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Abstract—In a full-duplex (FD) multi-user network, the system
performance is not only limited by the self-interference but also
by the co-channel interference due to the simultaneous uplink
and downlink transmissions. Joint design of the uplink/downlink
transmission direction of users and the power allocation is crucial
for achieving high system performance in the FD multi-user
network. In this paper, we investigate the joint uplink/downlink
transmission direction assignment (TDA), user paring (UP) and
power allocation problem for maximizing the system max-min
fairness (MMF) rate in a FD multi-user orthogonal frequency
division multiple access (OFDMA) system. The problem is
formulated with a two-time-scale structure where the TDA and
the UP variables are for optimizing a long-term MMF rate
while the power allocation is for optimizing an instantaneous
MMF rate during each channel coherence interval. We show
that the studied joint MMF rate maximization problem is
NP-hard in general. To obtain high-quality suboptimal solutions,
we propose efficient methods based on simple relaxation and
greedy rounding techniques. Simulation results are presented
to show that the proposed algorithms are effective and achieve
higher MMF rates than the existing heuristic methods.

Keywords Full-duplex, OFDMA, max-min fairness, user
pairing, two-time-scale optimization

I. INTRODUCTION

The full-duplex (FD) system has drawn considerable atten-
tion in recent years owing to its potential of doubling the
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system throughput by enabling the devices to transmit and
receive information signals at the same time and over the same
frequency. However, to build a practical FD communication
system, there still exist several fundamental challenges in
circuit design and signal processing. The major challenge
lies in mitigating the so-called self-interference (SI) that is
caused by simultaneous signal transmission and reception. For-
tunately, the breakthroughs in analog and digital interference
cancellation schemes [2], [3] have made effective mitigation
of the SI possible and it has been shown that a FD system may
outperform the half duplex (HD) system in practical scenarios
[4]. For example, the FD techniques have been deployed in
the relay networks [5], [6] and the WiFi systems [7], [8].

The FD technique has also been considered in the cellular
networks [9]–[14], where the FD base stations (BSs) can
communicate with both the downlink and the uplink user
equipments (UEs) simultaneously. In such FD networks, the
downlink UE receives not only the desired information signal
from the BS but also the interference signal from the uplink
UE. Therefore, this new form of co-channel interference
(CCI) becomes another bottleneck for achieving high system
performance in the FD cellular networks. It is found that due to
the SI and the CCI, the uplink and the downlink transmissions,
i.e., the beamforming, have to be jointly designed, making
the design problems much more challenging than the ones
in the conventional HD cellular networks. In addition to
the beamforming schemes, judiciously scheduling users, i.e.,
assigning the uplink/downlink transmission direction of UEs
and pairing the downlink UEs with the uplink UEs, can greatly
improve the FD system performance. This is because if the
CCI between an uplink UE and a downlink UE is strong, then
it is undesirable to group them together as a downlink/uplink
pair. Following this idea, references [15], [16] studied joint
beamforming/power control and uplink/downlink UE selection
algorithms for maximizing the network throughput.

This paper considers a FD multi-user orthogonal frequency
division multiple access (OFDMA) system, where different
channels (i.e., resource blocks (RBs)) may be occupied by
different UEs, and one RB can at most serve one uplink UE
and one downlink UE simultaneously due to the FD capability.
In the FD OFDMA system, the CCI occurs between the uplink
and the downlink UEs in the same RB. Therefore, careful
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selection of a pair of uplink and downlink UEs for each RB can
significantly enhance the throughput performance of the FD
systems. The goal of this paper is to answer the following fun-
damental question: How to properly schedule UEs and allocate
power in the multi-user FD OFDMA system to maximize the
system performance? Scheduling UEs here refers to determine
which subset of UEs should be downlink/uplink UEs, and how
the downlink/uplink UEs should be paired and assigned to
appropriate RBs for data transmission.

A. Related Works

In the FD cellular networks, multiple-antenna techniques
have been applied to the FD systems to overcome the CCI [9]–
[14]. Specifically, references [9]–[11] studied the beamforming
designs for mitigating the SI and the CCI in the multi-user
systems, in order to maximize the network sum rate, the
proportional fairness rate, and the max-min fairness (MMF)
rate, respectively. Besides, [12]–[14] considered designing the
beamformers which satisfy the quality-of-service constraints
in the multi-user system or the multiple-input multiple-output
interference channel.

Recently, there is a considerable number of research works
focusing on the FD systems with orthogonal channels, such as
OFDMA or time division multiple access (TDMA) systems.
In the OFDMA system, since one RB can serve at most one
uplink UE and one downlink UE, the problem of assigning the
uplink/downlink UE pairs to each RB has been widely studied.
Aiming at maximizing the network sum rate of a FD OFDMA
system, reference [17] and [18] respectively used a matching
algorithm and heuristic iterative RB assignment strategy for
UE paring and RB allocation. Power allocation of the BS
and the UEs was obtained by heuristic water-filling strategy.
Reference [19] developed a Lagrangian dual based algorithm
for joint UE pairing and power allocation with the target
of maximizing the MMF rate of the UEs. While the works
in [17]–[19] assumed that the uplink/downlink transmission
direction of UEs have been given in a prior, reference [20]
presented a heuristic algorithm for jointly determining the
transmission direction assignment (TDA) of UEs, UE pairing
(UP) and power allocation for maximizing the network sum
rate. In our previous work [1], for MMF rate maximization,
we considered the joint TDA and UP optimization with fixed
and uniform power allocation, and presented a linear program
based relaxation-and-rounding method.

B. Contributions

In this paper, like [19], we consider a multi-user FD
OFDMA system, in which a FD BS communicates with a
set of HD UEs aiming to maximize the MMF rate. However,
different from [19] but following a similar idea in [20], we as-
sume that the TDA of the UEs are undetermined and optimize
the uplink/downlink TDA, UP and power allocation jointly. In

contrast to most of the existing works and our previous work
[1] but sharing the same idea as [16], we formulate the joint
design problem as a two-time-scale MMF rate maximization
problem. In particular, by considering the fact that the TDA
and the UP solutions should not change as frequently as
the fast fading of the wireless channels, in the formulated
two-time-scale problem, the TDA and the UP variables are
optimized to maximize a long-term MMF rate averaged over
fast fading channels, while power allocation is performed for
maximizing the MMF rate during each coherence interval.
Such a two-time-scale formulation is not only more practical
but also reduces significant signaling overhead as well as
computational burden since the TDA and the UP solutions do
not need to change whenever the small-scale channel fading
changes.

Our technical contributions are twofold. Firstly, we conduct
a computational complexity analysis for the formulated two-
time-scale joint MMF rate maximization problem and prove
that the joint MMF rate maximization problem is NP-hard.
While [17] has studied the computational complexity for a
joint user paring and sum rate maximization problem in the
FD system, the results therein cannot imply the computational
complexity of our joint MMF rate maximization problem.
In fact, as shown in [21], simply adding a constraint could
make an original NP-hard problem become polynomial time
solvable. In our previous work [1], we have stated that the
joint MMF rate maximization problem is NP-hard. In this
paper, we present the detailed proof by building a polynomial
time transformation from the 3-dimensional matching problem
[22], which is known to be NP-complete, to the joint MMF
rate maximization problem. The proof of the NP-hardness
gives interesting insights that the joint MMF rate maximization
problem has the worst complexity in the full load case, i.e.,
when the number of the RBs is exactly half of the number of
UEs.

