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Terminal Orientation in OFDM-based LiFi Systems
Ardimas Andi Purwita, Student Member, IEEE, Mohammad Dehghani Soltani, Student Member, IEEE,

Majid Safari, Member, IEEE, and Harald Haas, Fellow, IEEE

Abstract—Light-fidelity (LiFi) is a wireless communication
technology that employs both infrared and visible light spectra
to support multiuser access and user mobility. Considering the
small wavelength of light, the optical channel is affected by the
random orientation of a user equipment (UE). In this paper,
a random process model for changes in the UE orientation
is proposed based on data measurements. We show that the
coherence time of the random orientation is in the order of
hundreds of milliseconds. Therefore, an indoor optical wireless
channel can be treated as a slowly-varying channel as its delay
spread is typically in the order of nanoseconds. A study of
the orientation model on the performance of direct-current-
biased orthogonal frequency-division multiplexing (DC-OFDM)
is also presented. The performance analysis of the DC-OFDM
system incorporates the effect of diffuse link due to reflection
and blockage by the user. The results show that the diffuse link
and the blockage have significant effects, especially if the UE is
located relatively far away from an access point (AP). It is shown
that the effect is notable if the horizontal distance between the
UE and the AP is greater than 1.5 m in a typical 5 × 3.5 × 3 m3

indoor room.

Index Terms—LiFi, measurement, random orientation, ran-
dom process model, OFDM.

I. Introduction

L ight-fidelity (LiFi) has recently attracted significant re-
search interest as the scarcity in the radio frequency (RF)

spectrum becomes a major concern, see [1] and [2]. Based on
predictions of mobile data traffic, the number of cell sites and
achievable spectral efficiency, the entire RF spectrum in the
US will be fully utilized in around the year 2035 [3]; hence,
the use of optical wireless communications is of great interest.
The benefit of LiFi over other optical wireless communication
systems, such as visible light communication (VLC), is that
LiFi supports multi-user connections and bi-directionality. In
other words, LiFi provides similar functionality as the other
Institute of Electrical and Electronics Engineers (IEEE) 802.11
technologies, e.g., handover and multiuser access. Therefore,
task groups for LiFi in IEEE 802.11bb and IEEE 802.15
already exist [4], [5].

In an indoor room, the quality of the optical channel highly
depends on the geometry parameters of a user equipment (UE),
an access point (AP) and the dimensions of the room [6].
Therefore, a significant change in the parameters due to the
mobility of the users greatly affects the channel. The main
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focus of this paper is the random orientation of the UE.
Meanwhile, the majority of studies on LiFi or VLC only
consider the case where the UE faces upward, see [2] or [7]
and references therein. The facing-upward assumption is prac-
tically supported by LiFi universal serial bus (USB) dongles
used by a laptop or a tablet computer. LiFi USB dongles have
been commercialized, and this use case is already deployed.
The next natural step for LiFi is for it to be integrated into
mobile devices, such as smartphones and indeed tablets or
laptops. In practice, the orientation of the mobile devices is
random in nature. Therefore, it is of importance to study the
characteristics of the random orientation.

Over the past few years, only a few papers have been
published which have considered the random orientation of
the mobile terminal, see [8]–[17]. The authors in [8], [11] and
[12] focus on the bit error ratio (BER) performances of an
on-off keying (OOK) system with a random receiver orienta-
tion. Handover probability in a LiFi network with randomly-
oriented UEs is studied in [9] and [16]. The studies of the
VLC channel capacity and the effect of random orientation to
non-orthogonal multiple access (NOMA) are presented in [10]
and [13], respectively. All the authors assume that the random
orientation follows a certain probability density function (PDF)
without any support from data measurements. In our initial
work [14], [18], the PDF of the random orientation based on a
series of experiments is presented. A generalized random way
point model is also proposed in [18] considering the effect
of orientation using an autoregressive (AR) model. Another
experiment result is reported in [19]; however, the authors
only focus on the rate of change of orientation. In this paper, a
more comprehensive analysis of the experimental results first
reported in [14] is provided.

The proposed PDFs in [14] and [18] model the random
orientation as a random variable (RV) by directly counting
the frequency of data, which are assumed to be uncorre-
lated. In other words, temporal characteristics of the random
orientation, e.g., the autocorrelation function (ACF), are not
described. Moreover, the noise from the measurement device is
ignored. In this paper, the random orientation is characterized
based on a random process (RP) model. The main challenge
is that the time sampling of data measurements is not evenly-
spaced. Therefore, the ACF cannot be directly estimated
from the sample data, and the conventional Fourier analysis
cannot be used since the sinusoids are no longer orthogonal.
Therefore, compared to our previous works in [14] and [18],
the least-squares spectral analysis (LSSA) [20]–[24] is used to
estimate the spectral characteristics of the data measurements.
In addition, a Wiener filter is used to filter the noise in the
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data measurement [25], and the CLEAN1 algorithm is applied
to eliminate the partial-aliasing in the power spectrum, see
[23] and [25]. Note that these issues are neglected in [14]
and [18]. It will be shown later that neglecting, for example,
the unevenly-spaced sampling leads to a smoothing effect,
which might further give inaccurate delay spread values of
our system.

Based on our proposed RP model, it is shown that the
channel is highly-correlated within the order of hundreds
of milliseconds. The RP model is suitable for the type of
studies which consider the movement of the users inside a
room, such as the studies of handover probability in a LiFi
network [9] and [16]. In addition, the RP model can be
used in mobility models such as the orientation-based random
waypoint model proposed in [18]. In this paper, the random
orientation model is applied to an orthogonal frequency-
division multiplexing (OFDM)-based LiFi system [2]. The
main advantage of OFDM over other typical modulation
systems, such as OOK, is that it can mitigate the inter-symbol
interference (ISI) which is caused by multipath propagation of
the indoor optical channel, see [6] and [26].

As a use case, this paper focuses on the comparison of
the analysis of the LiFi system with and without the diffuse
link considering the random orientation model. The reason
for this is that most studies in LiFi or VLC, see [8]–[14]
and [16], neglect the diffuse link, and only the line-of-sight
(LOS) channel is considered due to the fact that the received
signal power is dominated by the power from the LOS link.
It will be shown later that this is not always the case, and it
will significantly affect the performance of our LiFi system in
some scenarios. This result is consistent with other results in
[6], [26] and [27] which consider the diffuse link. However,
these studies only focus on the OOK modulation scheme. In
this paper, the effect of the diffuse link in the OFDM-based
LiFi system is investigated. We will also consider a human
body as both blocking and reflector objects since the random
orientation is modeled based on data measurements that were
collected while the participants were using the UEs.

In Section II, our system model is presented. Our experi-
mental setups and results are discussed in Section III and IV,
respectively. The use cases of the random orientation model
to the OFDM-based LiFi system are presented in Section V
and VI. In Section V, the performances of the LiFi system
with fixed locations of the UEs and the users are studied. The
results in Section V are then generalized to the case where
the locations and the orientations of the UEs are random in
Section VI. Section VII concludes our work.

