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A Novel Scheme for CP-Length Detection and
Initial Synchronization for the LTE Downlink
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Abstract—In long-term evolution (LTE) systems, there is an
option to extend the size of the cyclic-prefix (CP) when the prop-
agation environment is characterized by severe time dispersion.
Such a peculiar feature makes the system more resilient against
multipath distortions, but inevitably complicates the downlink
synchronization task, which cannot be accomplished through
conventional techniques devised for a specified CP size.

In this work, we study the problem of CP length detection
in the LTE downlink in the presence of a timing uncertainty
and frequency offset. In contrast to previous investigations based
on heuristic arguments, our approach relies on the maximum
likelihood (ML) estimation criterion. Furthermore, it accounts
for the irregular LTE symbol (characterized by a different CP
size), which is present in the normal CP operation mode. The
resulting scheme operates in the time-domain and computes a
different metric for each possible position of the irregular symbol
within the observation window. Due to its flexibility, the proposed
ML approach can be applied to any future multicarrier standard
for the design of a CP length detection algorithm, either in the
presence or in the absence of irregular symbols.

I. INTRODUCTION

The Long Term Evolution (LTE) is a wireless communica-
tion standard for high-speed mobile cellular transmissions [1].
Compared to 3G systems, LTE is characterized by increased
data throughput, better spectrum utilization and enhanced user
mobility [2]. These advantages are obtained by adopting the
multicarrier technology as an air interface, which provides
improved resilience against multipath distortions and flexible
system scalability by proper adjustment of the transmission
bandwidth.

At the start-up or during an handover operation, the user
equipment (UE) must activate a cell search procedure to
acquire correct downlink synchronization and cell identity
information (sector ID and group ID) [3]. To accomplish this
task, two pilot sequences, known as Primary Synchronization
Signal (PSS) and Secondary Synchronization Signal (SSS),
are periodically transmitted by the base station (eNodeB) on a
dedicated group of subcarriers. In particular, the PSS conveys
the sector ID and provides half-frame timing information,
while the SSS specifies the group ID and the frame boundary.
A pragmatic approach for cell search is based on the following
three-stage procedure. Firstly, symbol timing and fractional
frequency offset (FFO) are recovered by using the periodicity
introduced by the cyclic prefix (CP). Then, the UE detects the
position of the PSS and also determines the integer part of the
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frequency offset. The final step is devoted to SSS detection,
which is accomplished by exploiting information on the PSS
position retrieved in the previous stage.

The problem of initial timing and frequency synchronization
in the LTE downlink has attracted much attention in the last
few years and several solutions are currently available. Some
of them rely on the classical approach developed by Van de
Beek et al. in [6], where the correlation between the CP and
its repetition part is used to localize the start of the OFDM
symbol and to get the FFO estimate [7], [8]. Unfortunately,
this method cannot work satisfactorily when applied to the
LTE downlink. The reason is that it requires prior knowledge
of the CP length, while in LTE a normal or extended CP can
be chosen according to the delay spread of the propagation
channel. In the normal CP mode, the problem is further
complicated by the fact that the first OFDM symbol in the
time-slot has a longer CP than the other symbols. Since at the
start-up the UE does not know which CP type is currently in
use, such information should be retrieved during the time and
frequency synchronization process.

As an alternative to the Van de Beek estimation method,
some authors suggest to recover timing information by locating
the PSS position in the downlink frame [9]-[11]. This approach
looks for the peak of the time-domain (TD) cross-correlation
between the received samples and the locally regenerated PSS,
and has the considerable advantage of being insensitive to the
CP length. However, since the PSS is transmitted on a subset
of dedicated subcarriers, the TD cross-correlation suffers from
remarkable interference originated by the information-bearing
subcarriers. A further degradation occurs in the presence of
severe channel distortions and frequency mismatches.

While TD-based methods for PSS detection can in principle
operate without any CP-type information, identification of
the SSS must inevitably be done in the frequency-domain
(FD) using the post-FFT samples. Since the precise timing
of the SSS with respect to PSS varies with the CP type,
accurate estimation of the CP length is required at this stage
to determine the correct position of the FFT window on the
time axis. One possible solution is presented in [12], where the
FFT process is repeated twice to check for the presence of the
SSS under the hypotheses of normal or extended CP. However,
considering that SSS detection implies the recognition of one
out of 168 different sequences, repeating such a multiple test
for the two possible SSS positions results into a substantial
processing load. To avoid this problem, the authors of [13]
present a pre-FFT method which is able to identify the CP type
prior to SSS detection. This algorithm assumes that symbol
timing has been acquired at an earlier stage and determines the
CP length by applying the Van de Beek correlation algorithm
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for the two CP choices. A similar scheme was proposed in
[14] to determine the CP length in the downlink of a wireless
metropolitan area network. In [15], two partial correlations
between the CP and its repetition part are evaluated to acquire
CP type information. In the presence of multipath propagation,
however, this method provides unsatisfactory performance and
its application is not recommended. The joint estimation of
symbol timing, FFO and CP length prior to PSS detection
is investigated in [16], where the conventional correlation
metric of [6] is evaluated for the two possible CP types
over multiple OFDM symbols (what is referred to as symbol
folding). In practice, the metrics corresponding to the two CP
choices are cut in adjacent segments, which are subsequently
summed together. Since the main peaks of the cut pieces will
be added constructively only when the correct CP length is
hypothesized, the presence of a sharp peak in one of the two
folded metrics allows one to recognize the CP type, while the
peak location provides symbol timing information.

In this work, we present a novel scheme for the joint
detection of CP size, symbol timing and FFO in the LTE
downlink. The proposed method is able to achieve timing
synchronization and CP recognition prior to PSS detection by
exploiting the redundancy introduced by the CP. This makes
it possible to reveal the PSS in the post-FFT domain with
increased accuracy with respect to TD-based methods. Com-
pared to previous investigations, our approach is different for
a couple of reasons. First, it is based on maximum likelihood
(ML) reasoning, while existing schemes only rely on heuristic
arguments. This is expected to produce an estimation algo-
rithm with improved synchronization accuracy and detection
capability. Second, it explicitly takes into account that, in the
normal CP mode, the first OFDM symbol in the LTE slot is
preceded by a CP of different length with respect to the other
symbols. As we shall see, handling such a peculiar feature
complicates the CP detection process in terms of an increased
computational requirement. To the best of our knowledge, this
is the first work where CP size detection in the presence
of a timing uncertainty and frequency offset is investigated
through ML methods. Although derived in the LTE downlink
context, the proposed scheme is flexible enough to be applied
to any possible future multicarrier communication standard
specifying adaptive selection of the CP size, either in the
presence or in the absence of irregular symbols.