Secondly, building upon the method in [1], we further
propose efficient algorithms for solving the two-time-scale
joint MMF rate maximization problem. Our algorithm is based
on the alternating optimization (AO) method [23], [24]. Specif-
ically, we handle the joint MMF rate maximization problem
by solving two subproblems iteratively: one subproblem is to
optimize the TDA and UP variables with fixed power alloca-
tion based on a continuous relaxation of the binary TDA and
UP variables followed by a heuristic rounding procedure, and
the other subproblem is to optimize the power allocation by
existing methods based on successive convex approximation
(SCA) [25], [26]. While the relaxation-and-rounding method
seems to work quite well in [18] for the sum rate maximization
problem, for the joint MMF rate maximization problem, it
may be too loose to provide meaningful feasible solutions. A
meaningful feasible solution for our problem should satisfy the
HD transmission constraint (i.e., the transmission directions of
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Fig. 1: A single cellular OFDMA system with one FD BS and a set
of HD UEs. The FD BS has B RBs and a downlink-uplink UE pair
can be allocated to one RB.

the HD UEs are consistent across all RBs) and should yield a
strictly non-zero MMF rate. The latter condition requires that
all UEs are properly paired and assigned to at least one of the
RBs. Unfortunately, the conventional relaxation algorithms for
the binary TDA and UP variables may not always be valid. To
ensure the UEs to satisfy the HD transmission constraint, we
propose a heuristic two-stage procedure based on a continuous
binary relaxation scheme, which first determines the TDA
of UEs and then performs UP optimization. To guarantee
a non-zero MMF rate (which is often violated in the full
load case), we further equip the proposed two-stage procedure
with an iterative greedy rounding method and the `q-norm
regularization technique (where 0 < q < 1) [27] in the
non-full load and the full load case, respectively. Extensive
simulation results are presented to examine the performance
of the proposed algorithms under different load cases.

The remainder of the paper is organized as follows. Section
II presents the system model and the problem formulation.
Section III shows the NP-hardness of the MMF rate max-
imization problem. Section IV presents the algorithms for
efficiently solving the considered problem. Simulation results
are presented in Section V and the conclusion is drawn in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider an OFDMA system
consisting of one (single-antenna) FD BS and M (single-
antenna) HD UEs. The system has B frequency RBs. Owing
to the FD ability, the BS can serve UEs for the uplink and
downlink communications at the same time and frequency over
each RB. We assume that UEs always have data to transmit or
receive; in other words, each UE can either work as an uplink
UE or a downlink UE. We say that a downlink-uplink pair of
UEs (i, j) is allocated over RB b if UE i is a downlink UE,
UE j is an uplink UE and both of them are served by the BS
over RB b. Following the OFDMA principle, we limit only
one pair of UEs to be allocated to one RB. Throughout the

paper, we assume that M ≤ 2B; otherwise there exists at least
one UE who can never be assigned to any RB.

Suppose that UE pair (i, j) is allocated over RB b. We
assume that the downlink and uplink transmissions of BS
and UEs are synchronized1. Then the signal received by the
downlink UE i over RB b is given by

ydib =
√
pdbhibs

d
ib +

√
pujbfjibs

u
jb + ndib, (1)

where pdb ≥ 0 and pujb ≥ 0 are the downlink transmission
power of the BS and the uplink transmission power of UE
j over RB b, respectively; hib ∈ C is the downlink channel
between the BS and UE i over RB b, and fjib ∈ C is the
channel between UE j and UE i over RB b; sdib ∈ C and
sujb ∈ C are the unit power signals (i.e., E[|sdib|

2
] = 1 and

E[|sujb|
2
] = 1) transmitted from the BS to UE i and from

UE j to the BS, respectively; ndib ∼ CN (0, σ2
i ) represents

the additive white Gaussian noise (AWGN) with zero mean,
variance σ2

i . As seen, the first term in the right-hand side
(RHS) of (1) is the desired signal of UE i, whereas the second
term is the CCI from uplink UE j.

For the uplink, the signal received by the BS from UE j

over RB b is given by

yujb =
√
pujbgjbs

u
jb +

√
pdb ŝ

d
ib + nub , (2)

where gjb ∈ C is the uplink channel between UE j and the BS
over RB b, and nub ∼ CN (0, σ2

0) is the AWGN at the BS. The
first term in the RHS of (2) is the information signal from UE
j, whereas the second term stands for the SI due to the FD
BS. Here we assume that the SI has been properly suppressed
via some interference cancellation schemes [2], [3]. However,
due to limited and non-ideal RF circuits [28]–[30], the BS
still suffers from the residual SI. Therefore, in (2), we denote√
pdb ŝ

d
ib as the residual SI term, where ŝdib has an average

residual SI channel gain ηb , E[|ŝdib|2].
In this paper, we assume that the channel state information

(CSI) hib, gjb and fjib for all i, j, b are known perfectly to the
BS. Specifically, when each uplink UE j transmits the training
signals, not only the BS can learn the uplink channel gjb but
also the downlink UE i can estimate fjib for all b at the same
time. Once each downlink UE i obtains fjib, it can send fjib
and hib for all b back to the BS. More details about the CSI
estimation schemes can be found in [31], [32]. According to
(1) and (2), when UE pair (i, j) is allocated to RB b, the

1In particular, to obtain (1), UE i needs to know the arrival time of the first
multi-path signal component from the BS and the uplink UEs. Besides, the
cyclic prefix (CP) length of the OFDM symbol is required to be longer than the
time difference between the firstly arrived multi-path signal component and
the lastly arrived multi-path signal component from the BS and the uplink
UEs. Analogously, equation (2) holds as long as the BS knows the arrival
time of the first multi-path signal component from the SI and the uplink
UEs, and the CP length is longer than the time difference between the firstly
arrived multi-path signal component and the lastly arrived multi-path signal
component from the SI and the uplink UEs.
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achievable downlink rate of UE i and the uplink rate of UE j

are respectively given by

Rdijb(ξ) = log2

(
1 +

pdb |hib|2

pujb|fjib|2 + σ2
i

)
, (3)

Ruijb(ξ) = log2

(
1 +

pujb|gjb|2

pdbηb + σ2
0

)
, (4)

where ξ , {hib, fjib, gjb,∀i, j, b} denotes the quasi-static CSI
of the system, which remains unchanged within the coherence
time but can change from one block to another. It is worthwhile
noting from (3) and (4) that both the downlink and the
uplink UEs suffer additional interference when compared to
traditional HD OFDMA systems. Specifically, due to the CCI
from uplink UE j to downlink UE i, it is unwise to pair and
allocate the two UEs to the same RB if the CCI channel |fjib|2
is stronger than the downlink channel |hib|2. This is because
in that case, the downlink transmission power pdb should be
increased or the uplink transmission power pujb should be
decreased for achieving a higher downlink rate in (3), which,
however, would reduce the uplink transmission rate in (4).
Therefore, instead of pairing them, one should either allocate
them to different RBs or change the two UEs to have the
same transmission direction, i.e., both work as the uplink UEs
or the downlink UEs, and pair them with another two UEs in
different RBs. This observation implies that the assignment of
the uplink/downlink directions of the UEs and the UE paring
have significant impact on the system performance and have
to be carefully designed. In the next subsection, we introduce
the model for TDA and UP.

B. Transmission Direction Assignment and UE Pairing

LetM , {1, 2, ...,M} and B , {1, 2, ..., B} be the sets of
UEs and RBs, respectively. To determine whether a UE should
work as an uplink UE or a downlink UE, i.e., TDA, we define
a binary variable αi ∈ {0, 1}. In particular, we let

αi =

{
1, if UE i is assigned to be a downlink UE,

0, otherwise.
(5)

To describe the UP and RB allocation, we define another
binary variable xijb ∈ {0, 1} so that

xijb =


1, if UE i and UE j are paired as (i, j)

and allocated to RB b,

0, otherwise.

