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Abstract

Timely status updates are crucial to enabling applications in massive Internet of Things (IoT). This

paper measures the data-freshness performance of a status update system with an energy harvesting

transmitter, considering the randomness in information generation, transmission and energy harvesting.

The performance is evaluated by a non-linear function of age of information (AoI) that is defined as

the time elapsed since the generation of the most up-to-date status information at the receiver. The

system is formulated as two queues with status packet generation and energy arrivals both assumed

to be Poisson processes. With negligible service time, both First-Come-First-Served (FCFS) and Last-

Come-First-Served (LCFS) disciplines for arbitrary buffer and battery capacities are considered, and a

method for calculating the average penalty with non-linear penalty functions is proposed. The average

AoI, the average penalty under exponential penalty function, and AoI’s threshold violation probability

are obtained in closed form. When the service time is assumed to follow exponential distribution, matrix

geometric method is used to obtain the average peak AoI. The results illustrate that under the FCFS

discipline, the status update frequency needs to be carefully chosen according to the service rate and

energy arrival rate in order to minimize the average penalty.
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I. INTRODUCTION

Satisfying strict real-time requirements in wireless communication systems is of extensive

concerns. A typical real-time application in Internet of Things (IoT) is remote monitoring and

control, which requires timely status update to the fusion center, i.e., status information of the

objects should be refreshed at the fusion center in a timely manner. However, due to the inevitable

delays in queuing and transmission, the received status packets do not carry the present status

information. To characterize the lag in status update, age of information (AoI) has been proposed

in [1] as a metric for information freshness. It is defined as the time that has elapsed since the

generation of the most up-to-date status information at the receiver, as is illustrated in Fig. 1.

The AoI at time t is expressed as

∆(t) = t− U(t),

where U(t) represents the time stamp at the generation epoch of the most up-to-date status

information that has been received before time t. In [1], the status update process is formulated

as a queuing system, in which the traffic arrivals correspond to the generations of status packets,

and the service times correspond to transmissions and the time waiting for medium access. The

time-averaged AoI of M/M/1, M/D/1 and D/M/1 queues under the first-come-first-served (FCFS)

discipline is obtained, and the comparison among the three queues indicates that a more regular

update brings a smaller average AoI.

Fig. 1. An example that illustrates the evolution of AoI.

Meanwhile, numerous nodes in IoT will be powered by renewable sources using energy

harvesting techniques [2]. For example, to sustainably update the environmental conditions

(temperature, air humidity and etc.), motion (position and velocity) or other characters to a fusion

center, energy harvesting transmitters can free the monitored object from limited power backup

or cables. Wireless nodes powered by renewable energy are faced with the randomness in energy
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supplies, which makes guaranteeing real-time communications more challenging compared with

grid-powered or solely battery-powered systems, and further complicates the problem of keeping

status update in a regular fashion. Therefore, the performance analysis of a status update system

with an energy harvesting transmitter is essential in addition to the analysis of a system powered

by a stable energy source.

The average AoI is considered a key indicator to the performance of a status update system.

However, it cannot straightly describe the performance degradation caused by the lag in status

update. A thorough survey on the performance degradation caused by information staleness can

be found in [3]. The performance degradation of a system, such as the inaccuracy in monitoring

and the invalidity of control decisions, varies based on the scenario and is generally non-linear

on AoI. Ref. [4] shows that the characteristics of the average AoI and the violation probability

of peak AoI, which is defined as the AoI right before the reception of a new status information,

can be noticeably different. Therefore, the actual performance of a status update system, which

is non-linear on AoI, should be further investigated. The non-linear AoI penalty function is

introduced in [5] to evaluate information staleness. Ref. [6] extends the work on M/M/1 in [1],

and obtains the average penalty under exponential and logarithmic AoI-penalty functions. The

case where AoI is expected to be within a certain threshold is considered in [7], and scheduling

algorithms to allocate channel access among multiple users are proposed in order to reduce

violation probability. Other work mainly focuses on the analysis on average AoI or average

peak AoI [8]– [18]. Two special cases of multiple servers, M/M/∞ and M/M/2 systems, are

investigated in [8]. Time-averaged peak AoI is considered for multi-class M/G/1 and M/G/1/1

queuing systems in [9] and M/M/1 queues with delivery errors in [10]. Ref. [11] studies the

average AoI of a G/G/1/1 status update system. Ref. [12] studies the packet management policies

for a status update system and shows that preemptive LCFS discipline is age-optimal, throughput-

optimal and delay-optimal, given that the service times are independent and identically distributed

(i.i.d.) exponential random variables. Ref. [13] compares the performance of M/M/1, M/M/1/1

and M/M/1/2*, in which the backlogged packet is replaced if a new packet arrives. The stationary

distribution of AoI in GI/GI/1 system is derived in [14]. Recently, Ref. [15] introduces a method

named stochastic hybrid systems (SHS) to the analysis of status updating systems. For M/M/1

queues with multiple sources, the performance under FCFS, preemptive and non-preemptive

last-come-first-served (LCFS) policy is investigated with SHS method. Ref. [16]–[18] investigate

user-scheduling policies to minimize overall average AoI in multi-user scenarios.
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Scheduling schemes to reduce latency in an energy harvesting communication system can

be found in [19]–[22]. Efforts on the AoI in energy harvesting powered status update systems

began to emerge recently. Existing work mainly focuses on the scheduling of status packet

transmissions subject to energy constraints [23]–[28], where the generation of status packets can

be fully controlled. Ref. [23] considers scheduling policies for the minimization of average AoI

under energy replenishment constraints in the systems where the queuing delay and service time

are neglected. Ref. [24] proposes and compares three intuitive status update policies, which try

to equalize update interval, to equalize update delay, and to reduce packet queuing, respectively.

Ref. [25] analyzes energy harvesting systems with different battery capacities, and discusses

their AoI-optimal transmission scheduling policies by which the average AoI is minimized. A

two-hop status update system with energy harvesting transmitter and relay is investigated in

[26]. Ref. [27] analyzes the battery-threshold policy in energy harvesting system, and finds the

condition for one to minimize the average AoI among all threshold policies. The optimality of

energy dependent AoI-threshold policies in a system with finite battery and zero service time

is proved in [28]. Ref. [29] and [30] explore M/M/1/1 energy harvesting status update systems,

where there are at most one status packet buffered in the system. They investigate the average

AoI in the system with SHS method, and analyze the asymptotic cases where status packet

arrival rate, energy arrival rate, or service rate is relatively large, respectively.

