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Abstract—Previous approaches for blind identification of
space-frequency block codes (SFBC) do not perform well for
short observation periods due to their inefficient utilization of
frequency-domain redundancy. This paper proposes a hypoth-
esis test (HT)-based algorithm and a support vector machine
(SVM)-based algorithm for SFBC signals identification over
frequency-selective fading channels to exploit two-dimensional
space-frequency domain redundancy. Based on the central limit
theorem, space-domain redundancy is used to construct the
cross-correlation function of the estimator and frequency-domain
redundancy is incorporated in the construction of the statistics.
The difference between the two proposed algorithms is that the
HT-based algorithm constructs a chi-square statistic and employs
an HT to make the decision, while the SVM-based algorithm
constructs a non-central chi-square statistic with unknown mean
as a strongly-distinguishable statistical feature and uses SVM to
make the decision. Both algorithms do not require knowledge of
the channel coefficients, modulation type or noise power, and the
SVM-based algorithm does not require timing synchronization.
Simulation results verify the superior performance of the pro-
posed algorithms for short observation periods with comparable
computational complexity to conventional algorithms, as well as
their acceptable identification performance in the presence of
transmission impairments.

Index Terms—Blind identification, multiple-input multiple-
output, orthogonal frequency division multiplexing, space-
frequency block code, support vector machine (SVM).

I. INTRODUCTION

B
LIND identification of communication signals’ parame-
ters of a transmitter from received signals without refer-

ence signals plays a vital role in many military and civilian
applications. In military communication systems, the identified
parameters are extremely important to carry out electronic
warfare operations including surveillance, information decod-
ing, and jamming signal design. In addition, software-defined
and cognitive radios which are adopted in civilian applica-
tions also employ blind identification to sense signals and
automatically adjust the design parameters of the transmitter
[1]. Recently, blind identification of multiple-input multiple-
output (MIMO) or MIMO-orthogonal frequency division mul-
tiplexing (OFDM) signals has received considerable interest
including enumeration of the number of transmit antennas
[2]–[5] and identification of space-time/frequency block codes
(STBC/SFBC) [5]–[18].

Previous works on the identification of STBCs/SFBCs
include references [5]–[12] for single-carrier systems and
references [5], [13]–[18] for OFDM systems. Regarding the
identification of STBCs for single-carrier systems, the reported
algorithms can be divided into two types: likelihood-based [6]

and feature-based [5], [7]–[12] algorithms. The former uses
the likelihood functions of the received signals to classify
STBCs with different code rates. Reference [5] quantifies the
space-time/frequency redundancies as features and employs an
artificial neural network to distinguish between the features to
jointly identify the number of transmit antennas and STBCs
for both single-carrier and OFDM systems. The other feature-
based methods detect the presence of the space-time redun-
dancy at some specific time-lag locations by examining signal
statistics or cyclic statistics. Most of these algorithms can not
identify STBC/SFBC-OFDM signals since they do not work
in the frequency-selective fading environment. As for STBC-
OFDM systems, such as WiFi [19], references [13]–[15] utilize
the time-domain cross-correlation between adjacent OFDM
symbols, i.e., the space-time redundancy, as a discriminating
feature. Specifically, references [13], [14] use different cross-
correlation functions, while reference [15] employs a cyclic
cross-correlation function with a specific time-lag over ad-
jacent OFDM symbols. However, SFBC-OFDM, where the
SFBC is employed over consecutive sub-carriers of an OFDM
symbol, is preferable over STBC-OFDM for higher mobility
applications, such as LTE [20] and WiMAX [21], [22], since
implementing the STBC over consecutive OFDM symbols is
not effective due to the time-varying channels [23]. Hence,
the time-domain cross-correlation between consecutive OFDM
symbols does not exist any longer for SFBC-OFDM signals
and the peaks of the cross-correlation function proposed in
[13]–[15] are difficult to detect. Therefore, blind identification
algorithms of STBC-OFDM signals cannot be directly applied
to SFBC-OFDM signals.

References [5], [16]–[18] are the previous relevant works
on the identification of SFBC-OFDM signals. Reference [16]
extends the idea of detecting the peak of the cross-correlation
function with specific time lags between two receive antennas
to the identification of SFBC-OFDM signals which only takes
advantage of the space-domain redundancy. However, the
frequency-domain redundancy is not utilized effectively which
results in a negligible improvement of the performance when
increasing the number of OFDM sub-carriers. Additionally,
N cross-correlation values are still calculated to determine
the location of the peak (N is the number of OFDM sub-
carriers). To make use of the frequency-domain redundancy,
we proposed to identify SFBC-OFDM signals by quanti-
fying and distinguishing the frequency-domain redundancy
of adjacent OFDM sub-carriers in [5], [18]. However, the
performance improvement is small since the probability of
correctly identifying the SFBC signals converges rapidly with
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increasing N . Our prior work in [17] does not consider
multiple receive antenna pairs to improve the performance,
and lacks the theoretical performance analysis of identifying
SFBC signals.

In this paper, by exploiting the two-dimensional space-
frequency domain redundancy, a hypothesis test (HT)-based
blind identification algorithm and a support vector machine
(SVM)-based blind identification algorithm for SFBC signals
are proposed to improve the performance when increasing
N or for a small observation period over frequency-selective
fading channels. Specifically, the space-domain redundancy is
used for designing an estimator which is a cross-correlation
function between antenna pairs. Furthermore, based on the
central limit theorem (CLT), the frequency-domain redundancy
is utilized by constructing the statistical features from the
received signals on multiple OFDM sub-carriers. Regarding
the utilization of the frequency-domain redundancy, 1) the
first algorithm constructs a test statistic from multiple OFDM
sub-carriers which follows a chi-square distribution for spatial
multiplexing (SM) signals but not for SFBC signals. Then, an
HT is proposed to make the decision; 2) the second algorithm
is based on a strongly-distinguishable statistic which follows
a non-central chi-square distribution with unknown mean for
SM signals. Then, a trained SVM is used to identify SFBC sig-
nals. Both proposed algorithms can improve the identification
performance as the number of OFDM sub-carriers increases,
as well as provide satisfactory identification performance
under frequency-selective fading with a shortened observation
period, due to efficient utilization of the frequency-domain
redundancy. In addition, both algorithms do not require a

priori knowledge of the signal parameters, such as channel
coefficients, modulation type or noise power, and the SVM-
based algorithm does not require timing synchronization. Fur-
thermore, both algorithms have a satisfactory computational
complexity and can be efficiently implemented with a parallel
architecture.

The main contributions of this paper are the following:
• The cross-correlation statistics between receive antenna

pairs for SFBC signals are derived by utilizing the space-
domain redundancy for signal type identification. Then,
an HT-based identification algorithm of SFBC-OFDM
signals is proposed to efficiently utilize the frequency-
domain redundancy by constructing the test statistic from
the received signals at consecutive OFDM sub-carriers.

• We derive analytical expressions for the probability of
correctly identifying the SM and Alamouti (AL)-SFBC
signals for the HT-based algorithm at any signal-to-noise
ratio (SNR).