(6)

The TDA and UP variables have to satisfy the following
constraints:

• OFDMA Constraint: Under the OFDMA constraint, only
one pair of UEs can be allocated to each RB b, i.e.,∑

i∈M

∑
j∈M

xijb = 1, b ∈ B, (7)

xijb ∈ {0, 1}, i, j ∈M, b ∈ B. (8)

• HD Transmission Constraint: Note that one UE could be
assigned to more than one RB. However, since the UEs
are HD, if the UE is assigned for uplink transmission
(resp. downlink reception) in one RB, then it must also
perform as an uplink (resp. downlink) UE over other RBs.
To ensure this, we impose the following constraints

xijb ≤ αi, i, j ∈M, b ∈ B, (9)

xjib ≤ 1− αi, i, j ∈M, b ∈ B, (10)

αi ∈ {0, 1}, i ∈M. (11)

According to (9) to (11), when αi = 1, the binary variable
xjib = 0 for all i, j ∈ M, b ∈ B, which implies that UE
i must consistently be a downlink UE for all allocated RBs.
Similarly, when αi = 0, UE i can never be assigned as a
downlink UE. Moreover, the variable xiib is always 0 for all
i ∈ M, b ∈ B. In some scenarios, the UEs may not always
have uplink data to transmit and downlink data to receive, or
the TDA of the UEs has been predetermined. For example,
if UE i does not have downlink (resp. uplink) data, or UE
i has decided to be an uplink (resp. downlink) UE, one can
deterministically set αi = 0 (resp. αi = 1).

C. Two-Time-Scale MMF Design

With the definitions of the TDA and UP variables, we can
express the achievable rate of each UE i as

Ri(ξ) ,
∑
j∈M

∑
b∈B

(
xijbR

d
ijb(ξ) + xjibR

u
jib(ξ)

)
, i ∈M. (12)

Note that, owing to the OFDMA constraint in (7) and the HD
constraints in (9)-(10), Ri(ξ) in (12) is either the aggregate of
the downlink rate or the aggregate of the uplink rate of UE i

over allocated RBs. In this paper, we aim to jointly optimize
the TDA, UP and power allocation for maximizing an average
system performance in a two-time-scale fashion. To explain
this, let U : RM → R be a rate utility function of the system
(e.g., for the sum rate, U({Ri(ξ)}Mi=1) =

∑M
i=1Ri(ξ)). Then,

we assume that the downlink and the uplink powers (pdb , p
u
jb)

can be adapted at the same frequency as the CSI variation,
that is, (pdb , p

u
jb) are designed to maximize the instantaneous

rate utility function

(pd(ξ),pu(ξ)) = arg max
pd∈Pd, pu∈Pu

U({Ri(ξ)}Mi=1), (13)

where pd and pu are the vectors respectively containing pdb
and pujb for all j ∈M, b ∈ B, and

Pd ,
{
pdb ≥ 0,

∑
b∈B

pdb ≤ PBS, b ∈ B
}
, (14)

Pu ,

{
pujb ≥ 0,

∑
b∈B

pujb ≤ PUE, j ∈M, b ∈ B
}
, (15)

are respectively the feasible sets for the downlink and the
uplink transmission powers; here PBS and PUE denote the
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maximum transmission powers of the BS and the UEs, re-
spectively.

The TDA and UP are designed to maximize the expected
rate utility; specifically, we are interested in the following
problem

max
(X,α)∈Q

Eξ
[

max
pd∈Pd, pu∈Pu

U({Ri(ξ)}Mi=1)

]
, (16)

where X = {X1, . . . ,XB} is defined as a collection of
UP variable matrix Xb with Xb = {xijb}i,j∈M for all
RB b ∈ B; α is defined as a column vector of the TDA
variables {αi}i∈M; Q denotes the feasible set specified by
the constraints in (7) to (11). As seen, (16) is a two-time-
scale design problem: the TDA and UP variables (X,α)

maximize the expected rate utility (long time scale) while
the BS and the uplink UEs’ transmission powers (pd,pu)

maximize the instantaneous rate utility (short time scale).
The two-time-scale design problem is meaningful for several
reasons. Firstly, it is reasonable that a UE usually has a bulk
of data for either uplink or downlink transmission and TDA
should not be frequently changed. Secondly, both TDA and UP
largely depend on the large-scale channel conditions (e.g., the
relative locations of the UEs and the BS) and therefore is not
required to be adapted with the fast channel fading. Thirdly,
the two-time-scale design allows the reduction of the signaling
overhead for re-assigning TDA and UP as well as reducing
the system computational burden by avoiding from computing
the TDA and the UP solutions whenever the channel fading
changes.

The two-time-scale problem (16) is a stochastic optimiza-
tion problem. It is in general difficult to solve as there is no
closed-form expression for the objective function. A common
approach dealing with such difficulty is to employ the sam-
ple average approximation (SAA) method [33], [34], which
approximates the expectation term by a sample average. To
illustrate this, denote ξt , {fjib(t), gib(t), hib(t), ∀ i, j, b},
t ∈ T = {1, 2, ..., T} to be a sequence of independently and
identically distributed random CSI samples. Then we use the
sample average of instantaneous rate function to approximate
the expected rate, which leads to the following problem

max
(X,α)∈Q

1

T

∑
t∈T

[
max

pd∈Pd, pu∈Pu
U({Ri(ξt)}Mi=1)

]
. (17)

It is worth mentioning that there exist theoretical results
that characterize the approximation performance of the SAA
method; interested readers may refer to [33].

While problem (17) can accommodate any valid utility
function U , in this paper we are particularly interested in the
MMF rate, i.e.,

U({Ri(ξt)}Mi=1) = min{R1(ξt)/γ1, . . . , RM (ξt)/γM},

where γ1, . . . , γM > 0 are some weights. In this case, problem
(17) becomes

max
(X,α)∈Q

1

T

∑
t∈T

[
max

pd∈Pd,pu∈Pu
min
i∈M

{
Ri(ξ

t)

γi

}]
. (18)

Problem (18) maximizes the minimum (weighted) up-
link/downlink rate of all UEs in the network and therefore
ensures the fairness among the UEs. From the perspective
of the algorithm design, the MMF rate formulation (18) is
more challenging than the formulation with other utilities
since the MMF rate would be zero if there exits one UE
who is not assigned to any one of the RBs. Indeed, from the
complexity point of view, solving problem (18) is intrinsically
difficult. We show in the next section that problem (18) is in
fact strongly NP-hard. In Section IV, we then propose some
efficient approximation algorithms for solving problem (18).

III. COMPUTATIONAL COMPLEXITY ANALYSIS

A. Brief Introduction to Complexity Theory

In computational complexity theory [35], [36], a problem
is said to be NP-hard if it is at least as hard as any problem
in the class NP (problems that are solvable in Nondetermin-
istic Polynomial time). NP-complete problems are the hardest
problems in NP in the sense that if any NP-complete problem
is solvable in polynomial time, then each problem in NP is
solvable in polynomial time. A problem is strongly NP-hard
(strongly NP-complete) if it is NP-hard (NP-complete) and
cannot be solved by a pseudo-polynomial time algorithm. An
algorithm that solves a problem is called a pseudo-polynomial
time algorithm if its time complexity function is bounded
above by a polynomial function related to both of the length
and the numerical values of the given data of the problem.
This is in contrast to the polynomial time algorithm whose
time complexity function depends only on the length of the
given data of the problem. It is widely believed that, unless
P=NP, there cannot exist a polynomial time algorithm to solve
any NP-complete, NP-hard, or strongly NP-hard problem.

The standard way to prove an optimization problem is
NP-hard is to establish the NP-hardness of its corresponding
feasibility problem or decision problem. The latter is the
problem to decide whether the global minimum (maximum) of
the optimization problem is below (above) a given threshold
or not. To show a decision problem P2 is NP-hard, we usually
follow three steps: 1) choose a suitable NP-complete decision
problem P1; 2) construct a polynomial time transformation
from any instance of P1 to an instance of P2; 3) prove under
this transformation that any instance of problem P1 is true if
and only if the constructed instance of problem P2 is true. See
[35], [36] for more details on complexity theory.

B. Strong NP-Hardness of Problem (18)

In this subsection, we show that problem (18) is strongly
NP-hard. The strong NP-hardness proof of problem (18) is
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based on a polynomial time reduction from the 3-dimensional
matching problem [22], which is known to be NP-complete.

