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Abstract

This paper proposes the class of Generalized Least-Square-Error (GLSE) precoders for multiuser

massive MIMO systems. For a generic transmit constellation, GLSE precoders minimize the interference

at user terminals assuring that given constraints on the transmit signals are satisfied. The general form

of these precoders enables us to impose multiple restrictions at the transmit signal such as limited peak

power and restricted number of active transmit antennas. Invoking the replica method from statistical

mechanics, we study the performance of GLSE precoders in the large-system limit. We show that the

output symbols of these precoders are identically distributed and their statistics are described with an

equivalent scalar GLSE precoder. Using the asymptotic results, we further address some applications of

the GLSE precoders; namely forming transmit signals over a restricted alphabet and transmit antenna

selection. Our investigations demonstrate that a computationally efficient GLSE precoder requires 41%

fewer active transmit antennas than conventional selection protocols in order to achieve a desired level

of input-output distortion.
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I. INTRODUCTION

In Massive Multiple-Input Multiple-Output (MIMO) systems [3]–[6], performance gains such

as spectral efficiency, rate reliability, and energy efficiency are enhanced at the cost of employing

a large number of antennas. This rises several challenges in practice which are roughly divided

into physical and operational ones. Physical issues, e.g., having a large antenna array within

a rather small physical platform, are effectively addressed by shifting to the millimeter wave

spectrum [7]. Operational bottlenecks however have not been yet precisely studied in this context.

An example is the high overall Radio Frequency (RF)-cost of massive MIMO systems which

makes them costly to implement. In contrast to physical challenges, operational bottlenecks could

be overcome by effective design of inexpensive system modules and employing more advanced

algorithms to compensate for their limited abilities [8]–[12].

One of the key modules in MIMO systems is the precoder which maps the data signal to a

precoded signal in order to compensate the distortion caused by the channel. In fact, due to the

restricted computational capacity and limited power supply at user terminals, these systems are

wanted to shift most of the processing load towards the transmit side. Conventional approach for

precoding are to either utilize simple linear precoders, e.g., Maximum Ratio Transmission (MRT)

and Regularized Zero Forcing (RZF) [13], with low computational complexity, or to employ more

advanced nonlinear schemes such as Tomlinson-Harashima [14] and vector precoding [13] at

the expense of higher complexity.

Considering either of these approaches, the main restriction on the output signal is to have

limited average transmit power, and other available operational challenges are not addressed.

There are therefore different bodies of work in the literature which try to address more restrictions

at the precoding stage. An example is [15] where the authors introduced the nonlinear “per-

antenna constant envelope precoding” to construct transmit signals with constant amplitudes,

i.e., unit Peak-to-Average Power Ratio (PAPR). Such approaches mainly focus on particular

limitations and try to adopt prior schemes to a broader set of signal constraints. In this manuscript,

we intend to develop a classical framework which addresses a general operational restriction.

A. Precoding via Regularized Least Squares Regression

The key contribution of this study is to deviate from the conventional approach and consider

precoding as a constrained optimization problem. In this respect, precoding is interpreted as a

signal shaping problem for which several classical approaches can be employed.
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In order to illustrate this latter point, consider a basic multiuser downlink MIMO setting with

K single-antenna users and N transmit antennas at the base station. Let H ∈ CK×N represent

the channel coefficients. For this setting, a precoding scheme is a transform which maps user

data symbols, collected in s = [s1, . . . , sK ]
T ∈ CK×1, into an N-dimensional signal x ∈ XN×1

where X is the “precoding support” enclosing all possible transmit constellation points, e.g., for

quadrature Phase Shift Keying (PSK) transmission X = {±1± j}. In this case, the vector of the

received signals at user terminals, i.e., y = [y1, . . . , yK ]
T ∈ CK×1, reads

y = Hx+ z (1)

where yk denotes the symbol received by user k and z ∈ CK×1 is thermal noise.

The main objective of the precoder is to design the mapping such that the receive terminals

only deal with thermal noise. In other words, the precoder aims to choose the mapping s → x

which minimizes the distortion between Hx and s while satisfying some given constraints on the

transmit signal x. Assuming that the distortion is measured by the Mean Squared Error (MSE)1,

i.e., ‖Hx−s‖2, precoding can be interpreted as a Regularized Least Squares (RLS) problem in

which, given a set of constraints, the squared error is desired to be minimized. This connection

between RLS and precoding was initially observed in [16] where the “nonlinear Least Square

Error (LSE) precoder” was developed to address transmit power restriction for a large class of

signal constellations. For given s and H, the nonlinear LSE precoder finds the transmit signal as

x = argmin
v∈XN

‖Hv − s‖2 + λ‖v‖2. (2)

The precoding scheme in (2) can be considered as RLS regression with quadratic regularization

term. In fact, this approach simultaneously minimizes the MSE term and controls the transmit

power by penalizing. The main advantage of this scheme compared to conventional algorithms

is the generality of the precoding support which leads to address a broader set of operational

restrictions, such as transmission with limited PAPR and discrete constellations. A similar

approach has been taken for precoding with 1-bit digital-to-analog converters in [17].

Considering the analogy between precoding and RLS signal shaping, the RLS-based approach

can further be developed to address other operational restrictions at the precoding stage. In fact,

one could modify both the penalty and the precoding support in (2) such that the signal satisfies

the desired constraints. An example is limitation in the number of active transmit antennas

1Note that, in general, one can consider other distortion measures, as well.



4

required in some massive MIMO settings to reduce the overall RF-cost [18]–[20]. We further

illustrate our precoding approach by discussing this particular example.

B. Applications to Antenna Selection

A classical solution to high implementational RF-costs in massive MIMO systems is antenna

selection. In downlink, this task is done prior to precoding via a selection algorithm. The transmit

signal is then constructed over the selected antennas. In addition to RF-cost reduction, antenna

selection is shown to enhance the performance in some MIMO settings [20]–[22]. In general, the

optimal selection algorithm is defined based on the performance measure, e.g., the achievable

sum-rate, energy efficiency or the MSE. For most metrics which quantify the performance, the

optimal approach confronts us with an exhaustive search whose complexity grows exponentially

with the number of transmit antennas. As the result, the optimal algorithms are infeasible for

implementation and suboptimal greedy solutions are employed in practice. These alternative ap-

proaches pose polynomial computational complexity at the expense of performance degradation;

see [23]–[25] for some particular greedy selection algorithms.

In general, antenna selection algorithms in a massive MIMO downlink setting, whose number

of transmit antennas grows large, can be classified as follows:

1) The number of active antennas remains fixed while the total number of antennas growing

large, e.g., the settings considered in [18], [19], and

2) The number of selected antennas grows large with the total number of antennas such that

the fraction of transmit antennas being active is kept fixed.

In the former regime, the crucial question is to see whether the large-system properties, such

as channel hardening, are preserved; see for example the study in [19]. Such a question arises

here, since in this regime, the number of active transmit antennas does not scale with the system

dimensions, and the growth in the total number of antennas impacts the performance implicitly

through the antenna selection procedure. The investigations have demonstrated that even simple

selection approaches in this regime maintain the large-system properties.

In the second regime of antenna selection, preservation of large-system properties is obvious

due to the fact that the number of selected antennas grows large linearly with the total number of

antennas. Therefore, the fundamental analytic task in this case is to characterize the performance

of optimal antenna selection and investigate the possible degradation caused by using suboptimal

selection algorithms. In contrast to the first regime, there are several questions left unanswered
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in this case, e.g., optimal performance for antenna selection. Such a study could help describing

quantitatively the effectiveness of the state of the art algorithms.

Invoking the illustrated RLS framework for precoding, the restriction on the number of active

transmit antennas can be formulated as RLS signal shaping with a sparsity constraint. In fact,

restricting the number of active transmit antennas mathematically means that a certain fraction

of entries in the transmit signal x, which corresponds to passive antennas, should be zero. From

the literature of compressive sensing [26]–[28], this signal shaping problem is addressed via RLS

regression with ℓ0-norm2 or ℓ1-norm regularization. Consequently, the number of active transmit

antennas can be constrained via (2) with ℓ0-norm or ℓ1-norm penalty.

Contributions and Analytic Tools

This paper introduces a generic precoding scheme based on RLS regression. The scheme is

referred to as Generalized Least Square Error (GLSE) precoding and addresses a large set of

instantaneous constraints on the transmit signal with antenna selection being just one of them. The

GLSE scheme extends the quadratic regularization in (2) into a general penalty which encloses

several transmit restrictions. As the result, the nonlinear LSE precoding in [16] can be considered

as a special case of GLSE scheme which only constrains the instantaneous transmit power. In

the large-system limit, we evaluate the performance of GLSE precoding by determining a lower

bound on the achievable ergodic rate per user. Our analyses demonstrate that the output symbols

of GLSE precoders are identically distributed and follow the distribution of an equivalent scalar

precoder. We refer to this property as “asymptotic marginal decoupling property”. Using large-

system results, we investigate the performance of some particular forms of GLSE precoding

which address Transmit Antenna Selection (TAS), PAPR-limited transmission and precoding

over discrete constellations. The large-system results in this paper are derived via the replica

method developed in statistical mechanics. This method has been widely employed in multiuser

communications, signal processing and information theory [29]–[33]. An introduction to the

replica method is given in Section V.

Notations

We represent scalars, vectors and matrices with non-bold, bold lower case and bold upper case

letters, respectively. A K×K identity matrix is shown by IK , and HH indicates the Hermitian of

2By ℓ0-norm, we mean the number of non-zero entries in the vector.
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the matrix H. The notation ⊗ denoted the Kronecker product. The set of real and integer numbers

are denoted by R and Z, respectively, and their corresponding non-negative subsets are shown by

superscript (·)+; moreover, C represents the complex plane. For s ∈ C, the real part, imaginary

part, magnitude and phase are shown by Re {s}, Im {s}, |s| and ∢s, respectively. ‖x‖ and ‖x‖1
denote the Euclidean and ℓ1-norm of the vector x, and ‖x‖0 represents the ℓ0-norm defined as the

number of non-zero entries. For a random variable, p(·), f(·) and F(·) represent the Probability

Mass Function (PMF), Probability Density Function (PDF) and Cumulative Distribution Function

(CDF), respectively. Moreover, the expectation operator is denoted by E . For brevity, the set of

integers {1, . . . , N} is abbreviated as [N ] and φ (·; ρ) represents the PDF of a zero-mean complex

Gaussian random variable with variance ρ. Whenever needed, we consider the precoding support

X to be a set of discrete constellation points. Our results, however, are in full generality and

hold for continuous transmit constellations as well.

II. PROBLEM FORMULATION

Consider the multiuser downlink MIMO scenario given in (1) in which the channel matrix

H, the transmit signal x and the noise vector z fulfill the following conditions:

(a) H ∈ CK×N represents a frequency-flat fading channel and is modeled as a random matrix

whose Gramian J = HHH has the eigendecomposition

J = UDUH. (3)

Here, UN×N is a random unitary matrix with Haar distribution3, and DN×N is a diagonal

matrix with non-zero elements {λn} for n ∈ [N ] which denote the squared singular values

of H. We assume that the empirical CDF of the squared singular values, defined as

FN
J
(λ) =

1

N

N
∑

n=1

1 {λn < λ} , (4)

asymptotically converges to the deterministic CDF FJ, i.e., FJ(λ) = lim
N↑∞

FN
J
(λ).

