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Abstract—In this work, we examine the optimality of Gaussian
signalling for covert communications with an upper bound
on D(p1 ||p0) or D(p0 ||p1) as the covertness constraint, where
D(p1 ||p0) and D(p0 ||p1) are different due to the asymmetry of
Kullback-Leibler divergence, p0(y) and p1(y) are the likelihood
functions of the observation y at the warden under the null
hypothesis (no covert transmission) and alternative hypothesis
(a covert transmission occurs), respectively. Considering additive
white Gaussian noise at both the receiver and the warden, we
prove that Gaussian signalling is optimal in terms of maximizing
the mutual information of transmitted and received signals for
covert communications with an upper bound on D(p1 ||p0) as
the constraint. More interestingly, we also prove that Gaussian
signalling is not optimal for covert communications with an upper
bound on D(p0 ||p1) as the constraint, for which as we explicitly
show skew-normal signalling can outperform Gaussian signalling
in terms of achieving higher mutual information. Finally, we
prove that, for Gaussian signalling, an upper bound on D(p1 ||p0)
is a tighter covertness constraint in terms of leading to lower
mutual information than the same upper bound on D(p0 ||p1),
by proving D(p0 ||p1) ≤ D(p1 ||p0).

Index Terms—Covert communications, Gaussian signalling,
Kullback-Leibler divergence, mutual information.

I. INTRODUCTION

With Internet of Things (IoT) coming to reality, people

and organizations become more dependent on wireless de-

vices to share private information (e.g., location information,

physiological information for e-health). As a consequence,

there are increasing concerns on security and privacy in

such applications. Against this background, physical layer

security has been widely used to address and enhance wireless

communication security, which is compatible and complemen-

tary to traditional cryptographic techniques [1], [2]. However,

although physical layer security can protect the content of

wireless communications [1], [2], it cannot fully address

privacy concerns. For example, the exposure of a wireless

transmission may disclose a user’s location information, which

may violate the privacy of the user and this cannot be resolved

by physical layer security or cryptographic techniques. Against
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this background, covert communication is emerging as a new

technique to achieve a strong security and privacy in wireless

communications (i.e., hiding wireless transmissions) [3]–[6].

Hiding wireless transmissions was only partially addressed

by spread spectrum, which focuses on hiding military wireless

transmissions by spreading transmit power to make it appear

noise like [7]. However, the achieved covertness by spread

spectrum has never been proven theoretically, because there is

no fundamental understanding on when or how often spread

spectrum fails to hide wireless transmissions. As such, recent

cutting-edge research on wireless communication security has

focused on the fundamental limits of covert communications

(e.g., [3], [8]–[10]). In covert communications, a transmitter

(Alice) desires to transmit information to a legitimate receiver

(Bob) without being detected by a warden (Willie), who is

collecting observations to detect this transmission. Considering

additive white Gaussian noise (AWGN) channels, a square

root law was established in [3], which states that Alice

can transmit no more than O(
√
n) bits in n channel uses

covertly and reliably to Bob. Besides, some works in the

literature focused on the design and performance analysis of

covert communications in practical application scenarios, for

example, by considering unknown background noise power

[11], ignorance of transmission time [12], noise uncertainty

[13], delay constraints [14], [15], channel uncertainty [16],

practical modulation [17], uninformed jamming [18], relay

networks [19], [20], broadcast channels [21], key generation

[22], and artificial noise [23], [24].

In covert communications, for an optimal detector at Willie,

we have ξ∗ = 1 − VT (p0
, p

1
), where ξ∗ is the minimum

detection error probability and VT (p0
, p

1
) is the total variation

between the likelihood function p
0
(y) of the observation

y under the null hypothesis (when Alice does transmit to

Bob) and the likelihood function p
0
(y) under the alternative

hypothesis (when Alice transmits to Bob). Due to the math-

ematically intractable expressions for VT (p0 , p1), Kullback-

Leibler (KL) divergence (i.e., relative entropy) has been widely

adopted to limit the detection performance at Willie in the

literature of covert communications. Specifically, as per the

Pinsker’s inequality we have VT (p0
, p

1
) ≤

√

D(p
1
||p

0
)/2

or VT (p0
, p

1
) ≤

√

D(p
0
||p

1
)/2, where D(p

1
||p

0
) is the KL

divergence from p1(y) to p0(y) and D(p0 ||p1) is the KL di-

vergence from p
0
(y) to p

1
(y). Then, the covertness constraint

ξ∗ ≥ 1 − ǫ can be guaranteed by two constraints on these

KL divergences, i.e., D(p1 ||p0) ≤ 2ǫ2 and D(p0 ||p1) ≤ 2ǫ2,

where ǫ is a small value determining the required covertness.

Based on the Pinsker’s inequality as detailed above, the two

constraints determined by the KL divergences are stricter

than the covertness constraint ξ∗ ≥ 1 − ǫ. This means that

the covertness achieved under the former constraints (i.e.,

http://arxiv.org/abs/1807.00719v3
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D(p
1
||p

0
) ≤ 2ǫ2 and D(p

0
||p

1
) ≤ 2ǫ2) can be achieved in

practice under the later covertness constraint. As such, the

developed covert communication systems under the constraint

D(p
1
||p

0
) ≤ 2ǫ2 or D(p

0
||p

1
) ≤ 2ǫ2 are fully operational in

practice.

We do not at present have any bound on the difference

between optimality under actual covertness constraint and

optimality under either of the KL constraints. One reason for

not obtaining such a bound is the seeming intractability of

characterizing performance under the exact constraint. Further

work is required in this direction and we hope our work will

provide motivation for obtaining better bounds on the actual

detection error probability in future works. The KL constraints

that we use have been widely adopted in the literature on

covert communications (e.g.,[3,8,9,24]), and enable us to ob-

tain analytical results of a conservative nature, which can be

applied to solve network optimization problems in the context

of covert communications.

A closely related research topic to covert communications

is the stealth communication problem [25], [26]. The major

difference between covert communications and stealth com-

munications is that Alice does not transmit to Bob (i.e., “zero

symbols” input) in the null hypothesis for covert communi-

cations, while Alice transmits non-zero symbols, following a

non-zero innocent distribution, to Bob in the null hypothesis

for stealth communications [25], [26].

In the literature of covert communications, these two spe-

cific constraints have been widely used in different works

in the context of covert communications. For example, with

the aid of D(p
0
||p

1
) to bound the detection error probability

in part of the considered covertness constraint, the authors

of [3] established the square root limit on the amount of

information that can be transmitted from Alice to Willie

reliably for any ǫ > 0. With the same constraint, the work

[10] extended this square root law into a two-hop wireless

system, where the source intends to communicate with the

destination covertly via a Decode-and-Forward relay node

and the conducted analysis shows that this square root law

can be extended into a multi-hop system. Meanwhile, using

D(p
1
||p

0
) ≤ 2ǫ2 as the covertness constraint, the authors of

[9] proved that the square-root law holds for a broad class of

discrete memoryless channels (DMCs), in which the scaling

constant of the amount of information with respect to the

square root of the blocklength has been determined for DMCs

and AWGN channels. With the same covertness constraint, the

shared key bits to guarantee the square-root law was quantified

and the condition for which a secret key is not required was

determined in [8]. In addition, with the same constraint the

authors of [27], [28] extended the main results of [8] into

a discrete memoryless multiple-access channel, in which the

pre-constant of the scaling is identified. Furthermore, with

D(p
1
||p

0
) ≤ 2ǫ2 as the constraint, [29], [30] characterized the

second order asymptotics of the number of bits that can be

reliably and covertly transmitted and [31] examined the error

exponent of covert communications over binary-input discrete

memoryless channels.

