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Abstract—We investigate the energy efficiency (EE) of multiple-
input multiple-output (MIMO) amplify-and-forward relaying
networks relying on the realistic imperfect channel state infor-
mation (CSI). Specifically, the relay jointly optimizes the source
covariance and relay beamforming matrices by maximizing EE
under additive or multiplicative relay-destination CSI errors.
The optimal channel-diagonalizing structure is derived for the
source covariance and relay beamforming matrices under the
spectral-norm constrained additive or multiplicative CSI error.
Then the existence of a saddle point is proved, which shows that
the channel-diagonalizing transmission strategy is optimal in the
robust EE maximization under these two types of CSI errors,
and the original matrix-valued fractional robust EE problem
is transformed into a scalar fractional problem. We propose
the Dinkelbach method based alternating optimization scheme
for this transformed robust EE problem, which is capable of
finding a locally optimal solution of the original robust EE
problem efficiently, and show that the semi-closed-form solution
to each of the two associated subproblems can be obtained. We
then prove that the channel-diagonalizing transmission strategy
remains optimal when the statistically imperfect source-relay
channel is additionally imposed. We also extend our work into
multi-hop MIMO relaying scenarios, and prove that the channel-
diagonalizing structure is optimal for the source covariance
matrix and multiple relay beamforming matrices.

Index Terms—Robust energy efficiency optimization, additive
and multiplicative CSI errors, channel-diagonalization

I. INTRODUCTION

Cooperative relaying is a promising technique for improving

the communication reliability and expanding the communica-

tion range [1]–[3]. Moreover, given the multiplexing and/or

diversity gains provided by multiple-input multiple-output

(MIMO) techniques, various relaying strategies have been

proposed for MIMO relaying systems [3]–[8]. Among these

existing relaying strategies, the amplify-and-forward (AF)

strategy is popular since only a simple linear transformation is
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required for forwarding signals by relays [3], [5]. Most of the

existing literature of MIMO AF relaying systems concentrates

on the optimization of traditional performance metrics, such as

the achievable capacity and the minimum mean square errors

(MSE) of signal detection [4]–[8]. Recently, considerable at-

tention has been focused on the energy efficiency (EE), which

is an important system performance metric for promoting

green communications. Traditionally, it is defined as the ratio

of the achievable capacity to the total power consumption

of signal transmission and circuit hardware dissipation [9]–

[12]. There exist some works in the literature that investigate

the EE optimization for MIMO AF relaying systems [10]–

[12]. Interestingly, these works provide a common insight that

the channel-diagonalizing transceiver structure is optimal, in

terms of EE optimization, which implies that similar to the

optimization of the traditional capacity and MSE metrics [7],

[8], the eigenmode transmission strategy is still optimal for EE

optimization. However, these works are based on the unreal-

istic assumption of perfect channel state information (CSI).

Since the CSI estimation errors are generally unavoidable in

practice, ignoring this uncertainty, as in the works [10]–[12],

will lead to significant EE performance degradation for MIMO

systems. Consequently, it is necessary to consider the influence

of CSI errors on the EE optimization of MIMO AF relaying

systems.

There are two types of imperfect CSI models. One is the

statistical CSI model, in which only partial CSI is available,

such as channel mean or covariance matrix. In this context,

given the channel distribution, various designs based on system

average performance were investigated [11], [13], [14]. For

example, the works [11], [13] studied the robust EE maximiza-

tion of two-hop MIMO relaying networks given the statistical

source-relay channel or relay-destination channel. In this case,

the eigenmode transmission strategy is optimal. The other is

the approximate CSI model, which adopts an error model for

the CSI approximation. Generally, various CSI error models

are classified into the deterministic and stochastic ones [15]–

[21]. The deterministic CSI error is often used for modeling

quantization inaccuracy, in which only the estimated channel

knowledge with bounded CSI error is available [15], [16].

In this case, the worst-case robustness optimization is mainly

considered [17]–[19]. In other words, the system performance

under the worst-case channel quality becomes an important

criterion. Naturally, it is worth investigating whether channel

diagonalization is still optimal for EE optimization subject to

the deterministic CSI error. To the author’s best knowledge,

this important issue has not been addressed in the existing

literature. For the stochastic CSI error, which is well suited
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for modeling estimation inaccuracy, existing works typically

involve outage-type performance optimization [20], [21]. In

this context, the system design is generally more difficult

than that for the deterministic CSI error. There exist only a

few works considering mean EE optimization under outage

constraints, in which the channel diagonalization is generally

unavailable [21].

This paper mainly investigates the robust EE maximiza-

tion of MIMO AF relaying systems under imperfect CSI

with the deterministically bounded CSI error. We aim to

jointly optimizing the source covariance matrix and relay

beamforming matrix/matrices to maximize the system’s EE

for MIMO AF relaying networks under both additive and

multiplicative CSI errors. The main challenge of this ro-

bust EE maximization design is that it is essentially a two-

objective optimization, namely, maximizing the achievable

worst-case rate while minimizing the total power consumption.

Clearly, these two objectives are conflicting. Therefore, the

optimal diagonalization transmission strategy for traditional

robust capacity maximization [17] is not applicable, since

both the achievable worst-case rate and the total transmit

power are simultaneously maximized by diagonalizing the

channel matrices. The robust EE maximization design must

find an optimal trade off between maximizing the worst-case

rate and minimizing the total power consumption. Our main

contributions are summarized as follows:

• Under the spectral-norm constrained additive and multi-

plicative relay-destination channel errors, we prove the

existence of a saddle point for the robust max-min EE

problem. The analytical structure of this saddle point is

derived, which enables the scalarized reformulation of the

robust EE problem to reduce the optimization complexity

remarkably. An important insight provided by the optimal

analytical solutions is that the eigenmode transmission

strategy is optimal for the robust EE maximization under

the deterministic CSI errors. We further show that this

eigenmode transmission strategy remains optimal for the

robust EE optimization when the statistically imperfect

source-relay channel is additionally imposed.

• In order to effectively solve the scalarized EE optimiza-

tion, we propose an alternating optimization of the source

covariance matrix related subproblem and the relay beam-

forming related subproblem. For both these subproblems,

we can jointly apply Dinkelbach’s method [22] and

the Lagrangian dual method to obtain the water-filling

structured solutions. The convergence of the proposed

alternating optimization is established. This approach is

also applicable to the case with additional statistically

imperfect source-relay channel.

• Furthermore, we extend our work to multi-hop MIMO AF

relaying scenarios. The eigenmode transmission strategy

is also proved to be optimal for the robust EE opti-

mization subject to deterministic relay-destination CSI

errors, and our proposed alternating optimization remains

applicable. The extension to the robust EE optimization

subject to additional statistically imperfect relay-relay

channels is also discussed.

The bold-faced lower-case and upper-case letters stand for

vectors and matrices, respectively. The transpose, Hermitian

and inverse operators are denoted by (·)T, (·)H and (·)−1,

respectively, while Tr(A) and det(A) denote the trace and

determinant of A, respectively. E[·] is the expectation, and

In is the n× n identity matrix, while ‖ · ‖2 denotes the

matrix spectral norm, and A � 0 indicates that the square

matrix A is positive semidefinite. 0n×m and 1n denote the

n×m zero matrix and the n-dimensional vector with all

elements being one, respectively. The n × n square diagonal

matrix with the diagonal elements a1, a2, · · · , an is denoted

by diag{a1, a2, · · · , an}, and similarly for the m×n diagonal

rectangular matrix, all the off-diagonal elements are zero.

A∅B represents either A or B depending on which one is

actually considered. The rank of A is denoted by rank(A), and

(a)+ =max{a, 0}. The words ‘independently and identically

distributed’ and ‘with respect to’ are abbreviated as ‘i.i.d.’ and

‘w.r.t.’, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Two-Hop MIMO AF Relaying Networks

Consider a MIMO AF relaying network consisting of an

NS-antenna source, an NR-antenna relay and an ND-antenna

destination, which operates in half-duplex mode. In the first

hop, the source transmits the data vector s∈C
NS having the

covariance matrix E
[
ssH

]
=VS∈C

NS×NS to the relay, whose

received signal yR∈C
NR is expressed as

yR =HSRs+ nR, (1)

where nR ∈ C
NR is the additive white Gaussian noise

(AWGN) vector of the source-relay link with the covariance

matrix σ2
rINR

, and HSR ∈ C
NR×NS is the source-relay

channel matrix. The source’s transmit signal s has the power

PS = Tr
(
VS

)
. In the second hop, the relay retransmits the

signal received in the first hop by pre-multiplying yR with

the AF beamforming matrix WR∈C
NR×NR . Thus, the relay’s

transmitted signal y
′

R=WRyR has the power

PR =Tr
(
WR

(
HSRVSH

H
SR + σ2

rINR

)
WH

R

)
. (2)

The signal yD∈C
ND received at the destination is then given

by

yD =HRDWRHSRs+HRDWRnR + nD, (3)

where HRD ∈ C
ND×NR is the relay-destination channel

matrix, and nD ∈ C
ND is the AWGN vector of the relay-

destination channel with the covariance matrix σ2
dIND

.

We adopt the EE metric of the MIMO AF relaying network

as the optimization objective, which is defined as the ratio

of the maximum achievable data rate to the total power con-

sumed. The maximum achievable rate or capacity measured

in [bit/s] is expressed as

RD =
B

2
logdet

(
IND

+HRDWRHSRVSH
H
SRW

H
RHH

RD·
(
σ2
rHRDWRW

H
RHH

RD+σ2
dIND

)−1)
, (4)

where B denotes the allocated system bandwidth and the

factor 1
2 indicates the half-duplex loss. We model the total
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power consumption of the relaying network as the sum of the

transmission powers of the source and relay, scaled by their

respective power amplifier efficiencies, and the total circuit

power consumption PC , given by

P (VS ,WR) =
PS

τs
+

PR

τr
+ PC [Joule/s], (5)

where 0<τs≤1 and 0<τr≤1 are the source and relay power

amplifier efficiencies, respectively. According to [10], [23]–

[25], the total circuit power consumption PC can be modeled

as PC = NSPdy,s+NRPdy,r +Pst, where Pdy,s and Pdy,r

are the dynamic power consumption of each RF chain of

the source and relay, respectively, while Pst = Pst,s+Pst,r

is the total static power overhead of the source and relay,

including baseband processing, power supply and cooling

power consumption. Reception generally consumes less circuit

power than transmission [23]. Therefore, we neglect the circuit

power consumption at the destination. From (4) and (5), the

EE metric is defined as

EE (VS ,WR) =
RD

P (VS ,WR)
[bit/Joule]. (6)