The rest of the paper is organized as follows. Section
II describes the structure of the LTE downlink signal and
provides a summary of the synchronization and cell search
procedure. After introducing the signal model in Sect. III, we
derive the joint estimator of the CP mode and synchronization
parameters in Sect. IV. We present simulation results in Sect.
V and offer some conclusions in Sect. VI.

Notation: Matrices and vectors are denoted by boldface
letters, with IN being the identity matrix of order N and
A =diag{a(n) ; n = 1, 2, . . . , N} indicating an N ×N diag-
onal matrix with entries a(n) along its main diagonal. We use
E{·}, (·)∗, (·)T and (·)H for expectation, complex conjugation,
transposition and Hermitian transposition, respectively, while
B−1 is the inverse of a matrix B. The notation ‖ · ‖ stands
for the magnitude of a vector and | · | represents the modulus

of a complex-valued quantity. Given a vector v, the function
Sz(v) returns the number of elements of v. Finally, we denote
by λ̃ a trial value of an unknown parameter λ, while λ̂ is the
corresponding estimate.

II. SYSTEM DESCRIPTION

A. Structure of the downlink radio frame

According to the 3GPP specifications [1], the OFDM tech-
nology is adopted in the physical layer of the LTE downlink.
The subcarrier distance is fixed to ∆f = 15 kHz, while
the DFT size can vary from 128 to 2048 so as to obtain a
scalable transmission bandwidth in the range 1.4 − 20 MHz.
Data transmission is arranged in radio frames units of length
Tf = 307200Ts = 10 ms, where Ts = 1/(2048 ·∆f) ' 32.55
ns is the LTE basic time unit. Each frame consists of ten
1 ms subframes, and each subframe is further partitioned
into two slots of length Tslot = 15360Ts = 0.5 ms. Fig.
1 illustrates the structure of the downlink time slot. As is
seen, two transmission modes can be adopted depending on the
prevailing propagation environment. In the first one (normal
CP) each slot conveys seven OFDM symbols, where the
CP length is 160Ts for the first symbol and 144Ts for the
remaining symbols. In the second mode (extended CP), only
six symbols are present in each slot and all of them are
preceded by a CP of length 512Ts.

Two synchronization signals (PSS and SSS) are periodically
transmitted to convey cell identity information, specified by
the sector ID and cell group ID. They are sent over a
set of 73 subcarriers called synchronization subband (SSB)
placed symmetrically around DC. Out of the 73 available SSB
subcarriers, only 62 are modulated, while the remaining eleven
(five placed at each subband boundary and one at DC) are left
unfilled. Both PSS and SSS are broadcast every 5 ms and
their position within the radio frame depends on the adopted
duplexing mode (TDD or FDD).

B. Synchronization and cell search procedure

Initial synchronization and cell search is a fundamental
downlink procedure by which the UE can successfully connect
to the network. Specifically, initial synchronization allows
correct timing and frequency alignment of the UE to the
received downlink waveform, while initial cell search provides
some necessary information about the serving eNodeB. This
task is usually broken down into three hierarchical steps. The
first one identifies the OFDM symbol boundary, the FFO and
the CP length by cross-correlating the CP with its repetition
part in the time domain. After frequency correction and CP
removal, the received samples are converted in the frequency
domain through an FFT operation. The second step is the
PSS detection, by which the sector ID is retrieved together
with 5 ms timing information. Upon successful completion
of this task, the UE can determine the SSS position in
the downlink frame. The final step is devoted to the SSS
identification, which provides the cell group ID along with
the frame alignment.

A major peculiarity of the LTE downlink with respect
to other commercial OFDM-based systems is that CP type
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recognition is required during the initial synchronization step.
This operation is needed whenever PSS detection is performed
in the frequency domain using the SSB subcarriers, as it
allows the correct positioning of the DFT window on the time
axis. Knowledge of the CP length is also necessary for the
localization of the SSS relative to the detected PSS. In this
work, we concentrate on the initial synchronization step and
derive a method to jointly recover the CP transmission mode
along with timing and frequency misalignments.

III. SIGNAL MODEL

According to the LTE specifications, the downlink signal
is converted to baseband and sampled with a fixed frequency
fs = 1/Ts = 30.72 MHz. As a result, the useful part of each
OFDM symbol contains N = 2048 samples regardless of the
transmission bandwidth. Furthermore, from Fig. 1 we see that
the number of CP samples is L2 = 512 in the extended CP
mode, while it is L0 = 160 or L1 = 144 in the normal CP
mode depending on the position of the OFDM symbol in the
frame. We denote by {x(n)} the received sample stream and
let fd be the CFO between the incoming waveform and the
local oscillator used for down-conversion. The timing error is
modeled as an unknown integer-valued parameter θ, such that
x(θ) is the first CP sample of some received OFDM symbol in
the time slot. Observing that the length of an OFDM symbol
(with the CP included) is at most equal to Tmax = (N+L2)Ts,
we conclude that the values of θ can be restricted to the set
Iθ = {0, 1, 2, . . . , N + L2 − 1}.

Normal CP CP CP CP CP CP CP CP

5.2 µs
160 samples

4.7 µs
144 samples

Special OFDM block
71.9 µs

2208 samples

OFDM block
71.3 µs

2192 samples

66.67 µs
2048 samples

Extended CP CP

16.7 µs
512 samples

OFDM block
83.3 µs

2560 samples

66.67 µs
2048 samples

CP CP CP CP CP

Fig. 1. Structure of the LTE downlink slot: normal and extended CP mode.