II. SystemModel

An indoor room with several optical APs, known as the
optical attocell [2], and a mobile user using his LiFi-enabled
device, referred to as a UE, is assumed as depicted in Fig. 1(a).
Throughout this paper, the AP acts as a transmitter (Tx),
and the UE acts as a receiver (Rx). A UE is assumed to
have a photodiode (PD) on the front screen and held in

1To the best of authors’ knowledge, it is not an abbreviation and first
introduced as CLEAN algorithm.

(a)

(b)

Fig. 1. (a) System model and (b) block diagram of a DC-OFDM-based system.

a comfortable manner, which will be discussed in the next
section. A direct-current-biased OFDM (DC-OFDM) based
system is used in this paper; the block diagram of the system is
shown in Fig. 1(b). In this section, we first explain our OFDM
transmission system and then the channel model.

A. Transmission System
In the Tx, N inverse discrete Fourier transform (IDFT)

operations are performed to obtain discrete time and parallel
OFDM symbols, which are expressed by:

xp[k] =

N−1∑
n=0

Xnej2πnk/N, k = 0, 1, . . . , N − 1, (1)

where Xn is the symbol that is transmitted at the nth subcarrier
[28]. The symbol Xn is chosen from an Mn-ary quadrature
amplitude modulation (QAM) constellation with the average
power E

[
|Xn |

2] = Pn. Moreover, Xn should follow the
Hermitian symmetry, i.e., Xn = X∗N−n. In this paper, the
constellation size and the power per symbol at each subcarrier
are fixed, i.e., Mn = M and Pn = 1.

If the number of subcarriers, N , is large, it is widely known
that xp[k] follows a Gaussian distribution with zero mean and
variance, σ2 = 2

(
N
2 − 1

)
[28].2 Furthermore, for a given bit

rate Rb, the OFDM symbol rate is Rs = 2Rb/log M .3 After
adding the cyclic prefix (CP), the OFDM sampling rate is:

fs = rosRs
N + Ncp

N
, (2)

2Recall that the DC subcarrier is used for the DC bias.
3The factor 2 is due to the Hermitian symmetry.
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where Ncp is the length of CP, and ros is the oversampling
ratio, i.e., ros = N/Nu, where Nu is the number of subcarriers
that are used. Zero padding in the frequency domain is applied
for the unused subcarriers. The bandwidth of the OFDM
symbol is defined as fs/(2ros).

Let’s now define x[k] as a discrete time OFDM signal
after parallel-to-serial conversion and adding the CP. The
signal x[k] needs to be clipped because (i) to meet the
dynamic range of the digital-to-analog converter (DAC) and
the analog-to-digital converter (ADC), (ii) to meet the non-
negative constraint of the intensity modulation (IM) and (iii)
to avoid the nonlinearities of the light emitting diode (LED).
Let xc[k] be a discrete time clipped signal of x[k] at levels
−r1σ and r2σ, where r1 and r2 denote the clipping ratios. In
this paper, we assume that the non-clipped region is linear. In
practice, a predistortion is applied to linearize a power-current
(P − I) characteristic curve of the LED in the desired non-
clipped region as in [29].

The zero-order hold is used to model the DAC. Let HDAC( f )
be a frequency response of it with the cutoff frequency is equal
to the bandwidth of the OFDM symbols. Note that the low-
pass frequency in the zero-order hold is modeled by a fifth
order Bessel filter [28]. A DC bias, Ibias, is performed after
the DAC to meet the non-negative constraint and defined as:

Ibias = 2r

N
2 −1∑
n=1

|HDAC( fn)|2, (3)

where fn denotes the frequency of the nth subcarrier and r =

r1 = r2 for direct-current (DC)-OFDM [28]. The frequency
response of the LED is denoted by HLED( f ) and modeled as
a low pass filter using a first order Butterworth filter. The
bandwidth of the LED is defined as a cutoff frequency of the
low pass filter, which is denoted by fcLED . The output signal of
the LED, which is in the optical domain, is transmitted over
a channel with a channel impulse response (CIR) h(t) whose
frequency response is HCIR( f ).

In the receiver, the frequency responses of the PD and
the transimpedance amplifier (TIA) are represented by the
frequency response of an antialiasing filter in the ADC,
HADC( f ), as it is typically narrower than the others. Note that
the PD has a responsitivy denoted by R whose physical unit is
Ampere per Watt (A/W). As in the DAC, the cutoff frequency
of ADC is chosen to be equal to the bandwidth of the OFDM
symbols. We mainly vary the cutoff frequency of the LED,
fcLED , as it is typically the main limiting factor in the front-
ends of an optical wireless communication system [7]. In this
paper, only the thermal noise is considered, and its single-sided
power spectral density (PSD) is denoted by N0. A single tap
equalizer is used to estimate the transmitted symbols.

In general, the BER at the nth subcarrier, Pbn , can be
approximated as follows [28]:

Pbn ≈
4

log2 M

(
1 −

1
√

M

)
Q

(√
3γn

M − 1

)
, (4)

where γn is the electrical signal-to-noise ratio (SNR) at the
nth subcarrier, which can be expressed as follows:

γn =
K2R2 |HDAC( fn)HLED( fn)HCIR( fn)HADC( fn)|2

fsN0 |HADC( fn)|2/(2N)
, (5)

where K is a constant due to the nonlinear amplitude distortion
(see (10) in [28]). The average BER for all OFDM symbols
is denoted by Pb which is simply the average of Pbn over all
subcarriers.

B. Channel Impulse Response, h(t)

The multipath propagation in an indoor optical wireless
channel is described by the CIR h(t) and its frequency
response HCIR( f ). A widely used method to calculate the
CIR is proposed by Kahn and Barry in [26]. This method
is significantly improved by Schulze in [30] by taking into
account all reflections. This method is used in this paper since
our interest is not to observe how adding an increased number
of high order reflections affects the LiFi analyses, but instead
to observe how neglecting the reflections affect the analyses.

In this paper, an empty office room with dimensions length
(L) × width (W) × height (H) m3 is assumed. A human body
will be modeled as a rectangular prism, which is similar to
[31], i.e., the iterative version of Kahn and Barry’s method.
Considering an object as a rectangular prism using Schulze’s
method is straightforward, and it will be discussed later. A
similar approach is presented in [32], but the authors also
model other common body parts. From our observations,
adding such details is less significant to our analyses than
focusing on the reflectivities of those body parts. In addition,
diffractions on the edge of a human body are ignored in this
paper since the wavelengths of the infrared and visible light
spectrum are relatively short compared to the dimension of the
edge of a human body. Blockages due to other people are not
considered in this paper.