B. Robust EE Optimization Problem

At high signal-to-noise ratio conditions and with optimal

pilot design, receiver can acquire an accurate CSI with training

[26]. It is reasonable to assume that the CSI is perfectly

available at receiver [11], [16], [17]. But transmitter can

only acquire this estimated CSI through a finite-rate feedback

channel, which introduces the quantization and feedback delay

errors [16]. Consequently, the CSI at transmitter is inherently

imperfect. Similar to most of the existing literature [15]–

[17], we first assume that the relay has the perfect knowledge

of the source-relay channel HSR but it can only acquire

an imperfect relay-destination channel HRD. However, we

also consider the more generic senario where the perfect

knowledge of the source-relay channel is also unavailable. As

aforementioned, there exist two different types of imperfect

CSI models, the statistically and deterministically imperfect

CSI. Different from the works [11], [13], which study the

robust EE optimization under the statistically imperfect CSI,

we study the robust EE maximization for deterministically

imperfect CSI. In general, the deterministic CSI errors take

two different forms, additive CSI errors and multiplicative

CSI errors. According to [18], [19], the CSI feedback and

quantization errors are considered to be additive, while CSI

calibration mismatch and the channel dynamic variations are

regarded as multiplicative errors. By applying the two types

of CSI errors to the relay-destination channel HRD, we have

HRD =

{
ĤRD +∆RD, ‖∆RD‖2 ≤ ǫa,(

IND
+ERD

)
ĤRD, ‖ERD‖2 ≤ ǫm,

(7)

where ĤRD ∈ C
ND×NR is the known nominal relay-

destination channel, ∆RD ∈C
ND×NR and ERD ∈C

ND×ND

are the additive and multiplicative CSI errors, respectively,

while ǫa and ǫm are the corresponding spectral norm bounds

of the CSI errors. To focus on the underlying principles

and without loss of generality, we consider additive CSI

errors and multiplicative CSI errors separately1. Note that the

spectral norm belongs to the unitarily-invariant norm sets, in

which the norm-bounded terms are statistically independent

and identical in all directions [15]. It also acts as the lower

bound of all unitarily-invariant norms. Hence, for the same

CSI errors, the spectral norm constrained case covers the

largest uncertainty region [15]. Furthermore, when consid-

ering another popular Frobenius norm expression, we have

‖∆RD‖2 ≤ ‖∆RD‖F ≤
√
ND‖∆RD‖2, which indicates that

the spectral norm constrained CSI errors can also provide

valuable insights for the Frobenius norm constrained case.

Given the imperfect CSI specified by (7), the EE metric (6)

also depends on ∆RD∅ERD and, therefore, it is expressed

as EE (VS ,WR,∆RD∅ERD).
Following the worst case robustness logic, the source covari-

ance matrix VS and relay beamforming matrix WR are jointly

designed by guaranteeing the maximum EE for all possible

relay-destination channel realizations within the uncertainty

region defined by (7). This robust EE optimization problem

of MIMO AF relaying networks is formulated as

max
VS ,WR

min
∆RD∅ERD

EE (VS ,WR,∆RD∅ERD) ,

s.t. Tr(VS) ≤ PSmax
,

Tr
(
WR

(
HSRVSH

H
SR+σ2

rINR

)
WH

R

)
≤PRmax

,

‖∆RD‖2 ≤ ǫa or ‖ERD‖2 ≤ ǫm, (8)

where PSmax
and PRmax

are the maximum transmit powers of

source and relay, respectively. As (8) contains the interrelated

optimization variables and the semi-infinite CSI errors, the

classical saddle point theory for concave-convex problems [27,

Theorem 36.3] cannot be applied. According to [9], the max-

min EE problem (8) can be reduced to a NP-hard sigmoidal

programming [28, Theorem 1, page 15]. Therefore, it is also

NP-hard and very difficult to solve directly.

III. WORST CASE EE MAXIMIZATION FOR TWO-HOP

MIMO AF RELAYING

A. Derivation of Saddle Point

To simplify the intricate relationships among the opti-

mization variables
{
VS ,WR,∆RD∅ERD

}
, we utilize the

Woodbury matrix identity to equivalently transform (4) into

RD=
B

2
log det

(
INR

+σ−2
r HSRVSH

H
SR−σ−2

r HSRVSH
H
SR

(

INR
+σ2

rσ
−2
d WH

RHH
RDHRDWR

)−1
)

= R
(
VS ,WR,∆RD∅ERD

)
. (9)

Then the EE metric in (8) is rewritten as

EE (VS ,WR,∆RD∅ERD) = R
(
VS ,WR,∆RD∅ERD

)
/

P
(
VS ,WR

)
. Since (8) is not concave-convex in

{VS ,WR,∆RD∅ERD}, it is difficult to solve it directly.

1Our work can easily be extended to the case having both additive and

multiplicative CSI errors, namely, HRD=
(
IND

+ERD

)
ĤRD+∆RD . This

is because in this case, similar worst-case channel-diagonalizing structure can
easily be derived by applying the results of this work for the additive CSI

errors (∆RD) and the multiplicative CSI errors (ERDĤRD).
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Instead, we consider its counterpart, i.e., the following

min-max EE problem,

min
∆RD∅ERD

max
VS ,WR

EE (VS ,WR,∆RD∅ERD)

s.t. Tr(VS) ≤ PSmax
,

Tr
(
WR

(
HSRVSH

H
SR + σ2

rINR

)
WH

R

)
≤ PRmax

,

‖∆RD‖2 ≤ ǫa or ‖ERD‖2 ≤ ǫm. (10)

Generally, max
x

min
y

f(x, y) ≤ min
y

max
x

f(x, y) [29, Sec-

tion 5.4] holds implying that the max-min problem and

the min-max problem are not identical. However, accord-

ing to [30, Corollary 9.16], if there exists a saddle point

for EE(VS ,WR,∆RD∅ERD), then it is globally optimal

for both problems (8) and (10). Hence, we first study

the problem (10) and derive its optimal solution, and then

prove that the obtained solution is indeed a saddle point of

EE(VS ,WR,∆RD∅ERD). Let’s define the singular value

decomposition (SVD) of HSR and ĤRD as

HSR = USRΣSRQ
H
SR, (11)

ĤRD = ÛRDΣ̂RDQ̂H
RD, (12)

where USR ∈ C
NR×NR and QSR ∈ C

NS×NS as well as

ÛRD∈C
ND×ND and Q̂RD∈C

NR×NR are the unitary singular

matrices for HSR and ĤRD, while the diagonal rectangular

matrices ΣSR ∈ C
NR×NS and Σ̂RD ∈ C

ND×NR take NP =
min{NR, NS} singular values (SVs)

{
σsr,1, · · · , σsr,NP

}
of

HSR and NC =min{ND, NR} SVs
{
σ̂rd,1, · · · , σ̂rd,NC

}
of

ĤRD as diagonal elements.

Theorem 1. For the min-max EE problem (10), the optimal

source covariance matrix V ⋆
S , the optimal relay beamforming

matrix W ⋆
R and the worst-case CSI errors ∆⋆

RD∅E⋆
RD satisfy

V ⋆
S = QSRΣSQ

H
SR, (13)

W ⋆
R = Q̂RDΣX

(
INR

+ σ−2
r ΣSRΣSΣ

H
SR

)− 1
2UH

SR, (14)

∆
⋆
RD = −ÛRDΛRDQ̂H

RD or E⋆
RD = −ǫmIND

, (15)

where ΣS=diag
{
λs,1, · · ·, λs,NS

}
and ΣX =diag

{
σx,1, · · · ,

σx,NC
, 0, · · ·, 0

}
∈CNR×NR , in which λs,i for 1 ≤ i ≤ NS and

σx,j for 1 ≤ j ≤ NC replace VS and WR as the optimization

scalar variables for the min-max EE problem (10), while the

diagonal rectangular matrix ΛRD ∈ C
ND×NR has the NC

diagonal elements min{σ̂rd,1, ǫa}, · · ·,min{σ̂rd,NC
, ǫa}.

Proof. See Appendix A.

Theorem 2. The optimal solution
{
V ⋆
S ,W ⋆

R,∆
⋆
RD∅E⋆

RD

}
of

the min-max EE problem (10) provided by Theorem 1 is the

saddle point of the EE metric EE
(
VS ,WR,∆RD∅ERD

)
, i.e.,

EE
(
VS ,WR,∆

⋆
RD∅E⋆

RD

)
≤EE

(
V ⋆
S ,W ⋆

R,∆
⋆
RD∅E⋆

RD

)

≤EE
(
V ⋆
S ,W ⋆

R,∆RD∅ERD

)
, (16)

holds for any feasible VS , WR and ∆RD∅ERD. According

to [30, Corollary 9.16], it is also optimal for the original max-

min EE problem (8).

Proof. See Appendix B.

According to Theorems 1 and 2, the optimal V ⋆
S , W ⋆

R

and ∆
⋆
RD∅E⋆

RD that solve the max-min EE problem (8)

all have the channel-diagonalizing structure. Calculating the

optimal V ⋆
S and W ⋆

R becomes determining the values of

λs=
[
λs,1 · · ·λs,NS

]T
and σx=

[
σ2
x,1 · · ·σ2

x,NC

]T
.

B. Proposed Alternating Optimization Algorithm

Based on Theorem 1, the original max-min EE problem (8)

with matrix variables can be equivalently transformed into the

problem (17) with scalar variables, as shown at the top of the

next page, where NL = min
{
NP , NC

}
and for 1 ≤ i ≤ NC ,

σ̃rd,i=

{(
σ̂rd,i−ǫa

)+
for additive CSI errors,

(1−ǫm)+σ̂rd,i for multiplicative CSI errors,
(18)

Compared to the original problem (8), the number of opti-

mization variables in the problem (17) is significantly reduced,

namely, from N2
S+N2

R + NDNR to NS + NC . In order to

efficiently solve the problem (17), the fractional programming

theory [22], [30] is first introduced.

Lemma 1. ( [22], [30]) Given a fractional function f(A)=
N(A)
G(A) , provided that N(A) and G(A) are concave and

convex w.r.t. A, respectively, then f(A) is quasi-concave.

By introducing an auxiliary variable η, a single-parameter

subtractive function is defined as

F (η) =max
A

N(A)− ηG(A). (19)

The inner maximization problem of (19) is concave w.r.t. A for

any fixed η, and F (η) is a decreasing function of η. Moreover,

the problem of maximizing f(A) is equivalent to finding the

zero point of F (η), and Dinkelbach’s method can be invoked

for finding F (η) = 0, which is guaranteed to converge to a

globally optimal solution of maximizing f(A) [22].

Taking the second derivative of the numerator of the objec-

tive function in (17) w.r.t. λs for fixed σx, it is seen that the

numerator of the objective function is concave w.r.t. λs. The

denominator of the objective function in (17) is linear w.r.t.

λs given σx. According to Lemma 1, the problem (17) is

quasi-concave for λs given σx. Similarly, the problem (17) is

quasi-concave for σx given λs. Therefore, it can be efficiently

tackled by an alternating optimization between the subproblem

of optimizing λs for fixed σx and that of optimizing σx for

fixed λs.