As mentioned previously, in the LTE downlink the timing
and frequency recovery task is complicated by the fact that,
in this initial stage, the UE has no prior knowledge as to
whether the normal or extended CP mode is currently in
use. Accordingly, traditional correlation-based schemes for
OFDM systems available in the literature [6] must be properly
modified so as to take such a specific situation into account.
Our solution to this problem is inspired by the ML estimation
principle and aims at jointly estimating the CP length and
the synchronization parameters. For this purpose, we divide
the sequence {x(n)} into overlapped segments of length
M = Q(N+L2), where Q is a design parameter belonging to
IQ = {1, 2, 3, 4, 5, 6}. Each segment corresponds to a different
hypothesized value θ̃ for the timing error and is denoted by
xθ̃ = [x(θ̃), x(θ̃ + 1), . . . , x(θ̃ +M − 1)]T , with θ̃ ∈ Iθ. The
length M is chosen such that xθ̃ includes an integer number

Q of OFDM symbols (along with their CP) when the system
operates in the extended CP mode. The maximum value of
M is attained with Q = 6 and corresponds to the length of
the time slot. On the other hand, when the system operates
with a normal CP, each segment encompasses 7 symbols when
Q = 6, and Q symbols plus a residual incomplete symbol
when Q < 6. It can easily be checked that the length of the
incomplete symbol is such that it cannot accommodate the
copy of its CP for any Q < 6.

For simplicity, we neglect the impact of multipath distortion
on the received waveform. Although this assumption is over-
optimistic for a wideband transmission, it has been extensively
adopted in the related literature to derive computationally ef-
ficient timing recovery schemes for multicarrier transmissions
[6]. The entries of x(θ̃) are thus modeled as

x(θ̃ +m) = ej2π(θ̃+m)ν/Ns(θ̃ +m) + w(θ̃ +m) (1)

where {s(n)} is the discrete-time transmitted signal, {w(n)}
is additive white Gaussian noise (AWGN) with average power
σ2
w =E{|w(n)|2} and, finally, ν = NTsfd is the normalized

CFO. The latter is typically decomposed into an integer
part plus a remaining FFO ε, which belongs to the interval
[−1/2, 1/2).

From the central limit theorem we know that, if the
number of modulated subcarriers is sufficiently large, the
sample stream {s(n)} is approximately Gaussian distributed
with zero-mean and power σ2

s =E{|s(n)|2}. Letting sθ̃ =
[s(θ̃), s(θ̃ + 1), . . . , s(θ̃ + M − 1)]T and wθ̃ = [w(θ̃), w(θ̃ +
1), . . . , w(θ̃+M − 1)]T , we can put (1) in matrix notation as

xθ̃ = ej2πθ̃ν/NΓ(ν)sθ̃ + wθ̃ (2)

where

Γ(ν) = diag{ej2πmν/N ; m = 0, 1, . . . ,M − 1}. (3)

In the sequel, vectors xθ̃ (with θ̃ ∈ Iθ) are exploited to recover
the synchronization parameters (θ, ε) and to take a decision
in favour of one of the following two hypotheses

Hext : the extended CP mode is adopted
Hnorm : the normal CP mode is adopted.

IV. ESTIMATION OF THE UNKNOWN PARAMETERS

Our appoach is inspired by the ML estimation principle
and relies on the different statistics of xθ̃ conditioned to
the alternative hypotheses Hext and Hnorm. We denote the
resulting scheme as the ML-oriented (MLO) algorithm. As
we shall see, the MLO computes a set of timing metrics for
the hypothesis Hnorm, while a single metric is derived for the
hypothesis Hext. All these metrics are subsequently compared
to get an estimate of θ and to detect whether the normal or
extended CP is currently in use. The FFO recovery is the last
stage of the synchronization procedure.

For each hypothesized value θ̃ of the timing error, vector xθ̃
is assumed to be time aligned with the received sample stream,
in the sense that its first entry is regarded as the first CP sample
of an OFDM symbol. Since the cases Q ≤ 5 and Q = 6
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lead to a different formulation of the estimation problem, in
the sequel we restrict our analysis to Q ≤ 5 and point out
that only marginal modifications are necessary when Q = 6.
Throughout the derivation, the noise and signal powers σ2

w and
σ2
s are treated as unknown nuisance parameters.

A. Timing metrics under the normal CP hypothesis

We begin our analysis by assuming that the system operates
in the normal CP mode and denote as irregular the first
OFDM symbol in the time slot, to emphasize the fact that
it is preceded by a longer CP compared to the other regular
symbols. In order to formulate the estimation problem, we
must distinguish among Q+1 possible alternatives A`, which
are specified by an index ` ∈ {0, 1, . . . , Q}. In particular,
` = 0 corresponds to the absence of the irregular symbol in
xθ̃, while 1 ≤ ` ≤ Q indicates that the irregular symbol is
present in xθ̃ and is preceded by ` − 1 regular symbols. In
any case, it is convenient to decompose sθ̃ in the following
way

sθ̃ = [uT1 vT1 uT1︸ ︷︷ ︸
1

uT2 vT2 uT2︸ ︷︷ ︸
2

· · · uTQ vTQ uTQ︸ ︷︷ ︸
Q

zTQ+1]T (4)

where the concatenation zTi = [uTi vTi uTi ] represents the ith
OFDM symbol in sθ̃ and zTQ+1 denotes the residual incomplete
symbol. It is worth noting that vector ui placed in front of zi
corresponds to the CP, while the middle part vi is the symbol
segment that is not copied in the CP. We also observe that
zTQ+1 is always present whenever Q ≤ 5, while for Q = 6 it
should be replaced by a complete symbol zT7 , thereby leading
to a different mathematical model of sθ̃. The size of the various
segments enclosed in sθ̃ depends on the specific alternative A`
we are considering. For example, when A0 is assumed to be
true, we have

Sz(ui) = L1

Sz(vi) = N − L1

Sz(zQ+1) = Q(L2 − L1)
(5)

for i = 1, 2, . . . , Q, while any other alternative A` with 1 ≤
` ≤ Q yields

Sz(ui) =

{
L0

L1

for i = `
otherwise

Sz(vi) =

{
N − L0

N − L1

for i = `
otherwise

Sz(zQ+1) = Q(L2 − L1) + L1 − L0.

(6)

The fragmentation (4) performed on sθ̃ is also applied to the
observation vector xθ̃. This produces

xθ̃ = [αT1 ξT1 β
T
1︸ ︷︷ ︸

1

αT2 ξT2 β
T
2︸ ︷︷ ︸

2

· · · αTQ ξTQ βTQ︸ ︷︷ ︸
Q

ξ
T

Q+1]T (7)

where each segment has the same length of the corresponding
segment in sθ̃, i.e.,

Sz(αi) = Sz(βi) = Sz(ui)
Sz(ξi) = Sz(vi)

Sz(ξQ+1) = Sz(zQ+1)
(8)

for i = 1, 2, . . . , Q. Comparing (4) and (7), it turns out
that [αTi ξTi β

T
i ] represents the received version of the ith

OFDM symbol [uTi vTi uTi ], where βi differs from αi as a
consequence of the noise contribution and the phase rotation
induced by the CFO.