The CIR h(t) can be decomposed into the LOS and the
diffuse links [30]. That is, it can be written as:

h(t) = hRx,Tx(t) + hdiff(t)
F
⇐⇒
F−1

HCIR( f ) = HRx,Tx( f ) + Hdiff( f ),

(6)

where F denotes the Fourrier transform. Let’s define an
attenuation factor between the Rx and the Tx as follows:

GRx,Tx =
m + 1

2π
cosm

(
φRx,Tx

) ARx cos
(
ψRx,Tx

)
d2

Rx,Tx

vRx,Tx(FoV),

(7)

where m is the Lambertian index, ARx denotes the receiver area
and ψRx,Tx is the incident angle or angle of arrival between
the normal vector nu and the position of the Rx. Note that
the orientations of an LED in the Tx and a PD in the Rx are
shown by the unit normal vector nu and na, respectively. The
radiant angle or angle of departure between the normal vector
na and the position of the Tx is denoted by φRx,Tx. The distance
between the Tx and Rx is denoted by dRx,Tx. The term vRx,Tx
has a binary value that depends on two conditions. The first
condition is that vRx,Tx is one if 0 ≤ φRx,Tx ≤ π/2 and there is
no blocking object between the link Tx and Rx. The second
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condition is that vRx,Tx(FoV) is one if 0 ≤ ψRx,Tx ≤ FoV.
These two conditions must hold for vRx,Tx to be one.

The LOS link, HRx,Tx( f ), can be expressed by [30]:

HRx,Tx( f ) = GRx,Tx exp
(
− j2π f dRx,Tx/c

)
, (8)

where c is the speed of light. The diffuse component can be
calculated by partitioning each surface into discrete smaller
elements, i.e., p = 1, 2, . . . , P, and treating them as another ra-
diator or receiver. These discrete elements include the partition
of the surfaces of the blocking objects as they are modeled by
rectangular prisms. This is the reason why the calculation of
h(t) when a human body is modeled by a rectangular prism
is straightforward. The smaller elements act as a radiator with
the Lambertian index m = 1. The gain of the reflected light has
an additional attenuation factor, which is called the reflectivity,
ρ.

The frequency response of the diffuse component can be
calculated as follows [30]:

Hdiff( f ) = rT( f )Gρ

(
I −G( f )Gρ

)−1 t( f ). (9)

The vector rT( f ) =
(
HRX,1( f ) HRX,2( f ) · · · HRX,P( f )

)
is

called the receiver transfer vector. The transmitter transfer vec-
tor is denoted by t( f ) =

(
H1,TX( f ) H2,TX( f ) · · · HP,TX( f )

)T.
The room intrinsic frequency response for each small element
is described by a P× P matrix G( f ) whose its ith row and j th

column represent the LOS frequency response between the ith

and the j th elements. The matrix Gρ denotes the reflectivity
matrix where Gρ = diag (ρ1, ρ2, . . . , ρP).

III. Experiment

A. Assumptions

The unit normal vector of the transceiver is denoted by the
vector nu, and spherical coordinates are used to describe its
orientation. A polar angle is denoted by θ, and an azimuth
angle is denoted by ω, see the inset in Fig. 1(a). It is clear that
from (6-9), as the normal vector nu changes, so does the CIR.
Therefore, it is important to have the random orientation model
to study the CIR’s behavior. In this section, our experimental
results on the random orientation of a UE are discussed.

From our experimental data, it is observed that the noisy
measurement of θ, which is denoted by mθ (t), fluctuates
around its mean as depicted in Fig. 2. Note that discussions
about our experimental setups are given in the next section. In
this paper, the random orientation is modeled as the change
of orientation that is caused by user behavior such as hand
movements and other activities, such as typing or scrolling.
Therefore, we can write it as:

mθ (t) = µθ + θ0(t) + nθ (t), (10)

where µθ denotes the mean of mθ (t), the subscript ‘0’ refers
to the corresponding RP whose mean is zero and nθ (t) denotes
the noise of the measurement. Furthermore, we assume that
both θ0(t) and nθ (t) are wide-sense stationary (WSS) and
independent to each other. While the WSS RP asserts the mean
to be constant, it will be shown later that our proposed model
gives a reasonable match with the experimental data in terms
of the ACF and the power spectrum.

(a)

(b)

(c)

(d)

Fig. 2. Samples of noisy measurement: (a) mθ (t) and (b) mω |ω̃ (t) for the
sitting activity, (c) mθ (t) and (d) mω |ω̃ (t) for the walking activity.

For ω, it needs a different assumption as it highly depends
on the directions of the users. That is, for a different sample,
ω might no longer fluctuate around 40◦ as in Fig. 2(b), and it
could fluctuate around −40◦ if the participant faced the other
way. This does not happen in the θ case as all measurement
data θ generally fluctuate around µθ . For the azimuth angle ω,
conditioned on the direction of the UE, ω̃, we use following
noisy measurement model:

mω |ω̃(t) = ω̃ + ω0(t) + nω(t), (11)

where ω̃ is the angle direction of the UE and will be modeled
as a RV following the uniform distribution over the interval
(−π, π] as shown in [18] and [33]. Therefore, the subscript on
ω̃ denotes that mω |ω̃(t) is valid for a given value of ω̃. The
physical meaning of ω̃ is the direction of a UE, which will
later be used to define the direction of a user who holds it.
The descriptions of ω0(t) and nω(t) are the same as in (10).

B. Experimental Setup

The same experimental setup has been presented in [14]
and [18]. It will be provided here for the convenience of
the reader. We asked 40 participants from the Alexander
Graham Building, University of Edinburgh to conduct a series
of experiments. Nine of them were left-handed, and none
suffered from a severe hand tremor. After being briefed on the
procedure and the purpose of the experiments, they were asked
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to browse the Internet and watch videos as they streamed for a
minute. Both activities are chosen to emulate the typical data
that is obtained during activities requiring Internet services. To
support our WSS assumption, the time limit was set to be one
minute since the participants might get tired and change the
means drastically if the experiment was longer. To be able to
conduct the series of the experiments while measuring the data,
the Physics Toolbox Sensor Suite application is used [34]. The
application is installed on two different Samsung Galaxy S5
smartphones.

The participants were also asked to sit, which is referred
to as the sitting activity, and walk, which is referred to as
the walking activity, during the experiments. The walking
activity was conducted in a straight corridor with dimensions
40 m × 15 m. There was a total of 222 measurements that
were collected, which comprise 148 data measurements for
the sitting activity and 74 data measurements for the walking
activity.

IV. Experimental Results and Analysis

The Physics Toolbox Sensor Suite application captures real
values of rotations of a UE in terms of pitch, roll and yaw
rotations. These values are then transformed into the spherical
coordinates [9]. It is important to note here that time sampling
of the application is not evenly spaced and random in each data
measurement. The time sampling duration can range from 1
ms to 0.65 s. In fact, the most frequent time sampling durations
from all data measurements are, in the order, 1 ms, 18 ms and
64 ms, for a minute experiment, each data measurement has
around 2, 000 to 3, 000 samples. Instead of the conventional
Fourier analysis, the least-squares spectral analysis (LSSA)
that is based on the Lomb-Scargle method is used in this paper
[21].

