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Abstract

Banded linear systems arise in many communication scenarios, e.g., those involving inter-carrier

interference and inter-symbol interference. Motivated by recent advances in deep learning, we propose to

design a high-accuracy low-complexity signal detector for banded linear systems based on convolutional

neural networks (CNNs). We develop a novel CNN-based detector by utilizing the banded structure

of the channel matrix. Specifically, the proposed CNN-based detector consists of three modules: the

input preprocessing module, the CNN module, and the output postprocessing module. With such an

architecture, the proposed CNN-based detector is adaptive to different system sizes, and can overcome the

curse of dimensionality, which is a ubiquitous challenge in deep learning. Through extensive numerical

experiments, we demonstrate that the proposed CNN-based detector outperforms conventional deep

neural networks and existing model-based detectors in both accuracy and computational time. Moreover,

we show that CNN is flexible for systems with large sizes or wide bands. We also show that the proposed

CNN-based detector can be easily extended to near-banded systems such as doubly selective orthogonal

frequency division multiplexing (OFDM) systems and 2-D magnetic recording (TDMR) systems, in

which the channel matrices do not have a strictly banded structure.

The work in this paper will be partially presented in IEEE Globecom 2018 [1].
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I. INTRODUCTION

A. Background and Motivations

Detection of modulated signals based on noisy channel observations in the presence of in-

terference is one of the most basic building blocks in communication systems. It has been a

long-standing challenge to design a high-accuracy and low-complexity signal detection method

that performs well for general communication systems. Intensive research endeavors have been

focused on exploiting special structures of communication systems to design efficient signal

detection methods. For example, the channel sparsity in massive multiple-input multiple-output

(MIMO) systems [2] and cloud radio access networks [3] has been utilized to design message-

passing-based detection algorithms with low complexity. Liu et al. proposed a discrete first-

order detection method for large-scale MIMO detection with provable guarantees based on the

independent and identically (i.i.d.) distributed channel coefficients [4]. In this paper, we focus

on banded linear systems, in which the channel matrices are banded matrices. The banded

structure of a system can be caused by, e.g., inter-carrier interference (ICI) and inter-symbol

interference (ISI). For instance, in frequency selective channels, ISI arises between adjacent

received symbols, yielding a banded channel matrix [5]. Similarly, 2-D magnetic recording

(TDMR) systems typically suffer from 2-D banded ISI caused by a combination of down-track

ISI and intertrack interference at the read head [6]. In doubly selective channels, orthogonal

frequency division multiplexing (OFDM) systems may experience significant ICI from adjacent

subcarriers, which implies that the channel matrix in the frequency domain can be approximated

as a banded matrix [7]. Traditional detectors ignoring the banded structure will lead to inferior

performance. For example, detectors designed for interference-free systems will cause a low

estimation accuracy. Meanwhile, detectors designed for general interference systems usually

have very high computational complexity.

The banded structure of the channel has been extensively studied to reduce the complexity in

signal detection. For example, the well-known Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [8]

can be employed in a banded system to achieve the optimal maximum a posteriori probability

(MAP) detection. Nevertheless, this approach is disadvantageous in communication systems with

large signal dimensions due to its intrinsic serial algorithm and exponential complexity in band

width. In [9], Rugini et al. proposed to reduce the complexity of the linear maximum mean

square error (LMMSE) detector through LDLH factorization. However, there exists a considerable
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performance gap between the linear detector and the MAP detector. Iterative algorithms including

iterative MMSE [10] and belief propagation [11] have been proposed as near-optimal solutions.

These iterative algorithms typically require a large number of iterations to obtain an estimate with

high accuracy. Moreover, it is difficult to efficiently implement the iterative algorithms in parallel,

which significantly limits the computational efficiency. In a nutshell, there is a fundamental

tradeoff between computational complexity and detection accuracy in signal detection problems.

It is highly desirable to design a detection algorithm that achieves both high accuracy and low

complexity for banded linear systems, which is the focus of this paper.

B. Contributions

Motivated by the recent advances in deep learning [12], we aim to design high-accuracy low-

complexity signal detectors based on deep neural networks (DNNs). Instead of using a general

DNN, we propose to design the detector based on a convolutional neural network (CNN) that

consists of only convolutional layers. The reasons for CNN-based signal detection are explained

as follows. First, it is well known that DNNs with fully connected layers suffer from the curse

of dimensionality, i.e., the number of tunable parameters significantly grows as the system size

increases. In a CNN, all neurons in a layer share the same set of tunable parameters, which

addresses the curse of dimensionality. Secondly, a DNN with fully-connected layers has to be

retrained once the system size changes. In contrast, when the tunable parameters are well-trained,

a CNN can be applied to systems with different sizes without the need of retraining.