In this paper, we jointly consider the randomness in status packet generation and energy

harvesting in the analysis of non-linear AoI-based performance for an energy harvesting wireless

communication system. The randomness in transmission and MAC delay is also considered to

investigate the overall impact of status packet generation, energy arrivals and services on the AoI

of a status update system. The status update problem is characterized as a queuing system with a

finite data queue (buffer), where the status packets are stored after their generations, and a finite

energy queue (battery). Both the status packet arrivals and energy packet arrivals are assumed to

be Poisson processes. The problem considered is similar to the one in [29] and [30], and they

focus solely on average AoI in a system with unit buffer size, and investigate the average AoI by

SHS. Different from [29] and [30], this paper applies the conventional stochastic analysis with

queuing model, and analyzes the non-linear AoI-based performance arbitrary buffer and battery

capacity. The contribution of this paper is summarized as follows:

1) A method to obtain the closed-form AoI-based penalty is established for both FCFS and

LCFS disciplines when the service time is negligible, since the service time is usually much
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smaller than packet generation intervals and energy arrival intervals in real-world applica-

tions. Explicitly, the closed-form expressions of the cumulative probability distributions

(CDF) of the peak AoI and the sojourn time, and the rate of valid updates1 are obtained.

The average non-linear penalty of the system can be derived by this method for integrable

AoI-penalty functions.

2) Average penalties under three typical AoI-penalty functions are obtained and analyzed. They

corresponds to the average AoI, average exponential penalty of AoI and AoI’s threshold

violation probability in the system. The results are further compared under different buffer

capacities, battery capacities and service disciplines. Results shows that the exponential

penalty is extremely sensitive to the ratio between status generation frequency and energy

arrival rate, especially under the FCFS discipline when the buffer capacity is large.

3) To consider a more general case and incorporate non-negligible service time, the service

time is assumed to be independent and identically distributed (i.i.d.) random variables

following exponential distribution, and the status update is formulated as a quasi-birth-and-

death (QBD) process with finite battery capacity. The explicit expression for the average

peak AoI is obtained after the stationary distribution of system states is computed by the

matrix geometric method [33].

The remainder of the paper is organized as follows. Section II explains the basic notations and

the problem formulation. Results in the negligible-service-time regime are described in Section

III. Section IV formulates the problem as a QBD process and describes how to compute the

average peak AoI. Section V illustrates the results with figures. Section VI concludes the paper.

II. SYSTEM MODEL

As depicted in Fig. 2, a status update system powered by renewable energy is modeled as

a queuing system with a data buffer and a battery. The arrival of a status packet corresponds

to the generation of a status information from the source, while each departure represents the

successful reception of the status information at the receiver side.

A. Status Update Model

To capture the randomness in the generation of status packets, the arrival of status packets is

assumed to be a Poisson process with rate λ. After its generation, a status packet first arrives at

1A valid update is defined as a status packet that is the most up-to-date status packet upon reception in Sec. II.
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Fig. 2. Queuing model for the analysis of a status update system with an energy harvesting server.

the data buffer, which can store at most K status packets. Thus, if there are already K status

packets in the data buffer upon the arrival of a new status packet, one status packet must be

dropped.

The server is assumed to be work-conserving, i.e., the server is idle only when at least one

of the two queues is empty. Two kinds of service disciplines are considered. The first one is

FCFS, with which a newly-arrived status packet waits at the end of the data queue, and will not

be served until all the status packets ahead of it depart. Under the FCFS discipline, older status

packets have higher priority, and the newly-arrived status packet will be blocked out of the data

buffer if there are already K status packets in the data buffer. The other service discipline is

LCFS, which allows the latest status packet to wait at the front of the queue and the oldest

packet in the buffer to be discarded if the buffer is full.

It is possible that a newly-delivered status packet is older than the status packets at the receiver

side. However, the reception of old information does not change the AoI. To clarify this, a valid

update is defined as a status packet that is delivered and is the most up-to-date packet upon

its reception. Thus, the AoI is reset to the age of the received packet only when it is a valid

update. In [14], the authors define informative packets and non-informative packets to distinguish

the status packets that reset the AoI from those that do not. The informative packets in [14]

corresponds to the valid updates. Under FCFS discipline, any status packet that enters the data

buffer is a valid update, while under LCFS discipline, a status packet is a valid update if and

only if there is no status packet arrival between its arrival and departure.

B. Energy Model

The energy model in this paper is similar to those in [24]–[30]. The transmitter is powered

by an energy harvesting module, which consistently harvests energy and stores it in a battery

with limited capacity. Assume that the service of a status packet requires E0 Joules of energy,
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which is also referred to as an energy packet. Discretizing the battery by E0 Joules of energy, the

capacity of the battery is denoted as B energy packets. Therefore, the arrival of energy packets

represents the accumulation of integral multiples of E0 Joules in the battery. The arrival of

energy packets is modeled as a Poisson process with rate r, which characterizes the randomness

and unpredictability in energy harvesting. The energy arrival rate r is assumed to be greater than

the status packet arrival rate λ to ensure the stability of the data queue. A new energy packet is

immediately discarded if the battery is full.

C. Objective Functions

1) Linear functions: The performance of a status update system is commonly evaluated by

the long-term averaged AoI or the long-term averaged peak AoI. Denote the inter-arrival time

between the (i − 1)-th and the i-th valid update by Xi, the inter-departure time between the

i-th and the (i + 1)-th valid update by Di and the i-th valid update’s sojourn time by Ti, as is

depicted in Fig. 1. The i-th peak AoI Ai, which is the AoI right before the reception of the i-th

valid update [13], can be written as

Ai = Xi + Ti = Di−1 + Ti−1. (1)

Eq. (1) can be proved straightforward by the evolution curve of AoI in Fig. 1. Taking expectation,

letting i→∞ at both sides of Eq. (1) and denoting the limits of the variables as the ones without

subscripts, the average peak AoI follows

E [A] = E [X] + E [T ] = E [D] + E [T ] . (2)

According to [1], the average AoI of a stationary and ergodic system is defined as

∆̄ = lim
T →∞

1

T

∫ T
0

∆(t) dt,

in which the integral equals the area below the AoI curve. Denote the area below the AoI curve

between the delivery of the (i− 1)-th and the i-th valid update as Qi, as is shadowed in Fig. 1.

The average AoI is expressed as

∆̄ = lim
T →∞

1

T

N(T )∑
i=1

Qi,
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where N(T ) represents the number of valid updates delivered before t = T . Defining the arrival

rate of valid updates as λ̃ = limT →∞
N(T )
T , the average AoI becomes ∆̄ = λ̃ limT →∞ E [Qi] .