We note that the aforementioned two KL divergences (i.e.,

D(p1 ||p0) and D(p0 ||p1)) are different due to the asymmetric

property of the KL divergence [32]. However, the resultant

differences of using the two constraints, i.e., D(p1 ||p0) ≤ 2ǫ2

and D(p
0
||p

1
) ≤ 2ǫ2, in the context of covert communica-

tions have never been examined. This mainly motivates this

work. We would like to clarify that the square root law was

established with D(p
0
||p

1
) ≤ 2ǫ2 as the covertness constraint,

while the result under the constraint D(p
1
||p

0
) ≤ 2ǫ2 has not

been clarified. As we will show in this work, using these two

different constraints does affect the exact amount of covert

information that can be reliably transmitted from Alice to

Bob for a given value of ǫ, although the difference becomes

negligible as ǫ decreases to zero. We note that in the literature

Gaussian signalling was adopted with both D(p1 ||p0) ≤ 2ǫ2

and D(p
0
||p

1
) ≤ 2ǫ2 as constraints in covert communica-

tions, since Gaussian signalling at least can maximize the

communication performance from Alice to Bob. However, the

optimality of Gaussian signalling was not discussed under

either of these two constraints. As we will show in this work,

we have different signalling strategies to achieve the maximum

amount of covert information subject to D(p
1
||p

0
) ≤ 2ǫ2 or

to D(p0 ||p1) ≤ 2ǫ2. Considering AWGN at both Bob and

Willie, the main contributions together with the key results of

this work are summarized as below.

• We prove that Gaussian signalling is optimal in terms of

maximizing the mutual information between the transmit-

ted signal x sent by Alice and the signal z received by

Bob subject to D(p1 ||p0) ≤ 2ǫ2.

• We prove that Gaussian signalling is not optimal in terms

of maximizing I(x; z) subject to D(p
0
||p

1
) ≤ 2ǫ2 for

covert communications. We explicitly show that skew-

normal signalling strategy can achieve a higher I(x; z)
subject to D(p

0
||p

1
) ≤ 2ǫ2 than Gaussian signalling.

• We prove that Gaussian signalling minimizes the KL

divergence D(p
1
||p

0
) for any given average transmit

power constraint on x, which explains why Gaussian

signalling is optimal for covert communications with

D(p
1
||p

0
) ≤ 2ǫ2 as the constraint, while Gaussian sig-

nalling cannot minimize the KL divergence D(p0 ||p1).
• We prove D(p

0
||p

1
) ≤ D(p

1
||p

0
) for Gaussian signalling.

This leads to the fact that D(p
0
||p

1
) determines a tighter

lower bound on Willie’s actual minimum detection error

probability ξ∗ than D(p
1
||p

0
). An important implication

is that the use of D(p
0
||p

1
) ≤ 2ǫ2 as the covert constraint

gives a higher value of I(x; z).

The rest of this paper is organized as follows. Section II

details the system model and the focused problem of this

work. Section III proves that Gaussian signalling is optimal

for covert communications with D(p
1
||p

0
) ≤ 2ǫ2 as the

constraint. Section IV proves that Gaussian signalling is not

optimal for covert communications with D(p0 ||p1) ≤ 2ǫ2 as

the constraint. In Section V, we examine the performance

of covert communications with Gaussian signalling, where

D(p
0
||p

1
) ≤ D(p

1
||p

0
) is proved. Section VI explicitly shows

that skew-normal signalling is better than Gaussian signalling

in terms of achieving a higher I(x; z) subject to D(p0 ||p1) ≤
2ǫ2. Finally, Section VII makes some concluding remarks.

Notation: Given a random vector x and its realization x, x[i]
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Fig. 1. Illustration of the system model for covert communications.

and x[i] denote the i-th element of x and x, respectively. The

expectation operator is denoted by E[·] and N (0, σ2) denotes

the normal distribution with zero mean and variance σ2.

II. SYSTEM MODEL

A. Channel Model

The system model for covert communications is illustrated

in Fig. 1, where each of Alice, Bob, and Willie is equipped

with a single antenna. We assume the channel from Alice to

Bob and the channel from Alice to Willie are only subject to

AWGN. In this work, we assume that Alice transmits one real-

valued symbol x[i] to Bob in the i-th channel use, while Willie

is passively collecting one observation on Alice’s transmission

to detect whether or not Alice has transmitted the signal to

Bob. We denote the AWGN at Bob and Willie in the i-
th channel use as nb[i] and nw[i], respectively, where the

elements of nb or nw are identically independently distributed

(i.i.d.) and thus we have nb[i] ∼ N (0, σ2
b ), nw[i] ∼ N (0, σ2

w),
while σ2

b and σ2
w are the noise variances at Bob and Willie,

respectively. In addition, we assume that x, nb, and nw are

mutually independent and we the number of channel uses

(denoted by N ) is sufficient large such that the elements of

x are i.i.d.. We further assume that Alice’s transmit power of

x[i] is fixed and denoted as Px, i.e., we have E[|x[i]|2] = Px.

B. Binary Hypothesis Testing at Willie

In order to detect the presence of covert communications,

Willie must distinguish between the following two hypotheses:
{

H0 : y[i] = nw[i],

H1 : y[i] = x[i] + nw[i],
(1)

where H0 denotes the null hypothesis where Alice has not

transmitted signals, H1 denotes the alternative hypothesis

where Alice has transmitted, and y[i] is the received signal

at Willie in the i-th channel use.

In general, the detection error probability is adopted to

measure Willie’s detection performance, which is defined as

ξ = α+ β, (2)

where α , Pr(D1|H0) is the false positive rate, β ,

Pr(D0|H1) is the miss detection rate, and D1 and D0 are

the binary decisions that infer whether Alice’s transmission is

present or not, respectively. In covert communications, Willie’s

ultimate goal is to detect the presence of Alice’s transmission

with the minimum detection error probability ξ∗, which is

achieved by using an optimal detector. Then, the covertness

constraint can be written as ξ∗ ≥ 1 − ǫ for a given ǫ, where

the value of ǫ is predetermined and is normally small in order

to guarantee sufficient covertness.