Despite the advantages of being scalable and robust to the system size, it is nontrivial to

employ CNN for signal detection. The success of CNN is based on the assumption that if

one set of parameters is useful to extract a feature at a certain spatial position, then the same

set of parameters is also useful to extract the feature at other positions. Such shift-invariance

assumption, although holds in many computer vision problems, does not hold in a signal detection

problem. To address this challenge, we propose a novel CNN-based detection architecture

consisting of three modules: an input preprocessing module, a CNN module, and an output

postprocessing module. The input preprocessing module reorganizes the input (i.e., the channel

matrix and the received signals in this paper) based on the banded structure to obtain the shift-

invariance property. Then, the shift-invariant input is fed into the CNN, the output of which

is processed through the output postprocessing module to give an estimate of the transmitted
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signals. To the best of our knowledge, our work is the first attempt to design a CNN-based

detector for banded linear systems.

We conduct extensive numerical experiments to show that the CNN-based detector performs

much better than existing detectors with comparable complexity. Moreover, the proposed CNN

demonstrates outstanding robustness for different system sizes. It achieves a high accuracy even

if there is a mismatch between the system sizes in the training set and the testing set. In addition,

we extend the proposed CNN-based detector to near-banded channels, such as 1-D near-banded

channels in doubly selective OFDM systems and 2-D near-banded channels in TDMR systems

with 2-D ISI. Specifically, we propose a cyclic CNN (CCNN) for 1-D near-banded channels,

and propose a 2-D CNN-based detector for 2-D near-banded channels. Through simulations, we

show that the proposed detector still performs well in these systems, where the channel matrix

is not in a strictly banded structure.

In summary, the benefit of the proposed CNN-based detector is at least fourfold.

• The proposed CNN approach relieves the burden to establish a sophistical mathematical

model for the communication system, since it provides a universal detector that automatically

adapts to any channel and noise distributions.

• The CNN-based detector achieves much better error performance than the other detectors

with comparable computational complexity, and is ideally constructed for parallel comput-

ing.

• Thanks to the parameter-sharing property, the proposed CNN is robust to mismatched system

sizes in the training set and the testing set.

• The CNN-based detector can be readily extended to systems without a strictly banded

structure. As such, the proposed CNN approach sheds lights on how to design CNN-based

algorithms for other problems in communication systems with a near banded structure.

C. Related Work

Recently, there have been two threads of research on the application of deep learning for signal

detection in communication systems. The first thread is to design deep learning based detectors by

unfolding existing iterative detection algorithms. That is, the iterations of the original algorithm

are unfolded into a DNN with each iteration being mimicked by a layer of the neural network.

Instead of predetermined by the communication model (i.e., the channel matrix, the modulation

scheme, the distribution of noise, etc.), the updating rule at each layer is controlled by some
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tunable parameters, which are learned based on the training data. For example, [13] unfolded

two well-known algorithms, namely iterative shrinkage and thresholding algorithm (ISTA) [14]

and approximate message passing (AMP) [15], for a fixed channel matrix. It is shown that the

proposed neural networks significantly outperform the original algorithms in both computational

time and accuracy [13]. The second thread is to treat the transmission procedure as a black box,

and utilize conventional DNNs for signal detection. [16] showed that a fully connected neural

network is able to detect signals for various channel realizations. Specifically, [16] utilized deep

learning to realize joint channel estimation and signal detection in OFDM systems, where the

channel matrix is diagonal. It is demonstrated that the deep learning approach achieves a higher

detection accuracy than existing model-based detection approaches with comparable complexity.

In [17], Farsad et al. presented a recurrent neural network (RNN) for detection of data sequences

in a Poisson channel model, which is applicable to both optical and chemical communication

systems. The proposed RNN can achieve a performance close to the Viterbi detector with perfect

CSI.

Besides signal detection, deep learning has demonstrated its potential in other areas of com-

munication systems. Nachmani et al. studied the problem of channel decoding through unfolding

traditional belief propagation (BP) decoders [18]. Most recently, Liang et al. proposed an iterative

belief propagation-CNN architecture for channel decoding under a certain noise correlated model

[19]. A standard BP decoder is used to estimate the coded bits, followed by a CNN to remove

the estimation errors of the BP decoder, and obtain a more accurate estimation. In [20], Dorner et

al. presented an end-to-end communication system to demonstrate the feasibility of over-the-air

communication with deep neural networks. As shown in [20], the performance is comparable

with traditional model-based communication systems.

D. Organization

The rest of the paper is organized as follows. In Section II, we present the system model as

well as its extensions to near-banded systems, and discuss the challenges of utilizing traditional

DNNs to detect signals. In Section III, we propose the CNN-based detector based on the banded

structure of the channel matrix, and illustrate the robustness of the proposed detector. In Section

IV, we extend the proposed detector to near-banded systems. In Section V, the performance of

the proposed deep learning approach is evaluated in different channel models, and is compared

with existing algorithms. In Section V, we also show the performance of the proposed CNN
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in practical OFDM systems and TDMR systems. Conclusions and future work are presented in

Section VI.
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Fig. 1. A linear banded system with K = 5 and B = 1.