Since Qi =
(
A2
i − T 2

i−1

)
/2, the average AoI is given by

∆̄ =
λ̃

2

(
E
[
A2
]
− E

[
T 2
])
. (3)

2) Non-linear functions: Considering the non-linear performance degradation caused by out-

dated data, AoI is further generalized as an AoI-related penalty function, which quantizes the

performance based on AoI. A general way to characterize the non-linear penalty is by defining

a non-linear function g(∆) that maps AoI to the penalty as introduced in [5], so that the average

penalty of a stationary and ergodic system is

C = lim
T →∞

1

T

∫ T
0

g (∆ (t)) dt. (4)

In [14, Example 1], the authors provide how to obtain the average penalty with the CDF of AoI

given, without further analysis on the average penalty. It is also proved that the CDF of AoI can

be obtain with the CDFs of the peak AoI A and the sojourn time T , and the arrival rate λ̃ of

valid updates. Next, we are going to provide another method to show how to derive the average

penalty directly with the CDFs of the peak AoI A and the sojourn time T , and the arrival rate

λ̃ of valid updates.

The right-hand side of Eq. (4) is rearranged as the summation of integrals over the intervals

between sequential deliveries of valid updates:

lim
T →∞

1

T

∫ T
0

g (∆ (t)) dt = lim
T →∞

N(T )

T
lim
T →∞

1

N(T )

N(T )−1∑
i=0

∫ ∑i
j=0Dj

∑i−1
j=0 Dj

g (∆ (t)) dt.

According to the definition, AoI is set to sojourn time Ti upon the i-th valid update’s delivery,

and grows linearly with unit slope before the delivery of the (i+ 1)-th valid update. Therefore,

lim
T →∞

1

T

∫ T
0

g (∆ (t)) dt = λ̃ lim
T →∞

1

N(T )

N(T )−1∑
i=0

∫ Ai

Ti

g (∆) d∆

= λ̃ (E [G(A)]− E [G(T )]) ,

in which G(x) =
∫ x

0
g(∆) d∆.

Thus, given the CDFs of the peak AoI A and the sojourn time T , and the arrival rate λ̃ of

valid updates, the average penalty of the system can be determined by

C = λ̃

∫ ∞
0

G(a) dP {A ≤ a} − λ̃
∫ ∞

0

G(t) dP {T ≤ t} . (5)
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The average penalty indicates the long-term average performance of a status update system.

Our objective is to investigate how system parameters, such as status packet arrival rate, buffer

capacity, battery capacity and service disciplines, affect the average penalty.

III. NEGLIGIBLE SERVICE TIME REGIME

To gain more insights, in this section, we first explore the asymptotic results where the service

time is negligible compared to the status packet arrival intervals and the energy packet arrival

intervals. The scenario where the average service time is much shorter than status packet arrival

intervals and energy arrival intervals commonly exists in practical IoT applications. The service

time mainly incorporates transmission and the MAC (Medium Access Control) delay. Since status

update packets are usually small in data size, the time for transmission (even if retransmission

is considered) or MAC delay is relatively short. For example, a sub-frame in FDD-LTE is 1ms,

so the service time of a short packet can be several milliseconds. On the contrary, the need for

status update (e.g., temperature) and energy harvesting are mostly in a larger time scale than

milliseconds. Therefore, the asymptotic regime where the service time is negligible is reasonable

to consider and significant in offering insight on the performance of status update, especially on

the impact of energy provision in such a system.

Fig. 3. The state transition diagram for the negligible-service-time problem.

Denote the data queue length by q1 and the energy queue length by q2. The state transition

in the negligible-service-time regime is illustrated in the left diagram in Fig. 3. If data queue

length q1 < K, each state (q1, q2) transits to state (q1 +1, q2) with rate λ; If energy queue length

q2 < B, each state (q1, q2) transits to state (q1, q2 + 1) with rate r. Note that when the service

time is negligible, the service for a status packet can be completed instantly when the energy
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queue is not empty. Therefore, every state (q1, q2) with both q1 > 0 and q2 > 0 transits to state

(q1 − 1, q2 − 1) with rate ∞. In other words, any state (q1, q2) with q1q2 6= 0 is a transient state

that will never be visited thereafter. In the right diagram of Fig. 3, an equivalent state transition

is drawn with all the transient states shadowed in gray. As shown in the diagram, the state

transition among the recurrent states, i.e., q1q2 = 0, is identical to an M/M/1 queue. Based on

this, the system states are indexed as S = q1 − q2 ∈ {−B,− (B − 1) , · · · ,−1, 0, 1, · · · , K},

which distinctively maps a recurrent state to S:

1) If S < 0, data queue length q1 = 0 and energy queue length q2 = −S;

2) If S = 0, both queues are empty;

3) If S > 0, data queue length q1 = S and energy queue length q2 = 0.

For each state S ∈ {−(B − 1), · · · ,−1, 0, 1 · · · , K}, the system transits to state S − 1 when

there is an energy arrival; for S ∈ {−B, · · · ,−1, 0, 1, · · · , K − 1}, system state becomes S + 1

when there is a status packet arrival. Thus, as is shown in the bottom diagram of Fig. 3, the

system is equivalent to an M/M/1 queue with status packet arrival rate λ, service rate r and

buffer size K + B. Let θ denote the ratio of the status packet arrival rate to the energy packet

arrival rate, i.e., θ = λ
r
, and the utilization of the M/M/1 queue is θ. Next, we first derive the

stationary probability distribution of the peak AoI A and the sojourn time T , and the arrival

rate λ̃ of valid updates, then obtain the average penalty under three types of penalty functions

(depicted in Fig. 4) by Eq. (5). The three penalty functions are:

1) Linear function g(∆) = ∆: The average penalty equals the long-term average AoI. This

penalty function is suitable for the systems in which the influence of the delay in information

grows approximately linearly with time.

2) Exponential function g(∆) = α−1
(
eα∆ − 1

)
, α 6= 0: We let g(0) = 0 and g′(0) = 1, so

that the penalty and the slope when ∆ = 0 are identical to the ones in the linear function,

for the simplicity of comparison. When exponent α > 0, the exponential penalty function

is more sensitive to large AoI compared to the linear function, and is more reasonable in

the scenarios where the time-correlation among status is relatively small. Taking the finite-

state Markov channel [31], which is a widely adopted channel model, as an example, the

probability of correctly estimating the current channel state based on delayed channel state

exponentially decays to the limiting distribution. Additionally, note that the exponential

penalty function is increasing for both α > 0 and α < 0. Exponent α being negative can
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Fig. 4. Three penalty functions to be analyzed. In the figure, the parameters are α = ±0.2 and β = 3.

be useful in systems such as [32].

3) Shifted unit step function g(∆) = 1 {∆− β}: Unit step function 1 {·} is defined as

1 {x} =

 1, if x > 0,

0, if x ≤ 0.

Under the shifted unit step function, the long-term average penalty gives the probability

on AoI exceeding threshold β. This function should be considered when there is a certain

upper-bound constraint of AoI that the system tries not to violate.

In the following two subsections, the formulas for the average penalty under the three types

of penalty functions will be listed with preliminary intuition towards the expressions. The results

will be thoroughly analyzed together with figures in Section V.

A. FCFS Discipline

For FCFS descipline, we have the following results.