• An SVM-based identification algorithm for SFBC-OFDM
signals is proposed to improve the distinguishability of
the discriminating feature between SM and SFBC signals
and relax the requirement of a priori knowledge of the
timing synchronization by reconstructing the test statistic.
Then, a trained SVM is used to make the decision.

• The computational complexity is analyzed and shown to
be satisfactory in comparison with the algorithms in [16],
[18].

• Simulation results are presented to demonstrate the via-

bility of the proposed algorithms with different design
parameters and also in the presence of transmission
impairments, including timing and frequency offsets, as
well as Doppler effects.

This paper is organized as follows. In Section II, the signal
model is introduced. Then, the HT-based algorithm and its
theoretical performance analysis are presented in Section III.
Next, the SVM-based algorithm is described in Section IV. The
simulation results are presented in Section V. Finally, conclu-
sions are drawn in Section VI. The summary of notations is
presented in Table I.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with Nt transmit
antennas, Nr (Nr ≥ 2) receive antennas, N sub-carriers and ν
cyclic prefix samples. At the transmitter, the data symbols are
drawn from an M -Phase Shift Keying (PSK) or M -Quadrature
Amplitude Modulation (QAM) signal constellation and parsed
into data blocks, where each block xb = [xb,0, · · · , xb,Ns−1]

T

(b ∈ N) consists of Ns symbols. The SFBC encoder takes
an Nt × L codeword matrix, denoted by C (xb), to span L
consecutive sub-carries in an OFDM symbol. In this paper,
the codewords include SM, AL and two SFBCs with different
code rates [24] whose codeword matrices are given by

CSM(xb) = [xb,0, · · · , xb,Nt−1]
T (1)

CAL(xb) =

[

xb,0 −x∗
b,1

xb,1 x∗
b,0

]

(2)

CSFBC1(xb) =

























xb,0 xb,1 xb,2

−xb,1 xb,0 −xb,3

−xb,2 xb,3 xb,0

−xb,3 −xb,2 xb,1

x∗
b,0 x∗

b,1 x∗
b,2

−x∗
b,1 x∗

b,0 −x∗
b,3

−x∗
b,2 x∗

b,3 x∗
b,0

−x∗
b,3 −x∗

b,2 x∗
b,1

























T

(3)

CSFBC2 (xb) =













xb,0 xb,1
xb,2√

2

−x∗
b,1 x∗

b,0
xb,2√

2
x∗

b,2√
2

x∗

b,2√
2

−xb,0−x∗

b,0+xb,1−x∗

b,1

2
x∗

b,2√
2

−x∗

b,2√
2

xb,1+x∗

b,1+xb,0−x∗

b,0

2













T

.

(4)
The symbol in the i-th row of C (xb) is transmitted from
the i-th antenna. The symbols are input to N consecutive
OFDM sub-carriers of one block. Thus, the OFDM block is
represented as

S
(

xb, · · · ,xb+N
L
−1

)

=
[

C (xb) , · · · ,C
(

xb+N
L
−1

)]

. (5)

Then, an N -point inverse fast Fourier transform (IFFT) con-
verts this block into a time-domain block, and the last ν
samples are appended as a cyclic prefix (CP).

At the receiver side, to simplify the derivations, we as-
sume a perfect synchronizer at the beginning; however, we
will analyze the sensitivity to model mismatches in Section
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TABLE I
NOTATIONS.

Notations Descriptions Notations Descriptions

[·]T Transposition (·)∗ Complex conjugate
|·| Absolute value of a number card(·) Cardinality for a set

‖·‖F Frobenius norm 6= Not equal sign
Pr (B) Probability of the event B E [·] Statistical expectation

δ (·)
Kronecker delta function where

Im m×m identity matrixδ (0) = 1 and is zero otherwise
tr (·) Trace of a matrix diag (·) Diagonal matrix
e Euler’s constant exp (·) Exponential function

log (·) Logarithmic function N Set of natural numbers

N (0, I) Standard normal distribution χ2
t

Central chi-squared distribution
with t degrees of freedom

d(i)
The symbol d at the i-th trans-

d(i1,i2)
The variable d is dependent on the i1-th

mit or receive antenna and i2-th transmit or receive antenna

V.1 Then, the received OFDM symbol is converted to the
frequency-domain via an N -point FFT after removing the CP.
We can construct an Nt-dimensional transmitted signal vec-
tor which consists of one column of S

(

xb, · · · ,xb+N/L−1

)

,

denoted by sk(n) = [s
(1)
k (n), · · · , s(Nt)

k (n)]T , and an Nr-
dimensional received signal vector, denoted by yk(n) =

[y
(1)
k (n), · · · , y(Nr)

k (n)]T at the k-th (1 ≤ k ≤ N ) sub-carrier
of the n-th (n ∈ N) OFDM symbol. The channel is assumed
to be frequency-selective fading and the k-th subchannel is
characterized by an Nr×Nt full-column rank matrix of fading
coefficients denoted by

Hk =









H
(1,1)
k · · · H

(Nt,1)
k

...
. . .

...

H
(1,Nr)
k · · · H

(Nt,Nr)
k









(6)

where H
(i1,i2)
k represents the channel coefficient between the

i1-th transmit and the i2-th receive antenna. Then, the n-th
received signal at the k-th OFDM sub-carrier is expressed as

yk (n) = Hksk (n) +wk (n) (7)

where the Nr-dimensional vector wk =
[w

(1)
k (n) , · · · , w(Nr)

k (n)]T represents the additive white
Gaussian noise (AWGN) with zero mean and covariance
σ2
wINr

at the k-th OFDM sub-carrier.

III. PROPOSED HT-BASED BLIND IDENTIFICATION

ALGORITHM

The correlation function for the single-antenna system has
been investigated in [27], [28]. In this section, we design
a cross-correlation function for multiple receive antennas to
exploit the space-domain redundancy and propose an HT-
based algorithm to take advantage of the frequency-domain
redundancy. The frequency-domain redundancy among mul-
tiple consecutive OFDM sub-carriers can be formulated as a
chi-square statistic for SM signals using the cross-correlation
and the CLT. In addition, a threshold is employed to check the
test statistic and make the decision. Moreover, the theoretical

1Blind synchronization can be achieved by utilizing the cyclostationarity of
the received OFDM symbols [25], [26]. In addition, the SVM-based algorithm
relaxes this assumption.

expressions of the probability of correctly identifying the SM
and AL-SFBC signals are derived and analyzed. Furthermore,
a decision tree is proposed to identify other SFBC signals.

A. Cross-Correlation Function at the Receiver

First, we define the cross-correlation function
R(i1,i2) (k1, k2) between the k1-th OFDM sub-carrier at
the i1-th receive antenna and k2-th OFDM sub-carrier at the
i2-th receive antenna as

R
(i1,i2)
C (k1, k2) = E

[

y
(i1)
k1

(n)y
(i2)
k2

(n)
]

(8)

where i1 6= i2 and C denotes the SFBC, i.e., C ∈
{SM,AL, SFBC1, SFBC2}. We can write the following ex-
pressions for the SFBC signals.