The assumed ensemble of channel matrices encloses a large class of MIMO channel models

including the well-known independent and identically distributed (i.i.d.) flat Rayleigh fading

and uncorrelated low-rank fading models [35].

3In a nutshell, a Haar-distributed random matrix is a unitary matrix which is uniformly distributed over the unitary group.

See [34] for the exact definition.



7

(b) The dimensions of H grow large, such that the load defined as α := K/N , is kept fixed in

both K and N , and is bounded from above meaning that α <∞.

(c) The entries of xN×1 are drawn from the support X ⊆ C.

The transmit signal x is constructed from the data symbols of the users {s1, . . . , sK} and Channel

State Information (CSI) via a nonlinear GLSE precoder which is defined as follows:

Definition 1 (GLSE precoders): Consider a given power control factor ρ and the channel matrix

H. The GLSE precoder with the penalty function u(·) : XN 7→ R and support X is defined as

glse (s|ρ,H) = argmin
v∈XN

‖Hv −√
ρs‖2 + u(v). (5)

which maps the data vector sK×1 = [s1, . . . , sK ]
T ∈ CK×1 onto an N-dimensional vector.

The transmit vector, i.e. x = glse (s|ρ,H), is given to the RF front-end for transmission over

the antennas. We further assume that

(d) sK×1 = [s1, . . . , sK ]
T is an i.i.d. zero-mean and unit-variance complex Gaussian vector.

(e) ρ is a non-negative real constant.

(f) u(·) is a general penalty function with decoupling property, i.e.,

u(v) =
N
∑

n=1

u(vn). (6)

(g) zK×1 is i.i.d. zero-mean complex Gaussian with variance σ2, i.e., z ∼ CN (0, σ2IK).

(h) s, z and H are independent.

Remark 1: Considering the GLSE precoding scheme, one observes that the mapping from the

data symbols to the transmit vector x depends on the instantaneous value of the data symbols.

In other words, for several examples of GLSE precoding, the precoder does not reduce to a

fixed function which only depends on the CSI. In this sense, GLSE precoding is considered as

a so-called symbol-level precoding scheme [36], [37].

A. Special Cases

For several choices of the penalty function and support, the corresponding GLSE precoders

reduce to some well-known precoders. For example, when u(v) = λ‖v‖2, we have

(1) By setting X = C, the precoder reduces to the RZF precoder [13] which determines x as

x =
√
ρHH(HHH + λIk)

−1
s. (7)
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(2) By assuming X =
{

z ∈ C : |z| =
√
P
}

for some non-negative real constant P , the precoder

reduces to the constant envelope precoder considered in [15]. The precoder in this case

constructs the transmit vectors with minimum overall distortion, such that the envelope of

the signal on each antenna remains constant.

(3) By considering a general X ⊂ C, the precoder reduces to the power-limited nonlinear LSE

precoder introduced in [38] and investigated in [16].

Remark 2: Although GLSE precoding considers a general support, restricting the support to

the complex plane, i.e., X = C does not change the set of signal constraints being addressed by

GLSE precoding. In fact, as the regularization term is general, one can invoke classical methods,

e.g., the barrier method or penalty method [39], to pose restrictions on the constellation points via

penalizing. The general precoding support in the formulation is hence for sake of compactness.

B. Performance Measures

We intend to investigate the asymptotic performance of the GLSE precoders. To this end,

several metrics can be employed as the measure of performance, e.g., the MSE or the achievable

ergodic rate. We consider the achievable ergodic rate per user which is defined as

RErg :=
1

K

K
∑

k=1

EH {Rk} (8)

Here, Rk denotes the achievable rate for user k ∈ [K] when a GLSE precoder is employed for

construction of the transmit signal and EH indicates expectation over the channel matrix H.

Due to the nonlinearity of GLSE precoders, the direct derivation of RErg is not trivial. We thus

determine a lower bound on RErg. For this aim, define the random variable wk(H) as

wk(H) := [Hx]k −
√
ρsk (9)

for some real ρ > 0 and k ∈ [K], where [Hx]k denotes the kth entry of the K × 1 vector

Hx. Consequently, the receive symbol at user k is written as yk =
√
ρsk + wk(H) + zk. The

achievable ergodic rate for user k reads

EH {Rk} = I (yk; sk|H) = h (sk|H)− h (sk|yk,H) . (10)
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Using the equality h (sk|yk,H) = h
(

sk − ρ−1/2yk|yk,H
)

, one can write

EH {Rk} = h (sk|H)− h(
wk(H) + zk√

ρ
|yk,H) (11a)

†

≥ h (sk)− h(
wk(H) + zk√

ρ
|H) (11b)

where † is concluded due to the facts that sk is independent of H and h (x|y) ≤ h (x). Noting

that wk(H) and zk are independent, we can further write that

h(
wk(H) + zk√

ρ
|H) ≤ h(

wk(H) + zk√
ρ

)
⋆
≤ log

(

πe
σ2 + ψk

ρ

)

(12)

where ψk denotes the variance of wk(H), and the equality in ⋆ holds when wk(H) is Gaussian.

Since sk ∼ CN (0, 1), one can bound the ergodic achievable rate for user k from below as

E {Rk} ≥ log

(

ρ

σ2 + ψk

)

. (13)

By substituting in (8), one derives the following bound on the achievable ergodic rate per user

RErg ≥
1

K

K
∑

k=1

log

(

ρ

σ2 + ψk

)

(14a)

⋆

≥ log

(

ρ

σ2 +K−1
∑K

k=1 ψk

)

(14b)

where ⋆ is derived using Jensen’s inequality and is tight when ψk is constant in k, i.e., ψk = ψℓ

for all k, ℓ ∈ [K]. (14b) gives a lower bound on the achievable ergodic rate in terms of the total

interference at the user terminals. The term describing the interference in (14b) is in fact the

MSE between the noise-free version of the receive signals and the data symbols desired to be

received at user terminals. We call this term the “asymptotic input-output distortion” and define

it as following:

Definition 2 (Asymptotic Distortion): Consider the data vector s being precoded by the GLSE

precoder glse (·|·) and transmitted over the MIMO channel H. For a given power control factor

ρ, the asymptotic input-output distortion is denoted by D(ρ) and defined as

D (ρ) := lim
K↑∞

1

K
E
{

‖Hx−√
ρs‖2

}

, (15)

where x = glse (s|ρ,H).

Noting that

D (ρ) =
1

K

K
∑

k=1

ψk, (16)
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we can conclude the following lemma from (14b).

Lemma 1: In the large-system limit, the achievable ergodic rate per user RErg is bounded in

terms of the asymptotic distortion D (ρ) from below as RErg ≥ RL
Erg where

RL
Erg := log

(

ρ

σ2 +D (ρ)

)

. (17)

In order to investigate the statistical properties of the transmit vector, we further define the

“asymptotic marginal” of the transmit vector x as follows.

Definition 3 (Asymptotic Marginal): Consider the real-valued function f(·) being defined over

X, i.e., f(·) : X 7→ R. Define the marginal of f(x) over the index subset WN ⊆ [N ] as

MW

f (x;N) :=
1

|WN |
∑

w∈WN

Ef(xw). (18)

The asymptotic marginal of f(x) over the limit of WN is denoted by MW

f (x) and is defined to

be the limit of MW

f (v;N) as N ↑ ∞, i.e.,

MW

f (x) := lim
N↑∞

MW

f (x;N). (19)

The asymptotic marginal describes the statistics of the transmit vector. To illustrate the func-

tionality of this measure, let f(x) = xm, and assume that WN = [n : n + U ] for some integer

U and n ∈ [1 : N − U ]. In this case the marginal of f(x) over WN reads

MW

f (x;N) :=
1

1 + U

n+U
∑

w=n

Exmw . (20)

which determines the averaged mth moment of the transmit entries {xn, . . . , xn+U}. By setting

U = 0, MW

f (x;N) reduces to the mth moment of the entry xn, and therefore, the MW

f (x) gives

the asymptotic mth moment of the precoder’s nth output symbol. The asymptotic marginal

enables us to determine the asymptotic marginal distribution of the transmit symbols and justify

the marginal decoupling property of GLSE precoders which is presented in Section III-D.

C. Stieltjes and R-Transforms

Before stating the main results, we need to define the Stieltjes and R-transforms of a given

probability distribution.
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Definition 4 (Stieltjes and R-transform): Consider the random variable t with distribution pt.

The Stieltjes transform is given by

Gt(s) = E (t− s)−1. (21)

where s ∈ C and Im {s} > 0. Denoting the inverse with respect to (w.r.t.) composition by G−1
t (·),

the R-transform of pt reads

Rt(ω)=G−1
t (−ω)− 1

ω
, (22)

such that lim
ω↓0

Rt(ω) = E t. Moreover, let MN×N be decomposed as M = UΛU−1 with ΛN×N

being the diagonal matrix of eigenvalues, and UN×N being the matrix of eigenvectors. Then,

Rt(M) is an N ×N matrix defined as Rt(M) = U diag[Rt(λ1), . . . ,Rt(λN)] U
−1.

In the following section, we represent the asymptotic distortion and marginal of x in terms of

the statistics of s and H. Our derivations follow the replica method from statistical mechanics.

The details of the large-system analysis are given later in Section V.

III. ASYMPTOTICS OF GLSE PRECODERS

To derive asymptotics of GLSE precoders, we invoke the replica method from statistical me-

chanics which has been accepted as an analytic tool in multiuser communications and information

theory. The validity of the solution determined via the replica method relies on the conjecture

of “replica continuity” taken prior to derivations. Although this conjecture misses a generic

rigorous justification, analytical and numerical investigations in the literature have approved its

validity for several problems [40], [41]. The replica continuity conjecture is illustrated explicitly

in Section V.

Assuming replica continuity, the asymptotic distortion is calculated in terms of the solution

of a matrix-valued fixed-point equation. This generic solution is referred to as the “general

replica solution” which is of a complicated form. The solution however becomes of a simple

form when the problem exhibits the so-called Replica Symmetry (RS). In fact, for some choices

of the penalty function and precoding support, the fixed-point equation in the general replica

solution shows some forms of symmetry. As the result, the solution to the fixed-point equation

is found by a simple search over these symmetric matrices. Such a solution is referred to as

the RS solution in the literature. For a large scope of quadratic optimization problems, solved

by GLSE precoders, the RS solution is known to be valid, meaning that the problems exhibit
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RS [40], [41]. There are however some particular examples in which this symmetry does not

hold [16], [32], [42]. For these cases, the classical approach is to recursively deviate from this

symmetry via the Replica Symmetry Breaking (RSB) scheme [43]. The solution in this case is

referred to as the RSB solution.

In this section, we state the RS solution, as well as the RSB solution with one step of recursion.

For sake of compactness, we skip the derivations here and give them in Section V along with

the large-system analysis. Extension to the RSB solutions with more steps of recursion is also

discussed in Appendix A.