In addition to the unevenly-spaced time sampling, several
preprocessing steps are performed, which are not carried out in
[14], [18] or [33]. Firstly, it is observed that multiple samples
are collected at the same time instances due to the rounding
problems of the application in giving a precise and accurate
time sampling. In this case, a sample is randomly chosen
among them. Neglecting this fact and the unevenly-spaced
time sampling means that we separate the samples having the
same time instances with the average value of the unevenly-
spaced time sampling. We observe that almost 0.5s increase
in delay spread can be seen, which is very significant in our
case. Secondly, we noticed that a few participants could not
keep their arms steady for a long period and make sudden
movements. After making the sudden movements, most of
participants could maintain their positions again. The sudden
movements made the instantaneous data changed significantly.
Therefore, we are only interested in the time period where the
mean of the measurement data is relatively constant, which
is in the time range before or after (depending on which one
is longer) the participants made the sudden movements. This
step is important with regard to our WSS assumption.

Fig. 2 shows some samples of data measurements that were
collected. Notice that the samples fluctuate around their means.

The mean µθ , is calculated as follows:

µθ =
1
N

N∑
i=1

µ̂
(i)
θ , (12)

where µ̂
(i)
θ is the estimated mean of the ith data measure-

ment. By taking average of all data measurements, we obtain
µθ = 41.13◦ for the sitting activity and µθ = 27.75◦ for the
walking activity. These results show that when the participants
sit, they tilt the phone to the back more than they would
when they walk. The reason for this is because most of
the participants put their elbows on a desk while using their
phones. For the rest of paper, a comfortable manner is defined
as the position where the user holds the UE with θ in the
vicinity of µθ .

Unlike µθ in (10), if the user holds the UE in a normal
position as depicted in Fig. 1(a), then ω̃ in (11) depends
on which direction the user sits or walks. As also shown in
[18] and also through an uncontrolled measurement in [33],
the PDF of the unconditional azimuth angle ω is dominated
by the random direction of the UE (i.e., ω̃) and it can be
modeled as uniformly distributed in (−π, π]. Therefore, the
measurement average for azimuth angle does not provide a
physical intuition.

A. Noise Measurements

The characteristics of the data measurements with no ac-
tivity are first observed; in other words, the noise of the
application is measured. In particular, the spectrum and the
behavior of the noise will be investigated. For the random
sampling, it is suggested by [21], [23] and [24] that we need
to be concerned about the spectrum of the random sampling.
Let w(t) be a window function of the random sampling as
expressed by:

w(t) =

{
1, t = tk
0, t , tk .

(13)

where {tk}N−1
k=0 is the random sampling. It is important because

there might be pseudo-aliasing or partial-aliasing of signals
(see Figs. 13 and 14 in [24] for clear examples). For these
purposes, we collected 15 data measurements containing noise
samples with different time intervals from the same smart-
phones used in the experiments.

Some samples of the results from the noise measurements
are shown in Fig. 3. By comparing Figs. 3(a) and (c), notice
that the fluctuations of ω0(t) are stronger. This fact is sup-
ported by their PSDs shown in Figs. 3(b) and (d), respectively;
the PSDs resemble those of white noise, and their variances are
−29.71 dB-degree and 0.11 dB-degree, respectively. Note that
these values are determined from their linear scales instead of
decibel scales to get a more accurate result. These variances
will be used as parameters in our filter for estimating a desired
signal from a noisy measurement. Note that the narrow red
curves in Figs. 3(b) and (d) are the average of the PSDs
of many generated white noise samples with corresponding
variances. These empirical observations are performed to show
their resemblance to white noise.
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Results of measurements with no activity: (a) samples of θ0(t), (b)
PSD of θ0(t) in dB-degree/rad/sample, (c) samples of ω0(t), (b) PSD of ω0(t)
in dB-degree/rad/sample and (e) power spectrum (PS) of w(t). The red curves
in (b) and (d) are the average of many generated white noises with the same
variances as the respected figures to show the consistency of the model.

For random sampling, the window function w(t) will also
be random, and the definition of the Nyquist frequency might
not exist depending on the characteristics of the random
sampling [24]. Based on [35], the Nyquist frequency for
random sampling is 1/(2κ), where κ is the largest factor such
that each spacing of the time sampling is an integer multiple
of κ. In our case, κ exists, and κ = 1 ms; hence, the aliasing
after 500 Hz can be seen in Fig. 3(e).

Periodic, decreasing spikes around every 16.7 Hz can be
seen in Fig. 3(e). If we have a sinusoid with a spike in the
frequency domain, convolving with such a window function
can be mistaken as harmonics. Such a phenomenon is termed
as a partial-aliasing in [24], and the window function from our
data measurements falls into the periodic nonuniform sampling
class. This class of window function commonly occurs in the
instrumentations as the trigger signal periodically changes (see
[36] and [23]), and this phenomenon is relevant in our case.

Up to this point, it can be concluded that the noise in

(a)

(b)

(c)

(d)

Fig. 4. Power spectrums of the noisy measurements mθ (t) from one of the
participants, where: (a) the LSSA is applied, and (b) the interpolation is
applied. (c) The zoom-in figure of (a), and (d) the PS of the window function
w(t) whose frequency range is the same as (c).

our measurement resembles white noise whose variances are
−29.71 dB-degree for θ0(t) and 0.11 dB-degree for ω0(t),
respectively. We can also expect that there will be partial-
aliasing in the frequency domain and an aliasing after 500 Hz
in the PSD of our data measurement.

B. Data Measurements

Moving forward from the discussion of noise measurements,
we are now ready to discuss our data measurements. The
fluctuations in Fig. 2 are also shown in many tremor-related
publications, such as [37] or [38]. Note that the fluctuation
not only occurs for subjects who suffer from severe tremors
or Parkinson’s disease, but also in healthy subjects with a
relatively smaller amplitude. Fig. 4 shows the power spectra
that is estimated by LSSA and the interpolation methods. The
dashed line in Fig. 4 shows a false alarm probability of 0.1%.
This denotes that the peaks that are above the line have 0.1%
probability of an error being mistaken as the real peak. Both
PSs are calculated with the same Nyquist frequency, i.e., 500
Hz. Since the results for the ω, i.e., mω |ω̃(t), show the same
characteristics, the results are not presented.

As previously mentioned, both aliasing and partial-aliasing
can be seen in Fig. 4(a). The lower inset Fig. 4(a) shows the
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PS of the window function. Notice that the frequency gaps of
the reliable peaks, i.e., the peaks that are located above the
false alarm probability line, have the same frequency gaps as
those of the PS of the window function. Therefore, a cleaning
algorithm must be performed to detect the real peaks.