1) SM-SFBC: Assume that the data and noise
are uncorrelated with E[s

(i)
k (n)w

(i′)
k′ (n′)] = 0, the

noises are independent with E[w
(i)
k (n)w

(i′)
k′ (n′)] =

σ2
wδ (k − k′) δ (i− i′) δ (n− n′), and the data symbols

are uncorrelated with E[xb,mxb′,m′ ] = 0 and
E[xb,mx∗

b′,m′ ] = σ2
sδ (b− b′) δ (m−m′), where σ2

s is
the transmit signal variance. Without loss of generality, the
index n is omitted. Assume that the samples at the k1-th and
k2-th (k1 6= k2) OFDM sub-carriers over one transmission
are xb1,0, xb1,1 and xb2,0, xb2,1, respectively. Based on (7)
and (8), we have

R
(i1,i2)
SM (k1, k2) = E

[

H
(1,i1)
k1

H
(1,i2)
k2

s
(1)
k1

s
(1)
k2

]

+

E
[

H
(1,i1)
k1

H
(2,i2)
k2

s
(1)
k1

s
(2)
k2

]

+

E
[

H
(2,i1)
k1

H
(1,i2)
k2

s
(2)
k1

s
(1)
k2

]

+

E
[

H
(2,i1)
k1

H
(2,i2)
k2

s
(2)
k1

s
(2)
k2

]

= E
[

H
(1,i1)
k1

H
(1,i2)
k2

xb1,0xb2,0

]

+

E
[

H
(1,i1)
k1

H
(2,i2)
k2

xb1,0xb2,1

]

+

E
[

H
(2,i1)
k1

H
(1,i2)
k2

xb1,1xb2,0

]

+

E
[

H
(2,i1)
k1

H
(2,i2)
k2

xb1,1xb2,1

]

= 0. (9)
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2) AL-SFBC: The samples at the k-th and (k + 1)-th
OFDM sub-carriers are denoted by xb,0, −x∗

b,1 and xb,1,
x∗
b,0, respectively. From (2), (7) and (8), the cross-correlation

function of the received signals at two consecutive OFDM
sub-carriers is

R
(i1,i2)
AL (k, k + 1) = E

[

H
(1,i1)
k H

(1,i2)
k+1 xb,0xb,1

]

+

E
[

H
(1,i1)
k H

(2,i2)
k+1 xb,0x

∗
b,0

]

−

E
[

H
(2,i1)
k H

(1,i2)
k+1 xb,1x

∗
b,1

]

−

E
[

H
(2,i1)
k H

(2,i2)
k+1 x∗

b,0x
∗
b,1

]

=
(

H
(1,i1)
k H

(2,i2)
k+1 −H

(2,i1)
k H

(1,i2)
k+1

)

σ2
s .

(10)

Equation (10) shows that the cross-correlation is nonzero
because each channel is statistically independent of the other
channels.

3) SFBC1: From the codeword matrix of SFBC1, we have

R
(i1,i2)
SFBC1 (k, k + 4) = (H

(1,i1)
k H

(2,i2)
k+4 +H

(2,i1)
k H

(1,i2)
k+4 +

H
(3,i1)
k H

(3,i2)
k+4 )σ2

s . (11)

4) SFBC2: Analogously, we have

R
(i1,i2)
SFBC2 (k, k + 2) = (H

(3,i1)
k H

(1,i2)
k+2 +H

(3,i1)
k H

(2,i2)
k+2 −

H
(1,i1)
k H

(3,i2)
k+2 −H

(2,i1)
k H

(3,i2)
k+2 )

σ2
s

2
.

(12)

B. HT-Based Identification Algorithm of SM and AL-SFBC

Signals

Without loss of generality, we analyze the identification of
AL versus SM signals in this section and the analysis of the
other SFBCs is presented later, in Section III.D. Define a set
of receive antenna pairs with the cardinality D = Nr(Nr − 1)
as

Ω = {(i1, i2) : i1 6= i2, 1 ≤ i1 ≤ Nr, 1 ≤ i2 ≤ Nr} . (13)

For convenience, we simplify the form X(i1,i2) (k1, k2) as
X (k1, k2) unless otherwise stated. Then, the cross-correlation
function estimator of the i1-th and i2-th receive antennas is
given by

R̂(i1,i2) (k1, k2) =
1

Nb

Nb
∑

n=1

y
(i1)
k1

(n) y
(i2)
k2

(n)

= RC (k1, k2) + ǫ (k1, k2) (14)

where Nb is the number of received OFDM symbols, ǫ rep-
resents the estimation error which vanishes asymptotically as
Nb → ∞. Due to the error ǫ (k1, k2), the estimators R̂ (k1, k2)
are seldom exactly zero in practice for SM. To identify whether
the received signals are AL or SM, we formulate the following
HT problem

H0 : R̂ (k, k + 1) = ǫ (k, k + 1)

H1 : R̂ (k, k + 1) = RAL (k, k + 1) + ǫ (k, k + 1)
. (15)

The estimator makes the decision that the signal type is SM
under H0 and AL under H1. In this test, the distributions

of ǫ (k, k + 1) and RAL (k, k + 1) are required for decision.
However, the statistical distributions are unknown at the re-
ceiver. Therefore, analyzing these distributions is the key to
solve the problem, which we discuss next.

First, we obtain the 2D×1 vectors r (k1, k2) and ǫ (k1, k2)
by stacking all the real and imaginary parts of the estimators
and errors between the receive antenna pairs in Ω as follows

r (k1, k2) =





























ℜ
{

R̂(1,2) (k1, k2)
}

...

ℜ
{

R̂(i1,i2) (k1, k2)
}

...

ℑ
{

R̂(i1,i2) (k1, k2)
}

...





























(16a)

ǫ (k1, k2) =























ℜ
{

ǫ(1,2) (k1, k2)
}

...
ℜ
{

ǫ(i1,i2) (k1, k2)
}

...
ℑ
{

ǫ(i1,i2) (k1, k2)
}

...























. (16b)

It is unnecessary to know the distribution of ǫ (k1, k2).
Here, we assume that the errors of different estimators, i.e.,
ǫ (k1, k2), are independent and identically distributed random
variables for different sub-carrier pairs. This is a reasonable
assumption since the inputs of estimators are independent and
the same type of signals. Therefore, ǫ (k1, k2) can be modeled
as an independent zero-mean random vector with covariance
matrix Ψ.

For SM (under hypothesis H0), according to the CLT, a
group of vectors denoted by

ui = Ψ− 1

2vi, i = 0, · · · , G− 1 (17)

follows an asymptotically standard normal distribution, i.e.,
ui → N (0, I2D), for SM signals if N ′ = N/G is a large
number, where G is the number of the vectors in the group
and the vector vi is given by

vi =
1

√

N ′/2

(i+1)N ′/2
∑

j=iN ′/2+1

r (2j − 1, 2j). (18)

Moreover, the covariance matrix of the error vector ǫ can be
estimated as follows

Ψ̂ =
1

N − 3

N−2
∑

k=1

I2D · [r (k, k + 2) ◦ r (k, k + 2)] (19)

where · denotes the matrix multiplication and ◦ denotes the
Hadamard product operation [29]. The Hadamard product
guarantees a positive-definite Ψ̂. It is worth noting that we
do not know which type of signal is received, and thus, use
r (k, k + 2) to estimate Ψ̂. This is because r (k, k + 2) has the
same distribution as ǫ (k, k + 1) regardless of the hypothesis.
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Fig. 1. Cross-correlation between consecutive OFDM sub-carriers at the
receiver.