By introducing the auxiliary variable η based on Lemma 1,

we transform (17) into the following single-parameter subtrac-

tive problem

max
λs,σx

∑NL

i=1

(
log
( 1 + σ2

rσ
−2
d σ2

x,iσ̃
2
rd,i

1 + σ−2
r σ2

sr,iλs,i + σ2
rσ

−2
d σ2

x,iσ̃
2
rd,i

)

+log
(
1+σ−2

r σ2
sr,iλs,i

))

− η
(∑NS

i=1
λs,i+

∑NC

i=1
σ2
rσ

2
x,i+PC),

s.t.
∑NS

i=1
λs,i ≤ PSmax

,
∑NC

i=1
σ2
rσ

2
x,i ≤ PRmax

. (20)

For given η, since (20) is strictly concave w.r.t λs for

fixed σx and vice versa, the Lagrangian dual method can be

adopted for obtaining the corresponding optimal solutions to
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max
λs,σx

∑NL

i=1 log

(
1+σ2

rσ
−2
d

σ2
x,iσ̃

2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d

σ2
x,iσ̃

2
rd,i

)
+
∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ
2
rσ

2
x,i + PC

,

s.t.
∑NS

i=1
λs,i ≤ PSmax

,
∑NC

i=1
σ2
rσ

2
x,i ≤ PRmax

, (17)

σ2
x,i(λs; η)=





√

σ−4
r σ4

sr,iλ
2
s,i+

4σ
−2
d

σ2
sr,i

λs,iσ̃
2
rd,i

ln 2(β+η)σ2
r

−σ−2
r σ2

sr,iλs,i−2

2σ2
rσ

−2
d

σ̃2
rd,i

, σ̃rd,i>0 and 1 ≤ i ≤ NL,

0, σ̃rd,i=0 or NL+1 ≤ i ≤ NC ,

, (22)

λs,i(σx; η)=





√
σ4
rσ

−4
d

σ4
x,iσ̃

4
rd,i

+
4σ

−2
d

σ2
sr,i

σ2
x,i

σ̃2
rd,i

ln 2(µ+η)
−σ2

rσ
−2
d

σ2
x,iσ̃

2
rd,i−2

2σ−2
r σ2

sr,i

, σsr,i > 0 and 1≤ i≤NL,

0, σsr,i=0 or NL+1≤ i≤NS ,

(23)

η
(
λs,σx

)
=

∑NL

i=1 log

(
1+σ2

rσ
−2
d

σ2
x,iσ̃

2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d

σ2
x,iσ̃

2
rd,i

)
+
∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ
2
rσ

2
x,i + PC

. (24)

the respective subproblems. Specifically, given η, we introduce

the Lagrangian dual function of (20) as

L(λs,σx, µ, β; η)

=
∑NL

i=1
log
( 1 + σ2

rσ
−2
d σ2

x,iσ̃
2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d σ2

x,iσ̃
2
rd,i

)

+
∑NL

i=1
log
(
1+σ−2

r σ2
sr,iλs,i

)

− (η + µ)
∑NS

i=1
λs,i − (η + β)

∑NC

i=1
σ2
rσ

2
x,i + C, (21)

where µ and β are the Lagrangian multipliers for the source

and relay transmit power constraints, respectively, and C =
µPSmax

+βPRmax
−ηPC . For the subproblem of optimizing

σx given λs, we take the derivative of L(λs,σx, µ, β; η)
w.r.t. σx,i and utilize Karush-Kuhn-Tucker (KKT) condi-

tions to obtain the optimal σx for fixed λs, denoted by

σx(λs; η), as (22) at the top of this page. where β satisfies

β
(∑NC

i=1 σ
2
rσ

2
x,i−PRmax

)
= 0 and it can be determined by

the bisection search owing to the monotonically decreasing

property of σ2
x,i(λs; η) w.r.t. β. Similarly, for fixed σx, we

have the optimal λs, denoted by λs(σx; η), in (23) at the top

of this page. where owing to the monotonically decreasing

property of λs(σx; η) w.r.t µ, µ is chosen by the bisection

search to ensure µ
(∑NS

i=1 λs,i − PSmax

)
= 0.

For efficiently realizing the worst-case EE maximization,

we apply Dinkelbach’s method to both the subproblems of

(20) to update η by utilizing the optimal σx in (22) for fixed

λs and by utilizing the optimal λs in (23) for fixed σx,

respectively. Dinkelbach’s method is an iterative optimization

process, which converges when the zero objective value of

the problem (20) is realized. Specifically, the update of η in

Dinkelbach’s method based on {λs,σx} is given by (24) at

the top of this page. Integrating (22) to (24), the proposed

alternating optimization for the worst-case EE maximization

under additive or multiplicative CSI errors is summarized in

Algorithm 1.

C. Convergence and the speedup strategy

For characterizing the convergence, let us consider the

arbitrary feasible initial value λ
(n)
s and η(n) for the

nth iteration of Algorithm 1. According to Lemma 1,

given λ
(n)
s , the σx related subproblem of (20) is strictly

concave, and we can obtain the unique and glob-

ally optimal σ
(n+1)
x in (22), which implies that after

step 2 of Algorithm 1, EE
(
V

(n)
S ,W

(n)
R ,∆⋆

RD∅E⋆
RD

)
≤

EE
(
V

(n)
S ,W

(n+1)
R ,∆⋆

RD∅E⋆
RD

)
. Given σ

(n+1)
x , the λs re-

lated subproblem of (20) is also concave, and the globally

optimal and unique λ
(n+1)
s is derived in (23), which implies

that after step 3 of Algorithm 1, we have EE
(
V

(n)
S ,W

(n+1)
R ,

∆
⋆
RD∅E⋆

RD

)
≤ EE

(
V

(n+1)
S ,W

(n+1)
R ,∆⋆

RD∅E⋆
RD

)
. Com-

bining these two non-strict inequalities, we generally

have EE
(
V

(n)
S ,W

(n)
R ,∆⋆

RD∅E⋆
RD

)
< EE

(
V

(n+1)
S ,W

(n+1)
R ,

∆
⋆
RD∅E⋆

RD

)
after the (n+1)th iteration. It is widely exploited

that the worst-case robust maximization is generally upper

bounded by the corresponding perfect-case maximization [11],

[13]. By setting σrd,i= σ̂rd,i, 1≤ i≤NC , in the problem (20)

to indicate that the relay’s knowledge of HRD is perfect, it

becomes the perfect-case EE maximization, which has been

solved in [11] and the solution provides an effective upper

bound for our worst-case EE. Since the achievable worst-

case EE of Algorithm 1 is non-decreasing and upper bounded,

we conclude that Algorithm 1 is guaranteed to converge to a

stationary point {λst
s ,σ

st
x } of the problem (17).

Substituting this stationary point of the problem (17)

into (13) and (14) of Theorem 1 yields a locally op-

timal solution {V st
S ,W st

R } to the problem (8) given

∆
⋆
RD∅E⋆

RD, which satisfies EE
(
V st
S ,W st

R , ∆⋆
RD∅E⋆

RD

)
≥

EE
(
VS ,WR,∆

⋆
RD∅E⋆

RD

)
and (VS ,WR)∈U(V st

S ,W st
R ; δd)

(Here, U(V st
S ,W st

R ; δd) denotes the vicinity sphere of point

{V st
S ,W st

R } with radius δd). Moreover, given {V st
S ,W st

R },

it is observed that the worst-case additive/multiplicative error

to the problem (8) is still ∆
⋆
RD∅E⋆

RD, and thus we have

EE
(
V st
S ,W st

R ,∆⋆
RD∅E⋆

RD

)
≤EE

(
V st
S ,W st

R ,∆RD∅ERD

)
.

Therefore, for any (VS ,WR) ∈ U(V st
S ,W st

R ; δd), it yields
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Algorithm 1 The proposed alternating optimization for solv-

ing (17)

Input: The initial λ
(0)
s and η(0); a sufficiently small tolerance

threshold ζ > 0; the iteration index n = 0;

1: repeat

2: Fix λs = λ
(n)
s , start from η = η(n), apply Dinkelbach

method to iteratively optimize between σx

(
λ

(n)
s ; η

)
of (22)

and η
(
λ

(n)
s ,σx

)
of (24) to obtain σ

(n+1)
x and η̃ that realize

the zero objective value of (20);

3: Fix σx=σ
(n+1)
x , start from η= η̃, apply Dinkelbach method

to iteratively optimize between λs

(
σ

(n+1)
x ; η

)
of (23) and

η
(
λs,σ

(n+1)
x

)
of (24) to obtain λ

(n+1)
s and η(n+1) that

realize the zero objective value of (20);

4: n = n+ 1;

5: until
∣∣EE

(
V

(n)
S ,W

(n)
R ,∆

(n)
RD∅E

(n)
RD

)
− EE

(
V

(n−1)
S ,W

(n−1)
R ,

∆
(n−1)
RD ∅E

(n−1)
RD

)∣∣ ≤ ζ;

Output: EE
(
V

⋆
S ,W ⋆

R,∆
⋆
RD∅E

⋆
RD

)
with V

⋆
S = V

(n)
S , W

⋆
R =

W
(n)
R and ∆

⋆
RD∅E

⋆
RD = ∆

(n)
RD∅E

(n)
RD;
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Algorithm 1

Brute-force ∆s=0.01

Brute-force ∆s=0.05

Brute-force ∆s=0.1

Upper-bound

Fig. 1. The worst-case EE performance as the functions of the source
maximum transmit power PSmax for Algorithm 1 and the brute-force search,
in comparison with the upper bound.

EE
(
VS ,WR, ∆

⋆
RD∅E⋆

RD

)
≤EE

(
V st
S , W st

R ,∆⋆
RD∅E⋆

RD

)
≤

EE
(
V st
S ,W st

R ,∆RD∅ERD

)
, based on which we can con-

clude that {V st
S ,W st

R ∆
⋆
RD∅E⋆

RD} is a local saddle point

(stationary point) of the max-min EE problem (8). In ad-

dition, it is readily inferred that by setting η = η(n) and

η = η̃ for Step 2 and Step 3, respectively, the objective

function value of problem (17) is also non-decreasing between

the inner iteration of Step 2 and that of Step 3. In other

words, with the obtained {W (n)
R ,V

(n)
S } after the nth outer

iteration, we further have EE
(
V

(n)
S ,W

(n)
R ,∆⋆

RD∅E⋆
RD

)
≤

· · · ≤ EE
(
V

(n)
S ,W

(nin,k)
R ,∆⋆

RD∅E⋆
RD

)
≤ · · · ≤

EE
(
V

(n)
S ,W

(n+1)
R ,∆⋆

RD∅E⋆
RD

)
≤ · · · ≤ EE

(
V

(nin,k)
S ,

W
(n+1)
R , ∆

⋆
RD∅E⋆

RD

)
≤ · · · ≤ EE

(
V

(n+1)
S ,W

(n+1)
R ,

∆
⋆
RD∅E⋆

RD

)
, where W

(nin,k)
R and V

(nin,k)
S denote the op-

timized WR and VS after the kth inner iteration of Step 2

and Step 3 in the n+1th outer iteration, respectively. Overall,

by defining η = η(n) and η = η̃ for Step 2 and Step 3

of Algorithm 1, respectively, the achieved EE value for the

problem (17) is guaranteed to be non-decreasing both in the

inner iteration of Step 2/Step 3 and in the outer iteration

between Step 2 and Step 3, which is beneficial for speeding

up the convergence of Algorithm 1.