For an optimal detector at Willie, we have [3], [32], [33]

ξ∗ = 1− VT (p0 , p1) = 1− 1

2
‖p0(y)− p1(y)‖1, (3)

where VT (p0
, p

1
) is the total variation between p

0
(y) and

p
0
(y), ‖a − b‖1 is the L1 norm, and p

0
(y) = f(y|H0) and

p1(y) = f(y|H1) are the likelihood functions of y under H0

and H1, respectively. In general, computing VT (p0
, p

1
) analyt-

ically is intractable and thus Pinsker’s inequality is normally

adopted to upper bound it. Based on Pinsker’s inequality, we

have

VT (p0
, p

1
) ≤

√

1

2
D(p

1
||p

0
), (4)

or

VT (p0
, p

1
) ≤

√

1

2
D(p

0
||p

1
), (5)

where D(p
1
||p

0
) is the Kullback-Leibler (KL) divergence from

p
1
(y) to p

0
(y), which is given by

D(p1 ||p0) =

∫

Y
p1(y) log

p
1
(y)

p0(y)
dy, (6)

and D(p0 ||p1) is the KL divergence from p0(y) to p1(y),
which is given by

D(p
0
||p

1
) =

∫

Y
p

0
(y) log

p
0
(y)

p
1
(y)

dy. (7)

We note that both (4) and (5) are valid, although they are

different due to the asymmetry of the KL divergence, which

can be seen from (6) and (7).

Following (3) and (4), it is sufficient to guarantee

D(p1 ||p0) ≤ 2ǫ2, (8)

in order to guarantee ξ∗ ≥ 1− ǫ. Alternatively, following (3)

and (5), it is also sufficient to guarantee

D(p0 ||p1) ≤ 2ǫ2, (9)

in order to guarantee ξ∗ ≥ 1 − ǫ. This is the main reason

why Gaussian signaling is widely adopted in the literature of

covert communications (e.g., [3], [10]), where we note that in

[3] Gaussian signalling was used in the construction for the

achievability result, while (9) is also adopted (e.g., [8], [9]).

We also note that these two constraints are both sufficient as

per Pinsker’s inequality. However, the difference between these

two constraints in the context of covert communications has

never been clarified. Noting that the elements of y are i.i.d.,

we have

D(p
1
||p

0
) = N ×D(p

1
(y[i])||p

0
(y[i])), (10)

D(p
0
||p

1
) = N ×D(p

0
(y[i])||p

1
(y[i])), (11)

where we recall that N is the total number of channel uses,

which is assumed to be sufficiently large in this work.
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C. Mutual Information

When Alice transmits x[i], the received signal at Bob in the

i-th channel use is given by

z[i] = x[i] + nb[i]. (12)

Then, the mutual information of x and z is given by

I(x; z) =

∫

Z

∫

X
p(x, z) log

p(x, z)

p(x)p(z)
dxdz, (13)

where p(x, z) is the joint probability function of x and z, p(z)
is the marginal probability distribution of z, Z is the set of

z, and X is the set of x. For nb[i] ∼ N (0, σ2
b ), p(x[i]) =

N (0, P ) can maximize I(x; z) subject to E[|x[i]|2] = P
as per [32, Theorem 8.6.5]. This is the main reason why

Gaussian signaling is widely adopted in the literature of covert

communications (e.g., [3], [10]). Noting that the elements of

x are i.i.d. and the elements of z are i.i.d., we have

I(x; z) = N × I(x[i]; z[i]). (14)

Considering (10), (11), and (14), without loss of generality

in this work we focus on one particular channel use, i.e.,

x, y, z, nb, nw and their realizations are 1-dimensional in

the rest of the paper. As such, in the reminder of this work,

we tackle whether Gaussian signalling is optimal in terms of

maximizing I(x, z) subject to different covertness constraints,

i.e., ξ∗ ≥ 1− ǫ, D(p1 ||p0) ≤ 2ǫ2, and D(p0 ||p1) ≤ 2ǫ2. Note

that we do not use the rate defined in the limit of N → ∞
as a performance metric in this work. This is due to the fact

that this rate, as per the square root law, is zero regardless

of the signalling strategy in covert communications, since the

converse proof of the square root law is valid for an arbitrary

signalling strategy [4]. Therefore, we cannot use this rate as

an objective function to tackle the optimality of Gaussian

signalling for covert communications.

III. WITH D(p
1
||p

0
) ≤ 2ǫ2 AS THE COVERTNESS

CONSTRAINT

In this section, we analytically prove that Gaussian signaling

is optimal for covert communications in terms of maximizing

I(x, z) subject to D(p
1
||p

0
) ≤ 2ǫ2 and other related con-

straints. Mathematically, we prove the following theorem.

Theorem 1: The zero-mean Gaussian signaling with vari-

ance P ∗
x , i.e., p(x) = N (0, P ∗

x ), is the solution to the

following optimization problem

argmax
p(x), Px

I(x, z), (15a)

s.t. E[|x|2] = Px, (15b)
∫ ∞

−∞
p(x)dx = 1, (15c)

D(p
1
||p

0
) ≤ 2ǫ2, (15d)

p(x) ≥ 0, (15e)

where P ∗
x = P ǫ

x and P ǫ
x is the solution to

1

2

(

P ǫ
x

σ2
w

+ log
σ2
w

P ǫ
x + σ2

w

)

= 2ǫ2. (16)

In (15), we have p
1
(y) =

∫∞
−∞ gnw

(y − x)p(x)dx and

p
0
(y) = N (0, σ2

w), where gnw
(·) denotes the probability

density function (pdf) of nw. We note that p(x) = N (0, Px)
maximizes I(x, z) subject to E[|x|2] = Px [32, Theorem

8.6.5] and the maximum I(x, z) is a monotonically increasing

function of Px. As such, we can prove Theorem 1 in two steps.

In the first step, we prove that p(x) = N (0, Px) minimizes

D(p
1
||p

0
) subject to E[|x|2] = Px and

∫∞
−∞ p(x)dx = 1,

which is detailed in the following Section III-A. In the second

step, we determine the optimal value of Px that maximizes

I(x, z) subject to E[|x|2] = Px,
∫∞
−∞ p(x)dx = 1, and

D(p1 ||p0) ≤ 2ǫ2, which is presented in Section III-B.

A. Zero-Mean Gaussian Signalling is Optimal

In this subsection, we present the first step in the proof of

Theorem 1. Specifically, we prove the following theorem.

Theorem 2: The zero-mean Gaussian distributed y with

variance Py , i.e., p
1
(y) = N (0, Py), is the solution to the

following optimization problem

argmin
p
1
(y)

D(p
1
||p

0
), (17a)

s.t. E[|y|2] =
∫ ∞

−∞
y2p

1
(y)dy = Py, (17b)

∫ ∞

−∞
p

1
(y)dy = 1, (17c)

p
1
(y) ≥ 0, (17d)

where Py = Px + σ2
w.