II. SYSTEM MODEL

A. Linear Banded Systems

In this paper, we consider a linear channel model with the received signal y ∈ CK written as

y = Hx+ n, (1)

where H ∈ CK×K is the channel matrix, x ∈ {±1}K is the vector of transmitted signals1, and

n ∈ CK is the noise vector. Furthermore, we assume that the channel matrix is a banded matrix

with bandwidth B. That is,

Hk,m = 0, if |k −m| > B, (2)

where Hk,m is the (k,m)th element in the channel matrix H and B is the bandwidth of the

channel matrix (see Fig. 1). Under this assumption, the kth entry of y in (1) can be rewritten as

yk =
B∑

b=−B

Hk,k+bxk+b + nk, (3)

where xk and nk are the kth entries of x and n, respectively.2 We assume perfect channel state

information at the receiver, i.e., the channel matrix H is exactly known by the receiver.

The banded system in (3) may be idealized in practical scenarios. We next introduce two

near-banded systems with the channel matrices obtained from real applications. We will show

that the CNN-based detector can be readily modified to handle the near-banded systems.

1For simplicity, we use BPSK as the modulation method, but the proposed deep learning approach can be readily extended

to systems with other modulation methods.
2In (3), we assume Hk,k+b = 0 for k + b ≤ 0 and k + b > K.
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Fig. 2. A doubly selective OFDM system with K = 5 and B = 1.
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Fig. 3. A TDMR system with N = 4, K = 3, and B = 1.

B. Near-Banded Systems

1) 1-D Near-Banded systems: In certain systems, such as systems with a doubly selective

OFDM channel, in addition to the non-zero entries on the diagonal band, the channel matrix has

non-zero entries in the bottom-left corner and the top-right corner due to the non-negligible ICI

[10]. The structure of the channel matrix is shown in Fig. 2, where the entries of the channel

matrix satisfy

Hk,m = 0, if B < |k −m| < K −B. (4)

2) 2-D Near-Banded systems: A TDMR system usually suffers from 2-D banded ISI modeled

by convolving the data with a 2-D spatial impulse response [21]. The output of the channel is

a matrix Y ∈ RN×K with the (n, k)-th element given by

yn,k =
B+1∑

m=1

B+1∑

l=1

xn−m−1,k−l−1hm,l + nn,k, (5)

where nn,k ∈ R is the noise, h ∈ R(B+1)×(B+1) is a 2-D read head impulse response, and B is

the number of elements over which the ISI extends in each dimension. As shown in Fig. 3, the

TDMR ISI system is actually a 2-D extension of the banded linear system. That is, each received
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signal in a TDMR system is a linear combination of the neighbouring transmitted signals in the

2-D space.

Signal detection in a near-banded system is usually more challenging due to the more com-

plicated structure of the interference. As shown in Section IV, the proposed CNN-based detector

can be readily extended to these near-banded systems, and hence is more flexible than traditional

model-based detectors.

Channel coefficients 

Training data 

{hk,m }
Estimated signals 

yReceived signals 

Input Output

...

...

...

...

...

...

... ...

Deep neural network

{(H,y,x)(d)}D
d=1

bx

Fig. 4. Architecture of a DNN-based detector.

C. Architecture of a DNN-Based Detector

In this subsection, we briefly introduce the architecture of a DNN-based detector. As shown

in Fig. 4, the DNN-based detector treats both the channel matrix H and the received signal y

as input and outputs a vector of estimated symbols x̂. This implies that once well-trained, the

proposed DNN-based detector can adapt to various channel realizations. Moreover, unlike most

existing detection approaches based on the probability model of the system in (1), the DNN

based approach does not rely on the probability distributions of the channel coefficients and the

noise n. Instead, the proposed neural networks are able to learn the model information from the

training data.

Typically, a DNN may consist of fully-connected layers, densely-connected layers, convo-

lutional layers, or their mixture. Due to the huge amount of connections between neurons, a

DNN with fully-connected or densely-connected layers suffers from the curse of dimensionality,

and does not scale well to large systems. More specifically, the number of weights and biases

associated with each fully-connected or densely-connected neuron grows linearly with the size of
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the input. This means that the total number of tunable parameters increases quadratically with the

size of input, which renders it difficult to train a DNN for a large system. Moreover, a DNN has to

be retrained once the system size changes, because the number of tunable parameters varies with

the system size. Noticeably, the DNN training is a time-consuming task, as it usually involves a

large amount of data and requires high computational complexity. To deal with these challenges,

we propose to detect signals through a DNN that consists of only convolutional layers (or called

CNN). In a CNN, all neurons in a layer share the same set of tunable parameters, implying that

the number of tunable parameters does not scale with the system size. Nonetheless, to achieve

good performance with a CNN, the input is required to have shift-invariant properties, and the

convolutional filter is required to be carefully designed. In the next section, we introduce the

proposed CNN-based detector for strictly banded linear systems. The extension to near-banded

systems will be discussed in Section IV.

III. CNN-BASED DETECTOR

In this section, we first describe the design details of the CNN-based detector. Then, we

demonstrate the robustness of the proposed detector in the sense of adapting to various system

sizes.

Input 
preprocessing CNN Output 

postprocessing

Channel coefficients 

Training data 

{hk,j}

yReceived signals 

Input

Estimated signal 

Output

{(H,y,x)(d)}D
d=1

bx

Fig. 5. Architecture of the CNN-based detector.