In order to apply the ML estimation criterion, we must
determine the probability density function (pdf) of xθ̃ for
each possible alternative A`. Recalling that sθ̃ and wθ̃ are
statistically independent zero-mean Gaussian vectors, from (2)
it follows that xθ̃ is Gaussian distributed as well, with zero
mean and covariance matrix

Cx = Γ(ν)CsΓ
H(ν) + Cw (9)

where Cs =E{sθ̃sTθ̃ } and Cw =E{wθ̃w
H
θ̃
} = σ2

wIM . Its pdf
is thus given by [17]

f(xθ̃) =
1

πM det(Cs + σ2
wIM )

× exp[−xH
θ̃

Γ(ν)(Cs + σ2
wIM )−1ΓH(ν)xθ̃].

(10)

Since the received signal is sampled at a fixed frequency
fs = 2048 · ∆f while the maximum number of modulated
subcarriers is 1200, it can easily be shown that adjacent entries
of sθ̃ are statistically correlated. This fact considerably com-
plicates the estimation problem, if only because the correlation
coefficient depends on the transmission bandwidth, which is
unknown at this stage. For the sake of simplicity, we suggest to
ignore such a correlation. In particular, we assume that all the
subvectors present in the right-hand-side of (4) are statistically
independent from each other and have independent entries with
average power σ2

s . This amounts to assuming

Cs = diag{Cz1 ,Cz2 , . . . ,CzQ ,CzQ+1
} (11)

where CzQ+1
=E{zQ+1z

H
Q+1} = σ2

sISz(zQ+1) and

Czi = E{zizHi } = σ2
s

 ISz(ui) 0 ISz(ui)

0 ISz(vi) 0
ISz(ui) 0 ISz(ui)

 . (12)

The true statistics of sθ̃ will be used in the numerical analysis
to assess their impact on the system performance.

To proceed further, we call σ2 = σ2
s + σ2

w the power
of x(θ̃ + m) and let γ = σ2

s/σ
2. Furthermore, we denote

by f
(
xθ̃|˜̀; γ̃, σ̃2, ε̃

)
the conditional pdf of xθ̃ given A˜̀

(˜̀= 0, 1, . . . , Q) and the set (γ̃, σ̃2, ε̃) of unknown parameters.
Substituting (11) and (12) into (10), after standard manipula-
tions we get

f
(
xθ̃ |˜̀; γ̃, σ̃

2, ε̃
)

=
1

πM σ̃2M (1− γ̃2)d1

× exp

{
− 1

σ̃2

[
a1 +

b1 − 2c1γ̃ cos(2πε̃− ϕ1)

1− γ̃2

]}
(13)
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where we have defined the quantities

a1(θ̃, ˜̀) = ‖ξQ+1‖2 +

Q∑
i=1

‖ξi‖2

b1(θ̃, ˜̀) =

Q∑
i=1

(
‖αi ‖2 + ‖βi‖2

)
c1(θ̃, ˜̀) =

∣∣∣∣∣
Q∑
i=1

αHi βi

∣∣∣∣∣
ϕ1(θ̃, ˜̀) = arg

{
Q∑
i=1

αHi βi

}

d1(˜̀) =

{
QL1 for ˜̀= 0

L0 + (Q− 1)L1 for ˜̀ 6= 0

(14)

and we have explicitly indicated their dependence on θ̃
(through xθ̃) and ˜̀ (through the size of the various vectors
appearing in (14)).

For a given observation vector xθ̃ and for any value of
˜̀ ∈ {0, 1, . . . , Q}, the joint ML estimate of (γ, σ2, ε) is the
location where f

(
xθ̃|˜̀; γ̃, σ̃2, ε̃

)
achieves its global maxi-

mum. The latter can be found through the following three-step
procedure. In the first step, we keep γ̃ and σ̃2 fixed and let ε̃
vary. In such a case, the maximum of (13) is achieved for

ε̂
(
xθ̃|˜̀

)
=

1

2π
ϕ1(θ̃, ˜̀) (15)

and takes the value

f
(
xθ̃|˜̀; γ̃, σ̃

2
)

=
1

πM σ̃2M (1− γ̃2)d1

× exp

{
− 1

σ̃2

(
a1 +

b1 − 2γ̃c1
1− γ̃2

)}
.

(16)

In the second step, we fix γ̃ and maximize (16) with respect
to σ̃2. This produces

σ̂2
(
xθ̃|˜̀; γ̃

)
=

1

M

(
a1 +

b1 − 2γ̃c1
1− γ̃2

)
(17)

which, after substitution into (16), leads to

f
(
xθ̃|˜̀; γ̃

)
=

(Me−1/π)M(
a1 +

b1 − 2c1γ̃

1− γ̃2

)M
(1− γ̃2)d1

(18)

or, equivalently,

f
(
xθ̃|˜̀; γ̃

)
=

(Me−1/π)M (1− γ̃2)M−d1∥∥xθ̃∥∥2M
(

1− a1γ̃
2 + 2c1γ̃∥∥xθ̃∥∥2

)M (19)

where we have use the identity a1 + b1 =
∥∥xθ̃∥∥2. Observing

that
∥∥xθ̃∥∥2 is independent of γ̃ and it is also asymptotically

(i.e., when M goes to infinity) independent of θ̃, we can rea-
sonably neglect the multiplicative term [Me−1/(π

∥∥xθ̃∥∥2)]M

in (19). Hence, after applying the logarithmic function, we
replace f

(
xθ̃|˜̀; γ̃

)
by

Φ
(
xθ̃|˜̀; γ̃

)
= −M ln

(
1− a1γ̃

2 + 2c1γ̃

‖xθ̃‖
2

)
+(M−d1) ln(1− γ̃2).

(20)
The final step looks for the maximum of Φ

(
xθ̃|˜̀; γ̃

)
. For this

purpose, we set to zero the derivate of (20) with respect to γ̃
and obtain the third degree polynomial equation P1(γ̃) = 0,
where

P1(γ̃) =d1a1γ̃
3 − (M − 2d1)c21γ̃

−
[
Ma1 − (M − d1)‖xθ̃‖

2
]
γ̃ −Mc1.