D. Optimality and Complexity

Although a local stationary point {λst
s ,σ

st
x } of the problem

(17) found by Algorithm 1 is not necessary an optimal

solution, it can be seen from the above discussions that the

solution
{
V st
S ,W st

R ,∆⋆
RD∅E⋆

RD

}
associated with {λst

s ,σ
st
x }

as in Theorem 1 is also a local saddle point to the max-

min EE problem (8). A further advantage of Algorithm 1

for solving the non-convex problem (17) is its low com-

putational complexity, on the order of O
(
Iite
(
NS log2(NS)

+NC log2(NC)
))

due to water-filling solution in each step,

where Iite denotes the total number of outer-inner iterations.

As presented in Section V, Algorithm 1 converges within

10 iterations for both outer and inner loops. This should be

contrasted with the computational complexity of brute-force

search for finding an optimal solution to the problem (17),

namely, O

((PSmax

∆s

)NS
(PRmax

∆s

)NC

)
, where ∆s is the step

length. To obtain an accurate solution, a small step length

∆s is required, which imposes extremely high complexity. In

addition, an upper bound for the objective function of problem

(17), denoted as fup(λs,σx), is given by (25) at the top of

the next page. The inequality in (25) is derived according

to the identity a+b ≥ 2
√
ab. Note that this upper bound is

jointly quasi-concave w.r.t {λs,σx}, to which the globally

optimal solution is available. Moreover, we readily find that

this upper bound becomes tight when the sufficiently high

transmit powers at source and relay are considered.

To demonstrate the effectiveness of our proposed alternating

optimization, Fig. 1 firstly shows the worst-case EE perfor-

mance as the functions of the source transmit power PSmax

for Algorithm 1 and the brute-force search, in comparison

with the upper bound (25), where a small-scale system setup

with NS/NR/ND=2/2/2 and PRmax
=30 dBm is considered.

Then Table I compares the execution times of Algorithm 1

and brute-force search for solving the problem (17). It can

be seen from Fig. 1 and Table I that there is almost no

loss of optimality by using Algorithm 1, which imposes a

dramatically lower complexity than the brute-force search. We

also observe from Fig. 1 that the gap between the upper bound

and optimal solution to the problem (17) is much reduced at

high source transmit power.

E. Extension to Imperfect Source-Relay Channel

Since the relay can estimate HSR with higher accuracy, the

deterministically imperfect model, such as the one adopted for

HRD in (7), is inappropriate for HSR. It is more appropriate

to adopt the statistically imperfect CSI model [11], [13], [14]

to express HSR as

HSR =R
1
2

RH̃SRR
1
2

S , (26)

where the positive semidefinite RR ∈ C
NR×NR and RS ∈

C
NS×NS are the relay and source spatial correlation matrices,

respectively, while H̃SR ∈ C
NR×NS is a random matrix

whose elements are i.i.d. complex Gaussian variables with

the distribution CN(0, 1). Both RR and RS are available at

the relay but the instantaneous H̃SR is unknown. Thus the
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fup(λs,σx)=
log
(
1+

σ−2
d

σ2
x,iσ̃

2
rd,iσ

2
sr,iλs,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d

σ2
x,iσ̃

2
rd,i

)

∑NS

i=1 λs,i+
∑NC

i=1 σ
2
rσ

2
x,i+PC

≤
log
(
1+

σ−2
d

σ2
x,iσ̃

2
rd,iσ

2
sr,i

(
λs,i+σ

2
rσ

2
x,i

)

σ−2
r σ2

sr,i+σ2
rσ

−2
d

σ̃2
rd,i

+2
√

σ2
sr,iσ

−2
d

σ̃2
rd,i

)

∑NS

i=1 λs,i+
∑NC

i=1 σ
2
rσ

2
x,i+PC

. (25)

TABLE I
COMPARISON OF EXECUTION TIMES BY THE PROPOSED ALTERNATING OPTIMIZATION AND BRUTE-FORCE SEARCH

Method

Time (s) Power(dBm)
24 26 28 30 32 34 36 38

Algorithm 1 0.033 0.038 0.061 0.067 0.070 0.071 0.081 0.062

Brute-force search ∆s=0.1 0.039 0.042 0.0642 0.072 0.147 0.278 1.363 7.558

Brute-force search ∆s=0.05 0.042 0.057 0.071 0.191 1.076 7.272 110.524 846.584

Brute-force search ∆s=0.01 1.381 8.116 79.445 744.259 4.874E+3 1.718E+4 5.305E+4 1.599E+5

instantaneous robust EE optimization (8) is infeasible, and the

following average EE metric can be considered [13]

ẼE (VS ,WR,∆RD∅ERD)=
E
[
RD

(
VS ,WR,∆RD∅ERD

)]

E
[
P (VS ,WR)

]

=
E
[
RD

(
VS ,WR,∆RD∅ERD

)]

PS

τs
+ E[PR]

τr
+PC

, (27)

where the expectation is w.r.t. the distribution of H̃SR. Then

the robust average EE maximization problem for the two-hop

MIMO relaying network is given by

max
VS ,WR

min
∆RD∅ERD

ẼE (VS ,WR,∆RD∅ERD) ,

s.t. Tr(VS) ≤ PSmax
,

E
[
Tr
(
WR

(
HSRVSH

H
SR + σ2

rINR

)
WH

R

) ]
≤ PRmax

,

‖∆RD‖2 ≤ ǫa or ‖ERD‖2 ≤ ǫm. (28)

By defining the eigenvalue decompositions (EVDs) of RR

and RS as RR = URΛRU
H
R and RS = USΛSU

H
S , re-

spectively, where the unitary matrices UR ∈ C
NR×NR and

US ∈ C
NS×NS consist of the eigenvectors of RR and RS ,

respectively, we have the following Theorem.

Theorem 3. For the robust average EE maximization (28),

the worst-case error ∆
⋆
RD∅E⋆

RD is the same as that given

in Theorem 1, with the structures of the optimal V ⋆
S and W ⋆

R

given by

V ⋆
S = USΣSU

H
S ,

W ⋆
R = Q̂RDΣX

(
INR

+ σ−2
r ΣSRΣSΣ

H
SR

)− 1
2UH

R . (29)

Proof. See Appendix C.

Based on Theorem 3, the matrix-variable robust average EE

problem (28) can be equivalently transformed into a scalar-

variable one. As shown in [11], this scalar-variable problem

consists of two concave subproblems due to the concavity and

monotonicity of the function E[log(·)]. However, evaluating

E[log(·)] imposes high-complexity. To solve (28) efficiently, a

deterministic approximation of the average EE is required. We

apply Jensen’s inequality to the concave function E[log(·)] to

derive the analytical upper bound of the average EE [11]. Then

the proposed alternating optimization can readily be applied

to this upper-bound average EE optimization.

Remark 1: The relay needs to feed back the optimal

covariance matrix V ⋆
S to the source, which introduces the

feedback errors to V ⋆
S . When the source covariance matrix

error ∆VS ∈ C
NS×NS is taken into account, the proof of

Appendix A is not applicable, since both the numerator and

denominator of the EE metric contain the semi-infinite ∆VS .

A possible solution is to consider a lower bound optimization

of this truly robust EE design, where the possible maximum

total power consumption under the spectral norm constrained

∆VS is adopted. Then ∆VS is only contained in the rate

function and the corresponding minimum achievable rate in

(4) is readily observed at ∆V ⋆
S =−ǫINS

. Since the resultant

lower-bound robust EE optimization is similar to that of

(8) or (28), the channel-diagonalizing structured new relay

beamforming W ⋆
R can still be proved following the proof in

Appendix A.

IV. EXTENSION TO MULTIHOP MIMO AF RELAYING

NETWORKS

An NS-antenna source transmits signals to an ND-antenna

destination via K NR-antenna relays Rk, for 1≤k≤K. De-

note the source-relay channel by HSR1
∈C

NR×NS , the relay-

relay channels by HRkRk+1
∈ C

NR×NR for 1 ≤ k ≤K − 1,

and the relay-destination channel by HRKD ∈C
ND×NR . The

received signals at each relay and the destination are given

by (30) and (31), respectively, at the top of the next page.

where nRk
∈ C

NR , 1 ≤ k ≤ K, is the AWGN vector at

relay k with the covariance matrix σ2
rINR

, and nRD
∈C

ND

is the AWGN vector at the destination with the covariance

matrix σ2
dIND

, while WRk
, 1≤ k ≤K, is the beamforming

matrix of relay k. Since typically the relays chosen are static

or at most slowly mobile w.r.t. the source, the source-relay

channel and all relay-relay channels can be acquired with

high precision through training [31]. We further assume that

the estimated HSR1
and HRkRk+1

, 1 ≤ k ≤ K−2, can be

transmitted to relay K perfectly. Thus we assume that the

perfect {HSR1
,HRkRk+1

, 1 ≤ k ≤ K− 1} are available at

relay K, and consider the deterministically imperfect HRKD

with the additive or multiplicative CSI errors

HRKD=

{
ĤRKD+∆RKD, ‖∆RKD‖2≤ǫa,(

IND
+ERKD

)
ĤRKD, ‖ERKD‖2≤ǫm,

(32)

where ĤRKD ∈ C
ND×NR is the known nominal relay-

destination channel, ∆RKD ∈ C
ND×NR and ERKD ∈

C
ND×ND are the corresponding additive and multiplicative
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yRk
=

{
HSR1

s+ nR1
, k = 1,(∏k−1

i=1HRiRi+1
WRi

)
HSR1

s+
∑k−1

m=1

∏k−1
i=m HRiRi+1

WRi
nRi

+nRk
, k = 2, · · · ,K,

(30)

yD =HRKDyRK
+ nRD

= HRKDWRK

(∏K−1

i=1
HRiRi+1

WRi

)
HSR1

s

+HRKDWRK

(∑K−1

m=1

∏K−1

i=m
HRiRi+1

WRi
nRi

)
+HRKDWRK

nRK
+ nRD

, (31)

PRk
=





Tr

(
WR1

(
HSR1

VSH
H
SR1

+ σ2
rINR

)
WH

R1

)
, k = 1,

Tr

(
WRk

(
k−1∏
i=1

HRiRi+1
WRi

)
HSR1

VSH
H
SR1

(
k−1∏
i=1

HRiRi+1
WRi

)H

+σ2
r

k−1∑
m=1

(
k−1∏
i=m

HRiRi+1
WRi

)(
k−1∏
i=m

HRiRi+1
WRi

)H

+σ2
rINR

)
WH

Rk

)
, 2 ≤ k ≤ K,

(37)