From (8), we can easily show that RAL (k, k + 2) = 0. Hence,
each element of r (k, k + 2) can be expressed as follows

Under H0 : R̂ (k, k + 2) = ǫ (k, k + 2) (20a)

Under H1 : R̂ (k, k + 2) = RAL (k, k + 2) + ǫ (k, k + 2)

= ǫ (k, k + 2) . (20b)

The error ǫ (k, k + 2) has the same distribution as ǫ (k, k + 1)
as we discussed previously. Then, we construct the following
test statistic

U =

G−1
∑

i=0

vT
i Ψ̂

−1vi. (21)

Hence, the test statistic U =
∑G−1

i=0 uT
i ui asymptotically

follows a chi-square distribution with q = 2DG degrees of
freedom, i.e., U → χ2

q .
For AL-SFBC (under hypothesis H1), as shown in Fig. 1,

since the signals at the k and (k + 2) OFDM sub-carriers
are uncorrelated and different from those at the (2j − 1) and
2j OFDM sub-carriers, Ψ̂ is not the covariance matrix of the
vector r (2j − 1, 2j) based on (15) and (19). Therefore, U does
not follow the standard chi-square distribution.

Accordingly, this observation allows us to design a detector
threshold η which yields the desired probability of false alarm,
Prf , i.e., Prf = Pr (H1|H0) = Pr (U ≥ η). Then, using the
cumulative distribution function (CDF) expression of the chi-
square distribution, we find that

Pr (U < η) =
γ (q/2, η/2)

Γ (q/2)
(22)

where Γ (·) is the Gamma function given by

Γ (m) = (m− 1)! (23)

and γ (·) is the lower incomplete Gamma function [30] given
by

γ (α, β) =

∫ β

0

tα−1e−tdt. (24)

Since Prf = 1−Pr (U < η), the threshold η is calculated for
a given Prf using the expression

γ (q/2, η/2) = (q/2− 1)! (1− Prf ) . (25)

The threshold η cannot be expressed in a closed-form since
(25) is a nonlinear equation but can be numerically calculated
by the bisection method [31]. Then, if U ≥ η, the received
signals are estimated as AL signals; otherwise, they are
estimated as SM signals.

For clarity, the main steps of the proposed algorithm are
summarized as follows .

Algorithm 1

Input: The observed synchronized sequence y.
Output: SFBC.

1: Construct the stacked vectors r (2j − 1, 2j), j =
1, 2, · · · , N/2, and r (k, k + 2), k = 1, 2, · · · , N − 1,
using (16).

2: Compute the vectors vi using (18).
3: Compute the covariance matrix Ψ̂′ using (19).
4: Construct the test statistic U using (21).
5: Compute the threshold η by calculating (25) via the

bisection method.
6: if U ≥ η then

7: the AL-OFDM signal is declared present (H1 true).
8: else

9: the SM-OFDM signal is declared present (H0 true).
10: return SFBC.

C. Theoretical Performance Analysis for Identification of SM

and AL-SFBC Signals

Under hypothesis H0, as described previously, if U < η,
the SM signals are declared present. For a certain threshold
η, the probability of correctly identifying the SM signals is
determined as [30]

Pr(SM|SM) = 1− Prf

= 1− exp
(

−η

2

)

q/2
∑

m=1

1

(m− 1)!

(η

2

)m−1

.

(26)

Under hypothesis H1, the probability of correctly identify-
ing the AL signals is Pr(AL|AL) = Pr(U ≥ η|H1). Without
loss of generality, we analyze the simplest case here, namely,
Ω = {(1, 2)} and G = 1. From (16)-(18), the vector u is
given by

u = Ψ−1/2 1
√

N/2

N/2
∑

j=1





ℜ
{

R̂ (2j − 1, 2j)
}

ℑ
{

R̂ (2j − 1, 2j)
}



. (27)

Proposition 1: Given the channel coefficients and denoting
the vector H(i)

k as the i-th row of Hk at the k-th OFDM sub-
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carrier, the covariance matrix Ψ = σ2
ǫ I2, where σ2

ǫ is given
by

σ2
ǫ =

σ4
s

2Nb

∥

∥

∥H
(1)
k1

∥

∥

∥

2

F

∥

∥

∥H
(2)
k2

∥

∥

∥

2

F
+

σ2
sσ

2
w

2Nb

(

∥

∥

∥H
(1)
k1

∥

∥

∥

2

F
+
∥

∥

∥H
(2)
k2

∥

∥

∥

2

F

)

+
σ4
w

2Nb
. (28)

Proof: See Appendix A.
Then, using (14) and (28), u can be decomposed as follows

u =
1

√

N/2 · σǫ

N/2
∑

j=1

[

ℜ{RAL (2j − 1, 2j)}
ℑ {RAL (2j − 1, 2j)}

]

+

1
√

N/2 · σǫ

N/2
∑

j=1

[

ℜ{ǫ (2j − 1, 2j)}
ℑ {ǫ (2j − 1, 2j)}

]

. (29)

U is given by

U = uTu = a21 + a22 + a1X1 + a2X2 +X2
1 +X2

2 (30)

where the two independent random variables X1 and X2 are,
respectively, given by

X1 =
1

√

N/2 · σǫ

N/2
∑

j=1

ℜ{ǫ (2j − 1, 2j)} (31a)

X2 =
1

√

N/2 · σǫ

N/2
∑

j=1

ℑ{ǫ (2j − 1, 2j)} (31b)

and they both asymptotically follow a standard normal dis-
tribution according to (17), i.e., X1 → N (0, 1) and X2 →
N (0, 1). Furthermore, the coefficients a1 and a2 are, respec-
tively, given by

a1 =
1

√

N/2 · σǫ

N/2
∑

j=1

ℜ{RAL (2j − 1, 2j)} (32a)

a2 =
1

√

N/2 · σǫ

N/2
∑

j=1

ℑ{RAL (2j − 1, 2j)}. (32b)

Proposition 2: Given a real constant β and a normally
distributed random variable X with CDF [30]

FX (x) = 1− 1

2
erfc

(

x√
2

)

(33)

where erfc(·) is the complementary error function defined as

erfc (α) =
2√
π

∫ ∞

x

e−t2dt (34)

the CDF of the random variable Y = βX+X2 is as provided
in (35)

Proof: See Appendix B.
Subsequently, two random variables Y1 = a1X1 +X2

1 and
Y2 = a2X2+X2

2 have the CDFs given as in (36), respectively.
Denote Z = Y1 + Y2, the CDF of Z is

FZ (z) =

∫ ∞

−a2

2
/4

FY1
(z − y2) dFY2

(y2) . (37)

Finally, the probability of correctly identifying the AL signals
is

Pr(AL|AL) = 1−
∫ ∞

−a2

2
/4

FY1

(

η − a21 − a22 − y2
)

dFY2
(y2) .