A. The RS Solution

Proposition 1 represents the asymptotic distortion, as well as the asymptotic marginal of the

transmit signal, under the RS assumption. The RS assumption is explicitly stated in Section V.

Proposition 1: Assume that the RS assumption holds. Let srs ∼ CN (0, ρrs) in which

ρrs = [RJ(−χ)]−2 ∂

∂χ
[(ρχ− p)RJ(−χ)] (23)

for some χ and p where RJ(−χ) denotes the R-transform of FJ. Define

x = argmin
v∈X

|v − srs|2 + [RJ(−χ)]−1 u(v). (24)

Then, the asymptotic marginal of f(x) is given by

MW

f (x) = Ef(x), (25)

and the asymptotic distortion reads

DRS (ρ) = ρ+ α−1 ∂

∂χ
[(p− ρχ)χRJ(−χ)] (26)

for p and χ which are determined from the following set of fixed point equations

p = E |x|2 (27a)

χRJ(−χ) =
1

ρrs
ERe {x∗srs} . (27b)

In the case that the solution to (27a) and (27a) is not unique, the fixed-point is chosen such that

DRS is minimized.

Proof: The proof is given in Section V.
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Via numerical investigations, we later show that the RS solution is exact in various cases.

It is however demonstrated that in some particular settings DRS (ρ) gives a loose lower bound

on D (ρ) meaning that the problem in these cases does not show RS. For those scenarios, we

express the solution under one-step RSB.

B. The One-step RSB Solution

Several studies in the literature have shown examples in which the RS solution fails to track

the asymptotic behavior of the system; see for example [32], [42]. Regarding GLSE precoding,

one can guarantee the existence of such particular examples from the investigations in [38].

In fact, for nonlinear LSE precoding in [38], which is a special form of GLSE precoding, it

has been demonstrated that the RS solution violates known lower bounds in some cases. From

the literature, it is known that the accurate asymptotic performance in these cases is addressed

by modifying the RS assumption via the recursive RSB scheme [43]. The details on RSB are

given in Section V. In general, the RSB scheme can be recurred for multiple number of steps.

Proposition 2 represents the result for one-step of RSB. Extension to more steps is later discussed

in Appendix A.

Proposition 2: Consider the RSB scheme with one step of recursion. For some given χ, p, µ

and c, define ρrs and ρrsb1 as

ρrs = [RJ(−χ)]−2 ∂

∂χ̃
[(ρχ̃− p)RJ(−χ̃)] (28a)

ρrsb1 = [RJ(−χ)]−2µ−1 [RJ(−χ)− RJ(−χ̃)] (28b)

where χ̃ := χ+ µc. Let

x = argmin
v∈X

|v − srs − srsb1 |2 + [RJ(−χ)]−1u(v). (29)

where srs ∼ CN (0; ρrs), and srsb1 is distributed conditional to srs with

prsb

1 (u|t) = exp {−µRJ(−χ) [|x− u− t|2 − |u+ t|2]− µu(x)}φ(u; ρrsb1 )
∫

C

exp {−µRJ(−χ) [|x− w − t|2 − |w + t|2]− µu(x)}φ(w; ρrsb1 )dw
. (30)

Then, the marginal distribution reads

MW

f (x) = Ef(x), (31)

and the distortion asymptotically tends to

DRSB(ρ) = ρ+ α−1

{

∂

∂χ̃
[(p− ρχ̃)χ̃RJ(−χ̃)] +

ξp− χ̃ρrsb1

ξ2

}

, (32)
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for χ, c and p which are determined via the fixed-point equations

c+ p = E |x|2 (33a)

p+ χ̃ =
ξ

ρrsb1

ERe
{

x∗srsb1

}

(33b)

χ̃ =
ξ

ρrs
ERe {x∗srs} . (33c)

and µ which satisfies

µ2p

ξ2
ρrsb1 +

µc

ξ
−
∫ χ̃

χ

RJ(−ω)dω = I
(

srsb1 ; srs
)

+DKL(psrsb
1

‖φ(·; ρrsb1 )). (34)

Here, I
(

srsb1 ; srs
)

represents the mutual information between srs and srsb1 . Moreover, psrsb
1

indicates

the marginal distribution of srsb1 determined by

psrsb
1

(u) =

∫

prsb

1 (u|t)φ(t; ρrs)dt. (35)

DKL(psrsb
1

‖φ(·; ρrsb1 )) denotes the Kullback–Leibler divergence between psrsb
1

and a zero-mean

complex Gaussian distribution with variance ρrsb1 defined as

DKL(psrsb
1

‖φ(·; ρrsb1 )) :=

∫

psrsb
1

(u) log
psrsb

1

(u)

φ(u; ρrsb1 )
du. (36)

In the case that the fixed-point equations have multiple solutions, χ, p, c and µ are chosen such

that DRSB(ρ) is minimized.

Proof: The detailed derivations are given in Section V.

C. Discussions on the RS and RSB Solutions

There are several approaches to investigate whether the solution given under RS is tight or

further investigations under RSB are required. Discussing of these approaches is out of the scope

of this study and can be followed in [44] and the references therein. The available results in

the literature, however, can be employed to check the tightness of the replica solutions. There is

a well-known belief that the asymptotic solution to convex optimization problems is precisely

recovered via the RS solution. The belief has been discussed for some particular examples in

the literature [45]. Based on these discussions, it is conjectured that for GLSE precoders with

convex penalty and support, the RS solution is exact.
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A basic approach to test the existence of RS is the so-called zero-temperature entropy test.

In this test, the entropy of the corresponding thermodynamic system4 is determined, and its

convergence is checked when the temperature tends to zero. When the replica solution is perfectly

tracking the performance, the zero-temperature entropy should converge to zero. However, for

cases in which the RS or one-step RSB solution does not give the exact solution, the respective

zero-temperature entropy does not converge to zero. For these cases, it is shown that the exact

asymptotic distortion is bounded from below by both the RS and one-step RSB solutions, and the

bound given by the on-step RSB is tighter than the RS one. By further recursion steps of RSB,

the lower bound given by the RSB solution becomes tighter. In this case, the RSB solution with

an infinite number of recursions meets the exact asymptotic distortion5 [47], [48]. Throughout

the numerical investigations of the results in Section IV, we show that for most GLSE precoders,

the RS solution tracks the exact performance consistently and there are few cases for which we

need further RSB investigations. For the latter cases, the one-step RSB solution is shown to give

a tight lower bound for a large regime of loads, i.e., α = K/N .

D. Marginal Decoupling Property

Propositions 1 and 2 indicate that the asymptotic marginal of x has the following properties:

(a) For any function f(·), it does not depend on the index set W.

(b) It is equal to the expected marginal of an equivalent scalar GLSE precoder which reads

glse
dec

(sdec|ξ) := argmin
v∈X

|v − sdec|2 + ξ u(v) (37)

for ξ = [RJ(−χ)]−1. The random variable sdec is moreover given by sdec = srs under RS

and sdec = srs + srsb1 under one-step RSB.

These findings state that the statistics of x = glse
dec

(sdec|ξ) describe the asymptotic statistical

properties of the output entries. More precisely, one can conclude from these statements that

all the output entries of x are asymptotically identically distributed with a marginal distribution

equal to the distribution of x. We refer to this phenomenon as the “marginal decoupling property”.

4The concepts of entropy and temperature are defined in terms of the corresponding thermodynamic system. See [32] for

more details.

5The solution in this case is called the full RSB solution. There are also some cases in which the solution becomes exact

with finite steps of RSB recursions [46].
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Proposition 3 (Marginal Decoupling Property): Assume that the asymptotic distortion of GLSE

precoding is given by Proposition 1 or 2. Then, the transmit symbol xn for n ∈ [N ] converges

in distribution to the random variable

x = glsedec(s
dec|ξ)

as N grows large, where glse
dec

(·|ξ) is defined in (37), and sdec = srs under RS and sdec =

srs + srsb1 under one-step RSB.

Proof: The proof directly follows the replica results given in Propositions 1 and 2 by employing

methods from the classical moment problem [49]. Without loss of generality, we consider the

RS solution. Starting from Proposition 1, let f(x) = xm for m ∈ Z, and consider the index set

WN = [n : n + ζN ] for some ζ ∈ [0, 1] and n ∈ [N ]. Substituting in Definition 3, we have

MW

f (x;N) =
1

1 + ζN

n+ζN
∑

w=n

Exmw . (38)

MW

f (x;N) determines the arithmetic average of the mth moment of the output entries indexed

by the set WN . By taking the limit N ↑ ∞, we have

MW

f (x) = lim
N↑∞

1

1 + ζN

n+ζN
∑

w=n

∫

xmw p
N
w (xw)dxw (39a)

= lim
N↑∞

1

1 + ζN

n+ζN
∑

w=n

∫

xmw pw(xw)dxw (39b)

where pN
w indicates the distribution of the wth entry of x ∈ CN and pw denotes its asymptotic

limit. On the other hand, using Proposition 1, MW

f (x) is given by

MW

f (x) = Exm (40)

which is the mth moment of the random variable x. The right hand side (r.h.s.) of (40) is not a

function of ζ which indicates that it holds for any choice of ζ . Therefore, by setting the r.h.s.

of (39b) and (40) to be equal, we have

lim
N↑∞

1

1 + ζN

n+ζN
∑

w=n

∫

xmw pw(xw)dxw = Exm. (41)

Now by letting ζ ↓ 0, (40) reduces to
∫

xmn pn(xn)dxn = Exm, (42)
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for any m ∈ Z. (42) along with the classical moment method concludes the proof. In fact, as the

moments of xn and x are uniformly bounded and equal for any m ∈ Z, one can use Carleman’s

Theorem from the moments method [49], and conclude that the distribution of these two random

variables should be the same as well. The arguments here hold for any n ∈ [N ] which let us

further conclude that for any index n, pn tends to the distribution of x.

Throughout the manuscript, we call x the “decoupled transmit” and sdec the “decoupled input”

symbol. glse
dec

(·|·) is moreover referred to as the decoupled GLSE precoder. One should note

that although the decoupling property determines the marginal distributions of transmit entries

xn, it does not describe the correlation among these entries.

IV. APPLICATIONS OF GLSE PRECODERS

The generality of the penalty function and precoding support in GLSE precoders lets us

consider several transmission constraints at massive MIMO base stations. Moreover, various

well-known precodings, whose exact performances are not completely known in the literature,

can be considered as special cases of GLSE precoding. In this section, we study several forms of

the GLSE precoders which address various restrictions on the transmit signal, namely scenarios

with a limited number of transmit RF-chains, restricted PAPR and discrete constellations. We then

employ the asymptotic results presented in the previous section to investigate the large-system

performance of these precoders.

As the results enclose the class of unitarily invariant channel matrices, the performance of

GLSE precoding can be investigated for several fading models. Throughout the investigations, we

consider a standard i.i.d. flat Rayleigh fading channel whose channel matrix in the downlink reads

H = A1/2G (43)

where GK×N contains i.i.d. zero-mean Gaussian entries with variance 1/N , and AK×K =

diag [a1, . . . , aK ] is a diagonal matrix with ak being non-negative real variables for k ∈ [K].