Proof: In order to prove Theorem 2, we first identify the

solution of p
1
(y) that minimizes D(p

1
||p

0
) subject to (17b)

and (17c) by using calculus of variations, and then prove that

this solution also satisfies the constraint (17d). Following (17),

we can write the functional of minimizing D(p
1
||p

0
) subject

to (17b) and (17c) as

D(p
1
||p

0
) + ρ0

[
∫ ∞

−∞
p

1
(y)dy − 1

]

+ ρ1

[
∫ ∞

−∞
y2p1(y)dy − Py

]

=

∫ ∞

−∞
L(y, p1(y))dy − τ,

(18)

where ρ0 and ρ1 are the Lagrange multipliers, which can be

determined by the associated constraints later. Following (6)

and (18), L(y, p1(y)) is given by

L(y, p1(y))=p1(y) log
p

1
(y)

p
0
(y)

+ρ0p1(y)+ρ1y
2p1(y), (19)

and τ is a constant given by

τ = ρ0 + ρ1Py. (20)

Following (19), the functional derivative (i.e., the first deriva-

tive of L(y, p
1
(y)) with respect to p

1
(y)) is given by

∂L(y, p
1
(y))

∂p
1
(y)

= log
p

1
(y)

p
0
(y)

+ 1 + ρ0 + ρ1y
2. (21)

Using the calculus of variations, a necessary condition on the

solution to minimizing D(p
1
||p

0
) subject to (17b) and (17c) is

that this solution guarantees the functional derivative given in
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(21) being zero [34]. As such, setting ∂L(y, p
1
(y))/∂p

1
(y) =

0, we have the solution given by

p
1
(y) = p

0
(y)e−ρ1y

2−ρ0−1. (22)

We next determine the values of ρ0 and ρ1 based on the

constraints given in (17b) and (17c). Substituting p0(y) =
N (0, σ2

w) into (22), we have

∫ ∞

−∞
p

1
(y)dy =

2√
2πσw

eρ0+1

∫ ∞

0

e
−
(

1
2σ2

w
+ρ1

)

y2

dy

=
e−ρ0−1

√

1 + 2ρ1σ2
w

, (23)

where the identity [35, Eq. (3.321.3)]
∫ ∞

0

e−q2x2

dx =

√
π

2q
(24)

is applied to compute the integral in (23). We note that

1/2σ2
w − ρ1 > 0 is required in (23) for optimality and from

(17c) we have

e−ρ0−1 =
√

1 + 2ρ1σ2
w . (25)

Again, substituting p
0
(y) = N (0, σ2

w) into (22), we have

∫ ∞

−∞
y2p1(y)dy =

2√
2πσw

e−ρ0−1

∫ ∞

0

y2e
−
(

1
2σ2

w
+ρ1

)

y2

dy

=
e−ρ0−1σ2

w

(1 + 2ρ1σ2
w)

3/2
, (26)

where the identity [35, Eq. (3.326.2)]
∫ ∞

0

x2e−q2x2

dx =

√
π

4q3
(27)

is applied to compute the integral in (26). Following (17b)

and substituting (25) into (26), we have

ρ1 = − 1

2σ2
w

+
1

2Py
. (28)

We note that the value of ρ1 given in (28) guarantees 1/2σ2
w−

ρ1 > 0. Finally, substituting (25) and (28) into (22), we have

p1(y) =
1

√

2πPy

e
− y2

2Py , (29)

which indicates that p
1
(y) is a Gaussian distribution with zero

mean and variance Py .

We next prove that p
1
(y) given in (29) satisfies a sufficient

condition to be a solution to minimizing D(p1 ||p0) subject

to (17b) and (17c). To this end, following (21) the second

derivative of L(y, p
1
(y)) with respect to p

1
(y) is derived as

∂L2(y, p
1
(y))

∂p2
1
(y)

=
1

p
1
(y)

. (30)

From (30), we have
∂L2(y,p

1
(y))

∂p2
1
(y) ≥ k‖p

1
(y)‖2 for all y and

for some constant k > 0 (which is the sufficient condition

for p
1
(y) being the solution [34]), since as per (29) we have

0 ≤ p
1
(y) ≤ 1/

√

2πPy . Specifically, in order to guarantee

1/p
1
(y) ≥ k‖p

1
(y)‖2 for all y we can select any value of k

within 0 < k ≤ 2πPy

√

2πPy . So far, we have proved that

p
1
(y) given in (29) is the solution to minimizing D(p

1
||p

0
)

subject to (17b) and (17c), and clearly it also satisfies (17d).

We conclude that p
1
(y) given in (29) is the solution to the

optimization problems given in (17). This completes the proof

of Theorem 2.

Following (1) and noting nw ∼ N (0, σ2
w), Theorem 2

indicates that the optimal distribution of x that minimizes

D(p
1
||p

0
) is a Gaussian distribution with zero mean. Together

with [32, Theorem 8.6.5], we can conclude that the solution

to the optimization problem given in (15) is that x follows

a Gaussian distribution with zero mean. We next determine

the variance of this zero-mean Gaussian distributed x in the

following subsection.

B. Optimal Transmit Power

In this subsection, we present the second step in the proof

of Theorem 1. Specifically, we derive the optimal value of Px,

i.e., the variance of x with a zero-mean Gaussian distribution.

To this end, we first prove that D(p
1
||p

0
) is a monotonically

increasing function of Py and thus of Px for p1(y) given in

(29).

Substituting p
0
(y) = N (0, σ2

w) and (29) into (6), we have

D(p
1
||p

0
) =

1

2

(

Py

σ2
w

− 1 + log
σ2
w

Py

)

. (31)

Then, the first derivative of D(p
1
||p

0
) with respect to Py is

given by

∂D(p1 ||p0)

∂Py
=

1

2

(

1

σ2
w

− 1

Py

)

, (32)

which is non-negative since Py = Px + σ2
w > σ2

w . This

indicates that D(p
1
||p

0
) monotonically increases with Py and

thus with Px. We denote the value of Px that guarantees

D(p1 ||p0) = 2ǫ2 as P ǫ
x . Following (31), P ǫ

x is the value of

Px that guarantees

1

2

(

Px + σ2
w

σ2
w

− 1 + log
σ2
w

Px + σ2
w

)

= 2ǫ2. (33)

Noting the fact that the maximum I(x, z) achieved by p(x) =
N (0, Px) without the covertness constraint also monotonically

increases with Px as per [32, Theorem 8.6.5], we can conclude

P ∗
x = P ǫ

x. This completes the proof of Theorem 1.

Theorem 1 indicates that Gaussian signalling can simultane-

ously achieve the maximum mutual information from Alice to

Bob and ensure a minimum KL divergence from the likelihood

function under H0 to that under H1 at Willie. As such,

it is the optimal signalling for covert communications with

D(p
1
||p

0
) ≤ 2ǫ2 as the covertness constraint.

IV. WITH D(p
0
||p

1
) ≤ 2ǫ2 AS THE COVERTNESS

CONSTRAINT

In this section, we analytically prove that Gaussian signaling

is not optimal for the covert communication with D(p
0
||p

1
) ≤

2ǫ2 as the constraint. We also present a skew-normal signalling

strategy as a benchmark and derive the expression of p
1
(y) for

this skew-normal signalling in this section, which allows us

to numerically show that skew-normal signalling can be better

than Gaussian signalling when D(p
0
||p

1
) ≤ 2ǫ2 is used as the

covertness constraint in our numerical results (i.e., Section VI).
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A. Gaussian Signalling is Not Optimal

In this subsection, we prove that Gaussian signaling is not

optimal for covert communication with D(p
0
||p

1
) ≤ 2ǫ2 as

the constraint in the following theorem.

Theorem 3: Gaussian signaling, i.e., p(x) = N (mx, σ
2
x), is

not the solution to the following optimization problem

argmax
p(x),Px

I(x, z), (34a)

s.t. E[|x|2] = Px, (34b)
∫ ∞

−∞
p(x)dx = 1, (34c)

D(p
0
||p

1
) ≤ 2ǫ2, (34d)

p(x) ≥ 0, (34e)

where mx and σ2
x can take arbitrary values.