Our empirical observation on the PSDs shows that the noise
floor is also increasing. Therefore, we assume that there are
two white noise sources, i.e., one of them comes from the
noise of the measurement, and the other one is inherent from
the participant’s unsteady hand. The noise floor is also detected
in [38], and it also agrees with the model in [37]. In this paper,
we will only filter the measurement noise that is explained in
the previous subsection.

The effect of the linear interpolation can be seen in Fig. 4(b),
which is a typical smoothing effect. Interpolating unevenly
sampled data is equivalent to filtering out a high frequency
component. Recall that the cutoff frequency of the linear
interpolation is inversely proportional to the number of up-
sampling ratios. Since our random sampling can range from
an order of milliseconds to hundreds of milliseconds, the
upsampling ratio is very high; thus, the cutoff frequency of
the linear interpolation is quite low. Therefore, quantities,
such as ACF, that are derived from the filtered data will be
significantly affected. For more detailed expositions of why
the interpolation method is unfavorable than the LSSA, the
readers are referred to [20], [21], [23], [24] or [36].

Before discussing our model, an independency test between
the RPs mθ (t) and mω |ω̃(t) in our measurement data needs to
be carried out. A statistical hypothesis testing to measure the
dependency of the RPs that is given in [39] is applied. The
output of the test is the p-value with the null hypothesis or the
claim whether two tested RPs are dependent. By calculating
the p-value for each measurement, we have a minimum p-
value of 0.13 for the sitting activity and 0.19 for the walking
activity. As they are significantly greater than 0.05, which is
a rule-of-thumb for the p-value [40, pp. 45], both mθ (t) and
mω |ω̃(t) can be treated as independent RPs.

One of the frequently used models to model the fluctuations,
for example, in Fig. 2 is the harmonic RP, i.e., sinusoids
in white noise and with random phases [37]. An additional
advantage of the harmonic RP is that it is relatively easy to
analyze in terms of peak detection, see the appendix for a
more detailed explanation. Therefore, based on [37] θ0(t) is
modeled as a harmonic RP in white noise, that is:

θ0(t) = Aθ sin (2π fθ t + φ) + vθ (t), (14)

where Aθ is the amplitude, fθ is the fundamental frequency
of θ0(t), φ is a RV that is uniformly distributed from −π to
π and vθ (t) is a white noise with the variance σ2

vθ
. We will

focus on θ0(t), but keep in mind that the same model can also
be applied for ω0(t), and we provide the final result for ω0(t)
together with that for θ0(t).

Recall that the unnormalized ACF of (14) is:

Rθ (τ) = E
[
θ0(t)θ∗0(t + τ)

]
=

A2
θ

2
cos (2π fθτ) + σ2

vθ
δ(τ), (15)

where δ(·) is the Dirac delta function. The normalization is
taken such that the ACF at τ = 0 is one, i.e., Rθ (τ)/Rθ (0). This

(a)

(b)

Fig. 5. (a) A power spectrum of θ̂0(t) from Fig. 4 after being filtered and (b)
an ACF of θ̂0(t) from Fig. 4.

model agrees with our observation and will be shown later. Our
empirical observation for all of our data measurements shows
that one sinusoid is sufficient.

It is clear that to estimate θ0(t), the noise, nθ0 (t), and the
partial aliasing due to the random sampling need to be filtered.
For the former case, we use a Wiener filter [41], and for the
latter case, we use the CLEAN algorithm, see [25] and [23].
In this paper, a first-order Wiener filter is applied, which is
denoted as a finite impulse response (FIR) F(z) = f0 + f1z−1.
The polynomial of the filter F(z) can be easily calculated by
solving following the Wiener-Hopf equation [41]. The CLEAN
algorithm is an iterative method that uses the knowledge of
a window function to perform deconvolution in the frequency
domain. The output of the algorithm is the spectrum as if it
were taken from evenly-sampled data.

Fig. 5(a) shows the PS of the estimated θ0(t), θ̂0(t), after
being filtered by both the FIR filter and the CLEAN algorithm.
It is clear that the partial aliasing no longer exists. From
Fig. 5(a), the peak can be detected at fθ = 1.32 Hz, and the
amplitude is Aθ = 3.56◦.

Based on (15), σvθ can be estimated as:

σ2
vθ
≈

Rθ (0)A2
θ (1 − Rθ (ε)/Rθ (0))

2Rθ (ε)
, (16)
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Table I. Average values of the estimated parameters.

Parameters Sitting Activity Walking Activity
θ0(t) ω0(t) θ0(t) ω0(t)

A (◦) 1.88 1.31 3.22 3.15
f (Hz) 0.67 1.46 1.86 1.71
σv (◦) 5.91 3.22 7.59 9.48

for a small ε . Fig. 5(b) shows the normalized ACF that is
calculated by taking the inverse Fourier transform of the PSD
of θ̂0(t). For Fig. 5(b), Rθ (ε)/Rθ (0) is 0.4 by inspection;
therefore, σ2

vθ
is approximately 9.05◦ (σ2

vθ
= 9.78 dB-degree).

By plugging in all these estimated parameters, the theo-
retical ACF can be calculated and it is shown in Fig. 5(b).
Note that the estimated ACF is biased, and is calculated by
taking the inverse Fourier transform from the experimental
data. From Fig. 5(b), notice that the frequency fθ from one of
the measurement samples and our model shows a similarity,
especially, in the low region of the time lag as it is the region
of interest from the perspective of the wireless communication
community. Such similarity is also seen for other measurement
samples.

Based on the value of σv from Table I, it is confirmed
that the fluctuation of the experimental results for the walking
activity is higher. The ACF will reach 0 for the first time
at t = 1/(4 f ), and the lowest value is 0.13 s. Since the delay
spread of the CIR h(t) is typically in the order of nanoseconds
[6]. Therefore, h(t) can still be considered slowly varying since
the change of orientation is highly correlated in the timescale
of nanoseconds.

Let’s now define ω and θ as RVs whose realizations are
chosen randomly and by taking evenly-spaced samples from
their RP models without the measurement noise, i.e.:

ω = ω̃ + ω0(nTs), (17)
θ = µθ + θ0(nTs), (18)

where n ∈ N and Ts is a sampling time. For ω, Table I and
the results in [18] and [33] suggest that ω can be accurately
modeled as a uniformly distributed RV as ω0 has a relatively
small variance compared to ω̃, which is uniformly distributed
in (−π, π]. For modeling conditional azimuth angle (i.e., ω |ω̃),
ω0(t) can be generated based on the harmonic RP discussed
above using, for example, a Gaussian white noise.