Definition 1 (3-Dimensional Matching Problem with Size
K) Given three sets X , Y , Z with |X | = |Y| = |Z| = K and a
subset S ⊆ X ×Y ×Z . The 3-dimensional matching problem
is to check whether there exists a subset R ⊆ X × Y × Z
satisfying

(C1) R ⊆ S;
(C2) |R| = K;
(C3) For any two different triples (ix, jy, `z) ∈ R,

(i′x, j
′
y, `
′
z) ∈ R, we have ix 6= i′x, jy 6= j′y , and `z 6= `′z .

The subset R satisfying (C1), (C2), and (C3) is called a 3-
dimensional match.

We are now ready to present the main result in this section.

Theorem 1 The MMF rate maximization problem (18) is
strongly NP-hard.

Proof 2 To show the theorem, it suffices to show that the
following decision version of problem (18) with T = 1 is
strongly NP-hard:

∑
j∈M

∑
b∈B

(
xijbR

d
ijb + xjibR

u
jib

)
≥ τγi, i ∈M,

(X,α) ∈ Q, pd ∈ Pd, pu ∈ Pu,
(19)

where τ is a constant (which will be specified later). Since T =

1, we have removed ξ or ξt in (19) for notational simplicity.
Given any instance of the 3-dimensional matching problem

with size K, below we construct a corresponding instance of
(19). More specifically, given the three sets

X = {1x, . . . ,Kx}, Y = {1y, . . . ,Ky}, Z = {1z, . . . ,Kz},

and a subset

S = {(ix, jy, `z) | ix ∈ X , jy ∈ Y, `z ∈ Z} ⊆ X × Y × Z,

let the set of UEs M be the union of X and Y and let the set
of RBs B be Z , i.e.,

M = X ∪ Y and B = Z. (20)

Hence,
B = K and M = 2K. (21)

Without loss of generality, we let the set of the first B elements
in M be X and the set of the last B elements in M be Y .
Next we set the channel coefficients as follows:

|hib|2 = 1, i ∈M, b ∈ B, (22)

|gjb|2 = 1, j ∈M, b ∈ B, (23)

|fjib|2 = |fijb|2 =

{
0, if (i, j, b) ∈ S,

1, otherwise,
(24)

set ηb = 1, b ∈ B, σ0 = 1, σi = 1, i ∈ M. Then, for each
(i, j, b) ∈M×M×B, the downlink rate Rdijb for UE i and
the uplink rate Ruijb for UE j are respectively given by

Rdijb = log2

(
1 +

pdb
pujb|fjib|2 + 1

)

=


log2

(
1 + pdb

)
, if (i, j, b) ∈ S,

log2

(
1 +

pdb
pujb+1

)
, otherwise,

(25)

Ruijb = log2

(
1 +

pujb
pdb + 1

)
. (26)

Moreover, set τ = 1, γi = 1, i ∈ M, PBS = B, and PUE =

2. Hence, the constructed special instance of problem (19)
becomes

∑
j∈M

∑
b∈B

(
xijbR

d
ijb + xjibR

u
jib

)
≥ 1, i ∈M,

(X,α) ∈ Q,∑
b∈B

pujb ≤ 2, pujb ≥ 0, j ∈M, b ∈ B,∑
b∈B

pdb ≤ B, pdb ≥ 0, b ∈ B,

(27)

where Rdijb and Ruijb are given in (25) and (26), respectively.
We are going to show that the answer to the 3-dimensional
matching problem is yes if and only if the constructed problem
(27) is feasible.

We first show that if the answer to the 3-dimensional
matching problem is yes, then the constructed problem (27)
is feasible. Suppose that there exists a 3-dimensional match
R satisfying (C1) to (C3). Then we set

x̃ijb =

{
1, if (i, j, b) ∈ R,
0, otherwise,

(i, j, b) ∈M×M×B, (28a)

α̃i = 1, i ∈ X , α̃j = 0, j ∈ Y, p̃db = 1, b ∈ B, (28b)

p̃ujb =

{
2, if there exists an i such that(i, j, b) ∈ R,
0, otherwise,

(28c)

for j ∈M, b ∈ B.

It is simple to check that the above (X̃, α̃, p̃d, p̃u) is a feasible
solution to problem (27).

For the converse part, assuming that (X̃, α̃, p̃d, p̃u) is a
feasible solution to problem (27), we claim that the answer to
the 3-dimensional matching problem is yes. Define

R = {(i, j, b) ∈M×M×B | x̃ijb = 1}. (29)

Next, we prove that R is a 3-dimensional match satisfying
(C1), (C2), and (C3) in Definition 1.

We first prove that R ⊆ S , i.e., (C1) is true. We prove this
by contradiction. Suppose that R * S. Then there must exist
one triple (i′, j′, b′) ∈ M ×M × B such that (i′, j′, b′) ∈
R but (i′, j′, b′) /∈ S. By (24) and (29), we have |fj′i′b′ | =

1 and x̃i′j′b′ = 1. Since M = 2B (c.f. (21)) and all UEs’
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transmission rates are greater than or equal to 1 (from our
assumption that (27) is feasible), each UE must occupy exactly
one RB. Consequently, for the UE i′ and the UE j′, we must
have

Rdi′j′b′ = log2

(
1 +

p̃db′

p̃uj′b′ + 1

)
≥ 1

Rui′j′b′ = log2

(
1 +

p̃uj′b′

p̃db′ + 1

)
≥ 1.

which further implies p̃db′ ≥ p̃db′ + 2. This is a contradiction.
Hence, R ⊆ S and (C1) is true. This, together with the
definition of S, immediately shows that R in (29) can be
equivalently rewritten as

R = {(i, j, b) ∈ X × Y × B | x̃ijb = 1}. (30)

Combining the above with the feasibility of (X̃, α̃, p̃d, p̃u)

further yields∑
j∈Y

∑
b∈B

x̃ijb log2

(
1 +

p̃db
p̃ujb|fjib|2 + 1

)
≥ 1, i ∈ X , (31)

∑
i∈X

∑
b∈B

x̃ijb log2

(
1 +

p̃ujb
p̃db + 1

)
≥ 1, j ∈ Y, (32)∑

i∈X

∑
j∈Y

x̃ijb = 1, b ∈ B. (33)

We now show that R in (30) satisfies (C2), i.e., |R| = K.
It follows from (33) that, for each b ∈ B, there always exists
a pair of (i, j) ∈ X × Y such that x̃ijb = 1. As a result,
there are totally K = |B| elements in the set R in (30), i.e.,
|R| = K.

Finally, we show that R in (30) satisfies (C3). One can
observe from (31) that, for each i ∈ X , there exists at least
one pair (j, b) ∈ Y×Z such that x̃ijb = 1, which immediately
implies

X = {i | there exists (j, b) ∈ Y × B such that (i, j, b) ∈ R} .
(34)

Similarly, from (32) and (33), we respectively have

Y = {j | there exists (i, b) ∈ X × B such that (i, j, b) ∈ R} ,
(35)

Since |X | = |Y| = |B| = |R| = K, it follows from (20), (33),
(34) and (35) that, for any two different elements (ix, jy, `z) ∈
R and (i′x, j

′
y, `
′
z) ∈ R, we must have ix 6= i′x, jy 6= j′y ,

`z 6= `′z . Hence, R satisfies (C3).
It is simple to check that the above transformation from

the 3-dimensional matching problem to the feasibility problem
(27) can be done in polynomial time. Since the 3-dimensional
matching problem is strongly NP-complete, we conclude that
checking the feasibility of problem (27) is strongly NP-hard.
Therefore, problem (18) is also strongly NP-hard.

Two remarks on Theorem 1 and its proof are in order. First,
the proof of Theorem 1 actually shows that problem (18) is
strongly NP-hard even when T = 1 (i.e., the single-time-scale

formulation). By using the similar arguments as in the proof
of Theorem 1, one can also show that problem (18) with only
TDA and UP (X,α) being optimization variables and the
transmission powers (pd,pu) being fixed is strongly NP-hard.
Moreover, the proof of Theorem 1 implies that the worst-case
complexity of solving problem (18) happens when M = 2B

(i.e., the full load case). Indeed, as is shown in Section IV, it
is particularly challenging to design an efficient approximation
algorithm for solving problem (18) in the full load case.