Lemma 1: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, the arrival

rate λ̃ of valid updates is

λ̃FCFS = λ
1− θK+B

1− θK+B+1
.

Proof: See Appendix A.

The proof for Lemma 1 is straightforward: Since all the status packets admitted to the data

buffer are valid updates under FCFS, the arrival rate of valid update equals the arrival rate of

status packets that enter the buffer. Therefore, the arrival rate λ̃ of valid update under the FCFS

discipline equals the throughput.
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Lemma 2: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, the CDFs

of the peak AoI and the sojourn time of valid updates are

P {A ≤ a} = 1− e−λaθ−B

θ−B − θK
− θ−1e−ra

θ−B − θK
K∑
n=1

(λa)n

n!
+

θKe−ra

θ−B − θK
K∑
n=0

(ra)n

n!
, (6)

and

P {T ≤ t} = 1− 1

θ−B − θK
K∑
n=0

(λt)n

n!
e−rt +

θK

θ−B − θK
K∑
n=0

(rt)n

n!
e−rt, (7)

respectively.

Proof: See Appendix B.

According to Eq. (5), the average penalty under FCFS discipline can be obtained by Lemma 1

and 2. For the three special cases of penalty function being g(∆) = ∆, g(∆) = α−1
(
eα∆ − 1

)
,

and g(∆) = 1 {∆− β}, we obtain the long-term average penalty by Eq. (5) and summarize the

results in Theorem 1–3.

Theorem 1: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, the average

AoI is

CFCFS, linear = λ−1 + r−1 θ

θ−B − θK+1

[
−KθK +

1 + θK−1 − 3θK + θK+1

1− θ

]
. (8)

Consider an average-power-constrained scenario, where the average energy usage rate is

limited by the energy arrival rate r. Since θ is less than 1, each status packet can be served

as soon as it arrives at the system, thus the average AoI is λ−1. It is exactly the first term

at the right-hand sides of Eq. (8). As battery capacity B increases, the average AoI decreases

and approaches the average AoI under the average-power-constrained scenario. This result offers

guidance to the selection of the battery capacity in an energy harvesting status update system.

For example, given the system requirement that the average AoI should not exceed ∆max, the

battery capacity must be greater than

Bmin = logθ
λ∆max − 1

λθK∆max +
(
−KθK − θK + 1−θK

1−θ

)
θ2
.

Similar characteristics can be found in Theorems 2–6 for the other penalty functions as well as

under the LFCS discipline.
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Additionally, the average AoI under the FCFS discipline is derived in [29] [30] by SHS for

a system where only one status packet is allowed in the system if the battery is not empty

(identical to the case K = 0 if service rate µ → ∞). The average AoI (see [29, Eq. (7)] and

[30, Eq. (9)]) matches Eq. (8) under the conditions K = 0 and µ → ∞, which further verifies

Theorem 1.

Theorem 2: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, with penalty

function g (∆) = α−1
(
eα∆ − 1

)
, α < λ, the average penalty is

CFCFS, exp =


1

λ− α
+

rα−1

θ−B − θK+1

 θK+2

λ− α
+ (1− θ)

1− λK+1

(r−α)K+1

r − α− λ
− 1

r − α

 , if α 6= r − λ,

1

λ− α
+

r−1

θ−B − θK+1

[
θK+2 − 2θ + 1

(2θ − 1)(1− θ)
+
K

θ

]
, if α = r − λ.

(9)

Note that Eq. (9) holds for α ∈ [0, λ) as well as α ∈ (−∞, 0). The exponent α needs to be

strictly smaller than status packet arrival rate λ, or there is an unbounded average penalty. In

this sense, the average penalty under an exponential penalty function with exponent α > 0 is

highly sensitive to the status packet arrival rate λ.

Theorem 3: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, with penalty

function g (∆) = 1 {∆ ≥ β}, the average penalty is

CFCFS, step = e−λβ +
e−rβ

θ−B − θK+1

K∑
i=0

(λβ)i

i!
− θK+1e−rβ

θ−B − θK+1

K∑
i=0

(rβ)i

i!
+
e−λβθK+1 − e−rβ

θ−B − θK+1
. (10)

The average penalty with penalty function g (∆) = 1 {∆ ≥ β} equals the probability that the

AoI exceeding threshold β. In [13], the peak AoI is proposed as a metric that is suitable in the

applications where the AoI is supposed to be lower than a given bound. However, comparing the

CDF of peak AoI in Eq. (6) and AoI’s threshold violation probability in Eq. (10), it is observed

that with the same threshold β, we have

P {A > β} ≥ CFCFS, step,

which implies that the peak AoI violation probability does not equal the AoI violation probability.

Therefore, the peak AoI violation probability can only serve as an upper bound of the AoI

violation probability.
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B. LCFS Discipline

Under the LCFS discipline, the average penalty is expected to be smaller than its FCFS

counterpart, since the latest status packet is delivered first. In a queuing system with the LCFS

discipline, the probability distribution of sojourn time and peak AoI are obtained and summarized

in the following lemmas:

Lemma 3: Under the LCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ and r, and the service time being negligible, the arrival rate

λ̃ of valid updates is

λ̃LCFS =
1− θB+1

1+θ
− θB+K+1

1+θ

1− θB+K+1
. (11)

Proof: See Appendix C.

Under the LCFS discipline when the buffer capacity K > 1, outdated status packets is going

to be delivered to the receiver unless they are pushed out of the buffer by fresher status packets.

Therefore, the arrival rate of valid updates is smaller than the throughput of the system. The

valid updates under the LCFS discipline consists of all status packets that arrive at the buffer

when the battery is not empty, and those delivered before any other status packets arrive. It

is observed from Eq. (11) that as the buffer capacity K increases, there is a decrease in valid

updates. The reason is that outdated status packets in the buffer is going to consume energy

packets, which reduces the probability of a newly arrived status packet being a valid update.

Lemma 4: Under the LCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, the CDFs

of the sojourn time of valid updates and the peak AoI are expressions as Eq. (12) and (13).

Proof: See Appendix D.

For the penalty function being g(∆) = ∆, g(∆) = α−1
(
eα∆ − 1

)
, and g(∆) = 1 {∆− β},

the long-term average penalty under LFCS is obtained by Eq. (5) and given in Theorem 4–6.

Theorem 4: Under the LCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, the average

AoI is

CLCFS, linear = λ−1 +
r−1

θ−B − θK+1

[
(1− θ)θK+1

(1 + θ)K+1
− θK+1 + θ

]
. (14)

Theorem 5: Under the LCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, with penalty
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Prob [T ≤ t] = 1− e−(λ+r)t

(
1− θK+1

)
(θ−B − 1) (1 + θ) + (1− θK+1)

(12)

Prob [A ≤ a]

= 1− e−λa
(
θ−B − θK+1

)
(1 + θ)

(θ−B − 1) (1 + θ) + (1− θK+1)
− e−ra(1 + θ)

Kθ−1 + θK+1−2+θ−1

1−θ

(θ−B − 1) (1 + θ) + (1− θK+1)

+
e−(λ+r)a(1 + θ)

(θ−B − 1) (1 + θ) + (1− θK+1)

{
−1 + θK+1

1 + θ
+ (Kθ−1 + θ−1 − θ

1− θ
)

K∑
k=0

(rθa)k

k!