Proof: In order to prove Theorem 3, we next prove

that Gaussian signalling is not in general the solution to the

optimization problem given (34) in a special case, where Bob

and Willie both experience the same level of AWGN. In this

special case, we have nw in (1) and nb in (12) are i.i.d. and

thus the pdf of z and the pdf of y under H1 are the same, i.e.,

we have p(z) = p
1
(y). As such, in the rest of this proof we

use p
1
(y) to represent p(z). Following (12) and noting that x

is independent of nb, we have

I(x, z) = h(z)− h(nb), (35)

where

h(z) =

∫ ∞

−∞
p(z) log

1

p(z)
dz =

∫ ∞

−∞
p

1
(y) log

1

p
1
(y)

dy

(36)

is the differential entropy of z and h(nb) is the differential

entropy of nb, which is not a function of p(z) or p
1
(y). As

such, in this special case to prove Theorem 3 we are going

to prove that p
1
(y) = N (0, Py) is not the solution to the

following optimization problem:

argmax
p1 (y)

∫ ∞

−∞
p

1
(y) log

1

p
1
(y)

dy, (37a)

s.t.

∫ ∞

−∞
p

1
(y)dy = 1, (37b)

∫ ∞

−∞
y2p

1
(y)dy = Py, (37c)

D(p
0
||p

1
) ≤ 2ǫ2, (37d)

p1(y) ≥ 0. (37e)

In order to apply calculus of variations, following (37) we can

write the functional as
∫ ∞

−∞
p

1
(y) log

1

p
1
(y)

dy + η0
[

D(p
0
||p

1
)− 2ǫ2

]

+ η1

[
∫ ∞

−∞
p

1
(y)dy − 1

]

+ η2

[
∫ ∞

−∞
y2p

1
(y)dy − Py

]

=

∫ ∞

−∞
L(y, p

1
(y))dy − c, (38)

where η0, η1, η2, and η3 are the Lagrange multipliers. Then,

L(y, p1(y)) in (38) is given by

L(y, p1(y)) = p1(y) log
1

p1(y)
+ η0p0(y) log

p0(y)

p1(y)

+ η1p1
(y) + η2y

2p
1
(y), (39)

and c is a constant determined by the Lagrange multipliers,

h(nb), ǫ
2, and Py . Following (39), the functional derivative

(i.e., the first derivative of L(y, p
1
(y)) with respect to p

1
(y))

is given by

∂L(y, p1(y))

∂p
1
(y)

=−log p
1
(y)−1−η0

p0(y)

p
1
(y)

+η1+η2y
2. (40)

Using the calculus of variations, a necessary condition for the

optimal p1(y) in (37) is the existence of Lagrange multipliers

such that the functional derivative given in (40) is zero. As

per [32, Theorem 8.6.5], p
1
(y) = (N)(0, Py) maximizes the

mutual information between x and z subject to the constraints

given in (37b), (37c), and (37e). As such, p
1
(y) = N (0, Py)

must satisfy

− log p
1
(y)− 1 + ηa1 + ηa2y

2 = 0, (41)

for two Lagrange multipliers ηa1 and ηa2 . If p
1
(y) = N (0, Py)

is the solution to the optimization problem given in (37),

following (41) it must satisfy

−η0
p

0
(y)

p
1
(y)

+ ηb1 + ηb2y
2 = 0, (42)

with ηb1 = η1 − ηa1 and ηb2 = η2 − ηa2 . If (42) is satisfied, then

p
1
(y) is given by

p
1
(y) =

η0p0
(y)

ηb1 + ηb2y
2
. (43)

We note that in (43) the value of ηb2 cannot be zero. Otherwise,

we will have p
1
(y) = η0p0

(y)/ηb1. In order to guarantee the

pdf constraint (34c) with p
1
(y) = η0p0

(y)/ηb1, we would have

η0/η
b
1 = 1, which cannot guarantee the power constraint (34b)

simultaneously, since Py = Px+σ2
w > σ2

w. As such, (43) with

ηb2 6= 0 indicates that the optimal signalling (if it exists) is not

Gaussian, which completes the proof of Theorem 3.

B. A Benchmark p(x): Skew-Normal Distribution

In this subsection, we present the skew-normal distribution

as a benchmark p(x), where we consider the case in which the

AWGN at Bob and Willie is i.i.d (i.e., nw and nb are i.i.d) such

that the received signal at Willie y and the received signal at

Bob z follow the same distribution. We derive the expression

of p
1
(y) for this skew-normal distribution, which allows us to

numerically show that it can be better than Gaussian signalling

when the covertness constraint is given by D(p
0
||p

1
) ≤ 2ǫ2.

If x follows a skew-normal distribution, the corresponding

expression of p(x) is given by [38]

p(x) =
1

ω
√
2π

e−
(x−µ)2

2ω2

[

1 + erf

(

θ(x− µ)

ω
√
2

)]

, (44)

where µ is the location parameter, ω is the scale parameter, θ
is the skew parameter, and erf(x) is the error function given by
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erf(x) = 1√
π

∫ x

−x
e−t2dt. We note that the normal distribution

is recovered from (44) when θ = 0 and the skewness increases

as |θ| increases. In addition, the skew-normal distribution is

right skewed relative to the normal distribution if θ > 0 and

is left skewed if θ < 0. For the distribution given in (44), the

mean and variance of x are, respectively, given by

E[x] = µ+ ωδ

√

2

π
, (45)

E[|x − E[x]|2] = ω2

(

1− 2δ2

π

)

, (46)

where δ = θ/
√
1 + θ2. In this work, we focus on the skew-

normal distribution with zero and Px as the mean and variance,

respectively. To this end, as per (45) and (46), for a given θ
we have

ω = ±
√

Px

1− 2θ2

π(1+θ2)

, (47)

µ = −ω

√

2θ2

π(1 + θ2)
. (48)

We can vary the values of θ to obtain different skew-normal

distributions with zero and Px as the mean and variance,

respectively, where the values of ω and µ are updated as per θ
according to (47) and (48), respectively. This allows us to find

a potential better p(x) than the normal distribution in terms

of achieving a higher I(x, z) subject to the constraints given

in (34b), (34c), (34d), and (34e), which will be confirmed in

the numerical section (i.e., Section VI).

In order to facilitate the calculation of the KL divergence

from p
0
(y) to p

1
(y) and the mutual information between x

and z, we derive the expression of p1(y) for the skew-normal

p(x) in the following proposition, which is also the expression

of p(z) for i.i.d. nw and nb.

Proposition 1: For a skew-normal p(x) with zero mean,

variance Px, and a non-zero skew parameter θ, following (1)

the expression of p
1
(y) is derived as

p
1
(y) =

|ω|
ω
√

2π(σ2
w + ω2)

e
− (y−µ)2

2(σ2
w+ω2)

+
1

π
√
2πσ3

wθ
2

∞
∑

k=1

(−1)k+1e
− (y−µ)2

2σ2
w

(2k − 1)(k − 1)!