Second, the recent work [17] also studied the complexity
analysis for a problem in the FD OFDMA system. However,
the problem considered in [17] and our problem (18) are
different. The key difference between the two problems lies
in the requirement of UP and TDA. More specifically, the
problem in [17] requires that each downlink (uplink) UE can
only be paired with the same uplink (downlink) UE even over
different RBs. For example, once UE i is paired with UE j

over one RB, then UE i cannot be paired with any other UEs
over different RBs. This is in sharp contrast to our problem,
where each downlink (uplink) UE can be flexibly paired with
any uplink (downlink) UEs over different RBs. Moreover, the
TDA (i.e., variable α) is given and fixed in [17] but there is
a freedom to design the TDA in our problem (18). Another
difference between the two problems is that the sum rate utility
is adopted in [17] while the MMF rate utility is adopted in
our problem. Therefore, the complexity results and techniques
in [17] are not applicable to our problem (18).

IV. PROPOSED ALGORITHMS

In this section, we present efficient algorithms for solving
the two-time-scale problem (18). To the end, we assume that
the statistical distribution of CSI ξ is known, and a set of
CSI ξt, t = 1, . . . , T, are randomly generated for problem
(18) in each time interval T . As the problem involves two
sets of variables (X,α) and {(pd(ξt),pu(ξt)), ∀ ξt}, we
jointly optimize the variables by adopting the AO method [23],
[24] to handle problem (18). Specifically, we handle the joint
problem (18) by solving two subproblems iteratively: one is
to optimize the objective with respect to (X,α) with fixed
{(pd(ξt),pu(ξt)), ∀ ξt}, and the other one is to optimize the
objective with respect to {(pd(ξt),pu(ξt)), ∀ ξt} with fixed
(X,α). In Section IV-A to Section IV-C, we focus on solving
the first subproblem and propose a two-stage approach based
on heuristic relaxation and iterative rounding techniques. In
Section IV-D, we consider optimizing the second subproblem.

A. Performance of Simple Continuous Relaxation and Round-
ing

Considering (18) with power allocation variables
{(pd(ξt),pu(ξt)), ∀ ξt} fixed as below:

max
(X,α)∈Q,

τ

1

T

∑
t∈T

τt (36a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (36b)
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where τ = {τt} are the slack variables for the epigraph
form. Problem (36) has a linear objective function and linear
constraints, but (X,α) are binary variables. A commonly
adopted method for problem (36) is to simply relax the binary
variables to the continuous variables between zero and one,
i.e., relax the constraints (8) and (11) to

0 ≤ xijb ≤ 1, i, j ∈M, b ∈ B, 0 ≤ αi ≤ 1, i ∈M. (37)

Since the continuous relaxation may be too loose to obtain a
meaningful solution, it is useful to add some valid constraints
(cuts) to the relaxed problem. For instance, (36) would yield
a non-zero MMF rate if and only if every UE is properly
allocated to at least one RB and paired with some other UEs;
that is, UP variable X must satisfy the pairing conservation
constraint ∑

j∈M

∑
b∈B

(xijb + xjib) ≥ 1, i ∈M. (38)

Also, the OFDMA system requires that one RB can only be
assigned to at most one uplink (or downlink) UE. Hence, the
TDA variable α must satisfy∑

i∈M
αi ≤ B and

∑
i∈M

(1− αi) ≤ B. (39)

By incorporating (37), (38) and (39) into (36), we have

max
(X,α,τ )

1

T

∑
t∈T

τt (40a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (40b)

(X,α) ∈ Q̃, (40c)

where Q̃ contains the constraints in (7), (9), (10), (37), (38)
and (39). The above relaxed problem (40) is a linear program
which can be efficiently solved by the off-the-shelf solvers.
Once problem (40) is solved, the binary solutions may be
obtained by simply rounding (X,α) back to the binary set.
Specifically, due to (8), for each RB b, one may set the largest
value in Xb = {xijb | i, j ∈ M} to one and others to zero,
while round the elements of α towards the nearest integer.
Such method is referred to as simple relaxation (SR).

Unfortunately, the SR methods are likely to yield infeasible
solutions. To illustrate this, we consider a simulation instance
of (40) with M = 3 and B = 2, which has an optimal solution
given by

α =
(
0.65 0.3 0.35

)
; (41)

X1 =

 0 0 0.20

0 0 0.30

0.35 0.15 0

 ;X2 =

 0 0 0.37

0 0 0.24

0.08 0.31 0

 . (42)

• Violation of HD transmission constraint (9) or (10).
Once (X,α) in (41),(42) is rounded, we obtain

α =
(
1 0 0

)
;

X1 =

 0 0 0

0 0 0

1 0 0

 ;X2 =

 0 0 1

0 0 0

0 0 0

 .

As seen, the rounded solution violates (9) or (10) for
i = 1 and i = 3. That is, UE 3 and UE 1 are
assigned for downlink and uplink transmissions on RB
1 but the transmission directions are reversed on RB
2, which implies that the HD transmission constraint of
UEs is violated. In fact, the violation probability of this
constraint is quite high. As shown in Table I (see column
2), for M = 8 and B ≥ 16, the probability that constraint
(9) or (10) is violated is more than 85% for the SR
method.

• Violation of pairing conservation constraint (38). The
above example shows that UE 2 is never paired, which
thus violates (38) and yields a zero MMF rate. As shown
in Table I (see column 5), there is a high probability that
(38) is violated but it decreases when B ≥M .

TABLE I: Comparison of the percentage of the solutions by the
three algorithms (i.e., SR, 2S-SR and 2S-SRGR) which violating HD
transmission constraints (9), (10) or pairing conservation constraint
(38). The results are averaged over 200 channel realizations when
M = 8.

B
Violation of Constraint (9) or (10) Violation of Constraint (38)
SR 2S-SR 2S-SRGR SR 2S-SR 2S-SRGR

4 26% 0% 0% 98% 97% 45%
8 68% 0% 0% 77% 88% 0%
16 88% 0% 0% 49% 74% 0%
32 96% 0% 0% 34% 56% 0%
64 97% 0% 0% 26% 49% 0%

B. Two-Stage Relaxation and Greedy Rounding

We propose two heuristic strategies to overcome the in-
feasibility issue mentioned above. Specifically, the reason for
violating the HD transmission constraint (9) or (10) in the SR
method is that the UP variables X and the TDA variables α

are rounded independently. To fix this problem, we consider
a two-stage approach: in the first stage, we solve the relaxed
problem (40), and only round the TDA variables α, denoted
by α?; in the second stage, we solve the relaxed problem (40)
again but with the TDA variables being fixed to α? and with
only the UP variables X as optimization variables, i.e., we
solve the following problem in the second stage

max
X,τ

1

T

∑
t∈T

τt (43a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (43b)

(X,α?) ∈ Q̃. (43c)

The obtained solution from (43), denoted by X̂, is then
rounded by assigning the largest element in X̂b to one and
others to zero for every b ∈ B. Note that with the TDA
variables α being fixed, the HD transmission constraint (9)
or (10) must be satisfied for X in the second stage. We refer
to this two-stage method as two-stage SR (2S-SR). As one can
observe from Table I (see column 3), the constrains (9) and
(10) are always satisfied for the 2S-SR method.
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However, the two-stage approach cannot guarantee that
every UE is properly allocated to the RBs. Table I (see
column 6) shows that the solution returned by the 2S-SR
method still violates constraint (38) with high probability. To
fix this problem, we employ an iterative greedy rounding (GR)
strategy in the second stage. Specifically, unlike the 2S-SR
method where all Xb, b ∈ B are rounded at once, in the GR
strategy, we only round one Xb at a time. Let x̂i?j?b? be the
largest element in X̂ obtained by solving problem (43). Then
we set x̂i?j?b? = 1 and all the others x̂ijb? = 0. The rounded
X̂b? is then fixed in problem (43) and we solve the new
problem (i.e., (44)) again with the rest UP variables. The above
procedure is repeated until all RBs are visited. The details of
the GR procedure is shown in line 3 to line 8 in Algorithm 1.
We refer to the two-stage SR method with the iterative greedy
rounding strategy as 2S-SRGR. As shown in Table I (column
7), the numerical results indicate that the 2S-SRGR method
can always reduce the probability of violating constraint (38)
to zero for the evaluated scenarios with M < 2B.