−θ−1

K−1∑
k=0

(rθa)k+1

k!
+
θK+2

1− θ

K∑
k=0

(ra)k

k!

}
(13)

function g (∆) = α−1
(
eα∆ − 1

)
, α < λ, the average penalty is

CLCFS, exp =
1

λ− α
+

1

(r − α)2

λ

(θ−B − θK+1)

[
1 +

(
λ

λ+ r − α

)K+1
r − λ
λ− α

− θK+1 r − α
λ− α

]
.(15)

Theorem 6: Under the LCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being negligible, with penalty

function g (∆) = 1 {∆ ≥ β}, the average penalty is

CLCFS, step = e−λβ +
e−(r+λ)β

θ−B − θK+1

{
eλβ

θK+2

1− θ
+

(
K +

1− 2θ

1− θ

)(
eλβ −

K∑
i=0

(λβ)i

i!

)

+λβ
K−1∑
i=0

(λβ)i

i!
− θK+2

1− θ

K∑
i=0

(rβ)i

i!

}
. (16)

C. Asymptotic Regime: K →∞

When the buffer size is large enough, all the status packets is delivered to the receiver, and

thus the throughput is λ. Next, we look into the average penalty when K →∞.

Corollary 1: The average penalty of an energy harvesting status update system, with Poisson

status packet arrivals and energy packet arrivals of rate λ and r = λ/θ, and an infinite-sized

buffer, is summarized in TABLE I.

As mentioned before, the difference in the average penalty between the energy harvesting case

and the average-power-constrained case gradually diminishes with the growth of battery capacity

B. When the K →∞, it is observed in TABLE I that the average penalty decays exponentially

to its limit with constant rate θ as the battery capacity B increases, regardless of the service

discipline or the penalty function.
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TABLE I

EXPRESSIONS OF AVERAGE PENALTY WITH THREE PENALTY FUNCTIONS UNDER THE FCFS AND THE LCFS DISCIPLINES

WHEN THE BUFFER CAPACITY K →∞.

Penalty functions FCFS LCFS

g(∆) = ∆ 1
λ

+ 1
λ
θB+2

1−θ
1
λ

+ 1
λ
θB+2

g(∆) = α−1
(
eα∆ − 1

)
1

λ−α + rα−1
(

1−θ
r−α−λ −

1
r−α

)
θB , α < r − λ 1

λ−α + λ
(r−α)2

θB

g (∆) = 1 {∆ ≥ β} e−λβ +
(
eλβ − 1

)
e−rβθB e−λβ + λβe−rβθB

IV. NON-NEGLIGIBLE SERVICE TIME REGIME

In [29], the authors analyze the average AoI of the model when the buffer capacity is 1, and

obtain the average AoI under the asymptotic region where the ratio between status packet arrival

rate λ and service rate µ goes to infinity. However, it is difficult to obtain the result when the

service time is not negligible.

In this section, the service time of a status packet is assumed to be an i.i.d exponential random

variable with mean µ−1. We show that the queues evolve as a QBD process, and compute the

average peak AoI by matrix geometric method [33]. Analysis of the results in this section will

be discussed at the beginning of Section V with illustrations.

Fig. 5. Two-dimensional state transition diagram for the general problem.

The states of the system are represented by tuple (q1, q2). Note that when q1 > 0 and q2 > 0,

the server is serving a status packet with an energy packet until the status packet leaves the

system, such that the state transits to (q1 − 1, q2 − 1). At each state (q1, q2), there are several

possible transitions, summarized as follows:

1) From state (q1, q2) to state (q1 + 1, q2) with transition rate λ;

2) From state (q1, q2) to state (q1, q2 + 1) with transition rate r;

3) From state (q1, q2) to state (q1 − 1, q2 − 1) with transition rate µ if min{q1, q2} ≥ 1.
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The corresponding Markov transition graph is illustrated in Fig. 5. As the graph indicates, the

two-dimensional Markov chain is a QBD process, of which the transition matrix is written as:

Q =



Ṽ W 0 0 · · ·

U V W 0 · · ·

0 U V W · · ·

0 0 U V · · ·
...

...
... . . . . . .


,

in which Ṽ,U,W,V ∈ R(B+1)×(B+1) are

Ṽ = −λI +



−r r 0

−r r
. . . . . .

−r r

0 0


,

V = −λI +



−r r 0

−(r + µ) r
. . . . . .

−(r + µ) r

0 −µ


,

U =



0 0

µ 0

µ
. . .
. . . 0

0 µ 0


,

and W = λI.

Since the system is ergodic, there exists a stationary solution {pi}, where pi = {pi,0, pi,1, · · · , pi,B}

denotes the probability of the system being at state (i, ·), such that pi satisfies the following

recursive relationship

pi+1 = piR, i ∈ N. (17)

Since

(p0,p1, · · · )Q = 0, (18)
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by substituting (17) into (18), we have

R2U + RV + W = 0 (19)

and p0

(
Ṽ + RU

)
= 0, along with constraint p0

∑∞
i=0 R

i1T = p0 (I−R)−1 1T = 1, in which

1 = (1, · · · , 1) ∈ RB+1. Based on (19), by iteratively computing Rn+1 = −(R2
nU+W)V−1 with

initial condition R0 = 0, R can be approached, and the stationary distribution of system states

is obtained. The algorithm to compute the stationary distribution is summarize in Algorithm 1.

Algorithm 1 Matrix geometric method to obtain the stationary distribution of the non-negligible

service time problem
Input: λ, µ, r, B, ε = 10−8;

1: R0 = 0;

2: repeat

3: Rn+1 = −(R2
nU + W)V−1;

4: until maxi,j |(Rn+1 −Rn)ij| < ε;

5: Find the eigenvector p0 of (Ṽ+RU) with eigenvalue 0 and satisfying p0 (I−R)−1 1T = 1.

According to Little’s law, the mean sojourn time of a status packet is

E [T ] =
q̄1

λ
=

1

λ

+∞∑
i=1

ip0R
i1T =

1

λ
p0(I−R)−2R1T.

With the stationary distribution {p0R
i}i≥0, the expression for average peak AoI is obtained by

Eq. (2), and summarized in the following theorem:

Theorem 7: Under the FCFS discipline, with status packet arrivals and energy packet arrivals

being Poisson processes of rate λ = rθ and r, and the service time being i.i.d. random variable

following exponential distribution with mean µ−1, the average peak AoI is

E [A] =
1

λ
+

1

λ
p0(I−R)−2R1T, (20)

where p0 and R are computed by Algorithm 1.