(

(σ2
w + ω)2

σ2
wθ

2

)− 1
2−k

×
[

−σwθ

|θ| (σ
2
w + ω2)k+1Γ(k)1F 1

(

k,
1

2
,

ω2(y − µ)2

2σ2
w(σ

2
w + ω2)

)

+
σ2k+3
w θ3

|θ|−2k+1

(

σ2
w + ω2

σ2θ2

)k+1

Γ(k)1F 1

(

k,
1

2
,

ω2(y − µ)2

2σ2
w(σ

2
w + ω2)

)

+2
√
2ω(σ2

w + ω2)k+
1
2 (y − µ)Γ

(

k +
1

2

)

×1F 1

(

k +
1

2
,
3

2
,

ω2(y − µ)2

2σ2
w(σ

2
w + ω2)

)]

, (49)

where 1F 1(a, b, z) is the Kummer confluent hypergeometric

function.

Proof: Following (1), we have y = x+nw under H1 and

noting nw ∼ N (0, σ2
w) we have

p
1
(y) =

1√
2πσw

∫ ∞

−∞
e
− (y−x)2

2σ2
w p(x)dx, (50)

since x and nw are independent. Then, substituting (44) into

(50) we have

p
1
(y) =

1

2πσwω

∫ ∞

−∞
e
− (y−x)2

2σ2
w

− (x−µ)2

2ω2 dx

+
1

2πσwω

∫ ∞

−∞
e
− (y−x)2

2σ2
w erf

(

θ(x − µ)

ω
√
2

)

dx

a
=

|ω|
ω
√

2π(σ2
w + ω2)

e
− (y−µ)2

2(σ2
w+ω2)

+

√
2

π
√
πσwθ

∞
∑

k=1

(−1)k+1

(2k−1)(k−1)!

∫ ∞

−∞
χ2k−1e

−
(y−

ω
√

2χ
θ

−µ)2

2σ2
w dχ,

(51)

where
a
= is achieved by setting χ = θ(x−µ)

ω
√
2

and with the aid

of the following identity [35, Eq. (8.253.1)]

erf(χ) =
2√
π

∞
∑

k=1

(−1)k+1 χ2k−1

(2k − 1)(k − 1)!
. (52)

Then, solving the resultant integrals in (51) leads to the desired

result in (49), which completes the proof of Proposition 1.

Following Proposition 1, the KL divergence from p0(y) to

p
1
(y) can be obtained by substituting (49) into (7). Since x

and nb are i.i.d, the mutual information between x and z can

be written as

I(x, z) = h(z)− h(nb)

= −
∫ ∞

−∞
p(z) log p(z)dz − 1

2
log(2πeσ2

b ), (53)

where the expression for p(z) is the same as that for p
1
(y)

given in (49).

V. COVERT COMMUNICATIONS WITH GAUSSIAN

SIGNALLING

In this section, we first present Willie’s detection perfor-

mance in terms of the minimum detection error probabil-

ity (i.e., ξ∗) with Gaussian signalling (x follows the zero-

mean Gaussian distribution with variance Px, i.e., p(x) =
N (0, Px)). Then, we examine the tightness of the two lower

bounds on ξ∗ determined by the two KL divergences, i.e.,

D(p
0
||p

1
) and D(p

1
||p

0
), based on which we conclude that

D(p
0
||p

1
) ≤ 2ǫ2 is a more desirable covertness constraint than

D(p
1
||p

0
) ≤ 2ǫ2.

A. Willie’s Detection Performance

With p(x) = N (0, Px), as per (1) the likelihood functions

of y under H0 and H1 are given as

p
0
(y) = N (0, Px), (54)

p
1
(y) = N (0, Px + σ2

w), (55)
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respectively. Considering the equal a priori probabilities for

H0 and H1, the optimal test that minimizes ξ is the likelihood

ratio test with 1 as the optimal detection threshold [36], [37],

which is given by

p
1
(y)

p
0
(y)

D1≥
<
D0

1. (56)

After some algebraic manipulations, (56) can be reformulated

as

y2
D1≥
<
D0

φ∗, (57)

where φ∗ is the optimal threshold for y2, which is given by

φ∗ =
(Px + σ2

w)σ
2
w

Px
ln

(

Px + σ2
w

σ2
w

)

. (58)

Following (54) and (55), we have the cumulative density

functions (cdfs) of y2 under H0 and H1 given by

P
0
(y2) =

1

Γ(1/2)
γ

(

1

2
,
y2

2σ2
w

)

, (59)

P1(y
2) =

1

Γ(1/2)
γ

(

1

2
,

y2

2(Px + σ2
w)

)

, (60)

respectively, where γ(·, ·) is the lower incomplete gamma

function given by γ(n, x) =
∫ x

0 e−ttn−1dt. Then, following

(57) the false positive and miss detection rates for this optimal

detection threshold φ∗ are derived as

α∗=Pr(y2 > φ∗|H0)=1 − 1

Γ(1/2)
γ

(

1

2
,
φ∗

2σ2
w

)

, (61)

β∗=Pr(y2 < φ∗|H1)=
1

Γ(1/2)
γ

(

1

2
,

φ∗

2(Px + σ2
w)

)

, (62)

respectively. We are going to use the above expressions of α∗

and β∗ to evaluate the detection performance of Willie, based

on which we can determine the maximum I(x, z) achieved

subject to the covertness constraint ξ∗ = α∗ + β∗ ≥ 1− ǫ.

B. Mutual Information with Gaussian Signalling

For p(x) = N (0, Px), the mutual information of x and z

as a function of Px is given by

Rab = log

(

1 +
Px

σ2
b

)

. (63)

Then, considering the covertness constraint ξ∗ ≥ 1 − ǫ, the

optimization problem at Alice is given by

argmax
Px>0

Rab, (64a)

s.t. ξ∗ ≥ 1− ǫ. (64b)

Due to the complicated expressions of α∗ and β∗ given in (61)

and (62), the solution to the optimization problem given in (64)

is mathematically intractable and thus we have to numerically

search for it. Based on the searched optimal Px, we will

compare the achieved mutual information of x and z subject to

ξ∗ ≥ 1−ǫ with those achieved subject to D(p
0
||p

1
) ≤ 2ǫ2 and

D(p
1
||p

0
) ≤ 2ǫ2 in Section VI. To this end, in the following

subsection we examine the difference between D(p
0
||p

1
) and

D(p1 ||p0) with Gaussian signalling.

C. Difference between D(p
0
||p

1
) and D(p

1
||p

0
)

In this subsection, we analytically prove D(p0 ||p1) ≤
D(p

1
||p

0
) for Gaussian signalling, which leads to the fact that

D(p
0
||p

1
) determines a tighter lower bound on Willie’s actual

minimum detection error probability ξ∗ than D(p
1
||p

0
) and

thus D(p
0
||p

1
) ≤ 2ǫ2 is a more desirable constraint in the

covert communications with Gaussian signalling.

Proposition 2: For the zero-mean Gaussian signalling with

Px as the transmit power, i.e., p(x) = N (0, Px), we have

D(p
0
||p

1
) ≤ D(p

1
||p

0
), (65)

where we recall that Py = Px + σ2
w > σ2

w.