(21)

Since such equation may have up to three different solutions,
the question arises as how to identify the solution that provides
the best estimate of γ. One possible approach relies on the fact
that P1(0) = −Mc1 < 0 and P1(1) = b1 − 2c1 > 0, so that
at least one root of P1(γ̃) belongs to the interval Iγ = [0, 1].
Hence, observing that γ = σ2

s/(σ
2
s + σ2

w) ∈ Iγ , we suggest to
discard any root outside Iγ and, in the event that two or three
roots are found in Iγ , we select the one for which Φ

(
xθ̃|˜̀; γ̃

)
is maximum. The selected root, say γ̂1(θ̃, ˜̀), is eventually
substituted into (20). This provides the timing metrics for the
hypothesis Hnorm in the form

λ1(θ̃, ˜̀) =−M ln

[
1− a1γ̂

2
1(θ̃, ˜̀) + 2c1γ̂1(θ̃, ˜̀)∥∥xθ̃∥∥2

]
+ (M − d1) ln[1− γ̂21(θ̃, ˜̀)].

(22)

B. Timing metric under the extended CP hypothesis

We now assume that the system operates in the extended
CP mode and derive the corresponding timing metric based
on the observation vector xθ̃. The procedure is essentially the
same illustrated under the normal CP hypothesis with some
minor adjustments. The first one arises from the fact that sθ̃
includes an integer number Q of OFDM symbols, so that the
incomplete symbol zTQ+1 no longer appears in (4). The second
adjustment is related to the absence of the irregular OFDM
symbol in the time slot, which reduces the Q+ 1 alternatives
A` of the normal CP mode to a single instance A0. Putting
these facts together, we decompose sθ̃ and xθ̃ as

sθ̃ = [uT1 vT1 uT1︸ ︷︷ ︸
1

uT2 vT2 uT2︸ ︷︷ ︸
2

· · · uTQ vTQ uTQ︸ ︷︷ ︸
Q

]T

xθ̃ = [αT1 ξT1 β
T
1︸ ︷︷ ︸

1

αT2 ξT2 β
T
2︸ ︷︷ ︸

2

· · · αTQ ξTQ βTQ︸ ︷︷ ︸
Q

]T
(23)

with
Sz(αi) = Sz(βi) = Sz(ui) = L2

Sz(ξi) = Sz(vi) = N − L2.
(24)

The pdf of xθ̃ is expressed by

f(xθ̃|γ̃, σ̃
2, ε̃) =

1

πM σ̃2M (1− γ̃2)d2

× exp

{
− 1

σ̃2

[
a2 +

b2 − 2c2γ̃ cos(2πε̃− ϕ2)

1− γ̃2

]}
(25)
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where d2 = QL2 and

a2(θ̃) =

Q∑
i=1

‖ξi‖2. (26)

As for the quantities {b2, c2, ϕ2}, they depend on θ̃ through
xθ̃ and have the same expression of {b1, c1, ϕ1} given in (14),
the only difference being in the size of the various subvectors.

The maximum of the pdf over the set of parameters
{γ̃, σ̃2, ε̃} is found by applying the same procedure illustrated
under the Hnorm hypothesis. This produces the timing metric

λ2(θ̃) =−M ln

[
1− a2γ̂

2
2(θ̃) + 2c2γ̂2(θ̃)∥∥xθ̃∥∥2

]
+ (M − d2) ln[1− γ̂22(θ̃)]

(27)

where γ̂2(θ̃) is the root of the polynomial

P2(γ̃) =d2a2γ̃
3 − (M − 2d2)c22γ̃

−
[
Ma2 − (M − d2)‖xθ̃‖

2
]
γ̃ −Mc2

(28)

belonging to Iγ , which is selected as indicated previously
under the Hnorm hypothesis.

C. Estimation of the CP mode and synchronization parameters
with MLO

The timing metrics shown in (22) and (27) are now exploited
to detect the employed CP mode and to retrieve the synchro-
nization parameters (θ, ε). For this purpose, we suggest the
following three-step procedure:

Step 1) Compute the quantities

(θ̂norm, ˆ̀) = arg max
(θ̃,l̃)
{λ1(θ̃, ˜̀)}

θ̂ext = arg max
θ̃
{λ2(θ̃)}

(29)

where ˆ̀ identifies one of the alternatives A` under the hypoth-
esis Hnorm, while θ̂norm and θ̂ext are the timing estimates
conditioned on Hnorm and Hext, respectively.

Step 2) Compare λ1(θ̂norm, ˆ̀) with λ2(θ̂ext) and apply the
decision rule

λ1(θ̂norm, ˆ̀)
Hnorm

≷
Hext

λ2(θ̂ext). (30)

Step 3) Obtain the timing and frequency estimates as{
θ̂ = θ̂norm

ε̂ = ϕ1(θ̂norm, ˆ̀)/(2π)
if decided in favour of Hnorm{

θ̂ = θ̂ext
ε̂ = ϕ2(θ̂ext)/(2π)

if decided in favour of Hext.

(31)

D. Iterative computation of the timing metrics and complexity
analysis

The timing metrics λ1(θ̃, ˜̀) and λ2(θ̃) shown in (22) and
(27) are efficiently computed by updating

∥∥xθ̃∥∥2, a1(θ̃, ˜̀),
a2(θ̃), c1(θ̃, ˜̀) and c2(θ̃) at each new received sample. To
understand how it comes about and to evaluate the compu-
tational complexity of MLO, we start by observing that the

sequences |x(n)|2 and x(n)x∗(n − N) are the constituent
terms of all the aforementioned quantities, and hence it is
convenient to store them into two shift-registers of length M .
Recalling that a complex multiplication is equivalent to four
real multiplications plus two real additions, the registers are
updated at each new sampling period with a total of 9 floating
point operations (flops). Their content is subsequently used to
evaluate all the terms appearing in the expressions of the MLO
metrics as shown in the sequel.