(38)
Unfortunately, a closed-form expression for Pr(AL|AL) does
not exist. However, we compute Pr(AL|AL) by using a nu-
merical integration method such as the Riemann sum [31]. Re-
garding the infinite upper limit of the integral in (38), we can
choose a big number as the upper limit since dFY2

(y2) /dy2
quickly converges to zero when increasing y2.

For a general r having a large Ω, U has the following more
complicated expression

U = a21 + a22 + · · ·+ a2q + a1X1 + a2X2 + · · ·+
aqXq +X2

1 +X2
2 + · · ·+X2

q . (39)

The probability of correctly identifying the AL signal can be
expressed as a multiple integral which can be numerically eval-
uated using a numerical method as we previously described.

D. Decision Tree for Identification of Three-Antenna SFBCs

To identify the SFBC C ∈ {SM,AL, SFBC1, SFBC2}, the
previously described discriminating features are used with a
decision tree classification algorithm, which is presented in
Fig. 2. At the top-level node, the cross-correlation function
estimator R̂ (k, k + 4) is used to discriminate between SFBC1
and the code C1 ∈ {SM,AL, SFBC2} based on the test
statistic UC1 and the threshold η since the signals at the
k and (k + 4) sub-carriers are uncorrelated for C1, i.e.,
RC1

(k, k + 4) = 0. Similarly at the middle level node,
R̂ (k, k + 2) is used to discriminate between SFBC2 and the
code C2 ∈ {SM,AL} based on the test statistic UC2 and the
same η. Here, the signals at the k and (k + 2) sub-carriers
are uncorrelated for C2, i.e., RC2

(k, k + 2) = 0. Finally,
at the bottom level node, R̂ (k, k + 1) is used as described
previously. Here, the derivation of UC1 and UC2 are somehow
tedious and are given in Appendix C.

In particular, we can fix the probabilities of false alarm Prf
for all the nodes of the decision tree in Fig. 2. Hence, the
three nodes in the decision tree have identical η, which is
calculated by solving (25). This is because the test statistics
UC1 , UC2 and U follow the same distribution, namely, a chi-
square distribution with q degrees of freedom, for C1, C2 and
SM, respectively. Different η caused by different probabilities
of false alarm indeed affect the performance. At the top-level
node, a smaller η leads to improved performance of identifying
SFBC1 but degrades the identification performance of C1. A
similar situation happens at the middle-level and bottom-level
nodes.

IV. PROPOSED SVM-BASED BLIND IDENTIFICATION

ALGORITHM

Since the synchronization error in the time domain incurs a
phase rotation in the frequency domain for OFDM signals [32],
we propose an SVM-based algorithm to relax our assumption
of perfect synchronization. After restructuring the statistic
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FY (y) =







1
2

[

erfc

(

−
√

y+(β/2)2−β/2√
2

)

− erfc

(√
y+(β/2)2−β/2√

2

)]

, y ≥ −β2

4

0, y < −β2

4

. (35)

FY1
(y1) =







1
2

[

erfc

(

−
√

y1+(a1/2)
2−a1/2√

2

)

− erfc

(√
y1+(a1/2)

2−a1/2√
2

)]

, y1 ≥ −a2

1

4

0, y1 < −a2

1

4

(36a)

FY2
(y2) =







1
2

[

erfc

(

−
√

y2+(a2/2)
2−a2/2√

2

)

− erfc

(√
y2+(a2/2)

2−a2/2√
2

)]

, y2 ≥ −a2

2

4

0, y2 < −a2

2

4

. (36b)

Received Signals

R̂ (k, k + 4)

UC1 > η

SFBC1

R̂ (k, k + 2)

UC2 > η

SFBC2

R̂ (k, k + 1)

U > η

AL

SM

YES

NO

YES

NO

YES

NO

Fig. 2. Decision tree for the identification of SFBC signals.

which follows a non-central chi-square distribution with an
unknown mean for SM signals as a strongly-distinguishable
statistical feature, a trained SVM is employed to classify
different SFBC signals. Without loss of generality, we analyze
the SM and AL signals in this section. The other SFBCs can
be identified by using the same decision tree described in the
previous section.

We construct new vectors t (k1, k2) and |ǫ (k1, k2)| by
calculating the absolute value of each element of r (k1, k2)
and ǫ (k1, k2), respectively, as follows

t (k1, k2) =























...
∣

∣

∣ℜ
{

R̂(i1,i2) (k1, k2)
}∣

∣

∣

...
∣

∣

∣ℑ
{

R̂(i1,i2) (k1, k2)
}∣

∣

∣

...























, (40a)

|ǫ (k1, k2)| =



















...
∣

∣ℜ
{

ǫ(i1,i2) (k1, k2)
}∣

∣

...
∣

∣ℑ
{

ǫ(i1,i2) (k1, k2)
}∣

∣

...



















(40b)

which are not affected by a phase rotation. Assume that µ and
Φ are the mean vector and covariance matrix of the vector
|ǫ (k1, k2)|, respectively.

For SM, according to the CLT, a vector defined as

p = Φ− 1

2q (41)

follows an asymptotically standard normal distribution, i.e.,
p → N (0, I2D), for SM signals, where the vector q is given
by

q =
1

√

N/2

N/2
∑

j=1

[t (2j − 1, 2j)− µ]. (42)

Furthermore, the mean vector µ and covariance matrix Φ of
|ǫ| can be estimated as

µ̂ =
1

N − 2

N−2
∑

k=1

t (k, k + 2) (43)

and

Φ̂ =
1

N − 3

N−2
∑

k=1

I2D · {[t (k, k + 2)− µ̂] ◦ [t (k, k + 2)− µ̂]}

(44)
respectively. Then, we construct a test statistic as follows

T = q T Φ̂−1q. (45)

Theoretically, the test statistic T = pTp asymptotically
follows a chi-square distribution with 2D degrees of freedom,
i.e., T → χ2

2D. However, since µ 6= 0 and is unknown,
(43) suffers from a certain error between µ and µ̂ for a
limited observation period even though µ̂ is an asymptotically
unbiased estimator, which impacts the distribution of T in
practice. Let µ = µ̂+∆µ with a small deviation ∆µ. Then,
T approximately follows a non-central chi-square distribution
with 2D degrees of freedom and its CDF is given by [30]

Pr (T < λ) = 1−QD

(

‖∆µ‖F ,
√
λ
)

, λ ≥ 0 (46)
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Fig. 3. Histogram of the test statistics, where N = 256, Ω = {(1, 2), (2, 1)},
Nb = 100 and SNR = 10 dB. In addition, G = 1 for HT-based algorithm.
The simulation was run for 1000 trials.

where Q (·) is the generalized (m-order) Marcum Q-function
defined as

Qm (α, β) =
1

αm−1

∫ ∞

β

tm exp

(

− t2 + α2

2

)

Jm (αt) dt

(47)
with the modified Bessel function Jm (·) of order m [30].

For AL-SFBC, it is complicated to calculate T due to the
absolute value operations. However, we can still conclude that
we have T > U in the high-SNR regime or under a large Nb

as discussed next.
Proposition 3: We define that A ≥ B if any element of A,

denoted by Aij , is greater than or equal to the element at the
corresponding location of B, denoted by Bij , i.e., Aij ≥ Bij .
Then, we have Ψ ≥ Φ.