Proof: For p(x) = N (0, Px), following (1) and (7) we

have

D(p
0
||p

1
) =

1

2

(

σ2
w

Py
− 1 + log

Py

σ2
w

)

. (66)

Then, following (31) and (66) we have the difference between

D(p
1
||p

0
) and D(p

0
||p

1
) as a function of Px given by

f(Px) , D(p
1
||p

0
)−D(p

0
||p

1
)

=
P 2
y − σ4

w

σ2
wPy

− log
P 2
y

σ4
w

=
Px + σ2

w

σ2
w

− σ2
w

Px + σ2
w

− 1

2
log(Px + σ2

w) + log σw. (67)

Following (67), the first derivative of f(Px) with respect to

Px is derived as

∂f(Px)

Px
=

1

σ2
w

+
σ2
w

(Px + σ2
w)

2
− 1

2(Px + σ2
w)

=
2P 2

x + 3σ2
wPx + 3σ4

w

2σ2
w(Px + σ2

w)
2

=
1

2σ2
w(Px + σ2

w)
2

[

2

(

Px +
3

4
σ2
w

)2

+
15

8
σ2
w

]

≥ 0, (68)

due to σ2
w ≥ 0 and Px > 0. Then, as per (67) and (68) we can

conclude D(p0 ||p1) ≤ D(p1 ||p0), which completes the proof

of Proposition 2.

Following Proposition 2, we have the following corollary

with regard to the solutions to the optimization problems given

in (15) and (34).

Corollary 1: The solution to the optimization problem given

in (15) is feasible to the optimization problem given in (34),

which leads to the fact that the maximum mutual information

I(x, z) achieved subject to D(p
0
||p

1
) ≤ 2ǫ2 is higher than

that achieved subject to D(p
1
||p

0
) ≤ 2ǫ2.

Proof: Noting D(p
0
||p

1
) ≤ D(p

1
||p

0
) as proved in

Proposition 2, we can conclude that Gaussian signalling, i.e.,

p(x) = N (0, P ∗
x ), which is the solution to (15), is feasible

to (34). Noting the fact that both D(p
0
||p

1
) and D(p

1
||p

0
)

are increasing function of Px for Gaussian signalling, we can

conclude that the constraint D(p
0
||p

1
) ≤ 2ǫ2 determines a

higher value of Px than the constraint D(p
1
||p

0
) ≤ 2ǫ2, which

completes the proof.

The gap between the maximum mutual information achieved

subject to D(p0 ||p1) ≤ 2ǫ2 and D(p1 ||p0) ≤ 2ǫ2 will be
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Fig. 2. The KL divergence D(p0 ||p1) and mutual information I(x, z) for
skew-normal p1(y) with different values of the skew parameter θ, where
σ2

b
= σ2

w = 0dB and Px = 0dB.

explicitly examined for Gaussian signalling in our numerical

section (i.e., Section VI). Following (3), (4), (5), and Propo-

sition 2, we have the following corollary.

Corollary 2: For Gaussian signalling, we have

ξ∗ ≥ 1−
√

D(p
0
||p

1
)/2 ≥ 1−

√

D(p
1
||p

0
)/2, (69)

which means that D(p
0
||p

1
) determines a tighter lower bound

on ξ∗ than D(p
1
||p

0
) for Gaussian signalling.

Corollary 2 indicates that for Gaussian signalling

D(p0 ||p1) ≤ 2ǫ2 is a more desirable constraint than

D(p
1
||p

0
) ≤ 2ǫ2 in practical covert communications.

VI. NUMERICAL RESULTS

In this section, we first present the KL divergence D(p0 ||p1)
and mutual information I(x, z) for skew-normal signalling,

which as shown can achieve a higher I(x, z) subject to

D(p0 ||p1) ≤ 2ǫ2 than Gaussian signalling. This confirms that

Gaussian signalling is not optimal for covert communications

with D(p
0
||p

1
) ≤ 2ǫ2 as the constraint. We then use ξ∗ ≥ 1−ǫ

(i.e., VT (p0
, p

1
) ≤ ǫ) as the covertness constraint and nu-

merically show that a skew-normal p(x) can achieve a higher

mutual information I(x, z) than the normal p(x), which draws

a more general conclusion that Gaussian signalling is not

optimal for covert communications with ξ∗ ≥ 1 − ǫ as the

constraint. Finally, we numerically and explicitly examine the

differences between covert communications with the afore-

mentioned three different constraints for Gaussian signalling.

In Fig. 2, we plot the KL divergence D(p
0
||p

1
) and mutual

information I(x, z) for a skew-normal p(x) with different

skew parameters, where the mean and variance of x are fixed

as 0 and Px, respectively. From this figure, we observe that

the skew-normal p(x) can achieve a lower KL divergence

D(p
0
||p

1
) with some specific values of the skew parameter

θ than the corresponding normal p(x), although the former

0.3318 0.332 0.3322 0.3324 0.3326 0.3328 0.333

0.711

0.7112

0.7114

0.7116

0.7118

0.712

0.7122

0.7124

0.7126

0.7128

0.713

Fig. 3. The achieved mutual information I(x, z) versus the associated KL
divergence D(p0 ||p1) for the skew-normal and normal p(x).

always achieves a lower mutual information I(x, z) than the

later. This provides the possibility that the skew-normal p(x)
achieves a higher I(x, z) subject to D(p

0
||p

1
) ≤ 2ǫ2 than

the normal p(x). To confirm this, we plot the achieved mu-

tual information I(x, z) versus the associated KL divergence

D(p
0
||p

1
) for skew-normal and normal p(x) in Fig. 3. In order

to plot Fig. 3, we fix Px = 0dB for the skew-normal p(x) and

vary θ to generate different values of I(x, z) and D(p
0
||p

1
),

while for the normal p(x) we slightly vary Px to obtain similar

values of I(x, z) and D(p0 ||p1), since for the normal p(x)
there is a unique I(x, z) and a unique D(p

0
||p

1
) for each Px.

Noting that the equality in the constraint D(p
0
||p

1
) ≤ 2ǫ2 for

the normal p(x) should be guaranteed, Fig. 3 confirms that the

skew-normal p(x) can achieve a higher I(x, z) than the normal

p(x) subject to D(p0 ||p1) ≤ 2ǫ2. We note that in Fig. 3 the

skew parameter θ is not optimized in terms of maximizing

I(x, z) subject to D(p
0
||p

1
) ≤ 2ǫ2. With an optimized θ,

which can be numerically obtained, the skew-normal p(x)
can possibly achieve a higher I(x, z) for a given D(p

0
||p

1
).

This observation explicitly shows that Gaussian signaling is

not optimal for covert communications with D(p
0
||p

1
) ≤ 2ǫ2

as the constraint.