To address the challenges discussed in Section II, we propose to use a CNN consisting of

only convolutional layers for signal detection in a banded linear system. In a convolutional

layer, each neuron is only connected to a small portion of neurons in the previous layers, and all

neurons in a layer share the same set of parameters (i.e., weights and biases). This significantly

reduces the total number of parameters in learning. CNN is a very efficient class of DNNs for

solving problems with a large-sized input, such as image/video recognition [22], natural language

processing [23], speech recognition [24], etc. Nonetheless, the success of CNN is based on the
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ŝ2

ŝ3

ŝ4

ŝ5
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Fig. 6. The convolutional neural network with M convolutional layers for a system with K = 5 and B = 1.

shift-invariance assumption. That is, if one set of parameters is useful to extract a feature at

a certain spatial and temporal position, then it is also useful to extract the feature at other

positions. Such assumption generally holds in image, video, and audio inputs. However, it does

not necessarily hold in the signal detection problem over the channel in (1). For example, directly

shifting the channel matrix will significantly change the transmission model and thereby change

the detection result. Hence, in the proposed CNN-based detector, the input as well as the tunable

convolutional filter needs to be appropriately organized before fed into the CNN. As illustrated

in Fig. 5, we propose a CNN-based detector that consists of three modules: an input preprossing

module, an CNN module, and an output postprocessing module. The input preprocessing module

is used to reorganize the input to ensure the shift-invariance property. The CNN module is a

CNN to extract the features from the shift-invariant input. The output postprocessing module is

applied to obtain an estimate of the transmitted signals based on the features extracted by the

CNN. In the following subsections, we will discuss the detailed design of the three modules.

A. Input Preprocessing

In the input preprocessing module, we use an input reshaping approach to ensure the shift-

invariance property of the input {hk,m} and y.3

3The realization of the input preprocessing module to achieve shift-invariance is not unique. The input reshaping approach

proposed in this paper is just an example.
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As illustrated in Fig. 6(a), we reshape the channel coefficients and the received signals into a

vector z(0). Recall that the channel matrix is a banded matrix, with the non-zero entries confined

to a diagonal band. Hence, we only need to store the non-zero entries on the band into the

vector z(0). Specifically, the non-zero channel coefficients and the received signal corresponding

to receiving position k are stored in a vector z(0)k with the entries given by

z
(0)
k [2i+ 1]=





Re(Hk,k−B+i), i ≤ 2B, 1 ≤ k−B+i ≤ K,

Re(yk), i = 2B + 1,

0, otherwise,

(6)

and

z
(0)
k [2i+ 2]=





Im(Hk,k−B+i), i ≤ 2B, 1 ≤ k−B+i ≤ K,

Im(yk), i = 2B + 1,

0, otherwise,

(7)

where Re(·) and Im(·) represent the real and imaginary parts of the complex input, respectively.

Then, vector z(0) = [z
(0)
1

T
, z

(0)
2

T
, · · · , z(0)K

T
]T is fed as an input into the subsequent CNN module.

With the above preprocessing, the input vector z(0) has a certain shift-invariance property. For

example, if we shift the input vector z(0) by 4B + 4 (i.e., the length of a subvector z
(0)
k ), we

only need to shift the output vector by 1 to obtain the same input-output relationship. With the

preprocessing, a CNN can be employed to extract features of the input.

B. CNN

As shown in Fig. 6(b), the CNN module consists of multiple convolutional hidden layers and

one convolutional output layer. The input is z(0) and the output is the symbols {sk}, where

sk =





0, if xk = −1,

1, if xk = 1.

(8)

We use ReLU as the activation function for the hidden layers:

y = ReLU(x) = max(x, 0), (9)
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where x ∈ R is the input, and y is the output of the activation function. To map the output to

interval (0, 1), we choose the sigmoid function as the activation function for the output layer:

y = sigmoid(x) =
1

1 + e−x
. (10)

In the first convolutional layer, we use zero-padding with stride size 4B + 4, and set the filter

size to (2B+1)(4B+4)× l1, where l1 is the depth of the filter. That is, the kth output subvector

z
(1)
k ∈ Rl1 of the first layer is given by

z
(1)
k = ReLU(w(1)ẑ

(0)
k + b(1)), (11)

where w(1) ∈ Rl1×(2B+1)(4B+4) and b(1) ∈ Rl1 are the learnable weight and bias of the first layer,

and ẑ
(0)
k = [z

(0)
k−B

T
, z

(0)
k−B+1

T
, · · · , z(0)k+B

T
]T with z

(0)
i = 0 for i < 1 or i > K. As such, each

filter takes 2B + 1 subvectors as the input. This setting is based on the observation that each

subvector is strongly correlated with 2B neighbouring subvectors due to the banded structure of

channel H. Hence, we propose to extract features from every 2B + 1 consecutive subvectors.

Similarly, in the ith layer (i > 1), the filter is performed over 2B+1 subvectors with stride size

li−1 and filter size (2B+1)li−1× li. To summarize, the structure of a CNN is determined by its

number of layers and the filter depth in each layer. These parameters need to be decided before

training the network. As shown in simulations later, such a CNN outperforms a DNN consisting

of fully-connected layers in both accuracy and complexity.