Algorithm 1 Two-stage SR method with iterative greedy
rounding strategy (2S-SRGR).

1: Stage One: Solve the linear program (40) and obtain
rounded α?;

2: Stage Two: Set B̃ = ∅;
3: repeat
4: Solve the following linear program

max
Xb,∀b∈B\B̃,

τ

1

T

∑
t∈T

τt (44a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (44b)

(X,α?) ∈ Q̃, (44c)

and obtain X̂b, b ∈ B\B̃.
5: Let (i?, j?, b?) = arg max

i,j∈M,b∈B\B̃
x̂ijb;

6: Obtain X̂?
b? by setting x̂i?j?b? = 1 and x̂ijb? = 0 for

all (i, j) 6= (i?, j?);
7: Update B̃ ← b? ∪ B̃;
8: until B = B̃;
9: Output X̂?

b , b ∈ B and α?.

C. Tightening the Relaxation by Iterative Reweighted Mini-
mization

As observed from Table I, for M = 8 and B = 4, the
probability that the solution returned by the 2S-SRGR method
violates constraint (38) is still 45%. This is because for the full
load case (i.e., when M = 2B), each UE has to exactly occupy
one RB; otherwise the MMF rate is zero. The complexity
analysis in Section III also suggests that the full load case is
the most difficult case to handle. To overcome this issue, we
propose to employ the `q-norm regularization and the iterative
reweighted minimization (IRM) method in [27], [37] to tighten
the relaxation in (37).

Specifically, according to [27], [37], the OFDMA con-
straints (7) and (8) can be well approximated by the simple
relaxation (37) plus a proper `q−norm regularization on X.
For the TDA variable α, as αi+(1−αi) = 1, for all i ∈M al-
ways hold true, one can also approximate the binary constraint
(11) by (37) and an `q−norm regularization of α. Therefore,
for the full load case, we propose to replace problem (40)
in the first stage of Algorithm 1 by the following regularized
problem

max
(X,α,τ )

1

T

∑
t∈T

τt − ρ1‖X + ε1‖qq

− ρ2(‖α + ε2‖qq + ‖1−α + ε2‖qq) (45a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (45b)

(X,α) ∈ Q̃, (45c)

where

‖X + ε1‖qq ,
∑
i∈M

∑
j∈M

∑
b∈B

(xijb + ε1)q,

‖α + ε2‖qq+‖1−α + ε2‖qq
,
∑
i∈M

(
(αi + ε2)q + (1− αi + ε2)q

)
,

ρ1 ≥ 0, ρ2 ≥ 0, q ∈ (0, 1), ε1 > 0 and ε2 > 0 are
some parameters, and 1 is the all-one vector. It has been
shown in [27], [37] that for sufficiently large ρ1 and ρ2, (45)
can asymptotically have the same optimal solution as (40).
Analogously, in the second stage of Algorithm 1, problem
(44) is replaced by the following regularized problem

max
Xb,∀b∈B\B̃,

τ

1

T

∑
t∈T

τt − ρ1‖X + ε1‖qq (46a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (46b)

(X,α?) ∈ Q̃, (46c)

where α? is given by the rounded solution of (45).
The `q-norm regularized problem (45) and (46) are non-

convex and difficult to solve in general. We apply the IRM
algorithm in [38] to solve the two problems. The IRM algo-
rithm iteratively approximates the non-convex `q-norm term
by its first-order approximation. In particular, by taking (45)
as the example, we solve the following problem at the r-th
iteration of the IRM algorithm:

max
(X,α,τ )

1

T

∑
t∈T

τt − ρ1q
∥∥∥W(r) ◦X

∥∥∥
`1

− ρ2q
∥∥∥(wa(r) ◦α + wb(r) ◦ (1−α))

∥∥∥
1

(47a)

s.t. Ri(ξ
t) ≥ τtγi, i ∈M, t ∈ T , (47b)

(X,α) ∈ Q̃, (47c)

where A ◦B is the Hadamard product of two tensors, ‖A‖`1
is denoted as the summation of all elements of A, A◦b is
the Hadamard power, W(r) ,

(
X(r−1) + ε1

)◦(q−1)
, wa(r) ,(

α(r−1) + ε2
)◦(q−1)

, wb(r) ,
(
1−α(r−1) + ε2

)◦(q−1)
,
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Algorithm 2 IRM Algorithm for Solving Problem (45)

1: Given q ∈ (0, 1), ρ1 ≥ 0, ρ2 ≥ 0, ε1 ∈ (0, 1), ε2 ∈ (0, 1),
σ1 ∈ (0, 1), σ2 ∈ (0, 1) and κ > 1;

2: Given a feasible solution α(0), X(0) obtained by solving
(40);

3: Set W(1) =
(
X(0) + ε1

)◦(q−1)
,

wa(1) =
(
α(0) + ε2

)◦(q−1)
,

wb(1) =
(
1−α(0) + ε2

)◦(q−1)
;

4: repeat
5: Set r = 1;
6: repeat
7: Obtain τ (r), α(r) and X(r) by solving (47);
8: Update W(r+1) =

(
X(r) + ε1

)◦(q−1)
,

wa(r+1) =
(
α(r) + ε2

)◦(q−1)
,

wb(r+1) =
(
1−α(r) + ε2

)◦(q−1)
;

9: r ← r + 1;
10: until

∥∥X(r) −X(r−1)
∥∥
1
≤ σ1 and∥∥α(r) −α(r−1)

∥∥
1
≤ σ2;

11: ρ1 ← κρ1, ρ2 ← κρ2, ε1 ← ε1/κ, ε2 ← ε2/κ;
12: until maxi∈Mmin{αi, 1− αi} ≤ σ2.

X(r−1) and α(r−1) respectively denote the value of the
variables X and α at the (r − 1)-th iteration. Note that
problem (47) is a linear program and thus can be efficiently
solved. To be self-contained, we list the details of the IRM
algorithm for solving problem (45) in Algorithm 2. The two-
stage algorithm using `q-norm regularization, and the IRM
algorithm is referred to as 2S-IRMGR and is summarized in
Algorithm 3. As will be shown in Section V, the 2S-IRMGR
method can effectively improve the MMF rate performance
for the full load case.

Algorithm 3 Two-Stage IRM method with iterative greedy
rounding strategy (2S-IRMGR)

1: Stage One: Solve the `q-norm problem (45) by the IRM
algorithm (e.g., Algorithm 2) and obtain rounded α?;

2: Stage Two: Set B̃ = ∅
3: repeat
4: Solve the `q-norm problem (46) by the IRM algorithm

and obtain X̂b, b ∈ B\B̃.
5: Let (i?, j?, b?) = arg max

i,j∈M,b∈B\B̃
x̂ijb;

6: Obtain X̂?
b? by setting x̂i?j?b? = 1 and x̂ijb? = 0 for

all (i, j) 6= (i?, j?);
7: Update B̃ ← b? ∪ B̃;
8: until B = B̃;
9: Output X̂?

b , b ∈ B and α?.