Following a similar procedure of obtaining Fig. 3 but

replacing the KL divergence D(p
0
||p

1
) with the total variation

VT (p0
, p

1
), we plot the achieved mutual information I(x, z)

versus VT (p0
, p

1
) in Fig. 4. From Fig. 4, we observe that

the skew-normal p1(y) can achieve a higher I(x, z) for some

specific values of VT (p0
, p

1
) than the normal p

1
(y). Noting

ξ∗ = 1− VT (p0
, p

1
), this observation indicates that Gaussian

signalling is not optimal for covert communications with the

constraint ξ∗ ≥ 1 − ǫ. As discussed in the Introduction, we

note that the bounds determined by the KL divergences are

still useful, since this total variation VT (p0
, p

1
) can only be

numerically determined, while these bounds enable operational

covert communication systems in practice through guarantee-



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 10

0.1645 0.165 0.1655 0.166
0.3435

0.344

0.3445

0.345

0.3455

0.346

0.3465

Fig. 4. The mutual information I(x, z) versus the total variation VT (p0 , p1)
for skew-normal and normal p1(y).

ing stricter covertness constraints.

Considering Gaussian signalling, in Fig. 5 we plot the

minimum detection error probability ξ∗ and its two lower

bounds determined by the two KL divergences, i.e., D(p
1
||p

0
)

and D(p0 ||p1), versus the transmit power Px for different

AWGN power at Willie (i.e., σ2
w). In this figure, we first

observe that these two lower bounds are close to each other

when ξ∗ is close to 1 for Gaussian signalling. We note that

in covertness constraints the value of ǫ is usually very small,

which enforces ξ∗ being close to 1. This can be the reason why

these two bounds have been alternatively used in the literature

for covert communications with Gaussian signalling. However,

as we have shown in this work, with regard to the optimality

of different signalling strategies these two bounds indeed lead

two different conclusions. As expected from our Proposition 2,

we observe that the lower bound determined by D(p0 ||p1)
(i.e., 1 −

√

D(p
0
||p

1
)/2) is tighter than that determined by

D(p
1
||p

0
) (i.e., 1 −

√

D(p
1
||p

0
)/2). Finally, Fig. 5 confirms

that ξ∗ decreases as Px increases or σ2
w decreases.

With Gaussian signalling, in Fig. 6 we plot the maximum

allowable transmit power P ∗
x and the maximum mutual infor-

mation I(x, z) achieved subject to three different covertness

constraints, i.e., ξ∗ ≥ 1−ǫ, D(p
0
||p

1
) ≤ 2ǫ2, and D(p

1
||p

0
) ≤

2ǫ2, versus ǫ. In this figure, we first observe that the achieved

P ∗
x and the maximum I(x, z) subject to ξ∗ ≥ 1− ǫ are higher

than those achieved subject to the other two constraints. This is

due to the fact that 1−
√

D(p
0
||p

1
)/2 and 1−

√

D(p
1
||p

0
)/2

TABLE I
SUMMARY OF OUR MAIN RESULTS

Covertness Gaussian Constraint Maximum
Constraints Optimality Strictness I(x; z)

ξ∗ ≥ 1− ǫ No Benchmark Benchmark

D(p0 ||p1) ≤ 2ǫ2 No Stricter Lower

D(p1 ||p0) ≤ 2ǫ2 Yes Strictest Lowest

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 5. The minimum detection error probability ξ∗ and its two lower bounds
versus the transmit power Px for different values of σ2

w .
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Fig. 6. The maximum allowable transmit power P ∗

x and the maximum mutual
information I(x, z) achieved subject to three different covertness constraints,
where σ2

b
= σ2

w = 0dB.

are lower bounds on ξ∗, and as shown in Fig. 5 there are

gaps between ξ∗ and the two lower bounds. This observation

indicates that these two lower bounds are not very tight even in

the low regime of ξ∗ for Gaussian signalling, which motivates

us to find other tighter lower bounds in future works. We also

observe that P ∗
x or the maximum I(x, z) achieved subject

to D(p
0
||p

1
) ≤ 2ǫ2 is greater than that achieved subject to

D(p
1
||p

0
) ≤ 2ǫ2. This concludes that D(p

1
||p

0
) ≤ 2ǫ2 is a

stricter covertness constraint than D(p0 ||p1) ≤ 2ǫ2. As we

discussed following our Proposition 2, this conclusion holds

not only for Gaussian signalling but also for the optimal

signalling strategies.

Following our above examinations, we summarize our main
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results obtained in this work in Table I with detailed clar-

ifications. With regard to the results in the second column,

Gaussian signalling is not optimal for covert communications

with ξ∗ ≥ 1 − ǫ as the constraint (as numerically shown in

Fig. 4), Gaussian signalling is optimal for covert communi-

cations with D(p
1
||p

0
) ≤ 2ǫ2 as the constraint (as proved in

Theorem 1), and Gaussian signalling is not optimal for covert

communications with D(p
0
||p

1
) ≤ 2ǫ2 as the constraint (as

proved in Theorem 3). For the strictness of the covertness

constraints as listed in the third column, as we proved in

Corollary 1 the covertness constraint D(p
1
||p

0
) ≤ 2ǫ2 is

relatively stricter than D(p
0
||p

1
) ≤ 2ǫ2, since the solution

to the optimization problem (15) with D(p1 ||p0) ≤ 2ǫ2 as the

covertness constraint is feasible to the optimization problem

(34) with D(p
0
||p

1
) ≤ 2ǫ2 as the covertness constraint.

This is due to the fact that for Gaussian signalling we

have D(p
0
||p

1
) ≤ D(p

1
||p

0
) and Gaussian signalling is the

solution to the optimization problem (15). Since the two KL

divergences only determine two lower bounds on ξ∗, both

D(p
1
||p

0
) ≤ 2ǫ2 and D(p

0
||p

1
) ≤ 2ǫ2 are stricter covertness

constraints relative to ξ∗ ≥ 1 − ǫ. The results listed in the

fourth column are achieved as per those detailed in the third

column accordingly. We note that, although we have proved

ξ∗ ≥ 1−
√

D(p
0
||p

1
)/2 ≥ 1−

√

D(p
1
||p

0
)/2 for Gaussian

signalling in Corollary 2, we cannot draw any conclusion on

the tightness of the two bounds (i.e., 1−
√

D(p0 ||p1)/2 and

1−
√

D(p1 ||p0)/2) on the minimum detection error probability

ξ∗, since the relationship between D(p
0
||p

1
) and D(p

1
||p

0
) has

not been clarified for general signalling strategies.

VII. CONCLUSION

In this work, we first proved the optimality of Gaussian

signalling for covert communications with D(p
1
||p

0
) ≤ 2ǫ2 as

the constraints. To this end, we proved that Gaussian signalling

can minimize the KL divergence D(p
1
||p

0
) while maximizing

the mutual information I(x, z) subject to power constraints.

Unexpectedly, we also proved that Gaussian signalling is not

optimal for covert communications with D(p
0
||p

1
) ≤ 2ǫ2 as

the constraint, for which the optimal signalling will be tackled

in our near future works. As we showed, a skew-normal p(x)
can achieve a higher I(x, z) subject to D(p

0
||p

1
) ≤ 2ǫ2 than

the normal p(x). Furthermore, as we proved D(p1 ||p0) ≤ 2ǫ2

is stricter than D(p
0
||p

1
) ≤ 2ǫ2 as the covertness constraint,

which is due to D(p
0
||p

1
) ≤ D(p

1
||p

0
) for Gaussian signalling

and leads to the fact that D(p0 ||p1) ≤ 2ǫ2 gives higher mutual

information than D(p
1
||p

0
) ≤ 2ǫ2.
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