Proof: See Appendix D.
From the proof of Proposition 3, Ψ ≥ I2Dµ. In the high-

SNR regime or under a large Nb, t(2j−1, 2j) ≫ t(k, k+2) ≈
µ, and hence, we can regard µ as an approximate zero vector
compared with a large t(2j − 1, 2j). Then, we have q ≥ vi

since each term at the right hand side of (42) is the absolute
value of the corresponding term of (18). Therefore, we have
T > U in the high-SNR regime or under a large Nb. Fig. 3
shows that T is more distinguishable than U between SM and
AL signals. The histograms of T and U almost overlap for
SM signals but differ significantly for AL signals.

The hypothesis test approach is not suitable for making the
decision on T due to the unknown ∆µ. After calculating
T , the discriminating problem can be considered as a two-
class classification problem. Given that SVM is a power-
ful classification algorithm, since the optimality criterion is
convex and it is robust over different training samples [33],
we employ the SVM algorithm to make the decision. The
SVM constructs an optimal hyperplane in a high-dimensional
space which can be used for classification based on the test
statistic T . The hyperplane has the largest distance to the
nearest training data point of any class. Generally, the SVM
processing has two main steps: training and testing. The first

step is to determine the optimal hyperplane separating SM and
AL signals by using the training data obtained from known
sources. In this paper, the kernel and soft margin parameter
are set to linear kernel and 1, respectively, since T is strongly
distinguishable and linearly separable. In addition, the SVM
should be retrained when changing the number of receive
antennas because the degree of freedom of the distribution
for T changes. In the second step, the test data is compared
with the trained hyperplane and then classified accordingly.

For clarity, the main steps of the proposed algorithm are
summarized below.

Algorithm 2

Input: The observed sequence y and trained SVM.
Output: SFBC.

1: Construct the stacked vectors t (2j − 1, 2j), j =
1, 2, · · · , N/2, and t (k, k + 2), k = 1, 2, · · · , N − 1,
using (40).

2: Compute the mean vector µ̂ using (43) and then q using
(42).

3: Compute the covariance matrix Φ̂ using (44).
4: Construct the test statistic T using (45).
5: The SVM makes the decision.
6: return SFBC.

V. SIMULATION RESULTS

A. Simulation Setup

Monte Carlo simulations are conducted to evaluate the
performance of the proposed algorithms. Unless otherwise
stated, we consider a MIMO-OFDM system with Nr = 2
receive antennas, the set of receive antenna pairs Ω =
{(1, 2), (2, 1)}, N = 512 sub-carriers, cyclic prefix length
ν = 10, and QPSK modulation. For the HT-based algorithm,
the default value of G was set to 8. In addition, we assume
two transmit antennas transmitting both SM and AL-SFBC
signals. The channel is assumed to be frequency-selective
and consists of Lh = 4 statistically independent taps with
an exponential power delay profile [14], σ2

τ = e−τ/5, where
τ = 0, · · · , Lh − 1. The probability of false alarm Prf was
set to 10−3 and the number of observed OFDM symbols
Nb was 20. The SNR is defined as 10 log10

(

P/σ2
n

)

with
P = 1 and σ2

n being the total transmit power and the AWGN
variance, respectively. The probability of correct identification
Pr = 0.5Pr (SM |SM) + 0.5Pr (AL |AL), was used as a
performance measure. Simulation of each SFBC type was
run for 1000 trials. For the training of the SVM, we set the
system parameters as we mentioned previously and generate
the datasets from 0 dB to 15 dB, where each SNR repeats 50
Monte Carlo trials for both codes.

B. Performance Evaluation

Fig. 4 shows the performance of the proposed HT- and
SVM-based algorithms in comparison with those in [16] and
[18] for different numbers of OFDM sub-carriers under the
same conditions. The set of time lags Υ in [16] was set
to {0, 1, 2, 3, 4, 5, 6} with cardinality card (Υ) = 7. The
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Fig. 4. Performance comparison of the proposed algorithms and the algo-
rithms in [16], [18] for different N based on the average probability of correct
identification Pr under the same conditions.
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Fig. 5. Simulation and theoretical results for various false alarm probabilities,
Pf , on the average probability of correct identification Pr(C|C) for the HT-
based algorithm.

simulation results demonstrate that our proposed algorithms
significantly outperform the algorithms in [16] and [18],
while the probability of correctly identifying SFBC signals
employing the algorithm in [16] is independent of N . This
is because the convergence of a normalized random variable
depends on the number of OFDM sub-carriers N as shown in
(18) and (42), and the cross-correlation function in [16] does
not depend on N . Moreover, the algorithm in [16] requires
a larger number of OFDM symbols or receive antennas to
achieve the same performance. The algorithm in [18] fails
to identify the SFBC signals when the number of receive
antennas is equal to the number of transmit antennas.

From a practical point of view, we analyze the com-

putational complexity between the proposed algorithms and
the algorithms in [16], [18], as summarized in Table II.
Based on the number of floating point operations (flops)
definitions in [34], the main computational complexity of
the HT- and SVM-based algorithms is given by 8NbND.
Here, the number of flops for a complex multiplica-
tion and addition are 6 and 2, respectively. Meanwhile,
the main computational complexities of the algorithms in
[16], [18] are given by 4Nb (N + ν)D (card (Υ) + 1) and
0.75N

(

64N3
r + 32N2

rNb

)

, respectively. In the previous case,
i.e., N = 512, ν = 10, Nb = 20, D = 2, the proposed
algorithms require approximately 0.2 Mega-flops. Employing
a low-power TMS320C6742 processor with 1.2 Giga-flops
[35], the proposed algorithms require an execution time of
140 µs, while the LTE standard requires about 1.43 ms for
transmitting 20 OFDM symbols with one block duration of
71.4 µs [20]. We can also see that the proposed algorithms
have lower computational complexity although they achieve
significantly better performance as shown in Fig. 4.

TABLE II
FLOPS COMPARISON AMONG THE PROPOSED ALGORITHMS AND THOSE

IN [16] AND [18] FOR N = 512, Nb = 20, Nr = 2

Algorithm Main computational cost Number of flops

HT 8NbND 163,840
SVM 8NbND 163,840
[16] 4Nb (N + ν)D (card(Υ) + 1) 668,160
[18] 0.75N

(

64N3
r + 32N2

rNb

)

1,179,684

Fig. 5 shows the theoretical and simulation results of the
HT-based algorithm for the probability of correctly identifying
SM and AL signals for various probabilities of false alarm,
Prf . Here, we used the simplest set of receive antenna pairs
Ω = {(1, 2)}, Nb = 100 and G = 1. In general, the theoretical
expressions and the simulation results are in good agreement.
The SM identification performance decreases with an increase
in Prf , as Pr(SM|SM) = 1 − Prf . On the other hand, the
AL identification performance improves as Prf increases. This
results from the reduction in the threshold value η.

C. Identification of 3-antenna SFBCs

Fig. 6 shows the results of the proposed algorithms for
the probability of correctly identifying SM, AL, SFBC1 and
SFBC2 signals using the decision tree identification. We can
see that the performance of identifying AL signals is better
than that of 3-antenna SFBC signals.