CSI errors. The robust EE optimization problem under the

uncertainty model (32) is formulated as

max
VS ,W̃R

min
∆RKD∅ERKD

EEM

(
VS , W̃R,∆RKD∅ERKD

)
=

Rmul

Pmul
,

s.t. Tr
(
VS

)
≤ PSmax

, PRk
≤ PRmax

, 1 ≤ k ≤ K,

‖∆RKD‖ ≤ ǫa or ‖ERKD‖ ≤ ǫm, (33)

where W̃R=
{
WR1

,WR2
, · · · ,WRK

}
, the maximum achiev-

able rate Rmul is given by

Rmul (34)

=
B

K + 1
log det

(
IND

+Hmul,1HSR1
VSH

H
SR1

HH
mul,1N

−1
mul

)
,

with

Nmul =σ2
r

∑K−1

m=1
Hmul,mH

H
mul,m + σ2

dIND
, (35)

Hmul,m =HRKDWRK

(∏K−1

i=m
HRiRi+1

WRi

)
, (36)

and the transmit signal power PRk
of relay k, 1 ≤ k ≤ K,

is given by (37) at the top of this page, while the total power

consumption Pmul is expressed as

Pmul =
PS

τs
+
∑K

k=1

PRk

τr
+ P

′

C , (38)

in which P
′

C is the total circuit power consumption. Similarly

to (5), P
′

C = NSPdy,s+NR

∑K
k=1Pdy,r,k +P

′

st with Pdy,r,k

denoting the dynamic power consumption of the kth relay’s

RF chain, 1≤k≤K, and the total static power consumption

of the source and all relays is P
′

st=Pst,s+
∑K

k=1Pst,r,k.

A. Proposed Robust EE Design

Clearly, the max-min EE problem (33) is more challenging

than the problem (8) but the former has the similar structure

to the latter and, therefore, it can be solved with the similar

approach as detailed in Section III. Specifically, let us define

the following SVDs

HSR1
= USR1

ΣSR1
QH

SR1
, (39)

HRkRk+1
= URkRk+1

ΣRkRk+1
QH

RkRk+1
, (40)

ĤRKD = ÛRKDΣ̂RKDQ̂H
RKD, 1 ≤ k ≤ K − 1. (41)

where USR1
∈ C

NR×NR and QSR1
∈ C

NS×NS , URkRk+1
∈

C
NR×NR and QRkRk+1

∈ C
NR×NR , as well as ÛRKD ∈

C
ND×ND and Q̂RKD ∈ C

NR×NR are the unitary matrices

for HSR1
, HRkRk+1

and ĤRKD, respectively, while the

diagonal matrices ΣSR1
∈ C

NR×NS , ΣRkRk+1
∈ C

NR×NR ,

and Σ̂RKD ∈C
ND×NR contain NP=min{NR, NS} SVs of

HSR1
, NR SVs of HRkRk+1

, and NC=min{ND, NR} SVs{
σ̂rKd,1, · · · , σ̂rKd,NC

}
of ĤRKD at their diagonal positions,

respectively.

Theorem 4. For the max-min EE problem (33), the optimal

source covariance matrix V ⋆
S , the optimal relay beamform-

ing matrices W ⋆
Rk

, 1 ≤ k ≤ K, and the worst-case errors

∆
⋆
RKD∅E⋆

RKD have the following structures

V ⋆
S = QSR1

ΣSQ
H
SR1

, (42)

W ⋆
Rk

=





QR1R2
ΣWR1

UH
SR1

, k = 1,
QRkRk+1

ΣWRk
UH

Rk−1Rk
, 2 ≤ k ≤ K − 1,

Q̂RKDΣWRK
UH

RK−1RK
, k = K,

(43)

∆
⋆
RKD

=−ÛRKD

[
ΛRKD 0NC×(NR−NC)

0(ND−NC)×NC
0(ND−NC)×(NR−NC)

]
Q̂H

RKD

or E⋆
RKD = −ǫmIND

, (44)

where ΛRKD=diag
{
min

{
σ̂rKd,1, ǫa

}
, · · · ,min

{
σ̂rKd,NC

, ǫa
}}

,

ΣWR1
= ΣX1

(
INR

+ σ−2
r ΣSR1

ΣSΣ
H
SR1

)− 1
2 , (45)

ΣWRk
=ΣXk

(
INR

+
k−1∑

m=1

Σ̃

m

k +σ−2
r

(k−1∏

i=1

Σ̃i,i+1

)
ΣSR1

ΣS

·ΣH
SR1

(k−1∏

i=1

Σ̃i,i+1

)H)−1
2

, 2 ≤ k ≤ K, (46)

with ΣXk
= diag

{
σxk,1, · · · , σxk,NC

, 0, 0, · · · , 0︸ ︷︷ ︸
NR−NC

}
for 1 ≤

i ≤ K, Σ̃

m

k =
(k−1∏
i=m

Σ̃i,i+1

)(k−1∏
i=m

Σ̃i,i+1

)H
and Σ̃i,i+1 =

ΣRiRi+1
ΣWRi

.

Proof. See Appendix D.
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max
ΣS ,∀ΣXk

log det

(
IND

+

(
Σ̃RKD

(
K−1∏
i=1

Σ̃i,i+1

)
ΣSR1

ΣSΣ
H
SR1

(
K−1∏
i=1

Σ̃i,i+1

)H

Σ̃
H
RKD

)

×
(
σ2
r

K−1∑
m=1

Σ̃RKDΣ̃

m

KΣ̃
H
RKD+σ2

dIND

)−1
)
−ηmul

(
Tr
(
ΣS

)
+

K∑
k=1

Tr
(
ΣXk

)
+PC

)
,

s.t. Tr
(
ΣS

)
≤ PSmax

, Tr
(
ΣXk

)
≤ PRkmax

, 1 ≤ k ≤ K,

(47)

Similarly to the two-hop case, based on Theorem 4 and

Lemma 1, we can equivalently transform the robust EE

problem (33) into the follow optimization problem with scalar

variables where Σ̃RKD =
(
Σ̂RKD − ΛRKD

)
ΣWRK

and

Σ̃RKD = (1−ǫm)Σ̂RKDΣWRK
are defined for the additive

and multiplicative CSI errors, respectively, and ηmul is the aux-

iliary variable. For convenience, denote ΣS =ΣX0
. Observe

that the problem (47) is convex w.r.t ΣXk
when the remaining

variables
{
ΣX0

,ΣX1
, · · · ,ΣXK

}
\ΣXk

are fixed. Therefore,

we can apply the alternating optimization of Section III-B

to efficiently solve the problem (47) by decomposing it into

(K + 1) alternating subproblems, in order to obtain a locally

optimal solution.

B. Extension to Imperfect HSR1
and HRkRk+1

, ∀k
We now consider the most generic case, where the

source-relay channel HSR1
and all the relay-relay channels

HRkRk+1
, ∀k, are also imperfect at relay RK . Similarly to

the two-hop case, by adopting the statistically imperfect HSR1

and HRkRk+1
, ∀k, and the deterministically imperfect HRKD,

the robust average EE optimization for this generic multihop

AF relaying network can be formed. Following the same

philosophy in proving Theorem 3, a similar conclusion can

also be obtained for the multihop scenario by proving the

optimal channel-diagonalizing structure one by one for the

optimal source covariance matrix V ⋆
S and the optimal relay

beamforming matrices W ∗

Rk
, 1 ≤ k ≤ K. Specifically, the

eigenspaces of V ⋆
S and W ∗

Rk
, 1 ≤ k ≤ K − 1, are aligned

with that of the source spatial correlation matrix and that

of the relay Rk spatial correlation matrix, respectively, while

W ∗

RK
is jointly determined by the eigenspace of the relay

RK spatial correlation matrix and the right singular matrix

of the relay-destination channel HRKD. The corresponding

robust average EE problem can also be transformed into a

robust optimization with scalar variables. However, due to the

simultaneous expectations for multiple statistically imperfect

channels, this scalar-variable problem is generally intractable

and cannot be decomposed into a series of convex subproblems

[13]. A possible solution is to apply successive Jensen’s

inequalities to the expectations on {HSR1
,HRkRk+1

, ∀k} to

find an upper-bound of the average EE [13], which can then

be solved by the proposed alternating optimization.

Remark 2: The last relay RK needs to feed back the optimal

source covariance matrix V ⋆
S and optimal relay beamforming

matrices W ⋆
Rk

, 1≤k≤K−1, perfectly to the source and cor-

responding relays. If the feedback errors for {V ⋆
S ,W ⋆

Rk
, 1≤

k≤K − 1} are serious, they should be additionally imposed

on the robust EE design, and the optimal beamforming matrix

W ⋆
RK

of relay K should also be redesigned accordingly.

Unfortunately, even if the spectral norm constrained errors for

{V ⋆
S ,W ⋆

Rk
, 1≤k≤K−1} are jointly considered, the channel-

diagonalizing structured optimal W ⋆
RK

is not guaranteed, since

the multiple relay beamforming errors are coupled in both the

objective and the transmit power constraints. Future research

is warranted to develop the low-complexity suboptimal algo-

rithms to effectively address this issue.

V. SIMULATION STUDY

In the simulation, the source is a base station (BS), while the

destination and relays are mobile stations (MSs). The default

parameters of the simulated MIMO AF relaying network are

listed in Table II. Unless otherwise stated, these default values

are used. To demonstrate the excellent performance of our

robust EE design, we adopt the non-robust EE maximization

(NREE) and the naive AF based EE maximization (NAF)

[17] for comparison. For the NREE scheme, the optimization

problem (8)/(32) is firstly solved by assuming no CSI errors,

i.e., ǫa=ǫm=0. Then the resultant optimal solution is applied

to the imperfect CSI scenario for calculating the worst-case

EE. For the NAF scheme [17], the relay scales the received

signal transmitted by source with the maximum power by a

constant to realize the maximum relay power transfer. All

simulation results are obtained by averaging over 100 channel

realizations.

A. Two-hop MIMO AF Relaying Networks

The convergence of the proposed alternative optimization

algorithm is investigated under the two sets of the initial values{
λ
(0)
s , η(0)

}
, given by

{
λ
(0)
s,ini1, η

(0)
1

}
=
{PSmax

NS
1NS

, 0
}

and{
λ
(0)
s,ini2, η

(0)
2

}
=
{PSmax

2NS

[
1
T
NS/2 0

T
NS/2

]T
, 0.1

}
. Algorithm 1

consists of an outer alternating optimization loop, and within

each alternating iteration, there are two inner Dinkelbach itera-

tive loops at step 2 and step 3. To demonstrate the convergence

of the two inner Dinkelbach iterative loops, Fig. 2 (a) plots

the objective value of the problem (20) after each Dinkelbach

iteration for optimizing σx given λs at the first outer iteration.