1) Iterative computation of ‖xθ̃‖2: We can obtain ‖xθ̃‖2
from ‖xθ̃−1‖2 through the following iterative equation

‖xθ̃‖
2 = ‖xθ̃−1‖

2 + |x(θ̃ +M − 1)|2 − |x(θ̃ − 1)|2, (32)

which requires 2 flops.
2) Iterative computation of a1(θ̃, ˜̀): From (14) and (7), it

follows that a1(θ̃, ˜̀) can be computed as

a1(θ̃, ˜̀) = a1(θ̃ − 1, ˜̀) +

Q+1∑
i=1

δi(˜̀) (33)

where

δi(˜̀) = ‖ξi(θ̃, ˜̀)‖2 − ‖ξi(θ̃ − 1, ˜̀)‖2 i = 1, 2, . . . , Q

δQ+1(˜̀) = ‖ξQ+1(θ̃, ˜̀)‖2 − ‖ξQ+1(θ̃ − 1, ˜̀)‖2
(34)

and we have explicitly indicated the dependence of vectors ξi
on θ̃ and ˜̀. Each δi(˜̀) can be written as

δi(˜̀) = |x(θ̃ + k′i(
˜̀))|2 − |x(θ̃ − 1 + k′′i (˜̀))|2 (35)

where k′i(˜̀) and k′′i (˜̀) depend on i and ˜̀. For example, k′i(˜̀) =
N − 1 and k′′i (˜̀) = L1 for i = 1 and ˜̀ = 0. In addition, it
can be shown that

δi(˜̀) = δi(0) for ˜̀= i+ 1, i+ 2, . . . , Q

δi(˜̀) = δi(1) for ˜̀= 2, 3, . . . , i− 1
(36)

This means that, for ˜̀= 2, 3, . . . , Q, the updating term in (33)
can be written as follows

Q+1∑
i=1

δi(˜̀) =

˜̀−1∑
i=1

δi(0) + δ˜̀(˜̀) +

Q+1∑
i=˜̀+1

δi(1) (37)

and hence, for implementing (33), we only need{∑k
i=1 δi(

˜̀); k = 1, 2, . . . , Q+ 1 and ˜̀= 0, 1
}

and{
δ˜̀(˜̀); ˜̀= 2, 3, . . . , Q

}
. Taking (33), (35) and (37)

into account, it turns out that the computation of{
a1(θ̃, ˜̀); ˜̀= 0, 1, . . . , Q

}
requires a total of 8Q flops.

3) Iterative computation of c1(θ̃, ˜̀): We first consider the
recursive computation of c̆1(θ̃, ˜̀) =

∑Q
i=1 α

H
i (θ̃, ˜̀)βi(θ̃,

˜̀).
From (14) and (7) one easily gets

c̆1(θ̃, ˜̀) = c̆1(θ̃ − 1, ˜̀) +

Q∑
i=1

δ′i(
˜̀) (38)

where

δ′i(
˜̀) = αHi (θ̃, ˜̀)βi(θ̃,

˜̀)−αHi (θ̃ − 1, ˜̀)βi(θ̃ − 1, ˜̀). (39)
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We can rewrite δ′i(˜̀) as

δ′i(
˜̀) =x∗(θ̃ + κ′i(

˜̀))x(θ̃ + κ′i(
˜̀) +N)

− x∗(θ̃ − 1 + κ′′i (˜̀))x(θ̃ − 1 + κ′′i (˜̀) +N)
(40)

where κ′i(
˜̀) and κ′′i (˜̀) depend on i and ˜̀. For example,

κ′i(
˜̀) = L1 − 1 and κ′′i (˜̀) = 0 for i = 1 and ˜̀ = 0.

After a careful analysis, by using the same arguments as
for the computation of a1(θ̃, ˜̀), it can be proved that a
total of 2(8Q − 5) real additions are required for computing
{c̆1(θ̃, ˜̀); ˜̀ = 0, 1, . . . , Q}. Observing that a modulus evalua-
tion (3 flops) is used to get c1(θ̃, ˜̀) from c̆1(θ̃, ˜̀), it turns out
that the computation of {c1(θ̃, ˜̀); ˜̀ = 0, 1, . . . , Q} requires a
total of 19Q− 7 flops.

Once a1(θ̃, ˜̀) and c1(θ̃, ˜̀) are available, the coefficients of
the polynomial P1(γ̃) in (21) are evaluated with 6(Q+1) flops,
and the metrics λ1(θ̃, ˜̀) are eventually obtained with 9(Q +
1) additional flops. Collecting the above results, we conclude
that the processing load of MLO under the hypothesis Hnorm
amounts to 42Q+ 19 flops for each new received sample.

To assess the complexity under the hypothesis Hext, we
observe that 2Q real additions plus 2Q complex additions and
one modulus evaluation are required to update a2(θ̃) and c2(θ̃).
These quantities are then used to compute the coefficients of
the polynomial P2(γ̃) in (28) with 6 flops. Since 9 further
flops are needed to evaluate the metric λ2(θ̃), the processing
requirement is quantified at 6Q+18 flops. Summing this result
to the correspondent value found under the hypothesis Hnorm,
yields an overall complexity of 48Q+ 37 flops for the MLO.

E. Application of MLO in the absence of the irregular OFDM
symbol

Although specifically designed for the 3GPP LTE downlink,
the MLO is a flexible scheme which, after some minor
modifications, can be applied to any OFDM communication
system where the CP size is adaptively selected from a given
set depending on the actual propagation environment. To fix
ideas, assume that no irregular symbol is specified in the
standard and only two CP sizes L1 (normal CP) and L2 > L1

(extended CP) are available. Then, a single metric λ1(θ̃) is
computed under the hypothesis Hnorm by simply putting ˜̀

= 0 in the expression of λ1(θ̃, ˜̀ ) in (22), while the metric
λ2(θ̃) under the hypothesis Hext is exactly the same as that
shown in (27). A decision on the adopted CP size is next taken
according to the following rule

λ1(θ̂norm)
Hnorm

≷
Hext

λ2(θ̂ext) (41)

where θ̂norm and θ̂ext are the locations where λ1(θ̃) and λ2(θ̃)
attain their global maximum, respectively. The synchronization
parameters are eventually retrieved as indicated in (31) upon
letting ˆ̀ = 0 in the expression ε̂ = ϕ1(θ̂norm, ˆ̀)/(2π) under
the hypothesis Hnorm. Using the same arguments of Sect.
IV.D, it turns out that the processing requirement of MLO in
the absence of any irregular OFDM symbol reduces to 12Q+
49 flops. It is worth noting that MLO can also be extended to
communication systems where the CP size is chosen among
NH > 2 available alternatives.