Regarding the RV θ, it is shown in [14] and [18] that the
PDF of θ for the sitting activity is closer to the Laplace
distribution, and it is closer to the Gaussian distribution for
the walking activity in terms of Kolmogorov-Smirnov distance
(KSD). Recall that vθ (t) in (14) is kept general in the sense
that the white noise RP can be generated from any independent
and identically distributed RV. We observe that to match it
with the RV models in [14], [18], vθ (t) can be modeled to be
vθ (t) = X , where X is a zero-mean RV that follows either a
Laplace distribution or a Gaussian distribution depending on
the activity as shown in Fig. 6.

The closed-form PDF of θ is difficult to obtain since
the derivation involves an integration of a function that has
non-elementary functions. Therefore, the moments matching
method is used, and the result is shown in Fig. 6. The
KSDs are used to measure the differences between the evenly-

Fig. 6. Samples PDFs of θ with evenly spaced sampling and the fitted
distributions.

spaced generated samples based on our model and the fitting
Gaussian or Laplace distributions. Based on the KSDs, we
can observe that generated samples of θ as a RV follow either
a Laplace or a Gaussian distribution. It is straightforward to
calculate the moments of the fitted distribution, e.g., the mean
of the Gaussian distribution is µG = µθ , and the variance is
σ2

G = σ2
v + A2/2. The same equation is also applied for the

Laplace distribution by replacing the subscript ‘G’ with ‘L’ to
denote which distribution is being used. It is worth noting that
this RP model can be used in conjunction with the generalized
random way point model proposed in [18] for modeling the
mobility of the users in LiFi networks.

V. Fixed Location and Orientation

In this paper, before discussing the general case where the
locations and the directions of the users are random, several
specific cases are discussed so that a deeper understanding
both in specific and general cases can be obtained in the end.
Particularly, we will first discuss the behavior of the CIR and
its effect on our OFDM system in terms of the BER and the
received SNR to achieve a certain forward error correction
(FEC) threshold.

A. Channel Impulse Response

In this section, the CIR behavior for different configurations
will be discussed. Fig. 7(a) shows the parameters to describe
configurations of interest in this paper. The location of the
AP is denoted by (xa, ya, za). Since a human body is modeled
as a rectangular prism with dimensions of Lb ×Wb × Hb, its
location is represented by one of the locations of its vertices as
denoted by (xu, yu) without the z-axis coordinate. The location
of a UE is relative to the location of the user who holds it. In
other words, we assume that the users hold the UEs in front
of their chests. These are described in the insets of Fig. 7(a).
The direction of the UE is denoted by ω, and the direction of
the user is assumed to be Ω = ω + π as depicted in Fig. 7(a).

As in the experiments, two activities are considered, i.e., the
sitting and the walking activities. Note that the term ‘walking
activity’ is used throughout the rest of the paper so that it is
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(a)

(b)

Fig. 7. (a) Description of the locations and the directions of users and UEs
and (b) configurations of locations and directions of the users and the UEs.

consistent with the term used in the experiments even though
it is more intuitively correct to view it as a case where the
user stands while holding the UE with a certain direction. We
will use θ = 41.13◦ for the sitting activity, and θ = 27.75◦ for
the walking activity, which are equal to the means obtained in
the experiments. For the walking activity scenario, we define
Lb = 0.66 m, Wb = 0.2 m and Hb = 1.75 m [42]. The UE
is placed 0.35 m in front of the user’s chest, whose height is
calculated as 1.4 m tall. For the sitting activity scenario, the
only differences are that Hb = 1.25 m, and the UE’s height is
0.9 m.

The room dimensions are assumed to be L = 5 m, W = 3.5
m and H = 3 m. The reflectivities of the walls are assumed
to be ρ = 0.3, the reflectivity of the ceiling is ρ = 0.69 and
the reflectivity of the floor is ρ = 0.09 [26]. The reflectivities
of the surfaces of a human body are assumed to be ρ = 0.6,
which is the reflectivity of a cotton fabric [43]. Note that a
smaller rectangular prism can also be used to model the head
of a human to distinguish it from the main body. However,
this is not included in this paper. In addition, the reflectivity of
human skin is also around 0.6 [44]. Therefore, we only model
the hair of a human as the upper surface of the rectangular
prism, and its reflectivity is ρ = 0.9 [45]. In addition, m = 1,
FoV = 90◦, ARx = 1 cm2 are used and the resolution of the
partition is 10 to generate the CIR.

For this specific case, 5 different configurations are chosen

(a)

(b)

Fig. 8. (a) Magnitude responses of HCIR with configurations depicted in
Fig. 7(b) and (b) magnitude responses of HCIR for C2 and the sitting activity.
The terms sitting and walking are used here to relate them with our previous
discussions, while the physical meanings of them are merely that the person
holding the UE sits or stands and, the UE is oriented to the mean value.

as denoted by Ci for the ith configuration, see Fig. 7(b).
These configurations are picked to describe several scenarios
of interest which will be explained later. The location of the
AP is (0, 0, 3), i.e., it is located on the ceiling. Given the
dimension of a user and the relative position of a UE to
the user, each configuration can be only represented by the
location of the user and its direction. For example, for C1, the
user is located at (−0.33, 1.55) and his direction is Ω = −90◦,
i.e., the direction of the UE is ω = 90◦.

The configuration C1 represents the case where the LOS
link still exists with ψ = 64.62◦ for the walking activity
and ψ = 70.87◦ for the sitting activity. The configuration
C2 represents the case where the LOS link is blocked by
the user for the walking activity, but the LOS link exists
for the sitting activity with ψ = 2.14◦. The configuration C3
represents the case where the UE is located underneath the
AP. The configuration C4 represents the case where the user is
located at the corner of the room and the LOS link still exists
for both activities with ψ = 72.89◦ for the walking activity
and ψ = 80.58◦ for the sitting activity. The configuration C5
represents the case where the LOS link is blocked. However,
unlike in C2, there are two walls near the UE.

Fig. 8 shows the magnitude response of the CIR with
configurations described in Fig. 7(b). It is obvious that the
configuration C3 gives a higher channel gain compared to the
others due to its shortest distance. Recall that the participants
tend to tilt the UEs to the front during the walking activity than
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Table II. The contribution of the power from the LOS link in percentage.

C1,s C1,w C2,s C3,s C3,w C4,s C4,w
PLOS
Ptot
(%) 61.53 73.28 88.41 89.78 92.51 40.96 60.24

that during the sitting activity. Therefore, the incident angle ψ
is smaller; hence, the channel gain is higher for the walking
activity. The results for C1 are comparable with those for C4.
With full FoV, the channel gain for C4 is 10 dB lower than
that for C1. It will be shown later how this difference affects
the performance of our OFDM system.