Observe from Fig. 2 (a) that this very first Dinkelbach iterative

procedure of Algorithm 1 takes no more than 6 iterations to

converge. Since any subsequent Dinkelbach iterative procedure

is unlikely to take more iterations to converge, we conclude

that for this example, any Dinkelbach iterative procedure of

Algorithm 1 takes no more than 6 iterations to converge. The

convergence of Algorithm 1 is illustrated in Fig. 2 (b), where

it is seen that for this example, Algorithm 1 takes no more

than 7 outer iterations to converge. Fig. 2 (c) depicts the curve

of Fig. 2 (a) corresponding to the additive CSI errors with the

initial condition
{
λ
(0)
s,ini1, η

(0)
1

}
but with the logarithmic scale

in y-axis and with the error bars. It can be seen that after 6

iterations, the objective value becomes smaller than 10−3.

2 In our simulations, the large-scale fading coefficient σ2
h

is determined

according to the LTE path-loss model −σ2
h
+ 30 = LP (dB)= 128.1 +

37.6 log(d [Km] ) with d = 330m [33].
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TABLE II
DEFAULT SYSTEM PARAMETERS

Parameter Value Parameter Value

The number of BS/Relay/MS antennas
NS/NR/ND

4/6/4
(
4/4/4;

6/4/4; 4/4/6
) Relay dynamic power consumptionPdy,r 35dBm [32]

Transmission bandwidth B 50MHz Relay static power consumption Pst,r 30dBm [32]

Power amplifier efficiency τs, τr 0.5 Additive errors threshold (two-hop) ǫa ǫa=p‖ĤRD‖2, p=0.4

BS maximum transmit power PSmax 46dBm [33] Additive errors threshold (multihop) ǫa ǫa=p‖ĤRKD‖2, p=0.4
Relay maximum transmit power PRmax 40dBm [33] Multiplicative errors threshold ǫm ǫm = p = 0.4
BS dynamic power consumption Pdy,s 40dBm [32] Rayleigh MIMO relaying channels with

large-scale fading coefficient σ2
h

. 2
CN(0, σ2

h
I), σ2

h
=

−80dBm [33]

BS static power consumption Pst,s 35dBm [32] Noise power σ2
r = σ2

d
= N0B −90dBm (N0 =

−167dBm/Hz) [32]

2 4 6 8 10
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Fig. 2. Convergence of Algorithm 1: (a) inner Dinkelbach loop of step 2 at the first outer iteration, (b) outer alternating optimization loop, given two sets of
different initial points and for both additive and multiplicative CSI errors, and (c) inner Dinkelbach loop of step 2 at the first outer iteration with error bars,
for one set of initial points and additive CSI errors. NS/NR/ND=4/6/4.
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Fig. 3. Comparison of the worst-case EE performance as the functions
of the source maximum transmit power PSmax given different antenna
configurations NS/NR/ND .

The influence of antenna configuration to the worst-case EE

performance is investigated in Fig. 3, which plots the worst-

case EE performance of the proposed robust EE design as the

functions of the source maximum transmit power PSmax
under

different antenna configurations NS/NR/ND. We observe that

the antenna configuration 4/4/6 attains the highest worst-

case EE, and the antenna configuration 4/6/4 attains the

second highest worst-case EE, which is considerably larger

than the 4/4/4 configuration. While the 6/4/4 configuration

achieves the lowest worst-case EE. We now explain these

phenomena based on the following facts. First, the circuit

power consumption at receiver is neglected in our work, since

reception generally consumes much less circuit power than

transmission [23]. Second, the existing literature [7], [34] have

shown that increasing the number of source antennas NS with-

out optimizing the source covariance matrix generally causes

the capacity shrinking phenomenon for MIMO AF relaying

systems. Even considering the design of source covariance

matrix, the capacity gain is close to zero as NS increases

[7], [34]. By contrast, adding more relay and/or destination

antennas is helpful to improve system capacity, of which the

enhancement is more evident when increasing the number of

relay antennas [34].

These known conclusions explain why the best worst-case

EE performance for both multiplicative and additive CSI errors

is observed at NS/NR/ND = 4/4/6, which is because the

achievable data rate increases with the number of destination

antennas ND, while the transmit power consumption remains

unchanged. These conclusions also agree with our observation

that the achievable worst-case EE under NS/NR/ND=4/6/4
is significantly higher than that under NS/NR/ND = 4/4/4,

because when the number of relay antennas NR increases,

the remarkable increase of data rate outweighs the increase in

dynamic relay circuit power consumption. However, for the

case of NS/NR/ND = 6/4/4, the achievable worst-case EE

is much reduced, since the increased source dynamic circuit

power consumption outweighs the slight data rate gain due

to the increasing number of source antennas NS . Our results

therefore support the existing literature and provide insights

to design MIMO AF relaying systems, namely, increasing the

number of relay and/or destination antennas rather than the

number of source antennas is beneficial to improve system’s

worst-case EE performance.

Fig. 4 (a) compares the worst-case EE performance as the

functions of PSmax
for the proposed robust EE design, NREE

and NAF schemes, while Fig. 4 (b) shows the worst-case EE

performance as the functions of PRmax
for the three designs.

As expected, the proposed robust EE design achieves the

highest worst-case EE, while the NAF scheme has the worst-
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Fig. 4. Comparison of the worst-case EE performance as the functions of:
(a) the source maximum transmit power PSmax , and (b) the relay maximum
transmit power PRmax , for three designs. NS/NR/ND=4/6/4.

case EE. For our robust EE design and NREE scheme, the

worst-case EE first increases with PSmax
(PRmax

) but becomes

saturated for large PSmax
(PRmax

). This is because when PSmax

(PRmax
) is small compared to the circuit power consumption

PC , the EE metric is mainly determined by the maximum

achievable rate in the numerator of the EE metric. Increasing

PSmax
(PRmax

) increases the source (relay) transmit power too,

which in turn increases the maximum achievable rate. There-

fore, for relatively small PSmax
(PRmax

), increasing PSmax

(PRmax
) increases the worst-case EE. In this region, the power

constraint is active, i.e., the source (relay) transmit power

reaches PSmax
(PRmax

). By contrast, when PSmax
(PRmax

)

becomes large, the EE metric is also determined by the source

(relay) transmit power in the denominator of the EE metric.

Therefore, to maximize the worst-case EE, a trade-off between

the maximum achievable rate and the total transmit power

must be made. As a result, the maximum worst-case EE

metric reaches a saturated value. In this region, the power

constraint is inactive and the source (relay) transmit power

remains constant. For the NAF, the worst-case EE decreases

with PSmax
(PRmax

) for large PSmax
(PRmax

). This is because

the maximum achievable rate of the NAF strategy cannot

be arbitrarily enhanced by increasing PSmax
(PRmax

), since

the relay simultaneously amplifies the received signal and

noise. Therefore, for large PSmax
(PRmax

), the NAF’s worst-

case EE decreases with PSmax
(PRmax

) due to the limited

maximum achievable rate and the increase in the total power

consumption.

The two thresholds are fairly set for the multiplicative and

additive CSI errors in Table II, as they correspond to the

same quantitative measure for the spectral norm constrained

multiplicative and additive CSI errors. According to Theo-

rem 1, we can infer that the SVs of the worst-case relay-

destination channel for multiplicative CSI errors are larger

or equal to those for additive CSI errors. Therefore, we

can conclude that under the same size of the spectral norm

constrained CSI errors, the quality of the relay-destination

channel under multiplicative CSI errors is better than that

under additive errors. Naturally, the achievable worst-case EE

under multiplicative CSI errors is also higher than that under

additive CSI errors. This is also confirmed by Fig. 4.

Fig. 5 investigates the impact of the CSI uncertainty thresh-

old p on the achievable worst-case EE. Not surprisingly, as p
increases, the worst-case EE performance decreases for every

scheme. Again our robust design achieves the best worst-case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

15

20

25

30

W
o

rs
t 

ca
se

 E
E

 (
M

b
it

/J
o

u
le

)

Robust EE

NAF

NREE

multiplicative

  CSI error

additive CSI error

Fig. 5. Influence of CSI uncertainty p on the achievable worst-case EE for
three designs. NS/NR/ND=4/6/4.
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Fig. 6. Influence of circuit power consumption PC on the achievable worst-
case EE for three designs. NS/NR/ND=4/6/4.
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Fig. 7. Influence of the source maximum transmit power PSmax on the
achievable worst-case EE for two designs. The statistically imperfect source-
relay channel and additive CSI errors for the relay-destination channel are
considered. NS/NR/ND=4/6/4.

EE, while the NAF has the worst performance. Moreover, the

performance gap between our robust EE design and the NREE

increases with p, which further indicates the effectiveness of

our design. Fig. 6 shows the worst-case EE performance as

the functions of the circuit power consumption PC for three

schemes. As expected, our robust design attains the highest

worst-case EE. Observe that the worst-case EE decreases as

Pc increases, since PC only appears in the denominator of the

EE metric. Next we consider the statistically imperfect source-

relay channel HSR. The source and relay spatial correlation

matrices RR and RS are simulated using the exponential

model [35]. Specifically, for i, j=1, · · · , NR (NS) and j≥ i,
the (i, j)-th elements of RR and RS are given respectively

by
[
RR

]
i,j

= pj−i
r and

[
RS

]
i,j

= pj−i
s , where |pr| < 1 and
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Fig. 8. Influence of the the BS dynamic power consumption Pdy,s on the
achievable worst-case EE for two designs. The statistically imperfect source-
relay channel and additive CSI errors for the relay-destination channel are
considered. NS/NR/ND=4/6/4.

|ps| < 1 [35]. Without loss of generality, only additive CSI

error is considered for the relay-destination channel. Fig. 7

depicts the worst-case EE performance versus PSmax
for the

upper-bound robust average EE design of Section III-E and

the NREE scheme. Observe from Fig. 7 that the relationship

between the worst-case EE and PSmax
for the two designs is

similar to that shown in Fig. 4 (a). Compared with the case of

ps=pr=0.3, the stronger correlation of ps=pr=0.5 leads to

higher achievable worst-case EE, because higher correlation

means higher source-relay channel energy, which is beneficial

to improve the ergodic rate. For the two designs considered,

Fig. 8 shows that the achievable worst-case EE decreases with

the BS dynamic power consumption Pdy,s, which is a portion

of the total circuit power consumption PC . The reason is

similar to that given for Fig. 6.

B. Three-hop (K = 2) MIMO AF Relaying Networks

A three-hop MIMO AF relaying network is simulated, and

we only consider additive CSI errors for the relay-destination

channel. Fig. 9 (a) compares the worst-case EE performance

versus the relays’ maximum transmit power PRmax
for the

three designs. Compared with Fig. 4 (b), similar trends be-

tween the worst-case EE and PRmax
for the three schemes

can also be observed from Fig. 9 (a). Clearly, the achievable

worst-case EE in the three-hop case is lower than that in the

two-hop case due to the greater channel fading and higher

power consumption. Fig. 9 (b) depicts the influence of p on

the worst-case EE for the three designs. Both Fig. 9 (a) and

Fig. 9 (b) confirm that the proposed robust EE design attains

the best worst-case EE performance.