V. NUMERICAL ANALYSIS

Fig. 6 illustrates the average peak AoI versus the ratio of status packet arrival rate to service

rate, and the ratio of energy arrival rate to service rate, respectively. The service rate µ is set to

1s−1, and the battery capacity B is set to 5 units. As the figure shows, the average peak age first
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Fig. 6. The average peak AoI given that B = 5 and µ = 1s−1.

decreases then rises with the growth of λ
µ

. The reason is intuitive: When the status packet arrival

rate is small, the lack of status information generation leads to a low update frequency, while

when the status packet arrival rate is large, long queuing delay becomes the dominant factor that

aggravates the freshness of status information. Therefore, there exists an optimal status update

frequency that achieves the minimum average peak AoI, which infers the optimal sensing rate

for remote status update. It is also observed from the figure that the energy arrival rate r should

be larger than the status packet arrival rate λ. Otherwise, the status packet queue is not stable.

Next, we focus on the negligible-service-time regime to get insights into the problem.
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Fig. 7. Comparison of average penalty in a status update system with battery size B = 1, buffer capacity K = 5, exponent

α = 0.2, threshold β = 2, and energy arrival rate r = 1s−1.

Fig. 7 plots the three types of average penalty under the FCFS and LCFS disciplines. The

average penalty under exponential penalty function is more sensitive to the change in data-to-

energy ratio θ, and the average penalty of shifted unit step function, i.e., the violation probability,
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is the least sensitive. The overall characteristics of the three penalty functions have several

similarities:

1) Under the FCFS discipline, the average penalty first decreases then increases with the growth

of θ. This result is consistent with the one in average peak AoI when service time cannot

be neglected.

2) Under the LCFS discipline, a larger θ always gives a lower penalty, owing to a larger update

frequency.

3) The LCFS discipline always outperforms the FCFS discipline. This result is consistent with

the work in [12].
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(d) Violation probability under threshold β = 5.

Fig. 8. Average penalty under FCFS discipline with energy arrival rate r = 1s−1 and battery capacity B = 1.

A. Impact from Buffer Capacity K under FCFS

Fig. 8(a) depicts the average AoI under different buffer capacities and ratio θ with constant

energy arrival rate. It is shown that the average AoI is significantly lower, if newly arrived

status packets are dropped when the status packet arrival rate is large. However, as observed

in Fig. 8(b), blocking more status packets cannot always reduce the average AoI when status

packet arrival rate is small. The optimal buffer capacity under given battery capacity and status

packet arrival rate can be found by numerical methods. Illustrations of average penalties under

exponential penalty function and violation probability are shown in Fig. 8(c) and Fig. 8(d).
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Moreover, as shown in Fig. 8(c), the average penalty under the exponential penalty function is

extremely sensitive to status packet arrival rate when the buffer capacity is large. The sensitivity

of exponential penalty function is previously observed in [6] for K = ∞ and in the packet

management problem in [5]. Especially, when the buffer capacity goes to infinity, the average

penalty exists only if λ < r − α. The reason is the under the exponential penalty function, the

penalty rises sharply when AoI is large. However, the upper bound condition on status packet

arrival rate is not necessary under the LCFS discipline.
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Fig. 9. Average penalty under FCFS discipline with energy arrival rate r = 1s−1 and buffer capacity K = 10.

B. Impact from Battery Capacity B under FCFS

Fig. 9 compares average penalty under different battery capacities and ratio θ with constant

energy arrival rate r = 1s−1. As shown in the figure, when θ is small, the increase in battery

capacity does not noticeably reduce the average penalty. As the status packet arrival rate grows,

different from the average power constrained case, the average penalty first drops then increases.

The optimal status packet arrival rate can be found by bisection method.

C. Impact from the LCFS Discipline

According to Theorem 4–6, the average penalty under LCFS discipline also decays as battery

capacity increases. Fig. 10 plots the average AoI under LCFS discipline, with data buffer K = 1
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Fig. 10. Average AoI of a LCFS system under different buffer capacitys and ratio θ with energy arrival rate r = 1s−1.

and K = 100. When K = 100, little status packets is dropped, and the average AoI first drops

and then increases as the status packet arrival rate grows, while with K = 1, i.e., only the latest

status packet is kept in the queue at each time, a higher status update frequency always gives

a lower average age. Additionally, it is noticed from the figure and can be easily proved that

LCFS discipline with K = 1 leads to the lowest average AoI if the server is working-conserving.

The same result also holds in the cases with exponential penalty function and shifted unit step

function.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the non-linear AoI for a status update system powered by

renewable energy sources. With packet generation and energy arrival both being a Poisson

process and service time following exponential distribution, a method to compute the average

peak AoI is proposed. To gain more insights into the problem, a special case in which the

service time is small enough is analyzed. The closed-form expressions of average penalty under

linear penalty function, exponential penalty function, and shifted unit step function for both

FCFS and LCFS systems are obtained. Results show that under the FCFS discipline, the average

penalty under the exponential penalty function is extremely sensitive to the status information

generation frequency, especially when the buffer capacity or the parameter α in exponent is large.

As battery capacity increases, the difference in the average penalty between the energy-harvesting

case and the average-power-constrained case exponentially decays with rate equal to the ratio of

status information generation frequency to energy arrival rate. For FCFS systems, there exists a

unique minimum average penalty that can be achieved by a proper status information generation

frequency, while in a LCFS system with unit buffer capacity, the minimum penalty is achieved,



23

and a larger status information generation frequency always gives a smaller average penalty. It

is also noticed that blocking more status packets can reduce the average penalty when the status

generation frequency is large. The performance of the LCFS discipline and finite buffer capacity

in a system with non-negligible service time needs to be investigated in future work.

APPENDIX A

PROOF OF LEMMA 1

Under FCFS, a data packet is a valid update if and only if the data buffer is not full upon its

arrival. Since the queuing system is equivalent to an M/M/1 queue, we have

lim
n→∞

P {Sn = j} =
(1− θ) θj+B

1− θK+B+1
.

According to the PASTA (Poisson Arrivals See Time Average) property, we have

λ̃FCFS = λ
K−1∑
j=−B

lim
n→∞

P {Sn = j} = λ
1− θK+B

1− θK+B+1
. (21)

APPENDIX B

PROOF OF LEMMA 2

By the total probability formula, we have that

P {An ≤ a} = P {Xn + Tn ≤ a} =

∫ ∞
0

P
{
Tn ≤ a− x

∣∣Xn = x
}
fXn(x)dx,

and that

P {Tn ≤ t} =

∫ ∞
0

P
{
Tn ≤ t

∣∣Xn = x
}
fXn(x)dx.