Here, the matrix G models the multipath effect and A describes the path-loss and shadowing.

The diagonal entries of A are considered to be random variables whose mean values depend on

the positions of the users in the network. We denote the limiting empirical cumulative distribution

of {a1, . . . , aK} by Fsnr.
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To employ the asymptotic results, the R-transform of J = HHH is required to be derived. By

considering the channel model in (43), one notes that AH = A and writes

J = GHAG. (44)

For the case of A = IK , the asymptotic distribution FJ follows the Marc̆enko-Pastur law which

implies that the R-transform in this case is given by [50], [51]

RJ(ω) =
α

1− ω
. (45)

When A 6= IK , FJ is derived from the results in [52]6 which leads to

RJ(ω) = α

∫

a

1− aω
dFsnr(a). (46)

For sake of brevity, we assume A = IK for our analytical investigations. The results straight-

forwardly extend to cases with A 6= IK , by substituting (46) into the derivations.

In the sequel, we study the asymptotic performance of GLSE precoding for multiple constraints

on the transmit signal. Initially, we derive the RS solution and discuss its validity via numerical

investigations. The analysis is later extended to the one-step RSB solution, if the RS solution

fails to give a tight bound on the asymptotic performance.

A. Optimal Antenna Selection

Assume that the precoded symbols can be taken from the whole complex plane, i.e., X = C.

This assumption means that the transmit signal is not restricted in terms of PAPR7. In this

section, we follow the discussions in Section I-B and simultaneously restrict the number of

active transmit antennas and the transmit power via GLSE precoding. For this aim, we set

u(v) = λ‖v‖2 + λ0‖v‖0. (47)

The first term in (47) controls the transmit power, i.e., ‖x‖2/N , and the second term restricts the

fraction of active transmit antennas, i.e., ‖x‖0/N . In this case, a pair of constraints on the transmit

power and the number of active antennas are satisfied by tuning λ and λ0, correspondingly. We

will discuss this tuning problem within the derivations.

Considering the asymptotic distortion as the metric which measures the performance of the

system, the GLSE precoder with penalty in (47) is the optimal algorithm for joint power control

6This result is given in [50, Section 3.2.2].

7The extension into a case with PAPR restriction is discussed later
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and TAS, since it solves the corresponding constrained optimization problem. The algorithm is

however computationally complex, since the number of searches, needed for finding x, grows

exponentially large w.r.t. N . An effective algorithm is obtained by relaxing the ℓ0-norm term in

(47) by ℓ1-norm. We discuss this alternative algorithm later on.

Remark 3: One should note that in GLSE precoders the signal constraints are satisfied instan-

taneously. Considering TAS, this means that active transmit antennas are selected by GLSE

precoders in each transmission interval. In practical settings, one might be interested in some

approaches in which active antennas are selected on a lower rate. This issue can be further

addressed by a standard extension of the current GLSE precoding scheme such that the precoder

constructs a frame of transmit signals from a block of data symbols jointly. Further discussions

on this extension is presented in Appendix D.

Asymptotic Distortion: Using Proposition 1, the decoupled GLSE precoder in this case reads

glse
dec

(srs|ξ) =











srs

1 + ξλ
|srs| ≥ τ0

0 |srs| < τ0

(48)

for ξ := α−1(1 + χ) where srs ∼ CN (0, ρrs) and the threshold τ0 is given by

τ0 :=
√

ξλ0(1 + ξλ). (49)

Moreover, by invoking (45), ρrs for this setup is given by

ρrs = α−1(ρ+ p). (50)

By determining the asymptotic marginal of the transmit signal from Proposition 1 for f(x) = |x|2,
it is observed that p represents the average transmit power, i.e.

p = lim
N↑∞

E
1

N
‖x‖2, (51)

which reads

p =
ρrs + τ 20
(1 + ξλ)2

exp

{

− τ 20
ρrs

}

, (52)

and χ ∈ R+ satisfies the following fixed-point equation which is coupled with (52)

ρrsχ = ξp+ ξ2λp. (53)

The decoupled setting in (48) indicates that the decoupled transmit signal x is obtained by hard

thresholding of the decoupled input srs. The threshold level τ0 depends on λ0. By setting λ0 = 0,
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the threshold reduces to zero, and therefore, the GLSE precoder under study describes the output

distribution of the transmit signal constructed via the RZF precoder; see [16].

The asymptotic distortion in this case is calculated by

DRS(ρ) =
ρ+ p

(1 + χ)2
. (54)

for p and χ fulfilling (52) and (53).

Tuning λ and λ0: To satisfy a desired pair of constraints on the transmit signal, λ and λ0

need to be tuned. To this end, we note that the asymptotic average transmit power for given λ

and λ0 is determined in (52). Moreover, the asymptotic fraction of active antennas, defined as8

η := lim
N↑∞

1

N
‖x‖0, (55)

is calculated from the asymptotic marginal of the transmit signal for the indicator function, i.e.

f(x) = 1 {x 6= 0} which leads to

η = exp

{

− τ 20
ρrs

}

. (56)

In systems with large dimensions, λ and λ0 are tuned using (56) and (52) as follows: Assume

that the transmit power and the fraction of active transmit antennas are desired to be P0 and η0,

respectively. In this case, one can find the corresponding λ and λ0 from the coupled equations

in (52), (53) and (56) by setting p and η equal to P0 and η0, respectively.

Numerical investigations: Fig. 1 shows the asymptotic distortion in terms of the inverse load,

i.e. α−1 = N/K, for multiple asymptotic fractions of active antennas. The control factors λ and

λ0 are tuned such that p = 0.5, and the power control factor is set to ρ = 1. As a benchmark, we

have also plotted the distortion for a well-known TAS algorithm based on sorting the channel

gains. This algorithm is illustrated in Appendix E. When the number of active antennas grows

large linearly with the total number of transmit antennas, this benchmark algorithm performs

close to random selection. This is observed in Fig. 1 where the algorithm has been simulated

for N = 64 transmit antennas. We therefore consider the asymptotic of random selection9 as the

reference and compare the GLSE precoder against it.

As the figure depicts, for a given constraint on η, the GLSE precoder significantly outper-

forms the RZF precoder with random TAS. To quantify the improvement, we have plotted the

8Here, ‖x‖0 counts the number of non-zero entries of x, and thus, represents the number of active antennas.

9By random selection, in this case, we mean that the transmitter selects the subset of active antennas randomly and precodes

over them using the RZF precoding scheme.
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Fig. 1: Asymptotic distortion versus the inverse load α−1 = N/K for average transmit power p = 0.5 and multiple

TAS constraints. The solid lines show the RS solutions. For random and strong channel TAS, the subset of the

active transmit antennas are first selected via the corresponding selection algorithm and then precoded via the RZF

precoder. The GLSE precoder with ℓ0-norm penalty is not possible to be numerically simulated for η 6= 1, since

its computational complexity grows exponentially with N . The result for RZF precoding, i.e. η = 1, is consistent

with simulations.

asymptotic distortion for the RZF precoder with random TAS considering several values of η.

The numerical investigations show that the performance of the GLSE precoder with η = 0.3 is

tracked by random TAS when 65% of antennas are set active. Therefore, the proposed GLSE

precoder with ℓ0-norm penalty needs around 0.35N less active antennas than random TAS which

means 54% of reduction in the number of active antennas. This improvement reduces to 0.25N

at η = 0.7. As indicated earlier, the significant improvement in the performance in this case is

achieved at the expense of high computational complexity. We address this issue in the following

section by replacing the ℓ0-norm regularization term with an ℓ1-norm penalty.
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B. Antenna Selection via Convex Penalty

From the literature of compressive sensing [26]–[28], it is known that an effective computa-

tionally feasible approach for sparse recovery is LASSO regression [53]. In this approach, the

sparsity of the signal is approximated via the ℓ1-norm leading to a convex recovery algorithm

which is solved within polynomial time. Invoking this relaxation, one can restrict the number

of active transmit antennas, as well as the transmit power, via GLSE precoding by setting

u(v) = λ‖v‖2 + λ1‖v‖1. (57)

For convex choices of X, this GLSE precoder solves a convex optimization problem, and there-

fore, is posed by linear programming.

To investigate the performance of this GLSE precoder, we start by considering the case with

no PAPR restriction, i.e. X = C. In this case, the decoupled GLSE precoder is given by

glse
dec

(srs|ξ) =











srs

1 + ξλ

|srs| − τ1
|srs| |srs| ≥ τ1

0 |srs| < τ1

(58)

where τ1 := ξλ1/2 for ξ := α−1(1 +χ) and the decoupled input reads srs ∼ CN (0, ρrs) with ρrs

given in (50). The average transmit power p in this case is determined by

p =
ρrs

(1 + ξλ)2
exp

{

− τ 21
ρrs

}

− 2
τ1
√
πρrs

(1 + ξλ)2
Q(

√

2

ρrs
τ1) (59)

with Q(·) denoting the standard Q-function. The asymptotic fraction of active antennas reads

η = exp

{

− τ 21
ρrs

}

. (60)

Moreover, the scalar χ is found by solving the fixed-point equation

αχ

1 + χ
(1 + ξλ) = exp

{

− τ 21
ρrs

}

− τ1
√
πρrs

ρrs
Q(

√

2

ρrs
τ1). (61)

Considering the decoupled GLSE precoder in (58), one observes that under ℓ1-norm minimization

the decoupled precoder is a soft thresholding operator which reduces to a linear precoder as λ1

tends to zero. For given constraints on the transmit power and the fraction of active antennas,

the tuning strategy follows the same approach as in Section IV-A.
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Fig. 2: Asymptotic distortion versus α−1 = N/K for the GLSE precoder with ℓ1-norm penalty when the average

power is p = 0.5. The simulations for N = 64 shows that the RS solution consistently tracks the performance of

finite dimensional systems.

Numerical investigations: The asymptotic distortion for this precoder has been plotted as a

function of the inverse load in Fig. 2. For sake of comparison, we have also sketched the curve

for the case with ℓ0-norm penalty, as well as random TAS. As it is observed, the computa-

tionally feasible GLSE precoder based on ℓ1-norm minimization consistently tracks the optimal

performance with a slight degradation. To get a quantitative comparison, we have fitted the

distortion curve with the one given for random TAS. The performance of GLSE precoding with

ℓ1-norm penalty at η = 0.3 is tracked via random TAS with η = 0.51. This means that by using

LASSO regression 0.21N less active antennas are required compared to random TAS. Thus,

0.14N less antennas are saved than with the optimal selection algorithm. Nevertheless, we still

get a significant enhancement compared to the benchmark performance.

In order to validate the result given via the replica method, we have further determined the

distortion of the precoder numerically using CVX [54], [55]. The simulations are given for
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Fig. 3: Lower bound on the achievable ergodic rate per user versus α−1 = N/K for the GLSE precoders with ℓ0-

and ℓ1-norm penalty when the average transmit power is p = 0.5. RL
Erg has been maximized over all power control

factors ρ numerically. The average SNR is defined as SNR := p/σ2 and is set to be log SNR = 0 dB.

the same set of system parameters considering N = 64 transmit antennas and show that the

asymptotic results accurately match the performance of the precoder even in finite dimensions.