VI. CONCLUSIONS

We have optimized the EE of two-hop MIMO AF relay-

ing networks under the deterministically imperfect CSI. By

considering the additive and multiplicative CSI errors for

the relay-destination channel, the source covariance and relay

beamforming matrices are jointly optimized to maximize the

worst-case EE. We have proved the existence of a saddle point

for this robust EE problem, and have derived the channel-

diagonalizing structure of the optimal source covariance and

relay beamforming matrices as well as the worst-case errors
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Fig. 9. Comparison of the worst-case EE performance as the functions of:
(a) the relays’ maximum transmit power PRmax , and (b) the CSI uncertainty
p, for three designs. The three-hop MIMO AF relaying network under additive
CSI uncertainty is considered. NS =4, NR1

=NR2
=6 and ND = 4.

under the spectral-norm constrained additive and multiplicative

CSI errors. Based on this structure, the original robust EE

problem is transformed into an optimization problem with

scalar variables, which can be efficiently solved by the pro-

posed alternating optimization. We have also proved that all

these results are applicable when the statistically imperfect

source-relay channel is additionally imposed. Furthermore,

we have extended our work to multihop MIMO AF relaying

networks, and have proved that the channel-diagonalizing

structure remains optimal for the source covariance matrix and

all the relays’ beamforming matrices under deterministically

imperfect relay-destination CSI.

APPENDIX

A. Proof of Theorem 1

Proof. Unless otherwise stated, the eigenvalues (EVs)/SVs of

an EVD/SVD for a matrix are always arranged in a decreasing

order. First we have the following lemma [36].c

Lemma 2. For the two N×N Hermitian matrices A and B

whose EVs are denoted by λi(A) and λi(B), respectively, for

i=1, · · · , N , we have

∏N

i=1

(
λi(A) + λi(B)

)
≤ det(A+B)

≤
∏N

i=1

(
λi(A) + λN+1−i(B)

)
, (48)

∑N

i=1
λi(A)λN+1−i(B)≤Tr(AB)≤

∑N

i=1
λi(A)λi(B).

(49)

All the equalities in (48) and (49) hold only when A and B

are simultaneously diagonalizable.

1) Optimal W ⋆
R: Re-express the rate formulation (9) as

2
2RD
B (50)

=
det
(
INR

+σ2
rσ

−2
d

(
INR

+σ−2
r HSRVSH

H
SR

)
WH

RHH
RDHRDWR

)

det(INR
+σ2

rσ
−2
d WH

RHH
RDHRDWR

) .

According to the identity det(IN+AB)=det(IK+BA),
where A ∈ C

N×K and B ∈ C
K×N , the achievable EE

metric EE
(
VS ,WR,∆RD∅ERD

)
can be reformulated as

Next perform the EVDs of the nonnegative definite matrices

HSRVSH
H
SR and HH

RDHRD:

HSRVSH
H
SR =ŨSRΣ̃SRŨ

H
SR, (52)

HH
RDHRD =Q̃RDΣ̃RDQ̃H

RD, (53)
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EE
(
VS ,WR,∆RD∅ERD

)
=

B
2 log det

(
IND

+σ2
rσ

−2
d HRDWR

(
INR

+σ−2
r HSRVSH

H
SR

)
WH

RHH
RD

)

Tr
(
VS

)
+ Tr

(
WR(HSRVSH

H
SR + σ2

rINR
)WH

R

)
+ PC

−
B
2 log det

(
INR

+ σ2
rσ

−2
d WH

RHH
RDHRDWR

)

Tr
(
VS

)
+ Tr

(
WR(HSRVSH

H
SR + σ2

rINR
)WH

R

)
+ PC

. (51)

2

B
· EE

(
VS ,X,∆RD∅ERD

)
=

log det
(
INR

+ σ2
rσ

−2
d XH

Σ̃RDX
)

Tr
(
VS

)
+ Tr

(
σ2
rXXH

)
+ PC

+
log det

(
INR

+ σ−2
r Σ̃SR

)

Tr
(
VS

)
+ Tr

(
σ2
rXXH

)
+ PC

− log det
(
INR

+ σ−2
r Σ̃SR + σ2

rσ
−2
d XH

Σ̃RDX
)

Tr
(
VS

)
+ Tr

(
σ2
rXXH

)
+ PC

. (56)

where Σ̃SR= diag
{
σ̃2
sr,1, · · · , σ̃2

sr,NP
, 0, · · · , 0

}
and Σ̃RD=

diag
{
σ̃2
rd,1, · · · , σ̃2

rd,NC
, 0, · · · , 0

}
contain the NP nonzero

EVs of HSRVSH
H
SR and the NC nonzero EVs of HH

RDHRD,

respectively, while ŨSR ∈ C
NR×NR and Q̃RD ∈ C

NR×NR

are the associated unitary matrices. Note that Q̃RD and Σ̃RD

are unknown, while Σ̃SR depends on the matrix variable

VS whose optimal structure is yet to be determined. Clearly,

Σ̃SR�0 and Σ̃RD�0. By defining X∈C
NR×NR as

X =Q̃H
RDWRŨSR

(
INR

+ σ−2
r Σ̃SR

) 1
2 , (54)

we can express the relay beamforming matrix WR as

WR = Q̃RDX
(
INR

+ σ−2
r Σ̃SR

)− 1
2 ŨH

SR. (55)

Then X is the new optimization matrix variable. Substi-

tuting (52), (53) and (55) into (51) (at the top of this page)

yields (56) (also at the top of this page). Denote XH
Σ̃RDX=

UTΣTU
H
T , where the unitary matrix UT∈CNR×NR and the

NR×NR diagonal matrix ΣT contains NC nonzero EVs of

XH
Σ̃RDX . For any XH

Σ̃RDX , by introducing X̃=XUT ,

we have X̃H
Σ̃RDX̃ = ΣT , i.e., X̃H

Σ̃RDX̃ is diagonal,

Tr
(
XXH

)
=Tr

(
X̃X̃H

)
and

det
(
INR

+σ2
rσ

−2
d XH

Σ̃RDX
)

= det
(
INR

+ σ2
rσ

−2
d X̃H

Σ̃RDX̃
)
. (57)

Furthermore, according to the left-hand part of the identity

(48), we have

det
(
INR

+ σ−2
r Σ̃SR + σ2

rσ
−2
d XH

Σ̃RDX
)

≥ det
(
INR

+ σ−2
r Σ̃SR + σ2

rσ
−2
d ΣT

)

= det
(
INR

+ σ−2
r Σ̃SR + σ2

rσ
−2
d X̃H

Σ̃RDX̃
)
. (58)

The inequality in (58) becomes equality when XH
Σ̃RDX is

diagonal. By substituting (57) and (58) into (56), we have

2

B
EE
(
VS ,X,∆RD∅ERD

)

≤log det
(
INR

+σ2
rσ

−2
d X̃H

Σ̃RDX̃
)

Tr
(
VS

)
+Tr
(
σ2
rX̃X̃H

)
+PC

+
log det

(
INR

+σ−2
r Σ̃SR

)

Tr
(
VS

)
+Tr
(
σ2
rX̃X̃H

)
+PC

− log det
(
INR

+σ−2
r Σ̃SR+σ2

rσ
−2
d X̃H

Σ̃RDX̃
)

Tr
(
VS

)
+ Tr

(
σ2
rX̃X̃H

)
+ PC

=
2

B
EE
(
VS , X̃,∆RD∅ERD

)
. (59)

Since the inequality in (59) becomes equality for the diag-

onal XH
Σ̃RDX , to maximize the EE metric, the optimal X

must satisfy XH
Σ̃RDX=ΣT . By introducing the NC×NC

diagonal matrix ΣRD = diag
{
σ̃2
rd,1, · · · , σ̃2

rd,NC

}
, which is

positive definite since the first NC diagonal elements of

Σ̃RD are positive, and denoting XH =
[
XH

1 XH
2

]
with

X1 ∈ C
NC×NR and X2 ∈ C

(NR−NC)×NR , we re-express

XH
Σ̃RDX=ΣT as

[
XH

1 XH
2

] [ ΣRD 0

0 0

] [
X1

X2

]
=

[
ΣT 0

0 0

]

⇒ XH
1 ΣRDX1 =

[
ΣT 0

0 0

]
, (60)

where ΣT ∈C
NC×NC is a positive semidefinite diagonal sub-

matrix of ΣT . (60) indicates that X2 has no effect on realizing

XH
Σ̃RDX=ΣT . Similarly to [6], we can infer from (60) that

X =
[
XT

1 ,X
T
2

]T
=
[
(Σ

−
1
2

RDQΣ̃
1
2

T )
T ,XT

2

]T
, (61)

where Q ∈ C
NC×NC is an arbitrary unitary matrix and Σ̃

1
2

T =[
Σ

1
2

T 0
]
∈ C

NC×NR .

To further determine the optimal X2, we consider the relay

power constraint

Tr
(
σ2
rX

HX
)
= Tr

(
σ2
rX1X

H
1

)
+ Tr

(
σ2
rX2X

H
2

)

≥ Tr
(
σ2
rX1X

H
1

)
, (62)

and the last inequality becomes the equality when X2 =
0(NR−NC)×NR

. That is, X2 = 0(NR−NC)×NR
is the best

choice in terms of minimizing relay power consumption.

Furthermore,

Tr
(
σ2
rX1X

H
1

)
= Tr

(
σ2
rΣ

−
1
2

RDQΣ̃
1
2

T

(
Σ̃

1
2

T

)H
QH
(
Σ

−
1
2

RD

)H)

=Tr
(
σ2
rΣ

−1

RDQΣTQ
H
)
≥ Tr

(
σ2
rΣ

−1

RDΣT

)
, (63)

where the last inequality is due to the left-hand part of the

identity (49) and the equality holds when Q = INC
according

to Lemma 2. Thus the optimal structure of X satisfies

X⋆ =

[
Σ

−
1
2

RDΣ̃
1
2

T

0(NR−NC)×NR

]
=

[
Σ

−
1
2

RDΣ

1
2

T 0

0 0

]

= ΣX = diag{σx,1, · · · , σx,NC
, 0, · · · , 0}. (64)

Using this optimal X⋆ in (55), we obtain the optimal structure

of the relay beamforming matrix

W ⋆
R =Q̃RDΣX

(
INR

+ σ−2
r Σ̃SR

)− 1
2 ŨH

SR, (65)

with

EE
(
VS ,X,∆RD∅ERD

)
≤EE

(
VS ,ΣX ,∆RD∅ERD

)
. (66)
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2) Optimal V ⋆
S : Denote the EVD of VS by VS =

USΣSU
H
S , where US ∈ C

NS×NS is the unitary matrix

and ΣS = diag
{
λs,1, · · · , λs,NS

}
has the NS nonnegative

diagonal elements. Using the SVD of HSR given in (11),

(52) can be rewritten as

HSRVSH
H
SR = USRΣSRQ

H
SRUSΣSU

H
S QSRΣ

H
SRU

H
SR

= ŨSRΣ̃SRŨ
H
SR. (67)

Furthermore, the EE metric in the problem (10) can be re-

expressed as

2

B
·EE(VS ,WR,∆RD∅ERD) (68)

=
log det

(
INS

+Ṽ H
S HH

SRW
H
RHH

RDB−1HRDWRHSRṼS

)

Tr
(
VS

)
+Tr

(
WR

(
HSRVSH

H
SR+σ2

rINR

)
WH

R

)
+PC

,

where ṼS=USΣ
1
2

S and B=σ2
rHRDWRW

H
RHH

RD+σ2
dIND

.