Therefore, we first obtain the CDF of inter-arrival time X of valid updates, and the conditional

probability distribution of sojourn time T given inter-arrival time X .

Denoting the system state right before the arrival of the n-th valid update as S−n , since valid

updates are the status packets that enter the data buffer, we get S−n ≤ K − 1. Applying the total

probability formula again, we have

P {Tn ≤ t|Xn} =
K−1∑
i=−B

P
{
S−n = i|Xn

}
P
{
Tn ≤ t|S−n = i,Xn

}
(a)
=

K−1∑
i=−B

P
{
S−n = i|Xn

}
P
{
Tn ≤ t|S−n = i

}
, (22)
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where (a) uses the fact that the sojourn time Tn of the n-th valid update and the inter-arrival

time Xn between the (n − 1)-th and the n-th valid update are conditionally independent given

S−n .

The second term on the right-hand side of Eq. (22) is expressed as Eq. (23): when the battery

is empty and there are already i status packets waiting to be served, i.e., S−n ≥ i, the new status

packets will not be served until the arrival of i+1 energy packets; when the battery is not empty

(S−n < 0), the new status packets will be delivered instantly.

P
{
Tn ≤ t|S−n = i

}
=


+∞∑
j=i+1

(rt)j

j!
e−rt, if i ≥ 0;

1, if i < 0.

(23)

Using the total probability formula in the first term on the right-hand side of Eq. (22) , we

have

P
{
S−n = i|Xn

}
=

K−1∑
j=max{i−1,−B}

P
{
S−n−1 = j|Xn

}
P
{
S−n = i|Xn, S

−
n−1 = j

}
, (24)

where uses the condition that S−n−1 + 1 ≥ S−n since there are only one valid update between

S−n−1 and S−n .

To get Eq. (24), we first obtain the CDFs of inter-arrival time Xn and system state S−n before

arrival. According to the PASTA property, P {S−n = i} approaches the stationary probability of the

system being at state i when n goes to infinity given the condition that the state is not K. Since the

queuing system is equivalent to an M/M/1 queue, which gives limn→∞ P {Sn = i} = (1−θ)θi+B
1−θK+B+1

the probability of state being i is

lim
n→∞

P
{
S−n = i

}
=

limn→∞ P {Sn = i}
1− limn→∞ P {Sn = K}

=
1− θ

1− θK+B
θi+B. (25)

Next, we apply the total probability formula to obtain the CDF of inter-arrival time Xn:

P {Xn ≤ x} = P
{
Xn ≤ x|S−n−1 = K − 1

}
P
{
S−n−1 = K − 1

}
+

K−2∑
j=−B

P
{
Xn ≤ x|S−n−1 = j

}
P
{
S−n−1 = j

}
. (26)

When S−n−1 < K − 1, the data buffer cannot be full at the arrival of the next status packet.

Therefore, any status packet arrives right after the (n − 1)-th valid update is a valid update,

which gives

P
{
Xn ≤ x|S−n−1 = j

}
= 1− e−λx, j ≤ K − 2; (27)
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When S−n−1 = K − 1, there are at least one energy packet arrival before the next status packet

entering the buffer. Thus, we have

P
{
Xn ≤ x|S−n−1 = K − 1

}
= 1− 1

1− θ
e−λx +

θ

1− θ
e−rx. (28)

Substituting Eq. (25), (27) and (28) into the right-hand side of Eq. (26), we have

P {Xn ≤ x} = 1 + e−rx
θK+B

1− θK+B
− e−λx 1

1− θK+B
. (29)

Next we obtain the first term on the right-hand side of Eq. (24) by Bayes’ theorem:

P
{
S−n−1 = j|Xn = x

}
=
fXn|S−

n−1=j(x)P
{
S−n−1 = j

}
fXn(x)

.

With Eq. (25), (27)–(29), the above equation can be expressed as:

P
{
S−n−1 = j|Xn = x

}
=


(1− θ) θj+B+1e−λx

−e−rxθK+B + θe−λx
, if j < K − 1;

−e−rxθK+B + e−λxθK+B

−e−rxθK+B + θe−λx
, if j = K − 1.

(30)

Now we obtain the second term on the right-hand side of Eq. (24). If S−n−1 ≤ K − 2 and

S−n > −B, then there are (S−n−1 − S−n + 1) energy packets arrived between the arrivals of the

(n− 1)-th and the n-th valid update, which gives

P
{
S−n = i|Xn = x, S−n−1 = j

}
=

(rx)j+1−i

(j + 1− i)!
e−rx, if j ≤ K − 2, i > −B. (31)

If S−n−1 ≤ K − 2 and S−n = −B, then there are at least (S−n−1 + B + 1) energy packets arrived

between the arrivals of the (n− 1)-th and the n-th valid update:

P
{
S−n = i|Xn = x, S−n−1 = j

}
=

+∞∑
m=j+B+1

(rx)m

m!
e−rx, if j ≤ K − 2, i = −B. (32)

If S−n−1 = K − 1, by the definition, we have

P
{
S−n = i|Xn = x, S−n−1 = K − 1

}
=
fS−

n ,Xn|S−
n−1=K−1(i, x)

fXn|S−
n−1=K−1(x)

. (33)

Further, if S−n > −B, then what happens between the arrivals of the (n−1)-th and the n-th valid

update is that the first energy packet arrives at t seconds after the arrival of the (n− 1)-th valid

update, and that there are (K − 1 − S−n ) energy packets and no status packet arrived between

the arrivals of the first energy packet and the n-th valid update. Thus, we have

fS−
n ,Xn|S−

n−1=K−1(i, x) =

∫ x

0

re−r(x−t)
(rt)K−i−1

(K − i− 1)!
e−rtλe−λt dt, if S−n > −B. (34)
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If S−n = −B, then between the arrivals of the (n − 1)-th and the n-th valid update, the first

energy packet arrives at t seconds after the arrival of the (n− 1)-th valid update, and there are

at least K +B − 1 energy packets and no status packet arrived between the arrivals of the first

energy packet and the n-th valid update:

fS−
n ,Xn|S−

n−1=K−1 (−B, x) =

∫ x

0

re−r(x−t)
+∞∑

l=K+B−1

(rt)l

l!
e−rtλe−λt dt. (35)

Substituting Eq. (28), (34) and (35) into Eq. (33), we get

P
{
S−n = i|Xn = x, S−n−1 = K − 1

}

=


1− θ
θK−i

e−rx

e−λx − e−rx
+∞∑

m=K−i

(λx)m

m!
e−λx, if S−n > −B;

e−r(1+θ)x

e−λx − e−rx

(
+∞∑

i=K+B

(rx)i

i!
− θ−K−B+1

+∞∑
i=K+B

(λx)i

i!

)
, if S−n = −B.