The values of λ and λ1 in the simulations are tuned for the given power and TAS constraints via

the tuning strategy illustrated in IV-A. In this strategy, we find λ and λ1 such that the asymptotic

average transmit power and the fraction of active antennas given by the replica method satisfy

the given constraints. The accurate consistency of the results, therefore, validates our tuning

strategy and indicates that the large-system results can be employed to tune GLSE precoders in

finite dimensions.

From Lemma 1, one can calculate the lower bound on the achievable ergodic rate of the

GLSE precoders given in Sections IV-A and IV-B. This lower bound has been sketched versus the

inverse load in Fig. 3. Here, the average Signal-to-Noise Ratio (SNR) is defined as SNR := p/σ2

and is set to log SNR = 0 dB. The lower bound has been optimized in terms of ρ.
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C. Antenna Selection with Restricted PAPR

In practice, the RF-chains are restricted in terms of the peak transmit power. This restriction

comes from the fact that the efficiency of power amplifiers significantly reduces for large output

back-offs10. It is therefore desired in practice to transmit signals with limited PAPR over the

active antennas. In this respect, considering the GLSE precoders in the previous sections, the

assumption of X = C is an inaccurate model for many systems. The inaccuracy turns to be

more pivotal when the transmit signal is desired to have a relatively small PAPR. To address

this issue, one can modify the GLSE precoders in Sections IV-A and IV-B by setting X to be

X =
{

x : |x| ≤
√
P
}

. (62)

Here, the output symbols are restricted to lie inside a circle with radius
√
P which means that

the per-antenna peak transmit power is upper bounded by P . Consequently, one can address both

TAS and the PAPR restriction by considering a penalty function as in (47) or (57) and letting the

precoding support be as in (62). We study these forms of the GLSE precoders in the following.

Optimal TAS for Restricted PAPR: For optimal TAS, the penalty is set to (47). In this case,

the decoupled precoder is given by

glse
dec

(srs|ξ) =











































srs

|srs|
√
P τ̂0 ≤ |srs|

0 τ̃0 ≤ |srs| < τ̂0

srs

1 + ξλ
τ0 ≤ |srs| ≤ τ̃0

0 0 ≤ |srs| < τ0

(63)

where srs ∼ CN (0, ρrs) with ρrs in (50) and the thresholds τ0, τ̃0 and τ̂0 read

τ0 :=
√

ξλ0(1 + ξλ) (64a)

τ̃0 := (1 + ξλ)
√
P (64b)

τ̂0 := max

{

(1 + ξλ)
√
P ,

1 + ξλ

2

√
P +

ξλ0

2
√
P

}

(64c)

for ξ := α−1(1 + χ). Consequently, the average transmit power is determined as

p =
ρrs + τ 20
(1 + ξλ)2

exp

{

− τ 20
ρrs

}

− ρrs + τ̃0
2

(1 + ξλ)2
exp

{

− τ̃ 20
ρrs

}

+ P exp

{

− τ̂ 20
ρrs

}

, (65)

10For a power amplifier, the output back-off is defined as the maximum possible output power divided by the mean power at

which the amplifier performs linearly.
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and the asymptotic fraction of active transmit antennas reads

η = exp

{

− τ 20
ρrs

}

+ exp

{

− τ̂ 20
ρrs

}

− exp

{

− τ̃ 20
ρrs

}

. (66)

The scalar χ further satisfies

χ =
ξ

ρrs
ρrs+τ 20
1+ξλ

[

exp

{

− τ 20
ρrs

}

−exp

{

− τ̃ 20
ρrs

}]

+
ξτ̂0

√
P

ρrs
exp

{

− τ̂ 20
ρrs

}

+ξ

√

πP

ρrs
Q(

√

2

ρrs
τ̂0). (67)

Comparing the decoupled precoder to (48), the decoupled transmit symbol in this case is

obtained from srs by two steps of thresholding. In the first step, the decoupled input srs is

compared to the threshold τ̃0, in order to be constrained w.r.t. the peak power P . The second

step, then, imposes the TAS constraint as in (48) using the thresholds τ0 and τ̂0. Consequently,

τ0 and τ̂0 depend on the selection factor λ0 while the threshold τ̃0 is only controlled by the peak

power P . As λ0 tends to zero, we have τ0 ↓ 0 and τ̂0 = τ̃0, and thus, the precoder reduces to

the PAPR limited precoder studied in [38]. By fixing some constraints on the fraction of active

transmit antennas and the PAPR, λ and λ0 are tuned as discussed in Section IV-A.

TAS with ℓ1-norm Minimization for Restricted PAPR: For the precoding support in (62), the

optimization problem in GLSE precoding with penalty (57) is convex for a large range of con-

straints on the average power and the fraction of active antennas. With this penalty, the decoupled

precoder is derived as

glse
dec

(srs|ξ) =



























srs

|srs|
√
P τ̃1 ≤ |srs|

srs

1 + ξλ

|srs| − τ1
|srs| τ1 ≤ |srs| < τ̃1

0 0 ≤ |srs| < τ1

(68)

where ξ := α−1(1 + χ). Similar to the case with ℓ0-norm penalty, the decoupled precoder

constructs the decoupled transmit symbol by thresholding the input srs ∼ CN (0, ρrs) in two

steps. In the first step, the magnitude of the decoupled input is compared to

τ̃1 :=
√
P (1 + ξλ) + ξλ1/2 (69)

such that the peak power is limited to P . Then, a soft thresholding is performed w.r.t. τ1 := ξλ1/2

for TAS. The average transmit power of the precoder in this case is

p =
ρrs

(1 + ξλ)2

[

exp

{

− τ 21
ρrs

}

− exp

{

− τ̃ 21
ρrs

}]

− 2
τ1
√
πρrs

(1 + ξλ)2

[

Q(

√

2

ρrs
τ1)−Q(

√

2

ρrs
τ̃1)

]

(70)



27

 

 

PSfrag replacements

D
(ρ

=
1)

in
[d

B
]

α−1 = N/K

PAPR = 8 dB, η = 0.5, ℓ1-norm

PAPR = 8 dB, η = 0.5, Simulation

PAPR = 8 dB, η = 0.5, ℓ0-norm

PAPR = 3 dB, η = 0.7, ℓ1-norm

PAPR = 3 dB, η = 0.7, ℓ0-norm

RZF precoding, η = 1

PAPR = 0 dB, η = 0.5, ℓ0-norm

−5

−10

−15

−20

−25

−30

0

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Fig. 4: Asymptotic distortion versus the inverse load α−1 = N/K for the GLSE precoder with restricted PAPR

when the average transmit power is set to p = 0.5. The solid asnd dashed lines denote the RS solution which track

closely the exact performance. The simulations are given for N = 64 in which the precoder is tuned using the

replica solution.

and the asymptotic fraction of active transmit antennas is calculated by

η = exp

{

− τ 21
ρrs

}

. (71)

For this case, the scalar χ fulfills the fixed-point equation

αχ

1 + χ
(1 + ξλ) = exp

{

− τ 21
ρrs

}

−exp

{

− τ̃ 21
ρrs

}

−
√
πρrs

ρrs

[

τ1Q(

√

2

ρrs
τ1)− τ̃1Q(

√

2

ρrs
τ̃1)

]

. (72)

As in the case with optimal TAS, for λ1 ↓ 0 the threshold τ1 tends to zero and the decoupled

precoder describes the single-user representation of the PAPR-limited precoder.

Numerical investigations: Fig. 4 shows the asymptotic distortion of PAPR-limited GLSE

precoders with ℓ0-norm and ℓ1-norm penalties in terms of the inverse load α−1 = N/K. The

average transmit power is set to p = 0.5, and the peak power is chosen such that the PAPR

constraint is fulfilled. Moreover, the power control factor is fixed to ρ = 1 and the PAPR has
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been determined as PAPR = log (P/p). The curves for PAPR-limited precoders with random

TAS have been furthermore fitted numerically to the GLSE precoders.

It is observed that at higher PAPRs, e.g. PAPR = 8 dB, the precoder outperforms random

TAS with approximately the same reduction in the fraction of active antennas as in cases with no

PAPR constraint. However, for smaller PAPRs, this advantage reduces. It is moreover observed

that for small PAPRs the degradation caused by replacing ℓ0-norm with ℓ1-norm is decreased.

For example, as Fig. 4 depicts, at PAPR = 3 dB the reduction in the number of active antennas

compared to random TAS is around 0.25N for ℓ0-norm and 0.2N for ℓ1-norm penalty.

D. Antenna Selection for Discrete Constellations

Some new suggestions for MIMO transmitters have proposed structures whose transmit signal

is taken from a discrete constellation. An example is the Load-Modulated Single RF (LMSRF)

transmitter in which multiple load modulators, fed by a single RF-chain, construct the transmit

constellation [12], [56], [57]. Each load-modulator in this case is equipped with some switches,

and the cardinality of the transmit constellation is restricted by the total number of transmit

states, e.g., for three switches, there are eight possible states. For these transmitters, conventional

precoders cannot be employed, as the majority of the schemes in the literature sets X = C and

bounds the transmit amplitude by further processing. Another example is a MIMO system with

low-resolution digital-to-analog converters where the precoding support is restricted with the

output of the digital-to-analog converters [17].

The generality of the precoding support in the GLSE scheme, however, enables us to precode

the data directly over the constellations of these transmitters as well. In [38], a special class

of GLSE precoders, i.e., nonlinear LSE precoders, was considered to address the M-PSK

constellations when the whole transmit antennas are set active. We extend the analysis to the

case with TAS. To this end, we set

X = {0} ∪
{√

P exp

{

j
2kπ

M

}

for k ∈ [1 :M ]

}

. (73)

The precoder in this case maps the data to a vector whose symbols are either taken from an

M-PSK constellation or are zero. In general, the number of active transmit antennas is restricted

by the penalty in (47). Nevertheless, for the M-PSK constellation, ℓ2- and ℓ0-norm are related
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via ‖x‖2 = P‖x‖0 indicating that any restriction on the transmit power limits the number of

active antennas. Consequently, TAS can be enforced in this case by the penalty function11

u(v) = λ‖v‖2. (74)

For this GLSE precoder, the decoupled precoder is given by

glse
dec

(srs|ξ) =











√
P exp

{

j2k
⋆π

M

}

|srs| ≥ τd

0 |srs| < τd

(75)

with srs ∼ CN (0, ρrs) and ρrs given in (50), where the threshold τd is defined as

τd :=

√
P (1 + ξλ)

2Θ (k⋆|∢srs) (76)

for ξ := α−1(1 + χ) and k⋆ := argmaxk Θ (k|∢srs) with

Θ (k|θ) := cos

(

2kπ

M
− θ

)

. (77)

The decoupled precoder in this case describes a thresholding operator over the M-PSK con-

stellation in which the magnitude of the decoupled input is first compared to τd, and then, its

non-zero output is mapped to an M-PSK symbol whose phase is closest to ∢srs. The asymptotic

fraction of active antennas for this precoder is given by

η =
1

2π

∫ 2π

0

exp

{

− P (1 + ξλ)2

4ρrs [maxk Θ(k|θ)]2

}

dθ (78)

and p = Pη. The fixed-point equation for χ moreover reads

αχ

1 + χ
ρrs =

P (1 + ξλ)

2
η +

1

2π

∫ 2π

0

√

πρrsP
[

max
k

Θ(k|θ)
]

Q

( √
P (1 + ξλ)√

2ρrs [maxk Θ(k|θ)]

)

dθ. (79)

In this case, by growth of λ, the threshold τd increases, and thus, the fraction of active transmit

antennas reduces. The asymptotics of constant envelope transmission with TAS is moreover

derived by taking the limit M ↑ ∞. We determine this limit in Appendix C. For a given

constraint on η, the factor λ is tuned via the tuning strategy illustrated in Section IV-A.