The results for C2 show the case when the user is located
near the wall. The channel gain difference between the results
for the sitting activity (the LOS link exists) and the walking
activity (the LOS link is blocked) varies between 20 to 30 dB.
This result is consistent with the result of the shadowing effect
in [6]. Fig. 8(b) shows the zoom-in figure of the result for C2
and the sitting activity. When LOS link exists, observe that the
CIR fluctuates around the DC channel gain of its LOS link,
especially, in a higher frequency region. It is also interesting
to note that the channel gain for the sitting activity with C2
is slightly higher than that for the walking activity with C1.
This is due to the incident angle ψ is much smaller; hence, the
channel gain is higher as it is proportional to cos (ψ), see (7).
The results for C5 have the worst channel gain of all. These
channel gains will be used to determine the number of CP for
our OFDM system.

As in [7], we are also interested in the ratio between the
power from the LOS link denoted by PLOS and the total
power denoted by Ptot. Table II shows the ratio in percentage.
Note that to save the space, the subscripts ‘w’ and ‘s’ denote
the results for the walking and sitting activities, respectively.
Contrary to the results in [7] which considers only the case
where the UE always faces upward, the power contribution of
the LOS link is not always dominant which is shown by the
results with the configuration C4. The results of the power ratio
will be generalized in the next section for randomly-located
users.

B. OFDM Performance

In this paper, if the values of the parameters are not
mentioned, the values are defined as shown in Table III. Given
the values of OFDM parameters, the bandwidth of OFDM
symbols is around 28 MHz. These are chosen based on the
value of fcLED that ranges between 20 to 40 MHz, see [46],
[47] and [7]. The number of CPs is chosen based on the worst
channel in Fig. 8, which is C5. The BER target is chosen such
that it is lower than the FEC threshold, which is defined as
Pb,target = 3.8 × 10−3 [48], and the responsivity of the PD is
R = 0.6 A/W [49].

Following [6] and [49], a received electrical SNR is defined
as:

SNR =
R2H2

CIR(0)P
2
t

N0 fs/2
, (19)

where Pt is the average optical transmitted power. The benefit
of this definition is that the performances of different modu-
lation schemes can be fairly compared [49]. The SNR that is

Table III. Values of parameters.

Parameters Values Units
Bit rate (Rb) 100 Mbps
Number of subcarriers (N ) 128 -
Number of used subcarriers (Nu) 108 -
Number of CPs

(
Ncp

)
7 -

Modulation order (M) 16 -
Cutoff frequency of the LED

(
fcLED

)
20 or 40 MHz

BER target
(
Pb,target

)
3.8 × 10−3 -

Responsivity of the PD (R) 0.6 A/W

Fig. 9. BER comparison for C1 where the subscript ‘s’ denotes sitting and
‘w’ denotes walking. The solid or dashed lines show the theoretical results,
and the markers show the simulation results.

required to achieve Pb = Pb,target is denoted by SNRt. The BER
comparisons for C1 is depicted in Fig. 9. The result follows
our intuition that the multipath propagation makes the BER
worse. In addition, as seen in Fig. 9, given the same rate and
the same bandwidth of the OFDM symbols, decreasing the
bandwidth of the LED such that it is less than bandwidth of
the OFDM symbols will also increase the BER. Note that not
all BER curves will be presented in the figure since many
configurations are investigated in this paper. Instead, only the
SNR values at Pb = Pb,target are discussed in this paper, and
they are given in Table IV.

We are also interested in investigating the effect of higher
order reflections. In other words, the effect of ignoring the
diffuse link as in many published works, e.g., [10], [11], [14]
or [12], will be discussed. In terms of the BER target, we
focus on the target SNR penalty, i.e., SNRt,penalty, which is
defined as the difference between SNRt with both links and
SNRt with the LOS link only. The values of SNRt,penalty can
range from 0.58 to 10.3 dB for the channel in Fig. 8. Notice
that the flatter the channel, the smaller the penalty; hence, C4,s
has the biggest penalty, and the smallest penalty is achieved
for C3,w. The flatness of the CIR is highly correlated to the
power ratio as shown in Table II. We also observe that the
power ratio of 75% is related to the SNR penalty around 3
dB. For system designers who calculate a power budget of a
LiFi system, this penalty might significantly affect the whole
system cost.

The effect of the LED’s bandwidth can also be seen in the
Table IV. For relatively flat channels as in configurations C3,
decreasing the bandwidth increases the SNR penalty. On the
other hand, decreasing the bandwidth reduces the SNR penalty
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Table IV. Comparison of the received electrical SNR (in dB) at Pb,target, which is denoted by SNRt, and the SNR penalty when the diffuse channel is neglected,
which is denoted by SNRt,penalty.

fcLED 40 MHz 20 MHz
C C1,s C1,w C2,s C2,w C3,s C3,w C4,s C4,w C5,s C5,w C1,s C1,w C2,s C2,w C3,s C3,w C4,s C4,w C5,s C5,w
SNRt 29.49 27.56 25.33 33.78 25.31 25.01 34.73 29.54 41.45 38.97 33.61 31.70 29.58 37.43 29.76 29.47 37.63 33.37 46.60 44.41
SNRt,penalty 5.06 3.14 0.91 - 0.88 0.58 10.31 5.11 - - 4.91 3.00 0.90 - 1.07 0.78 8.93 4.67 - -

for the other configurations. The reason is that the level of
fluctuation in the channel plays more significant role than the
effect of the subcarriers loss for the configurations other than
C3. More focused studies about these observations are subject
of our future works. In the next section, we also discuss the
consequence of ignoring the diffuse link in terms of the outage
probability, which is one of the main metric of the analyses
in the network level or the cellular networks.

VI. Random Locations and Orientations

Upon gaining insights from the fixed location case in the
previous section, random locations and orientations of the UE
are assumed in this section. The benefit of this assumption is
that the average performance can be obtained as the indoor
optical wireless channel highly depends on the geometry of
the UE and the AP, see Fig. 8 for an example. Tools from
stochastic geometry are usually used to consider the case with
randomly-located users. However, even with the LOS link,
a closed form expression is hard to obtain and it typically
still contains an integral expression, see [7] and [50]. In this
section, a semi-analytic approach is used in the sense that the
CIRs are generated by Monte Carlo simulations and the SNR
target is calculated analytically.

We will assume that the locations of user and UE are
uniformly distributed in an indoor room with the same di-
mensions used in the previous section. Since only a single
channel is concerned, each realization has a user and a UE.
This is further referred to as the binomial point process.
As for the orientation, we assume that θ follows either a
Laplace distribution or a Gaussian distribution depending on
the activity as depicted in Fig. 6, and the direction of the users,
Ω, follows a uniform distribution. We generated 1, 000 CIRs
for each activity and observed that the probability of the LOS
link exists is 88.1% for the walking activity and 94.8% for
the sitting activity. In this section, the CIRs having the LOS
links are used.