Remark 1. A conventional CNN typically consists of convolutional layers as well as pooling

layers and fully-connected layers. However, the fully-connected layers and pooling layers are

not used in our design for the following reasons. First, a pooling layer is typically used after a

convolutional layer to perform a downsampling operation along the spatial dimensions. Recall

that in the proposed CNN, the filter in the convolutional layer is used to extract features for each

receiving position, which means that every output of the filter is useful. Discarding features will

cause performance loss. Second, the fully-connected layers involve high complexity and are also

difficult to train. As shown in the simulation section, the fully-connected layers do not provide

any performance gain over the convolutional layers. Hence, we have not included any pooling

layers and fully-connected layers in the proposed CNN. Dropout and batch normalization are

also very important components in the conventional CNN architecture. However, we have tested

their performance and found that they do not provide any gain either.
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C. Output Postprocessing

In the output postprocessing module, we map the output of the CNN to the estimate of the

transmitted signals. Recall that we use the sigmoid function as the activation function of the

output layer. As such, the output of the CNN ŝ lies in the interval [0, 1). Here, we use an indicator

function 1(·) to map the continuous value of output ŝk to a discrete estimate of the transmitted

signal xk:

x̂k = 21(ŝk > 0.5)− 1. (12)

Remark 2. In this paper, we focus on the signal detection problem. Typically, detection and

decoding are jointly considered in a communication system. The detector and the decoder

iteratively exchange information (i.e., soft decisions) on the transmitted signals until convergence.

The proposed CNN-based detector can be easily extend to such a iterative detecting and decoding

algorithm by allowing the input preprocessing module take soft decisions of the decoder as input

and allowing the output postprocessing module output soft detection decisions.

D. Robustness to Different System Sizes

DNN training typically requires a large amount of data and involves high complexity, which

leads to a heavy burden on the storage and computation devices. Furthermore, the resulting DNN

heavily depends on the training data, implying that a DNN has to be retrained once the system

configuration changes. In this subsection, we show that our proposed CNN-based detector is

robust to different system sizes in the sense that the tunable parameters do not vary with the

system size K, and hence do not need to be retrained as long as the bandwidth B does not

change. Moreover, the following numerical results show that the performance of the proposed

CNN-based detector is insensitive to the mismatch of the system sizes between the training set

and the testing set.

In the following experiment, we adopt three convolutional layers with depth l1 = 160, l2 = 80,

and l3 = 40, respectively, in the proposed CNN. Each sample in the training set is independently

generated with the same distribution. The cost function is the mean square error between

the output ŝ and the transmitted symbol s. The optimization algorithm used for training is

the RMSprop algorithm [25] with learning rate 0.001. We assume that the non-zero channel

coefficients are independently drawn from a complex Gaussian distribution CN (0, 1), which

is widely used in communication channels with Rayleigh fading. We also assume that the
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transmitted signals are uniformly distributed. Moreover, we assume that the noises {nk} are

i.i.d. drawn from CN (0, σ2). The variance of noise is unknown and therefore it is randomly

generated so that the SNR will be uniformly distributed on [5dB, 13dB]. This assumption allows

the proposed CNN-based detector to detect over a wide range of SNR values once it is well

trained.
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Fig. 7. Comparison of BER performance between the CNN-based detector and traditional detection algorithms with K = 20,

B = 1, and Gaussian noise.

In Fig. 7, we illustrate the BER curves for K = 20 and B = 1 with different system sizes

Ktrain in the training sets. The red solid curve shows the BER when the system size in the

training set is the same as the size in the testing set (i.e., K = Ktrain = 20). The blue dash-

dotted curve shows the BER performance when the system sizes in the training set and the testing

set are different (i.e., K = 20 and Ktrain = 100). As shown in Fig. 7, the BER gap between

different training sets is negligible, implying the insensitive of the performance with respect to

the training system size. Moreover, we compare the performance of the proposed CNN-based

detector with three benchmark algorithms, namely, LMMSE, LS, and a DNN detector with

multilayer perceptron (MLP). Compared with LMMSE and LS detectors, the proposed detector

achieves more than one order of magnitude lower BER, because the CNN involves non-linearity

by employing non-linear activation functions. In the MLP, we set the dimension of the output in
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Fig. 8. Comparison of BER performance between the CNN-based detector and traditional detection algorithms with K = 100,

B = 1, and Gaussian noise.

each hidden layer to be the same that in CNN for fair comparison. That is, we use three hidden

layers with 3200, 1600, and 800 neurons, respectively, in the MLP. As shown in Fig. 7, the

proposed CNN-based detector achieves a lower BER than the MLP-based detector. In addition,

the MLP trained with Ktrain = 20 cannot be applied to systems with K 6= 20. Meanwhile, our

CNN-based detector can be applied to systems with different K. In Fig. 8, we plot the BER

curves for K = 100 and B = 1 with training sets with Ktrain = 20 and Ktrain = 100. Again, we

see that the BER performance of the proposed CNN-based detectors are very close to each other

when the system sizes of the training sets are different. As such, we demonstrate the robustness

of the proposed CNN-based detector for the mismatch in the system size. That is, once the

CNN-based detector is well trained, it can be applied to systems with different sizes K. On

the other hand, we have omitted the BER curve for a MLP-based-detector in Fig. 8 due to the

prohibitively high computational complexity and high storage requirement. For a system with

K = 100, we have to construct a MLP consisting of three hidden layers with 16000, 8000, and

4000 neurons, respectively, to obtain the same output dimension with the proposed-CNN-based

detector.
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IV. EXTENSION TO NEAR-BANDED CHANNELS

So far, we have focused on the banded linear system. However, in real applications, the channel

matrix may not be a strictly banded matrix. In this section, we use two examples to show how

to adjust the proposed CNN-based detector to systems with near-banded channels.
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Fig. 9. A near-band channel matrix and its corresponding input preprocessing approach with K = 5 and B = 1.