D. Effect of the Number of Processed OFDM Symbols

Fig. 7 illustrates the performance of the proposed algorithms
for different numbers of OFDM symbols. We can see that
the performance of these two algorithms improves with the
number of OFDM symbols since ǫ vanishes. It can also be seen
that the HT-based algorithm can identify SM and AL signals
even using one OFDM symbol and the SVM-based algorithm
only requires three OFDM symbols owing to its effective
utilization of the redundant information among the OFDM
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Fig. 6. Simulation for different SFBCs on the average probability of correct
identification Pr(C|C).
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Fig. 7. Effect of the number of observed OFDM symbols, Nb, on the average
probability of correct identification Pr.

sub-carriers. In such case, the HT-based algorithm requires ap-
proximately 0.01 Mega-flops while the SVM-based algorithm
requires approximately 0.03 Mega-flops. This indicates that
our proposed algorithms can implement real-time processing
after receiving a very small number of OFDM symbols and
satisfy the requirement of delay-sensitive services, which are
important in next generation networks.

E. Effect of the Number of Receive Antennas

Fig. 8 shows that the probability of correct identification
improves with the number of receive antennas (the number of
elements in Ω is maximized here). In fact, U and T increase
significantly with Nr when the received signals are estimated
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Fig. 8. Effect of the number of receive antennas, Nr , on the probability of
correct identification Pr.
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Fig. 9. Effect of the modulation type on the average probability of correct
identification Pr.

as AL since the sum of the constant terms on the right hand of
(39) increases, which in turn results in a higher Pr(AL|AL).

F. Effect of the Modulation Type

Fig. 9 illustrates the effect of the modulation type on the
identification performance. The performance does not depend
on the modulation type. This can be explained by the fact
that the cross-correlation function described in (8) applies
to both M -QAM and M -PSK modulations regardless of the
modulation order. This feature provides the designer with the
ability to implement the modulation classifier either before or
after the proposed SFBC identification algorithms.
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Fig. 10. Effect of the sampling clock offset, ς , on the average probability of
correct identification Pr.
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Fig. 11. Effect of STO, δ, on the average probability of correct identification
Pr.

G. Effect of the Timing Offset

The simulation results presented so far have been under per-
fect timing synchronization. Now, we evaluate the performance
of the proposed algorithms under timing offsets. The timing
offset has two components, namely, sampling clock offset and
symbol timing offset (STO). The effect of the sampling clock
offset can be modeled as a two-path channel [1 − ς, ς ] [36],
where 0 ≤ ς < 1 is the normalized sampling clock offset
when the whole sampling period is one. The STO is modeled
as in [32], which depends on the location of the estimated FFT
window starting point of OFDM symbols, denoted by δ. Figs.
10 and 11 show the performance of the proposed algorithms
for different sampling clock offsets and STOs, respectively.
The SNR was set to 6 dB in these figures. We can see that
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Fig. 12. Effect of the frequency offset, ∆f , on the average probability of
correct identification Pr.
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Fig. 13. The effect of the Doppler frequency, fd, on the average probability
of correct identification Pr.

the proposed algorithms are essentially not affected by the
sampling clock offset while the HT-based algorithm fails under
a large STO. For the HT-based algorithm, the STO of δ in time
domain incurs the phase rotation of 2πkδ/N in the frequency
domain, which is proportional to the OFDM sub-carrier index
k as well as to the STO δ. After these phase rotations, the
values of R̂(i1,i2) (k1, k2) are distributed uniformly on the
complex plane and have zero mean which results in the first
term on the right hand of (29) approaching zero. As for the
SVM-based algorithm, the effect of the phase rotations is
eliminated by the absolute value operations.
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H. Effect of the Frequency Offset

Fig. 12 illustrates the effect of the frequency offset nor-
malized to the OFDM sub-carrier spacing, ∆f , on the per-
formance of the proposed algorithms at SNR = 6 dB and
for different values of N and Nb. The frequency offset
undoubtedly destroys the orthogonality of AL-SFBC signals
[23] and degrades the performance. It is worth noting that a
smaller number of OFDM symbols is required to achieve a
good performance for a large number of OFDM sub-carriers,
which results in a lower sensitivity to the frequency offset.
The results in Fig. 12 show a generally good robustness for
∆f < 10−2 for the proposed algorithms. Further, the HT-
based algorithm has a good robustness for ∆f < 10−1 when
N = 2048 and Nb ≤ 3. Furthermore, we can use a blind
frequency offset compensation technique [37] by utilizing the
kurtosis-type criterion before OFDM domodulation to reduce
the effect of the frequency offset.

I. Effect of the Doppler Frequency

The previous analysis assumed static channels over the
observation period. The typical parameters of the LTE standard
with the channel bandwith of 10 MHz (N = 512) and
samping rate of 15.36 MHz are assumed here to evaluate the
impact of the Doppler frequency on the performance of the
proposed algorithms. Fig. 13 shows the average probability of
correct identification versus the maximum Dopper frequency
normalized to the sampling rate, fd, at SNR = 6 dB. The
results for the HT- and the SVM-based algorithms show a
good robustness for fd < 10−3 and fd < 10−4, i.e., 15360
Hz and 1536 Hz, respectively. In other words, the HT-based
algorithm is robust to the highest Doppler shift for mobile
speeds up to 8290 km/h (5150 MPH), while the SVM-based
algorithm is up to 829 km/h (515 MPH) for an LTE system
at a carrier frequency of 2 GHz.

VI. CONCLUSION

Based on the CLT, we proposed two novel algorithms,
namely HT-based and SVM-based algorithms, to blindly iden-
tify SFBC signals over frequency-selective fading channels.
The two algorithms use the cross-correlation function of the
received signals from antenna pairs at consecutive OFDM
sub-carriers to exploit the space-domain redundancy. The HT-
based algorithm utilizes the frequency-domain redundancy by
constructing a chi-square test statistic that is used to make
the decision. In addition, the theoretical expressions of the
probability of correctly identifying the SM and AL-SFBC
signals for the HT-based algorithm are derived. The SVM-
based algorithm uses a strongly-distinguishable non-central
chi-square statistical feature to exploit the frequency-domain
redundancy and employs a trained SVM to make the decision.
The proposed algorithms can improve the identification perfor-
mance since they exploit additional redundancy in the signal
structure. Furthermore, they have a low computational com-
plexity and do not require apriori knowledge about the channel
coefficients, modulation type or noise power. Moreover, the

SVM-based algorithm does not require timing synchroniza-
tion. Simulation results demonstrated that a good identifica-
tion performance is achieved under frequency-selective fading
with a short observation period. Furthermore, the HT-based
algorithm has a good robustness to small STOs, and the two
proposed algorithms show a relatively good robustness to
frequency offsets and Doppler effects. Based on the features of
the two proposed algorithms, we conclude that the HT-based
algorithm can be used in a relatively low SNR-regime with
timing synchronization, while the SVM-based algorithm can
be used in the so-called “totally-blind” applications, such as
military communications. In addition, blind identification in
multi-user cases is still unexplored, and represents a direction
for future work.