D. Optimization of Power Allocation

The previous three subsections have focused on the op-
timization of the TDA and UP variables (X,α) in prob-
lem (18) and assumed that the power allocation variables
{(pd(ξt),pu(ξt)), ∀ ξt} are fixed. In this subsection, we

consider the optimization of {(pd(ξt),pu(ξt)), ∀ ξt} by
assuming that (X,α) are given. With (X,α) being given,
denoted by (X?,α?), problem (18) reduces to T independent
problems. Specifically, for each t = 1, . . . , T , we solve

max
pd∈Pd,
pu∈Pu

τt (48a)

s.t.
∑
j∈M

∑
b∈B

x?ijbR
d
ijb(ξ

t) ≥ τtγi, i ∈M∩ {i|α?i = 1},

(48b)∑
j∈M

∑
b∈B

x?jibR
u
jib(ξ

t) ≥ τtγi, i ∈M∩ {i|α?i = 0},

(48c)

where Rdijb(ξ
t) and Rujib(ξ

t) are given in (3) and (4), respec-
tively. Problem (48) is a non-convex optimization problem.
However, it can be efficiently handled by the existing SCA
methods such as [25] and the weighted MMSE (WMMSE)
based approaches [39].

According to AO, iterative updates of TDA and
UP variables (X,α) and power allocation variables
{(pd(ξt),pu(ξt)), ∀ ξt} by solving (36) and (48) respectively
can further improve the performance. However, it is found in
the numerical experiments that the improvement is usually
not significant and one round of updates of (X,α) and
{(pd(ξt),pu(ξt)), ∀ ξt} is sufficient to obtain considerably
good MMF rate performance, as will be verified in Section
V.

Once problem (18) is solved, we obtain the TDA and UP
solution (X,α) and employ it for the time interval T regard-
less of the fast fadings. However, for each fading realization
ξt

′
, t′ = 1, . . . , T, that occur in this time interval T , one can

update and perform power control by solving problem (48)
with respect to each ξt

′
. So the TDA and UP are performed

and fixed in the large-time-scale T while the power control is
adapted according to the fast fadings. The performance of the
two-time-scale formulation (18) and proposed algorithms are
examined in the next section.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the multi-
user FD OFDMA system as described in Section II. Simulation
parameters are set based on the 3GPP standard [40]. We
assume that the UEs are randomly and uniformly located
within a circle centered at the BS with a radius 100 m. The
maximum transmission power of all UEs PUE is 23 dBm,
and the total transmission power of the BS PBS is 30 dBm.
As for the channel model, the path loss component is given
by 140.7 + 36.7 log10(d) (dB), where d (km) is the distance
between the BS and the UE. The small scale fading of all
links are independently and identically generated following
the complex Gaussian distribution with zero mean and unit
variance. At the BS, the residual SI channel gain ηb is set to
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be −110 dB if not specified, and the noise power at the BS
and UEs is set as σ2

0 = σ2
i = −90 dBm for all i ∈ M. The

number of channel samples in (18) is T = 100. All the results
shown in this section were obtained by running 200 simulation
trials. The parameters used in Algorithm 2 and Algorithm 3
are set as follows: q = 0.5, ρ1 = ρ2 = 1, ε1 = ε2 = 0.1,
σ1 = 10−3, σ2 = 0.1, κ = 1.5.

In addition to the four aforementioned methods, i.e., SR, 2S-
SR, 2S-SRGR and 2S-IRMGR, for TDA and UP optimization,
we also implement a heuristic algorithm following a similar
idea as in [20]. Specifically, for each UE i, we respectively
compute the downlink rate Rdijb and the uplink rate Rujib (see
(3) and (4)) for all j ∈M and b ∈ B, and obtain the average
rates

R̄di =
∑
j∈M

∑
b∈B

Rdijb
(M − 1)B

and R̄ui =
∑
j∈M

∑
b∈B

Rujib
(M − 1)B

.

Then we assign UE i to be a downlink UE (i.e., assign αi = 1)
if R̄di ≥ R̄ui and an uplink UE (i.e., αi = 0) otherwise. If the
number of downlink UEs is larger than B, then we keep the
TDA for the first B downlink UEs that have larger values
of R̄di and change the rest to be uplink UEs. The same rule
applies if the number of uplink UEs is larger than B. Given
the two sets of uplink UEs and downlink UEs, we list all
possible pairs of uplink and downlink UEs. From RB 1 to RB
B, we select and allocate one pair of UEs to each of the RBs
sequentially. The selection criterion is based on the MMF rate
among all the UEs that have not been allocated to at least
one RB. Specifically, for each RB, we choose the UE pair
that contains an UE which has never been assigned to one
RB but can increase the MMF rate most. If all UEs have been
assigned, then we simply choose the UE pair that can increase
the MMF rate most. We refer to this method as “Heuristic” in
the figures.

Furthermore, we also develop three algorithms modified
from the UP algorithms A1-A3 in [41]. Specifically, we add
an extra criterion that the unpaired UEs always have higher
priority to be assigned to the RB than those UEs who have
already occupied another RB. By this way, the algorithms can
guarantee every UE a non-zero MMF rate. Before applying
the UP algorithms, the TDA of the UEs are determined by
the above Heuristic method. We refer the new algorithms as
“Modified Algorithm A1 from [41]”, “Modified Algorithm A2
from [41]” and “Modified Algorithm A3 from [41]”.

A. Case of M < 2B

We first consider the case of M < 2B, and examine the
performance of TDA and UP optimization algorithms (SR,
2S-SR, 2S-SRGR, Heuristic and the modified algorithms A1-
A3 from [41]). The power allocation is fixed and set to
uniform values as pdb(t) = PBS

B and pujb(t) = PUE

B for all
i, j ∈ M, b ∈ B and t ∈ T . Fig. 2 shows the cumulative
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Fig. 2: CDFs of the MMF rates achieved by 2S-SR, 2S-SRGR,
Heuristic, and the modified algorithms of A1-A3 from [41] in the
non-full load case.

distribution functions (CDFs) of the MMF rates for M = 8,
B = 16 (Fig. 2(a)) and M = 8, B = 64 (Fig. 2(b)). We do
not show the results of SR since, as discussed in Section IV-A,
the SR method almost cannot yield feasible solutions. From
both Fig. 2(a) and Fig. 2(b), one can observe that the 2S-SR
method can still yield infeasible solutions, with probabilities
higher than 74% for the case of B = 16 and 49% for the case
of B = 64, respectively. In contrast, 2S-SRGR, Heuristic and
the algorithms modified from A1-A3 in [41] can guarantee
to provide feasible solutions with 100% probability, while
the 2S-SRGR method yields much higher MMF rates than
Heuristic and the algorithms modified from A1-A3 in [41].
Specifically, for the case of B = 64, 2S-SRGR achieves an
MMF rate of 4.16 bit/s/Hz at the 80th percentile whereas
Heuristic achieves an MMF rate of 0.17 bit/s/Hz only. The
performance of the algorithms modified from A1-A3 in [41]
is similar to Heuristic. It can also be observed from Fig. 2(a)
and Fig. 2(b) that the 2S-SR method may have a better chance
to achieve a higher MMF rate than 2S-SRGR provided that
the solution of 2S-SR is feasible. This is due to the reason
that 2S-SRGR applies greedy rounding at each iteration.

Fig. 3 depicts the MMF rate versus the number of RBs at
the 50th percentile, in which Fig. 3(a) applies four methods
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(a) TDA and UP with uniform power allocation
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Fig. 3: The comparison of the MMF rates at the 50th percentile
versus different RB number B: (a) 2S-SRGR, 2S-SR, Heuristic, and
Modified Algorithm A2 from [41] are applied for TDA and UP with
uniformed power allocation; (b) on the basis of (a), SCA is further
applied for the power allocation.

for TDA and UP optimization with the uniformed power
allocation and Fig. 3(b) further allocates the power by SCA
for the four methods. The number of UEs is 8 (M = 8).
In Fig. 3(a), the MMF rate of 2S-SRGR increases gradually
as B increases from 4 to 64; 2S-SR only gets non-zero 50th
percentile MMF rate when B = 64; the MMF rate returned
by Heuristic and Modified Algorithm A2 from [41] are always
slightly higher than zero. Note that the MMF rates of Heuristic
and Modified Algorithm A2 from [41] goes up when B ≤ 8

and then goes down for B > 8, which indicates that as B
increases, the benefit of allocating more RBs is gradually
no longer evident given a fixed power budget at the BS.
Among the four methods, 2S-SRGR performs the best and
much better than Heuristic and Modified Algorithm A2 from
[41]. Specifically, the MMF rate of 2S-SRGR goes up from
0.45 bit/s/Hz to 2.46 bit/s/Hz as B increases from 4 to 64,
which is much higher than that of Heuristic (always less than
0.39 bit/s/Hz) and Modified Algorithm A2 from [41] (always
less than 0.41 bit/s/Hz). Also, the MMF rate of 2S-SRGR
is almost 60% higher than the one of 2S-SR when M = 8,
B = 64. In Fig. 3(b), we omit the results obtained by applying
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(b) M = 16, B = 8

Fig. 4: CDFs of the MMF rates achieved by 2S-SRGR, 2S-IRMGR,
Heuristic and Modified Algorithm A2 from [41] in the full-load case
(M = 2B).

the WMMSE method for the power allocation since as will be
shown in Fig. 5, the results by applying the WMMSE and the
SCA methods are almost the same. Comparing with Fig. 3(a),
although the tendency of the four curves does not change, SCA
has a fairly large MMF rate improvement, which shows the
effectiveness of the power allocation.