(36)

Substituting Eq. (30), (31), (32) and (36) into Eq. (24), we get

P
{
S−n = i|Xn = x

}
=


(1− θ)θB+ie−rx

−e−rxθK+B + θe−λx
, if i > −B;

(e−λx − e−rx)θ
−e−rxθK+B + θe−λx

, if i = −B.
(37)

Combining Eq. (37) with Eq. (23), Eq. (22) becomes

P {Tn ≤ t|Xn = x} = 1 − θBe−rx

−e−rxθK+B + θe−λx

K−1∑
n=0

(λt)n

n!
e−rt

+
θK+Be−rx

−e−rxθK+B + θe−λx

K−1∑
n=0

(rt)n

n!
e−rt.

Together with Eq. (29), by the total probability formula, the lemma is proved.

APPENDIX C

PROOF OF LEMMA 3

Under the LCFS discipline, if a status packet arrives when the battery is not empty or

afterwards a energy packet arrives before another status packet enters the data buffer, the status

packet is a valid update. Thus, by the PASTA property, the probability of a status packet being

a valid update is
−1∑

i=−B

Prob {Sn = i}+
1

1 + θ

K∑
i=0

Prob {Sn = i} =
(θ−B − 1) (1 + θ) + (1− θK+1)

(θ−B − θK+1) (1 + θ)
,

and the arrival rate of valid update is λ̃ = λ (θ−B−1)(1+θ)+(1−θK+1)
(θ−B−θK+1)(1+θ)

.
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APPENDIX D

PROOF OF LEMMA 4

We first obtain the probability distribution of the state S−n before valid updates’ arrivals. By

the definition of conditional probability and the PASTA property, we have

Prob
{
S−n = i

}
=

Prob {Sn = i upon arrival, valid update}
P {valid update}

=


(1− θ) θi

(θ−B − 1) (1 + θ) + (1− θK+1)
, if 0 ≤ i ≤ K;

(1− θ2) θi

(θ−B − 1) (1 + θ) + (1− θK+1)
, if −B ≤ i ≤ −1.

(38)

Since the status packets arriving when the battery is not empty have zero sojourn time, we

have

Prob {Tn ≤ t} =
−1∑

i=−B

Prob
{
S−n = i

}
+

K∑
i=0

Prob
{
S−n = i

}
Prob

{
Tn ≤ t|S−n = i

}
, (39)

where Prob {Tn ≤ t|S−n = i ≥ 0} is the conditional probability distribution of sojourn time given

that an energy packet comes before another status packet after the n-th valid update, which leads

to

Prob
{
Tn ≤ t|S−n = i

}
= (1 + θ)

∫ t

0

re−rτe−λτdτ = 1− e−(λ+r)t, if i ≥ 0. (40)

Substituting Eq. (38) and (40) into Eq. (39), we have

Prob [Tn ≤ t] = 1− e−(λ+r)t

(
1− θK+1

)
(θ−B − 1) (1 + θ) + (1− θK+1)

(41)

For the CDF of peak age A, we first obtain the conditional probability of the inter-delivery

time Dn between the delivery of the n-th and the (n + 1)-th valid update given the sojourn

time Tn of the n-th valid update. After that, the CDF of peak age A can be given by the total

probability formula:

P {A ≤ a} =

∫ a

0

fTn(a− d)P {Dn ≤ d|Tn = a− d} dd (42)

Denote the system state right after the delivery of the n-th valid update as S+
n . By the total

probability formula, we have

Prob {Dn ≤ d|Tn = t} =
K∑

i=−B+1

Prob
{
Dn ≤ d|Tn = t, S+

n = i
}

Prob
{
S+
n = i|Tn = t

}
.
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Due to the fact that the inter-delivery time Dn between the delivery of the n-th and the (n+1)-th

valid update and the sojourn time Tn of the n-th valid update are conditionally independent given

the state S+
n right after the n-th valid update’s delivery, the former equation can be simplified as

Prob {Dn ≤ d|Tn = t} =
K∑

i=−B+1

Prob
{
Dn ≤ d|S+

n = i
}

Prob
{
S+
n = i|Tn = t

}
. (43)

First, we obtain the first term on the right-hand side of Eq. (43). If S+
n < 0, the inter-delivery

time equals the inter-arrival time of two successive status packets, which gives

Prob
{
Dn ≤ d|S+

n = i
}

= 1− eλd, if i < 0. (44)

If S+
n ≥ 0, the complement of Dn ≤ d is that in d after the n-th valid update’s delivery, either

there is no status packet arrival or there is no energy arrival, or that no more than S+
n energy

packets arrive and all the energy packets arriving in d after the n-th valid update’s delivery come

before status packets. Therefore, if S+
n = 0, we have

Prob
{
D ≤ d|S+

n = 0
}

= Prob {both data arrivals and energy arrivals in d}

= 1− e−λd − e−rd + e−r(1+θ)d. (45)

If S+
n > 0, we have

Prob
{
Dn ≤ d|S+

n = i
}

= Prob {both data arrivals and energy arrivals in d}

−
i∑

k=1

Prob {k energy arrivals in d, all energy arrivals before the first data arrival}

= 1− e−λd − θ−i − θ
1− θ

e−rd − e−r(1+θ)d

[
θ

1− θ

i∑
k=0

(rd)k

k!
− θ−i

1− θ

i∑
k=0

(rθd)k

k!

]
. (46)

Next, we obtain the second term on the right-hand side of Eq. (43). If Tn = 0, we have that

the state S−n right before the n-th valid update’s arrival is negative, and that S+
n = S−n + 1.

Therefore, we get

Prob
{
S+
n = i|Tn = 0

}
= Prob

{
S−n = i− 1|S−n < 0

}
=


0, if i ≥ 1;

(1− θ) θi+B−1

1− θB
, if i ≤ 0.

(47)
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The sufficient and necessary condition of Tn > 0 is S−n ≥ 0. If Tn > 0, the valid update first

enters the data buffer, and is deliveried when an energy packet arrives. Therefore, S−n = S+
n , and

Prob
{
S+
n = i|Tn = t

}
= Prob

{
S−n = i|S−n ≥ 0

}
=


0, if i < 0;

(1− θ) θi

1− θK+1
, if i ≥ 0.

(48)

Substituting Eq. (44)–(48) into Eq. (43), we get

Prob [Dn ≤ d|Tn = t]

=



(
1− e−λd

) [
1− e−rd θ

B−1 − θB

1− θB

]
, t = 0;

1− e−λd −
K − θ2−θK+2

1−θ

1− θK+1
e−rd

− e−r(1+θ)d

1− θK+1

[
−

K−1∑
k=0

(K − k)
(rθd)k

k!
+

θ2

1− θ

K−1∑
k=0

(rθd)k

k!
− θK+2

1− θ

K−1∑
k=0

(rd)k

k!

]
t > 0.

(49)

Combining Eq. (41) and (49), the lemma is proved.
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