APPENDIX A
PROOF OF PROPOSITION 1

From (7) and (14), the mean of ǫ(1,2)(k1, k2) is given by

E
[

ǫ(1,2) (k1, k2)
]

= lim
Nb→∞

1

Nb

Nb
∑

n=1

(H
(1)
k1

sk1
(n)H

(2)
k2

sk2
(n)

+ w
(2)
k2

(n)H
(1)
k1

sk1
(n)

+ w
(1)
k1

(n)H
(2)
k2

sk2
(n)

+ w
(1)
k1

(n)w
(2)
k2

(n)) = 0. (48)

The covariance matrix is a diagonal matrix since the elements
ǫ(k1, k2) are independent of each other. For convenience,
we simplify ǫ(1,2) (k1, k2) as ǫ (k1, k2). Suppose that the
covariance matrix is a diagonal matrix and given by Ψ =
diag

(

σ2
ǫ1 , σ

2
ǫ2

)

. According to our assumptions, for a large Nb,
we have the derivation expressed as in (49)

Similarly,

σ2
ǫ2 = E

[

(ℑ{ǫ (k1, k2)})2
]

= ℜ
{

1

2
E [ǫ (k1, k2) ǫ

∗ (k1, k2)− ǫ (k1, k2) ǫ (k1, k2)]

}

= ℜ
{

1

2
E [ǫ (k1, k2) ǫ

∗ (k1, k2)]

}

= σ2
ǫ1 . (50)

Q.E.D.

APPENDIX B
PROOF OF PROPOSITION 2

Clearly

Y = X2 + βX + β2/4− β2/4

= (X + β/2)
2 − β2/4 ≥ −β2/4. (51)

Hence, the CDF of Y is FY (y) = 0, if y < −β2/4. Then, if
y ≥ −β2/4, the CDF of Y is as in (52). Since X → N (0, 1),
the CDF is obtained as in (53). Finally, we conclude that the
CDF of Y is given as in (54). Q.E.D.
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σ2
ǫ1 = E

[

(ℜ{ǫ (k1, k2)})2
]

− E [ℜ{ǫ (k1, k2)}]2

= ℜ
{

1

2
E
[

(ℜ{ǫ (k1, k2)})2 + (ℑ{ǫ (k1, k2)})2 + (ℜ{ǫ (k1, k2)})2 − (ℑ{ǫ (k1, k2)})2
]

}

= ℜ
{

1

2
E [ǫ (k1, k2) ǫ

∗ (k1, k2) + ǫ (k1, k2) ǫ (k1, k2)]

}

= ℜ
{

1

2
E [ǫ (k1, k2) ǫ

∗ (k1, k2)]

}

= ℜ{1
2
( lim
Nb→∞

1

Nb

Nb
∑

n=1

(H
(1)
k1

sk1
(n)H

(2)
k2

sk2
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(2)
k2

(n)H
(1)
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sk1
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(1)
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+ w
(1)
k1
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=
1
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)

=
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∥

∥

∥H
(1)
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∥

∥

∥

2

F

∥

∥

∥H
(2)
k2

∥

∥

∥

2
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+
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sσ

2
w

2Nb

(

∥

∥

∥H
(1)
k1

∥

∥

∥

2

F
+
∥

∥

∥H
(2)
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∥

∥

∥

2

F

)
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σ4
w
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. (49)

FY (y) = Pr (Y ≤ y) = Pr
(

X2 + βX ≤ y
)

= Pr
(

(X + β/2)2 ≤ y + (β/2)2
)

= Pr

(

−
√

y + (β/2)
2 − β/2 ≤ X ≤

√

y + (β/2)
2 − β/2

)

. (52)

FY (y) =



1− 1

2
erfc





√

y + (β/2)
2 − β/2

√
2







−



1− 1

2
erfc





−
√

y + (β/2)
2 − β/2

√
2









=
1

2



erfc





−
√

y + (β/2)2 − β/2
√
2



− erfc





√

y + (β/2)2 − β/2
√
2







 . (53)

FY (y) =







1
2

[

erfc

(

−
√

y+(β/2)2−β/2√
2

)

− erfc

(√
y+(β/2)2−β/2√

2

)]

, y ≥ −β2

4

0, y < −β2

4

. (54)

APPENDIX C
DERIVATION OF TEST STATISTICS FOR DECISION TREE

At the top-level node, the vector vi is given as

vC1

i =
1

√

N ′/8

(i+1)N ′/8
∑

j=iN ′/8+1

r (8j − 7, 8j − 3)

+
1

√

N ′/8

(i+1)N ′/8
∑

j=iN ′/8+1

r (8j − 6, 8j − 2)

+
1

√

N ′/8

(i+1)N ′/8
∑

j=iN ′/8+1

r (8j − 5, 8j − 1)

+
1

√

N ′/8

(i+1)N ′/8
∑

j=iN ′/8+1

r (8j − 4, 8j) (55)

and the estimated covariance matrix of the error is rewritten
as

Ψ̂C1 =
1

N − 10

N−9
∑

k=1

I2D · [r (k, k + 9) ◦ r (k, k + 9)]. (56)

Then, the test statistic is constructed as follows

UC1 =

G−1
∑

i=0

(

vC1

i

)T(

Ψ̂C1

)−1

vC1

i . (57)

At the middle-level node, the vector vi is given by

vC2

i =
1

√

N ′/4

(i+1)N ′/4
∑

j=iN ′/4+1

r (4j − 3, 4j − 1)

+
1

√

N ′/4

(i+1)N ′/4
∑

j=iN ′/4+1

r (4j − 2, 4j) (58)
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and the estimated covariance matrix of the error is as follows

Ψ̂C2 =
1

N − 6

N−5
∑

k=1

I2D · [r (k, k + 5) ◦ r (k, k + 5)]. (59)

The test statistic is constructed as follows

UC2 =
G−1
∑

i=0

(

vC2

i

)T(

Ψ̂C2

)−1

vC2

i . (60)

At the bottom-level node, the vector vi, the estimated
covariance matrix of the error, and the test statistic have been
defined in (18), (19) and (21) respectively.

APPENDIX D
PROOF OF PROPOSITION 3

Suppose that the mean of |ǫ(k1, k2)| is µ =
E [|ǫ(k1, k2)|] = [µ1, · · · , µ2D]T , and the covariance
matrices Ψ and Φ are Ψ = diag

(

σ2
ǫ1 , · · · , σ2

ǫ2D

)

and

Φ = diag
(

σ2
|ǫ|

1

, · · · , σ2
|ǫ|

2D

)

, respectively. From the Proof

of Proposition 1,

σ2
|ǫ|

1

= E
[

(ℜ{ǫ (k1, k2)})2
]

− (E [|ℜ {ǫ (k1, k2)}|])2

= σ2
ǫ1 − µ2

1. (61)

Clearly, we have µ2
1 ≥ 0, σ2

ǫ1 ≥ 0, σ2
|ǫ|

1

≥ 0 and it follows

that σ2
ǫ1 ≥ µ2

1, σ2
ǫ1 ≥ σ2

|ǫ|
1

. Similarly, all other elements in Ψ

are greater than or equal to the corresponding elements in Φ.
Therefore, we have Ψ ≥ Φ. Q.E.D.
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