A. 1-D Near-Banded System
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Fig. 10. A cyclic CNN (CCNN) architecture with K = 5 and B = 1.

As mentioned in Section II, the channel matrix in a doubly selective OFDM system has non-

zero entries in the bottom-left corner and the top-right corner of the channel matrix due to the
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non-negligible ICI [10]. The proposed CNN can be extended to such a near-banded system by

modifying the input preprocessing module. As shown in Fig. 9, the entries of the subvector z(0)k
are given by

z
(0)
k [2i+ 1]=





Re(Hk,m), i ≤ 2B,m = 1 + ((k + i−B +K − 1) mod K),

Re(yk), i = 2B + 1,

0, otherwise,

(13)

and

z
(0)
k [2i+ 2]=





Im(Hk,m), i ≤ 2B,m = 1 + ((k + i−B +K − 1) mod K),

Im(yk), i = 2B + 1,

0, otherwise,

(14)

where mod is the modulo operator. Then, the input vector z(0) can be fed into the CNN

proposed in Section III.C for detection. In addition, we can adjust the CNN in Section III.C to

further improve the performance. Note that the subvector z(0)k with k ≤ B is not only strongly

correlated with k+B−1 neighbouring subvectors, but also strongly correlated with the subvectors

z
(0)
m where m ≥ K + k − B. Here, we propose to replace the original convolutional layer with

zero padding in Eqn. (11) with a cyclic convolutional layer without zero padding. That is, the

kth output subvector z(1)k ∈ Rl1 of the first layer now becomes

z
(1)
k = ReLU(w(1)ẑ

(0)
k + b(1)), (15)

where ẑ
(0)
k = [z

(0)
k−B

T
, z

(0)
k−B+1

T
, · · · , z(0)k+B

T
]T with z

(0)
i = z

(0)
m=1+(k+i−B+K−1) mod K for i < 1 or

i > K. Similarly, we can replace the ith layer with a cyclic convolutional layer (see Fig. 10).

The modified detector is referred to as cyclic CNN (CCNN)-based detector. In the simulation

section, we will show that both the original CNN-based detector and the CCNN-based detector

perform well in near-banded systems.

B. 2-D Near-Banded System

As shown in eqn. (5), the received signals in a TDMR system are typically modeled by

convolving the data with a 2-D spatial impulse response [21]. The TDMR ISI system is a

2-D extension of a banded linear system studied in the previous sections. Each pair of the
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input element and the output element, say (xj,k, yj,k), is strongly correlated with only 2B + 1

neighbouring pairs in each dimension. Hence, we can extend the proposed CNN-based detector

to a 2-D CNN-based detector for the TDMR system. We use the same activation functions for the

2-D CNN. That is, the ReLU function is used in the hidden layers, and the sigmoid function is

used in the output layer. Unlike the banded linear system which has a distinct impulse response

vector for each received signal, as shown in [21], the impulse response matrix in (5) is fixed

for all output elements. Hence, the (j, k)th output subvector z(1)j,k ∈ Rl1 of the first convolutional

layer with depth l1 is given by

z
(1)
n,k = ReLU

(
2B+1∑

m=1

2B+1∑

l=1

w
(1)
m,lyn+m−B−1,k+l−B−1 +

B+1∑

m=1

B+1∑

l=1

hm,lv
(1)
m,l + b(1)

)
, (16)

where w
(1)
m,n ∈ Rl1 and v

(1)
m,n ∈ Rl1 are the learnable weights, and b(1) ∈ Rl1 is the bias. Then,

the (j, k)th output subvector z(i)j,k ∈ Rlk of the ith convolutional layer is given by

z
(i)
n,k = ReLU

(
2B+1∑

m=1

2B+1∑

l=1

w
(i)
m,lz

(i−1)
j+m−B−1,k+l−B−1 + b(i)

)
, (17)

with lk is the depth of the filter, w(i)
m,n ∈ Rli×li−1 and b(1) ∈ Rli are the learnable weight and

bias. As shown in simulations, the proposed 2D-CNN-based detector can achieve a high detection

accuracy with low complexity.

V. NUMERICAL RESULTS

In this section, we present simulation results to demonstrate the performance of the proposed

CNN with different system settings. We will then implement CNN in practical OFDM and

TDRM systems. In this section, we compare the proposed CNN-based detector with two linear

benchmark algorithms: the linear minimum mean square error (LMMSE) detector and the least

square (LS) detector.