V. SIMULATION RESULTS

A. Simulation model

The proposed synchronization scheme is applied to an LTE
system compliant with the 3GPP specifications [1] and operat-
ing in the 2.6 GHz band. Recalling that the subcarrier distance
in the LTE is fixed to 15 kHz, the signal bandwidth B depends
on the number of modulated subcarriers. In our study, we
concentrate on the most popular LTE transmission modes with
B = 5, 10 and 20 MHz. In any case, the received baseband
signal is sampled with frequency fs = 30.72 MHz so that,
irrespective of the transmission mode, the useful part of each
OFDM symbol is composed by 2048 samples. To demonstrate
the capability of the MLO in the presence of multipath dis-
tortions, we adopt the Extended Typical Urban (ETU) channel
model as a propagation scenario. Hence, the channel response
is characterized by 9 multipath components with maximum
excess delay τmax = 5 µs and statistically independent path
gains following a zero-mean Gaussian distribution (Rayleigh
fading). At each simulation run the synchronization parameters
(θ, ε) are kept fixed since their value does not impact on
the estimation’s accuracy. In the normal CP mode, the index
` specifying the position of the irregular OFDM symbol is
extracted from the set {0, 1, . . . , Q} with equal probability.

B. Performance evaluation

The ability to detect the CP size is assessed through the
probability of failure Pf , which represents the probability of
taking the wrong decision between the two hypotheses Hnorm
and Hext. Fig. 2 illustrates Pf conditioned to Hnorm or Hext,
i.e., Pr{Ĥ = Hext |Hnorm } or Pr{Ĥ = Hnorm |Hext },
as a function of the signal-to-noise ratio (SNR). The signal
bandwidth is 10 MHz and Q is set to 3. The curves labeled GA
are obtained by applying the Golnari Algorithm presented in
[16] which, to the best of our knowledge, is the most powerful
scheme available in the literature for CP size detection in the
LTE downlink. As is seen, the best performance is achieved
when the extended CP mode is in use. The reason is that
the metric employed by both MLO and GA is based on the
N -lag correlations between the CP and the last part of the
OFDM symbol. In the extended CP mode, the correlations
are averaged over a larger time window compared to the
normal CP mode case, thereby increasing the resilience against
thermal noise and channel impairments. Inspection of Fig. 2
indicates that MLO largely outperforms the GA and can work
satisfactorily even at very low SNR values. In particular, at an
SNR of 3 dB and in the normal CP mode, the probability of
making a wrong decision with MLO reduces by approximately
a factor of 100 with respect to GA. Since updating the GA
metrics requires only 24 flops for each new received sample,
it is fair to say that the advantage of MLO with respect to
GA comes at the price of an increase of the processing load
by nearly a factor of 2Q + 3/2. Nevertheless, two major
points need to be taken into account: 1) the MLO algorithm
exhibits gains of several dBs with respect to the existing
literature and these gains, mostly when a key operation like
CP estimation is in play, may, in terms of benefits, offset the
extra computational burden; 2) by the Moore’s law the chip
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capacity approximately doubles every 18-24 months making
certain processing issues less relevant with the passing of time.
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Fig. 2. Probability of failure vs. SNR for Q = 3 and B = 10 MHz.

The accuracy of the timing estimates provided by the con-
sidered schemes is reported in Fig. 3. Extensive measurements
indicate that both MLO and GA are biased as a consequence of
the multipath dispersion, with the average error E{θ̂−θ} being
approximately equal to the root-mean-square (rms) channel
delay spread. For this reason, we use the standard deviation

of the timing estimate Std(θ̂) =

√
E{[θ̂ − E{θ̂}]2} as a

performance indicator, where E{θ̂} is numerically computed
during the simulation. The results of Fig. 3 indicate that GA
performs similarly to MLO in the extended CP mode, while
a remarkable performance degradation is observed when the
normal CP is adopted. Such a loss is a consequence of large
timing errors (outliers) that occur whenever the CP size is
incorrectly detected. Since GA exhibits a non-negligible prob-
ability of failure in the normal CP mode, it is more exposed to
outliers than MLO, thereby leading to an enhanced variance
of the timing estimates. This interpretation is validated by the
results of Fig. 4, which illustrates the timing error measured
under the hypothesis Hnorm during 10,000 simulation trials
with Q = 3, B = 10 MHz and SNR = 4 dB. Six outliers
are clearly evident when GA is in use, while no outliers are
observed with MLO in the same operating conditions. On
the other hand, from Fig. 2 we see that in the extended CP
mode the value of Pf with both MLO and GA is remarkably
smaller than in the normal CP case. Accordingly, outliers tend
to disappear and only a marginal difference remains between
the timing accuracy of the considered schemes. It is worth
mentioning that large values of Std(θ̂) in the normal CP mode
reported in Fig. 3 at very low SNRs are due to the presence
of outliers with both schemes.

Fig. 5 illustrates the mean square error of the frequency
estimates, defined as MSE(ε̂) =E{(ε̂ − ε)2}. The simulation
set-up is the same as in Figs. 2 and 3, with Q = 3 and B = 10
MHz. Comparing these results with the timing accuracy shown
in Fig. 3, we see that the loss of GA with respect to MLO is
greatly reduced in the normal CP mode, and totally disappears
with the extended CP. We can explain such a behaviour by
observing that, even in the presence of an outlier, the FFO error
is restricted to the interval [−1/2, 1/2), so that its impact on
the MSE is not as catastrophic as for the timing accuracy. For
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Fig. 3. Standard deviation of the timing estimates vs. SNR for Q = 3 and
B = 10 MHz.
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Fig. 4. Timing errors under the hypothesis Hnorm with Q = 3, B = 10
MHz and SNR = 4 dB: a) GA and b) MLO.

example, with a failure probability of 5 · 10−3 and assuming
that the average FFO error generated by an outlier event is
in the order of |ε̂− ε| = 0.25, the impact on MSE(ε̂) is
approximately 3 · 10−4. Since such a value is comparable
to the accuracy of MLO under the Hnorm hypothesis, we
conclude that the occurrence of an outlier does not result
into a remarkable increase of MSE(ε̂). Our investigation also
indicates that, upon discarding all the failure events where the
CP size is incorrectly detected, the accuracy of the timing
and frequency estimates becomes practically the same with
both MLO and GA. The reason is that, in such a genie-aided
situation, the GA boils down to the classical synchronization
algorithm derived in [6] for ML timing and FFO recovery
over an AWGN channel. Hence, once the CP mode has
been successfully detected, the GA is expected to provide
nearly optimum timing and frequency estimates, apart for a
hypothetical loss arising from the presence of the irregular
OFDM symbol in the LTE slot which, differently from MLO,
is not accounted for by GA.