11Note that for some other discrete constellations, this simplification may not work and one needs to keep the penalty as in

(47), e.g., for 16-QAM.
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Fig. 5: The RS solution for the asymptotic distortion of BPSK and QPSK constellations and the lower bound Dℓ (α)

determined from Lemma 2 versus α−1 = N/K . P is set such that the average transmit power p = ηP = 1.

Numerical investigations: For BPSK signals, i.e. M = 2, the decoupled precoder reduces to

glsedec(s
rs|ξ) =

√
P exp

{

j2k
⋆π

M

}

T (Re {srs} |ξ) (80)

where the real-valued thresholding function T (·|ξ) is defined as

T (u|ξ) =











1 |u| ≥
√
P (1 + ξλ) /2

0 |u| <
√
P (1 + ξλ) /2

. (81)

Considering the QPSK constellation, i.e. M = 4, the decoupled GLSE precoder reads

glsedec(s
rs|ξ) =

√
P exp

{

j2k
⋆π

M

}

T (Re {srs} |ξ)T (Im{srs} |ξ) (82)

For these particular examples, the asymptotic distortion given by the replica solutions have

been plotted for P = 1 in Fig. 5 against the inverse load. To investigate the tightness of the RS

solution, we extend the approach in [16, Appendix D] and derive a rigorous lower bound on the

distortion of the M-PSK transmission with TAS in Lemma 2.
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Fig. 6: The one-step RSB solution for the asymptotic distortion of BPSK constellation considering η = 0.2 and

η = 0.4, as well as the lower bound Dℓ given by Lemma 2.

Lemma 2: Consider the GLSE precoder with the precoding support given in (73) and the penalty

function in (74). For a given load α and power control factor ρ, the asymptotic distortion of the

precoder, when the asymptotic fraction of active transmit antennas is η, is bounded from below

by Dℓ which satisfies the fixed-point equation

Dℓ

ρ+ ηP
= 1 +

log(1 +M)

α
+ log

Dℓ

ρ+ ηP
. (83)

Proof: The proof is given in Appendix B.

The lower bound given by Lemma 2 clarifies the looseness of the RS solution for moderate and

large loads. In fact, as the figure shows the RS solution outperforms the lower bound for small

inverse loads. The solution, however, starts to violate the lower bound as the inverse load grows.

Considering the discussions in Section III-C, this observation indicates that the RS assumption

is not valid in this case, and therefore, one needs to study RSB solutions. We therefore have

plotted the one-step RSB solution in Fig. 6. The figure demonstrates a larger range of inverse

loads in which the replica solution outperforms the lower bound in Lemma 2. The one-step
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RSB solution is determined by replacing the decoupled input with srs + srsb1 and solving the

fixed-point equations given in Proposition 2. Numerical investigations show that the one-step

RSB solution tracks simulations for a moderate load regime. It however starts to deviate as the

inverse load increases; see discussions in [16]. Hence, for larger load regimes, more steps of

RSB are required.

For the range of inverse loads over which the one-step RSB solution outperforms Dℓ in

Lemma 2, the lower bound on the achievable ergodic rate per user has been plotted assuming

ρ = 1 in Fig. 7. The noise power is considered to be σ2 = 0.1. A heuristic bound on the achievable

ergodic rate can be derived by assuming the interference caused by other users becoming

independent of the data symbol in the large-system limit. In this case, one can approximate

the ergodic rate when all the users are distributed uniformly in the cell as

RErg ≈ log

(

1 +
ρ

p+D(ρ)

)

. (84)

As Fig. 7 depicts, RL
Erg lies close to this heuristic approximation as N/K increases.

V. LARGE-SYSTEM ANALYSIS

In this section, we state the derivations of the main results. To start with, consider the function

E(v|s,H) = ‖Hv −√
ρs‖2 + u(v), (85)

which is referred to as the “Hamiltonian”. We define the so-called partition function Z(β, h) as

Z(β, h) =
∑

v

exp
{

−βE(v|s,H) + hNMW

f (v;N)
}

(86)

with MW

f (v;N) being the marginal of the transmit signal given in Definition 3. Moreover, we

define the function F(β, h) as

F(β, h) :=
1

N
E logZ(β, h). (87)

In the sequel, we show that both the asymptotic distortion and the asymptotic marginal of the

transmit signal are directly derived from the function F(β, h).

A. Deriving the Asymptotic Distortion and Marginal

We start by deriving the asymptotic marginal of transmit vector from F(β, h). Our derivation

is based on the following large deviations argument known as the saddle-point method [58].
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Lemma 3 (Saddle-point method): Assume that f(v) : XN 7→ R is a bounded function, then

min
v∈XN

f(v) = − lim
β↑∞

1

β
log

∫

X

N

exp {−βf(v)}dv (88)

Proof: The lemma is concluded by setting ǫ = 1/β, φ(x) = 0 and {µǫ} equal to a family

of non-degenerate Gaussian measures with the rate function f(x) in Varadhan’s theorem [58,

Theorem 4.3.1]. The same result is concluded for discrete X when we replace the integral by sum.

Using Lemma 3, it is straightforward to show that the asymptotic marginal reads

MW

f (x) = lim
N↑∞

lim
β↑∞

∂

∂h
F(β, h)|h=0. (89)

To describe the asymptotic distortion in terms of F(β, h), we take expectation from both sides

of (85). It is then concluded that the asymptotic distortion satisfies

αD(ρ) +MT

u (x) = Ẽ (90)
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where MT

u (x) denotes the asymptotic marginal of u(x) over T(n) := [n], and Ẽ is the average

energy of the Hamiltonian in the large-system limit12 defined as

Ẽ = lim
N↑∞

1

N
EE(x|s,H). (91)

From (89), MT

u (x) is determined in terms of F(β, h). Moreover,

Ẽ = − lim
n↑∞

lim
β↑∞

∂

∂β
F(β, h)|h=0. (92)

Thus, the asymptotic distortion D(ρ) is evaluated from F(β, h) considering the equality in (90).

B. Analysis via the Replica Method

Based on the discussions in Section V-A, the large-system analysis of the GLSE precoders

reduces to determining F(β, h). To this end, we employ the replica method which has been

initially developed in statistical mechanics to study spin glasses [59] and later employed in

information theory to investigate the asymptotics of various problems; see [29]–[31], [60] and

references therein. We start our analysis by noting that determining F(β, h) needs the hard task

of taking a logarithmic expectation to be overcome. The task is analytically non-tractable when

the argument of the logarithm is a sum of exponential functions. Using the Riesz equality which

states that for a non-negative random variable x and real m [61]

E log x = lim
m↓0

1

m
logExm, (93)

and bypasses the logarithmic expectation by writing F(β, h) as

F(β, h) =
1

N
lim
m↓0

1

m
logE [Z(β, h)]m . (94)

The computation of (94) is still non-trivial, since the r.h.s. of (94) needs to be determined for

real values13 of m. The replica method determines (94) utilizing the conjecture of the replica

continuity. The replica continuity indicates that the analytic continuation of the non-negative

integer moment function, i.e., the function

fM(m) := E [Z(β, h)]m (95)

12In the context of statistical mechanics, Ẽ is the average energy of the spin glass defined by the Hamiltonian (85) in the

thermodynamic limit.

13More precisely, it should be determined at least for some real values of m in a right neighborhood of zero
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with m ∈ Z+, onto the set of non-negative real numbers equals to the non-negative real moment

function, i.e., fM(m) with domain m ∈ R

+
0 . In other words, replica continuity suggests to

determine the moment function for an integer m, and then, assume that the function is of the

same form for m ∈ R

+
0 . The rigorous justification of the replica continuity has not been yet

precisely addressed in general; however, the analytic results from the theory of spin glasses

confirm the validity of the conjecture for several cases. Considering the replica continuity, the

moment function reads

fM(m) = E

∑

{va}

m
∏

a=1

exp
{

−βE(va|s,H) + hNMW

f (va;N)
}

(96a)

=
∑

{va}

exp

{

hN

m
∑

a=1

MW

f (va;N)

}

E exp

{

−β
m
∑

a=1

E(va|s,H)

}

(96b)

where {va} := {v1, · · · , vm} denotes the set of replicas14. By taking the expectation w.r.t. s,

fM(m) =
∑

{va}

EJ exp

{

−β
m
∑

a,b=1

v
H

aJvbξab −NΘ {va}
}

(97)

where ξab := δ(a− b)− ρβ(1 + ρβm)−1, J denotes the Gramian of H, i.e. J := HHH, and

Θ {va} :=
1

N

m
∑

a=1

[

βu(va)− hNMW

f (va;N)
]

+
1

N
∆m (98)

with ∆m := K log(1 + ρβm). In order to take the expectation w.r.t. J, we invoke the result

reported in [62] for spherical integrals, where a closed form formula has been given for some

specific cases; see [32, Appendix F] for more details on the spherical integrals. Let us consider

the m×m “replica correlation” matrix Qm whose entries are defined as

[Qm]ab =
1

N
v
H

avb. (99)

Then, after taking the expectation w.r.t. J, (97) reduces to

fM(m) =
∑

{va}

exp {−NG(TQm)−NΘ {va}} (100)

where T := Im − ρβ(1 + ρβm)−11m, and G(·) reads

G(M) =

m
∑

ℓ=1

∫ βλℓ

0

RJ(−ω)dω (101)

14In fact, it is the reason that the method is called the “replica” method.