Substituting the optimal W ⋆
R of (65) into (68) yields

2

B
· EE (VS ,ΣX ,∆RD∅ERD) (69)

=
log det

(
INS

+ Ṽ H
S HH

SRŨSRΣ̃RDXŨH
SRHSRṼS

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

,

with

Σ̃RDX =Σ
H
RDX

(
σ2
dINR

+σ2
rΣRDXΣ

H
RDX

)−1
ΣRDX , (70)

where ΣRDX=Σ̃
1
2

RDΣX(INR
+σ−2

r Σ̃SR)
−

1
2 . Since rank(ΣX)

= rank
(
Σ̃RD

)
=NC , the diagonal matrix Σ̃RDX also has the

rank of NC . According to (67), we can re-express (69) as

2

B
· EE (VS ,ΣX ,∆RD∅ERD)

=
log det

(
INR

+U
H

SRΣSRQSRΣSQ
H

SRΣ
H
SRUSRΣ̃RDX

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

≤
log det

(
INR

+ΣSRΣSΣ
H
SRΣ̃RDX

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

=
2

B
· EE (ΣS ,ΣX ,∆RD∅ERD) , (71)

where USR = UH
SRŨSR and QSR = QH

SRUS are unitary

matrices. According to the right-hand part of identity (48), it

can be inferred that det (IN+AB)≤
∏N

i=1 (1+λi(A)λi(B))
and the inequality in (71) becomes equality when USR=INR

and QSR=INS
. The diagonal matrix Σ̃RDX (70) is satisfied

at the maximum EE point. As a result, the optimal structures

of ŨSR and US are ŨSR=USR and US=QSR. Accordingly,

the optimal structure of VS is given by

V ⋆
S =QSRΣSQ

H
SR. (72)

Combining (67) with (72) leads to HSRV
⋆
S HH

SR=USRΣSR·
ΣSΣ

H
SRU

H
SR= ŨSRΣ̃SRŨ

H
SR and due to ŨSR = USR, we

also have Σ̃SR=ΣSRΣSΣ
H
SR. Thus the optimal structure of

the relay beamforming matrix in (65) can be re-expressed as

W ⋆
R =Q̃RDΣX

(
INR

+σ−2
r ΣSRΣSΣ

H
SR

)− 1
2 UH

SR. (73)

3) Worst-case ∆
⋆
RD∅E⋆

RD: First, we introduce the follow-

ing lemma [15], [37].

Lemma 3. For A ∈ C
Nu×Nl , B,C ∈ C

Nl×Nm with

rank(A) = rank(B) = rank(C) = N = min{Nu, Nl, Nm},

whose SVs are σi(A), σi(B) and σi(C), i = 1, · · ·, N ,

respectively, we have

σN (A)σi(B) ≤σi(AB), (74)
(
σi(B)− σ1(C)

)+ ≤σi(B +C). (75)

(74) and (75) become equalities only if {A,B} and {B,C}
are simultaneously diagonalizable.

Based on the definitions of the diagonal matrices ΣS ,

ΣX and Σ̃RDX as well as the rectangular diagonal matrix

ΣSR, at V ⋆
S and W ⋆

R, the achievable EE metric in (71) can

be expressed as (76) at the top of the next page, where

NL = min
{
NP , NC

}
. It is readily observed from the first

term of the numerator in (76) that the minimum value of

EE(ΣS ,ΣX ,∆RD∅ERD) is attained only when every σ̃2
rd,i

realizes its minimum, subject to the spectral norm constraint.

Note that σ̃2
rd,i, 1≤ i≤NC , are unknown since they are related

to the unknown CSI HRD. However, for the known nominal

CSI ĤRD, we have the SVD ĤRD = ÛRDΣ̂RDQ̂H
RD, in

which the ND×NR diagonal rectangular matrix Σ̂RD contains

NC positive elements
{
σ̂rd,1, · · · , σ̂rd,NC

}
.

3.1) Additive CSI errors: HH
RDHRD =

(
ĤRD+∆RD

)H

·
(
ĤRD +∆RD

)
= Q̃RDΣ̃RDQ̃H

RD. Applying Lemma 3 and

considering
∥∥∆RD

∥∥
2
=σ1

(
∆RD

)
≤ǫa, we conclude

σ̃rd,i ≥
(
σ̂rd,i − ǫa

)+
, 1 ≤ i ≤ NC . (77)

All the inequalities in (77) become the equalities when

Q̃RD = Q̂RD according to Lemma 3, and the minimum

EE (ΣS ,ΣX ,∆RD) is attained with σ̃rd,i =
(
σ̂rd,i − ǫa

)+
,

1≤ i≤NC . Consequently, the resultant worst-case CSI error

is given by

∆
⋆
RD=−ÛRD

[
Λ̃RD 0NC×(NR−NC)

0(ND−NC)×NC
0(ND−NC)×(NR−NC)

]
Q̂H

RD

=−ÛRDΛRDQ̂H
RD, (78)

where Λ̃RD = diag
{
min

{
σ̂rd,1, ǫa

}
, · · · ,min

{
σ̂rd,NC

, ǫa
}}

,

and we also have

EE(ΣS ,ΣX ,∆RD) ≥ EE(ΣS ,ΣX ,∆⋆
RD). (79)

Observe that ÛRD, ΛRD and Q̂H
RD in (78) are all known.

3.2) Multiplicative CSI errors: HH
RDHRD = ĤH

RD

(
IND

+

ERD

)H(
IND

+ERD

)
ĤRD=Q̃RDΣ̃RDQ̃H

RD. Similarly to the

case of additive CSI errors, based on Lemma 3 and ‖ERD‖2=
σ1

(
ERD

)
≤ǫm, the minimum values of σ̃rd,i, ∀i, required for

minimizing EE (ΣS ,ΣX ,ERD) are obtained as

σ̃rd,i ≥ σND

(
IND

+ERD

)
σ̂rd,i ≥ (1− ǫm)+σ̂rd,i,

1 ≤ i ≤ NC . (80)

The two inequalities in (80) simultaneously become the

equalities when Q̃RD= Q̂RD according to Lemma 3. There-

fore, the resulting worst-case E⋆
RD is given by E⋆

RD =
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2

B
· EE (ΣS ,ΣX ,∆RD∅ERD)=

NL∑
i=1

log

(
1+σ2

rσ
−2
d

σ2
x,iσ̃

2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d

σ2
x,iσ̃

2
rd,i

)
+

NL∑
i=1

log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ
2
rσ

2
x,i + PC

=

∑NL

i=1 log

(
1− σ−2

r σ2
sr,iλs,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ

−2
d

σ2
x,iσ̃

2
rd,i

)
+
∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ
2
rσ

2
x,i + PC

, (76)

−ǫmIND
, which only depends on the known ǫm, and we

naturally have

EE (ΣS ,ΣX ,ERD) ≥ EE (ΣS ,ΣX ,E⋆
RD) . (81)

Because Q̃RD=Q̂RD holds for both additive and multiplica-

tive CSI errors, (73) becomes

W ⋆
R=Q̂RDΣX

(
INR

+ σ−2
r ΣSRΣSΣ

H
SR

)− 1
2UH

SR. (82)

Observe that Q̂RD, ΣSR and USR are all known, while ΣS

and ΣX are the new optimization variables. This completes

the proof.

B. Proof of Theorem 2

Proof. From (66) and (71) in Appendix A, it is easily seen that

EE
(
V ⋆
S ,W ⋆

R,∆
⋆
RD∅E⋆

RD

)
≥ EE

(
VS ,WR,∆

⋆
RD∅E⋆

RD

)

holds for any feasible VS and WR. Similarly,

from (79) and (81) in Appendix A, it is seen that

EE
(
V ⋆
S ,W ⋆

R,∆
⋆
RD∅E⋆

RD

)
≤ EE

(
V ⋆
S ,W ⋆

R,∆RD∅ERD

)

holds for any feasible ∆RD∅ERD. Thus the optimal {V ⋆
S ,

W ⋆
R,∆

⋆
RD∅E⋆

RD} is a saddle point of the original robust

EE optimization problem (8). This completes the proof.

C. Proof of Theorem 3

Proof. According to [11], for the statistically imperfect

source-relay channel HSR, the channel-diagonalizing struc-

ture is optimal for the source covariance matrix V ⋆
S and

the relay beamforming W ⋆
R for any relay-destination channel

HRD. That is, the eigenvectors of the optimal V ⋆
S are aligned

with that of the source correlation matrix RS , while the left

and right singular matrices of the optimal W ⋆
R are aligned

with the right singular matrix of the relay-destination channel

HRD and the eigenvectors of the relay correlation matrix RR,

respectively [11]. Based on the optimal V ⋆
S and W ⋆

R with the

channel-diagonalizing structure (29), we naturally obtain the

same worst-case error ∆⋆
RD∅E⋆

RD as that given in Theorem 1

by utilizing Lemma 3 of Appendix A. Moreover, we can also

conclude that the solutions provided in Theorem 3 are the

saddle point of ẼE (VS ,WR,∆RD∅ERD) by referring to the

proof of Theorem 2.

D. Proof of Theorem 4

Proof. Construct the min-max EE counterpart problem to the

problem (33). First by fixing the relay beamforming matrices

of relays k ∈ {2, · · · ,K} and referring to the proof of

Theorem 1, we obtain the optimal beamforming matrix of

relay k′ = 1 and the optimal source covariance matrix, both

having channel-diagonalizing structure, as well as obtain the

same worst-case CSI error as given in Theorem 1. In a similar

manner, the remaining optimal beamforming matrices of relays

k′, 2 ≤ k′ ≤ K, with channel-diagonalizing structure can

be obtained one by one by fixing the relay beamforming

matrices of relays k∈{1, 2, · · · ,K}\k′ and given the optimal

source covariance matrix. This proves that the solution of

(42) to (44) form the optimal solution of this min-max EE

counterpart problem. Then referring to the proof of Theorem 2,

we conclude that the solution of (42) to (44) is a saddle point

of EEM

(
VS , W̃R,∆RKD∅ERKD

)
.
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