B. Case of M = 2B

Table II presents the infeasibility percentage of the six meth-
ods under the consideration in the full load scenario (i.e., M =

2B). As seen, SR, 2S-SR and 2S-SRGR methods all exhibit
high percentages to yield infeasible solutions, especially when
B is large (e.g, B = 8). In contrast, the 2S-IRMGR method
based on `q-norm regularization can effectively resolve the
infeasibility issue. For example, the infeasibility percentage
of 2S-IRMGR is always 0, whereas the ones of SR, 2S-SR
and 2S-SRGR are at least 62%, 30% and 19%, respectively,
for B = 2.

In Fig. 4, we display the CDFs of the average MMF rates
achieved by 2S-SRGR, 2S-IRMGR, Heuristic and Modified
Algorithm A2 from [41] in the full load case for M = 8,
B = 4 (Fig. 4(a)) and M = 16, B = 8 (Fig. 4(b)).
Again, we do not show the curves of SR and 2S-SR due
to the high infeasibility percentage. From Fig. 4(a) and Fig.
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TABLE II: Infeasibility percentage of six algorithms in the full load case (M = 2B).

Algorithms B = 2 B = 3 B = 4 B = 5 B = 6 B = 7 B = 8

SR 62% 90% 98% 100% 100% 100% 100%
2S-SR 30% 86% 97% 100% 100% 100% 100%

2S-SRGR 19% 36% 45% 47% 54% 60% 72%
2S-IRMGR/Heuristic/Modified

0% 0% 0% 0% 0% 0% 0%
Algorithm from A2 in [41]

TABLE III: Computational time and the MMF rate at the 50th percentile for the non-full and the full load case.

Computational Time (s) MMF rate at the 50th percentile (bit/s/Hz)
M = 4 Heuristic 2S-SRGR CPLEX Heuristic 2S-SRGR CPLEX
B = 4 7.72× 10−3 1.97 0.34 1.24 2.14 3.02
B = 8 10.26× 10−3 4.74 0.95 2.22 4.62 6.53
B = 16 13.51× 10−3 12.88 19.95 2.90 8.66 11.21
B = 32 24.32× 10−3 35.78 6.06× 103 4.19 10.99 16.97

M = 2B Heuristic 2S-IRMGR CPLEX Heuristic 2S-IRMGR CPLEX
B = 2 7.42× 10−3 1.04 0.36 0.55 1.21 1.26
B = 4 10.28× 10−3 19.28 51.75 0.28 0.70 0.80
B = 6 13.59× 10−3 90.66 1.62× 104 0.16 0.50 0.64
B = 8 19.72× 10−3 1.36× 103 3.72× 104 0.11 0.36 0.49

4(b), we can observe the consistent results that 2S-SRGR
is likely to be infeasible with probabilities 45% and 72%,
respectively. In contrast, 2S-IRMGR, Heuristic and Modified
Algorithm A2 from [41] can always guarantee a non-zero
MMF rate. Comparing these three methods, the MMF rates
of Heuristic and Modified Algorithm A2 from [41] are very
close to each other, while 2S-IRMGR exhibits much higher
MMF rate results. For example, in Fig. 4(a), among all channel
realizations, the highest MMF rate achieved by Heuristic is
0.49 bit/s/Hz whereas more than 80% MMF rates achieved by
2S-IRMGR are larger than 0.49 bit/s/Hz and the largest MMF
rate achieved by 2S-IRMGR is 1.54 bit/s/Hz. Also, in Fig.
4(b), the curve of 2S-IRMGR is always at the right bottom of
the curve of 2S-SRGR, which means that the MMF rate of 2S-
IRMGR is always higher than that of 2S-SRGR under the same
CDF. This shows that 2S-IRMGR can guarantee every UE a
non-zero MMF rate and does so without a high performance
loss, which is unlike 2S-SRGR in the non-full load case.

C. Computational Time

In Table III, we present the computational time of Heuristic,
2S-SRGR, 2S-IRMGR and the off-the-shelf software CPLEX
[42]. The simulation is conducted on a two-core Intel i7-7500U
CPU laptop. The first four rows show the results for the non-
full load case with the number of the UEs M = 4. Among the
three algorithms, Heuristic consumes the least computational
time but with the highest performance degradation (from 16.97
bit/s/Hz to 4.19 bit/s/Hz for B = 32) compared to the optimal
MMF rate obtained by CPLEX. 2S-SRGR is significantly
more efficient than CPLEX for B ≥ 16 with about 30% MMF
rate loss. The last four rows displays the computational time
for the full load case. As can be seen, a similar conclusion
can be drawn.
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Fig. 5: The comparison of the MMF rate at the 50th percentile in
different residual SI channel gain. In this case, M = 8, B = 64,
three TDA and UP methods: 2S-SRGR, 2S-SR, Heuristic and two
power allocation methods: SCA and WMMSE are considered.

D. Impact of Residual SI Channel Gain

Fig. 5 depicts the statistical effect of the residual SI channel
gain ηb on the MMF rate in the case M = 8, B = 64.
Three TDA and UP optimization algorithms (2S-SRGR, 2S-
SR and Heuristic) followed by two power allocation algo-
rithms (SCA and WMMSE) are compared. As can be seen
from the figure, the MMF rates of all methods decrease as
the residual SI channel gain increases. Specifically, for the
2S-SRGR+WMMSE method, the MMF rate suffers a 99%

performance loss (from 8.90 bit/s/Hz to 0.02 bit/s/Hz) when
ηb changes from −110dB to −60dB. Now, we focus on the
comparison of different methods with the same residual SI
channel gain. As expected, 2S-SRGR performs the best among
the three TDA and UP optimization algorithms. With the same
TDA and UP optimization algorithm, i.e., 2S-SRGR, the MMF
rates of SCA and WMMSE are almost the same, which means
that one can choose either one of them to perform power
allocation.
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VI. CONCLUSION

In this paper, we have investigated the joint TDA, UP and
power allocation problem for maximizing the MMF rate in
the FD multi-user OFDMA system. The problem has been
formulated as a two-time-scale optimization problem where
the TDA and UP variables are optimized to maximize a long-
term MMF rate while the power allocation is optimized to
maximize the short-term MMF rate. We have conducted the
complexity analysis which shows that the considered joint
MMF rate maximization problem is strongly NP-hard. The
analysis suggests that the joint design problem is particularly
difficult to solve in the full load case with M = 2B. To obtain
the efficient TDA and UP solutions, we have developed several
relaxation-and-rounding based algorithms. In particular, in
order to avoid from the solutions that do not satisfy the HD
transmission constraint of the UEs and to achieve a non-
zero MMF rate, we have proposed a two-stage approach with
an iterative rounding technique (Algorithm 1). For the full
load case, we have further proposed to tighten the relaxation
by using the `q-norm regularization and the IRM method
(Algorithm 3). The simulation results have shown that the
proposed algorithms are effective and greatly outperform the
heuristic methods in the literature.
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