36

for some matrix Mm×m with eigenvalues {λℓ} for ℓ ∈ [1 : m]. Here, RJ(·) is the R-transform of

the asymptotic eigenvalue distribution FJ. To determine the sum in (100), we divide the replicas

{va} into subshells w.r.t. their correlation matrices. More precisely, we define the subshell S(Q)

as the set of replicas {va} whose correlation matrix is Q. In this case, (100) reads

fM(m) =

∫

exp {−NG(TQ)}





∑

{va}

exp {−NΘ {va}}w(Q; {va})



 dQ (102a)

=

∫

exp {−NG(TQ)} exp {−NI(Q)} dQ (102b)

where dQ :=
∏m

a,b=1 dRe {[Q]ab}dIm {[Q]ab}, the integral is taken over Cm×m, and exp {−NI(Q)}
indicates the density of S(Q) which is written as

exp {−NI(Q)} =
∑

{va}

exp {−NΘ {va}}w(Q; {va}) (103)

with the weight function w(Q; {va}) being

w(Q; {va}) =
m
∏

a,b=1

δ(Re
{

N [Q]ab − v
H

avb

}

)δ(Im
{

N [Q]ab − v
H

avb

}

). (104)

We determine the density function in (103) by replacing the impulse functions in (104) with

their inverse Laplace transform. In this case, after some lines of derivations,

exp {−NI(Q)} =

∫

exp {−NTr{SQ}+NM(S)−∆m}dS (105)

where Sm×m is an square matrix enclosing the complex frequencies,

dS :=

m
∏

a,b=1

(2πj)−2dRe {[S]ab}dIm {[S]ab} , (106)

the integral is taken over Cm×m, and M(S) is defined as

M(S) :=
1

N
log
∑

{va}

exp

{

m
∑

a,b=1

[S]abv
H

avb − β
m
∑

a=1

u(va) + hN
m
∑

a=1

MW

f (va;N)

}

. (107)

By partitioning the set [N ] as [N ] = WN ∪WC

N , where WC

N indicates the complement of the

index set WN w.r.t. [N ], M(S) reduces to

M(S) := (1− ζ) log
∑

v

exp
{

vHSv − βu(v)
}

+ζ log
∑

v

exp

{

vHSv − βu(v) + hζ−1

m
∑

a=1

f(va)

}

(108)
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with v ∈ Xm and ζ = |W(N)|/N . Here, one should note that v is an m-dimensional vector

which is different from v. We refer to v as the vector of replicas. By substituting (105) in (102b),

fM(m) =

∫

exp {−NG(TQ) −NTr{SQ}+NM(S)−∆m} dQdS. (109)

From (109), F(β, h) is determined by substituting into (94). We further assume that the limits

w.r.t. N and m commute which is a common assumption in replica analyses and is concluded

when replica continuity holds. By substitution (109) in (94) and exchange of the limits, F(β, h)

reads

F(β, h) = lim
m↓0

lim
N↑∞

1

N

1

m
log

∫

exp {−NG(TQ)−NTr{SQ}+NM(S)−∆m}dQdS. (110)

To take the integral in (110), we invoke Lemma 3 which leads us to conclude

F(β, h) = − lim
m↓0

1

m

[

G(TQ̃) + Tr{S̃Q̃} −M(S̃) + α log(1 + ρβm)
]

(111)

where we substitute ∆m := K log(1+ρβm). In (111), (S̃, Q̃) is the saddle point of the exponent

function −G(TQ)− Tr{SQ}+M(S). We further simplify (111) as

α lim
m↓0

1

m
log (1 + ρβm) = α

∂

∂m
log (1 + ρβm) |m=0 = αρβ. (112)

To derive the saddle point (S̃, Q̃), we let the derivatives of the exponent function w.r.t. Q and

S to zero. Using the standard matrix derivation, the derivative w.r.t. Q results in

S̃ = −βTRJ(−βTQ̃). (113)

Moreover, by taking the derivative w.r.t. S, and substituting S̃ as in (113), we have

Q̃ =
∑

v

pβ(v|Q̃)vvH (114)

where we define the function pβ(v|Q̃) to be

pβ(v|Q̃) =
exp

{

−β
[

vHTRJ(−βTQ̃)v + u(v)
]}

∑

v
exp

{

−β
[

vHTRJ(−βTQ̃)v + u(v)
]} . (115)

and refer to it as the “distribution of replicas”. By substituting F(β, h) into (89) and (92), the

asymptotic marginal and distortion are determined as in Proposition 4.

Proposition 4 (General Replica Solution): Consider the nonlinear GLSE precoder in Section

II, and define vm×1 to be a random vector over Xm with the distribution pβ
v
(v;Q) given (115).
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Let Q̃ = Q⋆ be a solution to the fixed-point equation in (114). Then, under the replica continuity

assumption, the asymptotic marginal of f(x) is given by

MW

f (x) = lim
β↑∞

lim
m↓0

∑

v

pβ
v
(v;Q⋆)MT

f (v;m), (116)

and D(ρ) = ρ+ α−1 lim
β↑∞

DR(β) where DR(β) is defined as

DR(β) :=
∂

∂β

[

lim
m↓0

1

m
Tr{
∫ β

0

TQ⋆RJ(−ωTQ⋆)dω}
]

− β lim
m↓0

1

m
Tr{TRJ(−βTQ⋆)

∂Q⋆

∂β
}. (117)

Using Proposition 4, the asymptotics of a given GLSE precoder are derived by determining

Q⋆, and then, substituting it into (116) and (117). The direct derivation of Q⋆, however, is not

trivial. We therefore invoke the well-known approach in the literature in which the correlation

matrix at the saddle-point is constructed step-wise by RS and RSB schemes.

C. Solutions under Replica Symmetry and Replica Symmetry Breaking

To derive the saddle-point matrix Q⋆, one should directly search over all possible matrices

and find those which satisfy the fixed-point (114). This task is not feasible due to the following

issues: 1) the search is computationally complex, and 2) the derived solutions to the fixed-

point equations are not guaranteed to result in an analytic expression for fM(m). These issues

together are addressed in the literature of spin glasses by invoking a well-known trick. A trick

is to restrict the set of matrices, over which we search for the saddle-point, to be of a given

structure. The structure is parameterized with several parameters which are to be found such that

the matrix with assumed structure satisfies the fixed-point equation. To clarify the idea further,

assume that we suppose Q̃ = A(q1, . . . , qL) in which A(q1, . . . , qL) is an m×m matrix which

is parameterized by q1, . . . , qL. Here, L is a constant number which does not depend on m. In

this case, by inserting A(q1, . . . , qL) in (114), the fixed-point equation reduces to L coupled

equations which determine q⋆1, . . . , q
⋆
L, and consequently, Q⋆ = A(q⋆1, . . . , q

⋆
L). Using this trick,

the problem of finding the saddle-point can be feasibly followed in an analytic way [44]. There

are however two main questions in this respect: 1) Which structure on Q⋆ should be considered?

2) How can we assure that a correlation matrix at the saddle-point has the given structure? The

former question has been answered in the literature of spin glasses. In fact, due to some specific

properties of the exponent function the initial conjecture on the saddle-point structure is RS

which indicates that Q⋆ reads

Q⋆ =
χ

β
Im + p1m (118)
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for some χ and p. It is however not guaranteed that the saddle-point matrix has the structure

of this form. This latter statement brings the need to answer the second question. To check if

the saddle-point has the RS structure, a series of stability analyses have been considered in the

literature [44], [63], [64]. The analyses indicate that, depending on the Hamiltonian, the RS

structure may not address the exact saddle point and in fact gives a lower bound on that. To find

the saddle-point in these cases, the assumed structure on Q⋆ has to be modified. Parisi proposed

the RSB scheme in [43] which starts from RS and widens the structure recursively15. Using

Parisi’s scheme [43], after one step of recursion, one gets

Q⋆ =
χ

β
Im + cImβ

µ
⊗ 1µ

β
+ p1m (119)

Here, Q⋆ is controlled by χ, p, c and µ. More steps of recursion result in wider classes of

structures. The solution obtained by b recursions of RSB is referred to as the b-steps RSB

solution and when b ↑ ∞ is called the full-RSB solution. In general, it is shown that RS, as well

as b-steps RSB, give a lower bound on the exact solution which gets tighter as b grows. In the

sequel, we determine the RS as well as one-step RSB solution which conclude Propositions 1

and 2. The extension to to more steps of RSB is also discussed in Appendix A. For derivation,

we invoke the systematic approach illustrated in [32, Appendices B-D].

Replica Symmetric Solution: By substituting (118) in Proposition 4, we have

pβ(v|Q̃) =

∫ m
∏

a=1

exp {−βErs(va|s0)}
∫

[
∑

v exp {−βErs(v|s0)}]mDs0
Ds0, (120)

where Ds0 := exp {−|s0|2}
ds0
π

, and the function Ers(·|s0) : X 7→ R

+ reads

Ers(v|s0) :=
1

ξ
|v|2 − 2ςRe {vs∗0}+ u(v) (121)

with ξ = [RJ(−χ)]−1
, and ς being

ς2 =
∂

∂χ
[(ρχ− p)RJ(−χ)] . (122)

By replacing the RS structure into the fixed-point equation (114) and taking limits β ↑ ∞ and

m ↓ 0, χ and p at the saddle-point are found to be

p =

∫

|argmin
v

Ers(v|s0)|2Ds0, (123a)

χ =
1

ς

∫

Re

{

argmin
v

Ers(v|s0) s∗0
}

Ds0. (123b)

15In the context of the replica method, this recursive widening is called “symmetry breaking”.
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Finally, by determining the asymptotic distortion for the correlation matrix of the form (118) and

defining ρrs = ξ2ς2, Proposition 1 is concluded. The detailed lines of derivations for (120)-(123b)

take the same steps as in [32, Appendix B] and are skipped due to similarity.

One-step Replica Symmetry Breaking Solution: Considering RSB scheme with one step of

recursion, the distribution of replicas is given by

pβ(v|Q̃) =

∫

mβ
µ
∏

j=1

∫

∏

a∈Sj

exp {−βErsb(va|s0, s1)}
∫

[

∫

[
∑

v exp {−βErsb(v|s0, s1)}]
µ
β Ds1

]
mβ
µ

Ds0

Ds0Ds1, (124)

where Sj = [ (j−1)µ
β

+ 1 : jµ
β
] and

Ersb(v|s0, s1) :=
1

ξ
|v|2 − 2ς0Re {vs∗0}+ 2ς1Re {vs∗1}+ u(v) (125)

with ξ = [RJ(−χ)]−1
and ς0 and ς1 being

ς20 =
∂

∂χ
[(ρχ + ρµc− p)RJ(−χ− µc)] (126a)

ς21 =
1

µ
[RJ(−χ)− RJ(−χ− µc)] . (126b)

By substituting into (114) and taking the limits m ↓ 0 and β ↑ ∞, the control parameters χ, c,

p and µ at the saddle-point are found to satisfy the fixed-point equations

p+ c =

∫ ∫

|argmin
v

Ersb(v|s0, s1)|2 Λ̃ (s0, s1)Ds0Ds1, (127a)

χ+ µc =
1

ς0

∫ ∫

Re
{

argmin
v

Ersb(v|s0, s1) s∗0
}

Λ̃ (s0, s1) Ds0Ds1, (127b)

χ + µc+ µp =
1

ς1

∫ ∫

Re

{

argmin
v

Ersb(v|s0, s1) s∗1
}

Λ̃ (s0, s1) Ds0Ds1, (127c)

and

µ2pς1 +
µc

ξ
−
∫ χ+µc

χ

RJ(−ω)dω =

∫

log

∫

Λ (s0, s1) Ds1Ds0 (127d)

where Λ (s0, s1) is defined as

Λ (s0, s1) := exp
{

−µmin
v

Ersb(v|s0, s1)
}

, (128)

and Λ̃ (s0, s1) reads

Λ̃ (s0, s1) :=
Λ (s0, s1)

∫

Λ (s0, s1) Ds1
. (129)

By defining the variances ρrs = ξ2ς20 and ρrsb1 = ξ2ς21 and the conditional distribution

p(s1|s0) = Λ̃ (s0, s1)φ(s1), (130)

Proposition 2 is concluded. Detailed derivations are similar to those given in [32, Appendix C].
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VI. CONCLUSION

We have proposed GLSE precoding for the downlink of massive MIMO systems. This pre-

coding scheme addresses several instantaneous constraints on the transmit signals jointly and

outperforms conventional approaches. Using the optimal GLSE precoder for joint antenna se-

lection and power control at the transmitter, the number of active transmit antennas can be

reduced up to 54% compared to classical algorithms. This enhancement reduces to 41% when

a computationally efficient GLSE precoder with ℓ1-norm penalty is employed. GLSE precoding

further lets us construct transmit signals from discrete constellations, such as M-PSK, while

imposing side constraints, e.g., limited number of active antennas, on the signal.