A. Simulation Results

In this subsection, we use the same CNN architecture and the same training procedure as in

Fig. 7 with the system size in the training set Ktrain = 100. The distributions of the channel

coefficients and noise are also the same as those in Fig. 7, except that we use a non-Gaussian

noise in Fig. 12.
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Fig. 11. Comparison of BER performance between the CNN-based detector and traditional detection algorithms in a banded

system with K = 100, B = 2, and Gaussian noise.
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Fig. 12. Comparison of BER performance between the CNN-based detector and traditional detection algorithms in a banded

system with K = 100, B = 1, and non-Gaussian noise.
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1) Banded System: In Fig. 11, we illustrate the BER curves for the banded linear system

with K = 100 and a wider band B = 2. We assume that the noises {nk} are i.i.d. drawn from

CN (0, σ2). As shown in Fig. 11, the CNN can achieve a much lower BER than the LS and

LMMSE methods. Hence, the proposed CNN-based detector can be adapted to a system with a

wider band. In addition, we show that the proposed detector can be adapted to different channel

and noise distributions. Fig. 12 plots the BER curves in a banded system with non-Gaussian

noises. In particular, the noises {nk} are i.i.d. with each following a complex Gaussian mixture

distribution:

f(x) = 0.9CN (0, σ2)(x) + 0.1CN (0, 10σ2)(x). (18)

As shown in Fig. 12, the proposed detector outperforms the LS and LMMSE methods. We would

like to emphasize that the Gaussian mixture noise is used only as an example of non-Gaussian

noise here. The proposed CNN also work for other channel and noise distributions as long as a

sufficient amount of training data with the same distributions is available.
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Fig. 13. Comparison of BER performance between the CNN-based detectors and traditional detection algorithms in a 1-D

near-banded system with K = 20, B = 1, and Gaussian noise.

2) 1-D Near-Banded System: In Fig. 13, we illustrate the BER performance for the 1-D near-

banded system with K = 20, B = 1, and Gaussian noise. As shown in Fig. 13, the proposed
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Fig. 14. Comparison of BER performance between the CNN-based detectors and traditional detection algorithms in a 1-D

near-banded system with K = 100, B = 1, and Gaussian noise.

deep-learning-based detectors achieve a much lower BER than the LS and LMMSE methods. In

addition, the CCNN-based detector performs better than the CNN-based detector. We also plot

the BER curves when there is a mismatch of the system sizes in the training and testing set.

The performance gap of CCNN caused by the mismatch is smaller than that of CNN. Hence,

the CCNN-based detector outperforms the CNN-based detector in terms of both accuracy and

robustness when the system size K is small. Fig. 14 plots the BER curves for a large system

with K = 100 and B = 1. The performance of CCNN and CNN is very close to each other.

The reason is that the effect of the non-zero entries in the bottom-left and top-right corners is

negligible when K � B.

B. OFDM Systems

In this subsection, we implement the proposed CNN in two OFDM systems: the underwater

acoustic system in [26] with a strictly banded channel matrix, and the time- and frequency-

selective (or doubly selective) OFDM system in [10] with a near-banded channel matrix.
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Fig. 15. Comparison of BER performance between the CNN-based detector and traditional detection algorithms in an underwater

acoustic system with K = 1024 and B = 1.

1) Underwater Acoustic Systems: In [26], an underwater acoustic time-varying multipath

channel consists of Np discrete paths is considered. The channel impulse response is defined as

h(τ, t) =

Np∑

p=1

Ap(t)δ(τ − τp(t)), (19)

with Ap(t) and τp(t) being the amplitude and delay of the pth path. During an OFDM symbol,

the time variation of the path delays is approximated by

τp(t) ≈ τp − apt, (20)

and the path amplitudes are assumed constant Ap(t) = Ap. Moreover, zero padding is employed

in the system, where T denotes the OFDM symbol duration, and the subcarrier spacing is 1/T .

The kth subcarrier is at frequency

fk = fc + k/T, k = −K/2, · · · , K/2− 1, (21)

where fc is the carrier frequency. Then, by using the banded assumption in [26], the fast Fourier

transform (FFT) output on the kth subcarrier is

yk =
B∑

b=−B

Hk,k+bxk+b + nk, (22)
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where

Hk,m =

Np∑

p=1

Ap
1 + ap

e−j2πfkτ
′
p%

(p)
k,m, (23)

with τ ′p =
τp

1+ap
and

%
(p)
k,m =

sin(πβ
(p)
k,mT )

πβ
(p)
k,mT

ejπβ
(p)
k,mT (24)

β
(p)
k,m = (m− k) 1

T
+

apfk
1 + ap

. (25)

Fig. 15 illustrates the BER performance of the proposed CNN-based detector. The simulation

settings are the same as those in [26], with symbol duration T = 104.86ms, carrier frequency

fc = 13kHz, K = 1024 subcarriers, and Np = 15 discrete paths. Each path has a separate

zero-mean Doppler rate, which is drawn from a uniform distribution with standard deviation

of σv = 0.3m/s. We also assume that the transmitted symbols are i.i.d. BPSK symbols and

the noise follows a i.i.d. Gaussian distribution. As shown in Fig. 15, the CNN-based detector

significantly outperforms both the LMMSE and LS detectors.
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Fig. 16. Comparison of BER performance between the CNN-based detector and traditional detection algorithms in a doubly

selective OFDM system with K = 128 and B = 1.