First, we look at the cumulative distribution function (CDF)
of SNRt,penalty for this random case. The result is depicted in
Fig. 10(a). Since the results are quite similar, let’s focus on
P

[
SNRt,penalty < 3 dB

]
shown in the inset. Note that values

other than 3 dB can be used, and this 3 dB criterion is applied
in this paper as an example of our analysis for the CDF
of SNRt,penalty. P

[
SNRt,penalty < 3 dB

]
for all configurations

in Fig. 10(a) are around 0.7. As previously discussed and
shown in Table IV, using wider bandwidth results in a better
performance in terms of SNRt,penalty. Generally, considering
that there is 0.3 probability that SNRt,penalty can be greater
than 3 dB, we believe that simply ignoring the diffuse link
in BER analysis is too limiting. Alternatively, one can simply
ignore the diffuse link in calculating the BER performance for
a randomly-oriented UE for the case where the UE is located

(a)

(b)

Fig. 10. (a) CDFs of SNRt,penalty with randomly-located, randomly-oriented
UEs and (b) CDFs of |HCIR(0) |2 with randomly-located, randomly-oriented
UEs.

near to the AP since the channel is relatively flat, see the
results for C3 in Fig. 8.

In a network-level analysis considering the interference and
randomly-located UEs as in [7], [51] or [50], the received
power is generally assumed to only come from the LOS link.
Understanding the previous discussion, we get an insight that
this is correct if the UE is located near the AP. Therefore, we
are also interested in justifying the importance of the diffuse
link in the network-level analysis whose the main metric is
the signal-to-interference-plus-noise ratio (SINR). Recall that
the SINR is a function of the electrical received power which
is proportional to the DC channel gain, i.e., Pr ∝ |HCIR(0)|2,
where Pr is the average received optical power [6]. The CDF
of |HCIR(0)|2 is depicted in Fig. 10(b).

Generally, the results for the walking activity are better than
that of the sitting activity. The reason is that the distance
between the UE and the AP is shorter due to the vertical
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distance difference between both activities, i.e., the height is
1.4 m for the walking activity and 0.9 m for the sitting activity.
In addition, we can partition the region of |HCIR(0)|2 into two
parts, i.e., the low region where |HCIR(0)|2 < −114 dB and the
high region where −114 dB ≤ |HCIR(0)|2. Note that −114 dB is
chosen such that the difference of |HCIR(0)|2 with and without
the diffuse link is 3 dB. Notice that the gap is larger in the
low region compared to that in the high region. In Fig. 10(b),
the maximum gap is around 25 dB in the low region. In the
high region, the gap is narrowing. This is expected since this
region is typically obtained when the UE is located near the
AP, and the power ratio is relatively high. For an example,
see the CIR for C2 in Fig. 8(b).

Based on these results, the studies of the interference
power can be significantly improved if the diffuse link is
incorporated. This is true especially because the interfering
transmitters are typically located far from the receiver. Be-
ing far from the receiver makes the fluctuation of HCIR( f )
stronger, see HCIR( f ) for C4 and C5. Using only the LOS
link in the studies of the interference can be considered in a
scenario where the UEs are located near the AP, for example,
if the multiple access scheme used is NOMA as in [13] and
[52]. The studies of the interference in NOMA are typically
focused on a single cell with multiple users, and the UEs are
typically located near an AP within a few meters away, see
[52]. To relate it with our example, imagine we draw a circle
with the center being the AP, and the radius being around 1.5
m in Fig. 7(b); hence, the frequency responses for C1 to C3
are relatively flat, see Fig. 8.

Another way to interpret results in Fig. 10(b) is by viewing it
as the outage probability. The relationship between |HCIR(0)|2

and the outage probability is obvious by looking at (19), i.e.,
the received electrical SNR is proportional to |HCIR(0)|2. The
outage event is typically defined as the event when the received
electrical SNR is less than a SNR target to achieve certain
BER [8], [53]. Fig. 10(b) shows that a system with both
links is significantly better than that with only LOS link, i.e.,
the outage events less frequently occur if the diffuse link is
considered. In other words, reflected signal can help reducing
the outage events up to 25 dB, especially, in the low region
of the DC channel gain.

VII. Conclusions

This paper focused on modeling the random orientation and
applying it in DC-OFDM-based LiFi systems. A series of
experiments were conducted with 40 participants, and 222 data
measurements were obtained while they browsed the Internet
and watched streaming videos. The random orientation was
modeled as user’s slight hand movement and other activities,
such as scrolling or typing. In addition, we observed that the
sampling time of the sensors were not evenly-spaced. It was
also shown that the ACF reached 0 for the first time when the
time lag was 0.13 s. Compared to the typical delay spread
of the optical wireless channel which was in the order of
nanoseconds, the CIR could still be assumed to be slowly
varying since the random orientation was highly correlated in
the order of nanoseconds.

In this paper, we also applied the random orientation model
to DC-OFDM-based LiFi systems. The RP model with a sinu-
soid in white noise was used to model the random orientation
as an RV. The polar angle of the orientation of the UE was
modeled as Laplace distribution for the sitting activity and a
Gaussian distribution for the walking activity. In addition, the
azimuth angle was modeled as a uniform distribution. Based
on the RV model, the error performance of the LiFi system
was investigated. We showed that the probability of the SNR
penalty which was larger than 3 dB was 30%. In terms of
the DC channel gain, it was shown that the penalty could
range up to 25 dB in the low region of the DC channel gain
which correlated to the case where the UE was located far
from the AP. Therefore, a great care must be taken on when
a simplification on reflection could be made.

Appendix: Power Spectrum and Power Spectral Density For
Evenly-Spaced Samples

Throughout this paper, the spectral analysis is performed
based on a LSSA that gives a periodogram, which estimates
either PSD or PS). For simplicity, we can safely discuss and
treat the PSD and the PS of the LSSA the same as the evenly-
spaced counterpart, see [20], [21], [23], [24] or [36]. However,
please bear in mind that the Lomb-Scargle method is used
instead, not the conventional Fourier analysis.

The PSD is mainly used to detect the noise level, and the
PS is mainly used to detect the power of a random signal at
a certain frequency. Therefore for a discrete RP X[n] whose
length is N , its two-sided PS with a rectangular window is
expressed by:

SX [k] =

����� N∑j=1
X [ j] e(−2πi)(j−1)(k−1)/N

�����2
N2 , k ∈ [0, N − 1].

(20)

Meanwhile, its PSD is expressed by:

PX [k] =

����� N∑j=1
X [ j] e(−2πi)(j−1)(k−1)/N

�����2
N

k ∈ [0, N − 1]. (21)

If X[n] is a sinusoid in a white noise with a random phase,
i.e., X[n] = A sin (2π f0/Fsn + φ) + w[n], where f0 , 0, Fs is
a frequency sampling, φ is a RV which follows the uniform
distribution from −π to π and w[n] is a zero-mean white noise
whose variance is σ2, then the estimated power of X[n] at
frequency f0 is 2SX [N f0/Fs] = A2

2 . The white noise level is

σ2 =
U∑
j=L

PX [ j]/(U − L + 1), where the interval [L,U] is the

interval outside the neighborhood of N f0/Fs.
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