The impact of the observation length and signal bandwidth
on the performance of MLO is assessed in Fig. 6, where Pf
is shown as a function of Q at an SNR value of 0 dB and
for B = 5, 10 and 20 MHz. It turns out that the performance
improves as Q grows large due to the increased length of
the observation window. On the other hand, recalling that
the received baseband signal in the LTE is sampled at a
fixed frequency fs = 30.72 MHz, the time-domain samples
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Fig. 5. Mean square error of the frequency estimates vs. SNR for Q = 3
and B = 10 MHz.

become more and more correlated as the signal bandwidth
reduces, with a corresponding deterioration of the capability to
recognize the correct CP length. Such intuition is corroborated
by the results of Fig. 6, where Pf increases by approximately
a factor of 25 when B reduces from 20 to 5 MHz and Q ≥ 3.
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Fig. 6. Probability of failure vs. Q with SNR=0 dB and B = 5, 10 and 20
MHz.

Figs. 7 and 8 illustrate Std(θ̂) and MSE(ε̂), respectively, as a
function of Q in the same operating scenario of Fig. 6. Again,
we see that the accuracy of the recovered synch parameters
improves with the signal bandwidth and observation length
except for the timing estimate which, in the extended CP
mode, exhibits an irreducible floor as Q grows large. Such
a floor is a consequence of the different channel snapshots
generated throughout the numerical simulations, which are
characterized by different delay spreads. Hence, even in the
presence of a very long observation window, the estimate θ̂
varies at each simulation run depending on the actual channel
realization. This results into a non-zero value of the measured
quantity θ̂ − E{θ̂} and ultimately leads to a floor in Std(θ̂).

VI. CONCLUSIONS

We have presented a new method for joint CP size detection
and timing/frequency synchronization in the downlink of an
LTE communication system. The proposed algorithm (MLO)
is based on ML arguments and exploits the time-domain corre-
lation between the CP and the last part of the OFDM symbol.
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Fig. 7. Standard deviation of the timing estimates vs. Q with SNR=2 dB
and B = 5, 10 and 20 MHz.
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Fig. 8. Mean square error of the timing estimates vs. Q with SNR=2 dB
and B = 5, 10 and 20 MHz.

Once the CP length has been detected, timing and frequency
recovery is accomplished with methods similar to the classical
approach employed in OFDM transmissions. Although it is
derived under the assumption that channel distortion only
consists of additive noise, MLO is found to perform well even
in a highly dispersive propagation environment characterized
by a large delay spread. Some indication is provided as how
to extend the application of MLO to future OFDM systems
with adaptive CP size selection.

Numerical results indicate that, compared to alternative
schemes available in the literature, our method exhibits im-
proved estimation accuracy and enhanced detection capability
at the price of an increased computational load. The penalty
in terms of required flops is justified by the fact that MLO can
operate at low SNR values, where other competing schemes
derived in a heuristic fashion are characterized by poor perfor-
mance. Furthermore, the improved ability to correctly detect
the CP size allows one to reduce the length of the observation
window, which is essential for fast detection of neighboring
cells and fast handover operations.

APPENDIX A: DERIVATION OF (13)
The covariance matrix Cx in (9) can be expressed as

Cx = Γ(ν)CΓH(ν) (A.1)

where C = Cs + σ2
wIM . In this appendix we derive the

expressions of det(C) and C−1, which are central in the
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derivation of (13). For space limitations, we focus on the case
` = 0 since the other cases can be treated with a similar
analysis.
• Determinant of C. The matrix C is by construction block-

diagonal, i.e.,

C = diag{C1,C2, . . . ,CQ,CQ+1} (A.2)

where Ci = Czi + σ2
wIN+L1 for i = 1 . . . , Q and

CQ+1 = CzQ+1
+ σ2

wIQ(L2−L1). It follows that

det C =

Q+1∏
i=1

det Ci (A.3)

From (12) and remembering that σ2 = σ2
s + σ2

w, the
matrix Ci (1 ≤ i ≤ Q) can be written as

Ci =

[
σ2IN BT

B σ2IL1

]
(A.4)

where B =
[
σ2
sIL1

,0L1,N−L1

]
. Accordingly, exploiting

the block structure in (A.4), one obtains

det Ci = det

(
σ2IN −

1

σ2
BTB

)
det
(
σ2IL1

)
(A.5)

Since it is(
σ2IN −

1

σ2
BTB

)
=

[ (
σ2 − σ4

S

σ2

)
IL1

0

0 σ2IN−L1

]
,

(A.6)
the determinant in (A.5) can be computed as

det Ci =

(
σ2 − σ4

S

σ2

)L1 (
σ2
)N−L1

(
σ2
)L1

=
(
1− γ2

)L1
σ2(N+L1)

(A.7)
where γ =

σ2
S

σ2 . Replacing (A.7) in (A.3) and considering
that CQ+1 = σ2IQ(L2−L1), we can write

det C =
(
1− γ2

)QL1
(
σ2
)M

. (A.8)

• Inverse of C.
Acknowledging the block-diagonal structure of the cor-
relation matrix C, its inverse is

C−1 = diag{C−11 ,C−12 , . . . ,C−1Q ,C−1Q+1}, (A.9)

where C−1i (i = 1, 2, . . . , Q) can be computed as

C−1i =

[ (
σ2IN − 1

σ2 BTB
)−1 −

(
σ2IN − 1

σ2 BTB
)−1 1

σ2 BT

− 1
σ2 B

(
σ2IN − 1

σ2 BTB
)−1 1

σ2 IL1
+ 1

σ4 B
(
σ2IN − 1

σ2 BTB
)−1

BT

]
.

(A.10)
Accordingly, since it is(
σ2IN −

1

σ2
BTB

)−1
=

1

σ2

[ 1
1−γ2 IL1

0L1,N−L1

0N−L1,L1
IN−L1

]
,

(A.11)
the inverse of a diagonal block Ci is found to be

C−1i =
1

σ2

 1
1−γ2 IL1

0L1,N−L1
− γ

1−γ2 IL1

0N−L1,L1
IN−L1

0N−L1,L1

− γ
1−γ2 IL1 0L1,N−L1

1
1−γ2 IL1

 .
(A.12)

Now, replacing in (10) the expressions found in (A.8), (A.9)
and (A.12), and keeping in mind that CQ+1 = σ2IQ(L2−L1),
yields (13).
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