k′∈K

ŷk′ ≥ ûk, k ∈ K (14b)

ŷk ≤ ûk; ŷk ≤ zk; ŷk ≥ ûk + zk − 1. k ∈ K. (14c)

For MRC, we replace constraints (8f) with

ρ̌γ(k)

(
1

ρ̌

∑
k′∈K

y̌kk′

γ(k′)
+
∑
k′∈K

β(k′)y̌kk′

γ(k′)

)
=

(1 + ρ̌β(k)) ǔk, k ∈ K (15a)
y̌kk′ ≤ η̌k; y̌kk′ ≤ ǔk′ ; y̌kk′ ≥ η̌k + ǔk′ − 1,

k, k′ ∈ K. (15b)

For ZF, we replace constraints (9) with

ρ̌γ(k)

(
1

ρ̌

∑
k′∈K

x̌k′k
γ(k′)

+
∑
k′∈K

(β(k′)− γ(k′)) x̌k′k
γ(k′)

)
=

(1 + ρ̌ (β(k)− γ(k))) ǔk, k ∈ K. (16a)

Note that the order of the subscripts for xkk′ is reversed
since the constraint index applies here to the power control
coefficient η̌k, not the c-set variable ǔk.
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