2) Doubly Selective OFDM Systems: In [10], an OFDM system over a noisy multipath channel

is considered. The multipath channel is modeled by the time-variant discrete impulse response
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h
(tl)
n,l , ∀l ≤ Nh, defined as the time-n response to an impulse applied at time n − l. Nh is the

maximum delay spread. Incorporating the transmitted symbols x ∈ CK with a cyclic prefix of

length Np ≥ Nh, the FFT output on the kth subcarrier is

yk =
K∑

m=1

Hk,mxm + nk, (26)

where

Hk,m =
1

K

K−1∑

n=0

Nh∑

l=0

h
(tl)
n,l e

−j 2π
K

(lm+(k−m)n). (27)

In this paper, we use BPSK as the modulation method, i.e., x ∈ {±1}K . As shown in [10],

in a typical wide-sense stationary uncorrelated scattering (WSSUS) model [27], Hk,m ≈ 0, if

B < |k − m| < K − B, where B ≥ dfdKe, and fd is the maximum Doppler frequency

normalized to the signaling rate. As such, the doubly selective OFDM system can be modeled

as the 1-D near-banded system in eqn (4). In Fig. 16, we plot the BER curve for the CNN-

based detector proposed in Section IV.A with k = 128, fd = 0.005, and B = 1. Realizations

of h(n, l) are generated following the parameter settings in [10]. That is, we assume that the

transmitted symbols are i.i.d. BPSK symbols, the noise is an AWGN noise, and the channel is an

energy-preserving WSSUS Rayleigh-fading channel with variance σ2
l = N−1h , where Nh = K/4.

Through Fig. 16, we observe that the proposed CNN-based detector achieves a much lower

BER than the linear LMMSE and LS detectors. That is, the CNN-based detector can be easily

extended to a system with a near-banded channel. As shown in Fig. 14, when K � B, the BER

performances of CNN and CCNN are very close to each other. Hence, we omit the BER curve

of the CCNN-based detector in Fig. 16.

C. TDMR Systems

In this subsection, we show the performance of the proposed CNN-based detector in TDMR

systems. The system model is given in Eqn. (5). We assume that B = 1 and the channel

coefficients are independently drawn from a Gaussian distribution. Fig. 17 shows the BER

performance of the proposed CNN-based detector and the 2D-LMMSE [28], 2D-LS methods

with K = 100 and N = 200. The BER of CNN is much lower than those of 2D-LMMSE

and 2D-LS. Note that 2D-LMMSE and 2D-LS perform very badly since they detect signals

only based on a very limited neighbourhood of the corresponding received signals. Extending

the 2D-LMMSE and 2D-LS to traditional LMMSE and LS that take all the received signals as
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input will lead to prohibitively high computational complexity due to the large dimension of

the TDMR system. Once again, we want to emphasize here that similar to the 1-D systems, the

proposed CNN-based detector can be applied to 2-D systems with different sizes as long as the

underlying distributions of the channel are the same.
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Fig. 17. BER performance of the CNN-based detector with N = 200,K = 100 and Gaussian noise.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the use of deep learning in a signal detection problem. We focused

on a specific communication system where the channel matrix is a banded matrix. We proposed

a novel CNN architecture, which can achieve both high accuracy and robustness. Through

simulations, we observed that the proposed CNN significantly outperform the LMMSE and LS

detector in terms of BER and computational time. In addition, we showed that CNN performs

better than conventional DNNs in terms of both BER and computational time, and is more

suitable to large-system applications. Furthermore, we show that the proposed CNN is robust to

different system sizes. The CNN-based detector also demonstrate good performance in practical

systems, including doubly selective OFDM systems and TDMR systems. This work shows a great

potential of deep learning, particularly CNN, for signal detection in complicated communication

environments.
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The design of the CNN-based detector is inspired by existing iterative detection algorithms

especially belief propagation. In a belief propagation algorithm, the probabilistic messages

of a transmitted signal are updated based on the local messages of neighbouring transmitted

signals, where two transmitted signals are neighbouring to each other if the corresponding

transmitters share the same receiving position. In a banded linear system, two transmitted signals

are neighbouring to each other if their indices are consecutive. To detect a signal, we only need

to share messages between consecutive signals. In this paper, instead of calculating the messages

based on the probabilistic model, we train a CNN to extract and share messages between

consecutive signals. In other words, the proposed CNN-based detector unfolds the procedure

of iterative algorithms, and imitates the updating rule based on real-world data. Hence, the

proposed CNN-based detector can be adapted to an arbitrary communication system in which

each transmitted signal only has a small number of neighbouring signals. Moreover, notice that in

communication systems, a lot of problems, such as resource management, user association, and

power control, can be well solved by iterative algorithms. Our proposed CNN-based architecture

can be generalized to solve these problems as long as the iterative algorithms update the messages

based on local information in the neighbourhood. We will leave such extension of the CNN-based

architecture for future work.
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