GLSE precoding opens several directions for future studies. Design and analysis of low com-

plexity algorithms for implementation of GLSE precoders is one possible direction. For this aim,

approximate message passing algorithms can be employed to address iteratively GLSE precoding.

This study has been already started, and some initial results have been demonstrated in [65].

Another direction for future work is to extend this precoding scheme to precode simultaneously

a block of parallel data streams. By this extension, further hardware limitations in some practical

scenarios such as OFDMA transmission can be addressed. The work in this direction is currently

ongoing.
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APPENDIX A

EXTENSION TO b-STEPS RSB

After b steps of recursion, the structure given by the RSB scheme can be written as

Q̃ =
χ

β
Im +

b
∑

κ=1

cκ Imβ
µκ

⊗ 1µκ
β
+ p1m (131)

In this case, Q̃ is controlled by χ and p and the sequences {cκ} and {µκ} for κ ∈ [1 : b].

As b grows large (131) cover all possible saddle-points, and thus, the saddle-point is derived

precisely. The solution under b ↑ ∞ is called the full-RSB solution, and for some given setups

has been derived, e.g., Sherrington-Kirkpatrick model [66]. To derive the b-steps RSB solution,

one needs to substitute Q̃ in Proposition (4) and take the limits w.r.t. β and m. The derivations

in this case are of more complicated form. By taking the same steps as in [32, Appendix D],

one concludes that the solution is of an extended form of the one-step RSB solution with

sdec = srs +

b
∑

κ=1

srsbκ (132)

in which srs ∼ CN (0, ρrs) and srsbκ is distributed conditioned to srs and
{

srsb1 , . . . , srsbκ−1

}

. The

fixed-point equations are moreover of the extended form of the one-step RSB case. More detailed

illustrations can be found in [32].

APPENDIX B

ASYMPTOTIC BOUND ON THE DISTORTION OF M -PSK TRANSMISSION WITH TAS

Consider an i.i.d. flat Rayleigh fading channel and assume that the entries of the transmit

vector x are either zero or M-PSK. Let the fraction of non-zero entries be η and denote their

amplitude by
√
P . Define the random variable D(x) := ‖Hx −√

ρs‖2/K and the probability

pmin to be

pmin = Pr
{

min
x

D(x) ≤ Dℓ

}

(133)

In this case, one can invoke the union bound and write

pmin = Pr {∪xD(x) ≤ Dℓ} ≤
∑

x

Pr {D(x) ≤ Dℓ} . (134)

To determine the upper bound in (134), we determine the distribution of D(x) in the large system

limit. For a given vector x, the entry [Hx]k for k ∈ [1 : K] is the sum of ηN independent complex

Gaussian random variables via complex coefficients whose amplitude is
√
P . Noting that H has
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i.i.d. entries with zero-mean and variance 1/N , [Hx]k is concluded to be normally distributed

with zero mean and variance ηP . Consequently, each entry of Hx−√
ρs is a complex Gaussian

random variable with zero-mean and variance ρ+ ηP , and thus, D(x) is distributed with

f(d) =
KKdK−1

(ρ+ ηP )K(K − 1)!
exp

{

− Kd

ρ+ ηP

}

(135)

for all x in the corresponding constellation XN . As the result, (134) reads

pmin ≤ |X|N
∫ Dℓ

0

f(d)dd (136a)

= (1 +M)N
∫ Dℓ

0

f(d)dd. (136b)

Noting that f(d) is an increasing function within the vicinity of zero, one can further write

pmin ≤ (1 +M)N
KKDK−1

ℓ eK−1

√
2π(ρ+ ηP )K(K − 1)K−1/2

exp

{

− KDℓ

ρ+ ηP

}

(137)

where we have replaced (K − 1)! with its lower bound

(K − 1)! ≥
√
2π(K − 1)K−1/2e−K+1 (138)

given in [67]. As the logarithm function is an increasing function one can write

log pmin ≤ K

[

1− Dℓ

ρ+ ηP
+

1

α
log(1 +M) + log

Dℓ

ρ+ ηP

]

+ ǫK (139)

where ǫK ↓ 0 as K ↑ ∞. To make sure that the distortion in the large-system limit is bounded

from below by Dℓ, we need the probability pmin tend to zero in the large limit which holds when

1− Dℓ

ρ+ ηP
+

1

α
log(1 +M) + log

Dℓ

ρ+ ηP
< 0. (140)

Therefore, for any Dℓ which satisfy (140) the asymptotic distortion is greater than Dℓ. Conse-

quently, the lower bound in Lemma 2 if found by choosing the maximum Dℓ fulfilling (140).

This is given by replacing < with equality.

APPENDIX C

CONSTANT ENVELOPE TRANSMISSION WITH TAS

To investigate the constant envelope transmission with TAS, one can start from the case with

M-PSK constellation and take the limit M ↑ ∞. Considering the derivations in Section IV-D,

one can show that in the large-system limit of M

2k⋆π

M
→ ∢srs, (141)
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and therefore, the Θ (k⋆|∢srs) = 1 which reduces the threshold to

τd =

√
P

2
(1 + ξλ) . (142)

In this case, the asymptotic fraction of the active antennas reads

η = exp

{

− τ 2
d

ρrs

}

(143)

and p = Pη. Moreover, the fixed-point equation reduces to

αχρrs

1 + χ
=

√
Pτdη +

√

πρrsP Q

(
√

2

ρrs
τd

)

. (144)

Finally, the asymptotic distortion is determined by (54). Here, one should know that in this case

the transmit PAPR is not zero, since the transmit vector has ηN number of zero-elements. The

non-zero transmit symbols however have no amplitude variation.

APPENDIX D

BLOCK-WISE GLSE PRECODING

The basic form of GLSE precoding constructs the transmit signal slot-wise. This means that

for each sub-channel in the frequency domain, the transmit signal in each transmission time slot

is constructed by running the algorithm completely. Such an approach needs to be extended to

block-wise algorithms for practical systems due to two major issues:

1) The slot-wise precoding poses a large computational load into the system. In addition to this,

several applications of GLSE precoding, impose further complexities into the system which

cannot be updated within each slot. An example is the GLSE precoder which addresses the

antenna selection task. In this case, slot-wise precoding needs the RF-chains to be switched

at the beginning of each transmission time slot. For high data rates, such a task is neither

feasible nor efficient, since the switching speed is limited for a given insertion loss and high-

speed switching cause large loss into the system. As the result, the precoding algorithm

needs to be updated for a larger period of time, e.g., within each coherence time interval.

2) In practice, MIMO systems employ multi-carrier modulation schemes, e.g., Orthogonal

Frequency Division Multiplexing (OFDM), for transmission over channels with frequency

selective fading. In these schemes, the data stream is divided into parallel sub-streams.

These sub-streams need to be precoded for different sub-channels which correspond to

the various sub-carriers. For these systems, using slot-wise precoding means to allocate a
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separate precoding module to each sub-carrier which leads to a large computational burden

into the transmitter.

In order to address both of these issues, GLSE precoding needs to be extended to a block of data

streams. To formulate this generalization formally, consider a set of independent data vectors

{s1, . . . , sB} which represent the data streams over distinct B dimensions, e.g., data streams

over distinct transmission time slots or various sub-carriers. Let HbC
K×N , for b ∈ [B], represent

the channel matrix corresponding to dimension b:

1) For example, when {s1, . . . , sB} represent data streams over multiple transmission time

slots in a single coherence time interval, Hb = H, for b ∈ [B], where H denotes the

channel matrix in the corresponding coherence time interval.

2) Assuming that {s1, . . . , sB} denote parallel data streams corresponding to different sub-

carriers in a multi-carrier modulation scheme, Hb describes the effective channel matrix

between the transmitter and users in the sub-channel corresponding to the b-th sub-carrier.

In this case, block-wise GLSE precoding with penalty u(·) : XN 7→ R and support X reads

glseblock

(

{sb}Bb=1 |ρ, {Hb}Bb=1

)

= argmin
v1,...,vB∈XN

B
∑

b=1

‖Hbvb −
√
ρsb‖2 + ublock(v1, . . . , vB) (145)

for some power control factors ρ and some block penalty ublock(·). Here, the precoder returns a

block of transmit vectors x1, . . . ,xB .

The block-wise GLSE precoder simultaneously maps a block of data streams to a set of

transmit signals, such that the total distortion is minimized given some desired constraints. As

the result, one can employ this extended scheme in practical scenarios. It is straightforward to

show that this block-wise class of precoders can be formulated as basic GLSE precoding when

the penalty function decouples over the blocks. For this aim, assume that

ublock(v1, . . . , vB) =
B
∑

b=1

u(vb), (146)

for some penalty u(·). Define the vectors st ∈ CKB×1 and vt ∈ XNB×1 as

st = [sT1 , . . . , s
T

B]
T, (147a)

vt = [vT

1 , . . . , v
T

B]
T, (147b)
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and the block-diagonal matrix Ht = diag (H1, . . . ,HB) ∈ CKB×NB. The block-wise precoding

scheme in (145) in this case reads

glseblock

(

{sb}Bb=1 |ρ, {Hb}Bb=1

)

= argmin
vt∈XNB

‖Htvt −
√
ρst‖2 + u(vt) (148a)

= glse (st|ρ,Ht) . (148b)

As the result, the results for the basic setups is generalized by replacing the channel matrix and

the data vector with Ht and st. For some applications, the decoupling over the block is not

possible. In this case, the approaches from the literature of distributed sensing networks16 can

be employed to investigate the impacts of grouping on the precoding performance. Currently,

the work in this direction is under the way.

APPENDIX E

A BENCHMARK TAS ALGORITHM

Assume that L antennas are to be selected out of the total N antennas available at the

transmitter. A conventional low-complexity approach for TAS is to select the transmit antennas

which have the strongest channel gains: Let hn ∈ CK×1 denote the n-th column of H which

corresponds to transmit antenna n. We define {w1, . . . , wN} to be a permutation of [N ] for which

‖hw1
‖ ≥ . . . ≥ ‖hwN

‖. (149)

In this case, the TAS algorithm selects the L transmit antennas which correspond to {w1, . . . , wL}.
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