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Abstract

In this paper, a buffered decode and forward (DF) relay based three-node underlay cooperative

cognitive relay network (CRN) is considered with a direct path to the destination. The source and the

relay use multiple rates, and joint rate and link selection is performed to maximize throughput. Optimum

link and rate selection rules are evolved that ensure buffer stability, and expressions are derived for

the throughput assuming peak power and peak interference constraints on the transmit power of the

secondary nodes. The expressions are written in a manner that yields useful insights on buffer stability

and role of the direct link on performance. A scheme in which the direct link signal is combined with

the relayed signal is also considered, and it is demonstrated that it offers additional improvement in

performance only in some scenarios. Computer simulations have been presented to verify the accuracy

of derived expressions.

Keywords: Buffer-Aided Relay, Decode-and-forward, Half-Duplex, Underlay Cognitive Radio.

I. INTRODUCTION

Due to rapid increase in demand for data intensive applications and services, and profileration

of wireless devices, the wireless industry today faces an acute spectrum shortage. Cognitive

radio technologies are seen to be a solution to this shortage. Underlay type of cognitive radios,

in which the transmit powers of secondary nodes is constrained to ensure that interference to the

primary licensed users is below a certain interference temperature limit [1], [2], have shown great

potential in increasing spectrum utilization efficiencies. Due to these constraints on the transmit
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powers, relays are often needed in the secondary network to increase range and reliability [3]

[4].

Although they incur a loss in performance as compared to full-duplex relays [5], half-duplex

relays are preferred in many situations because of their simplicity. One option to overcome the

loss due to half-duplex relays is to utilize rate selection, which requires channel knowledge at

the transmitter [6]. In addition, when the direct link between the source and the destination is

not shadowed, combining the direct and relayed signals improves performance and harnesses

diversity gain in cooperative links. Yet another option to harness diversity gain is to use link

selection, which requires the incorporation of a data buffer at the relay [7], [8]. Use of data

buffers in relays provides some degree of freedom in scheduling links degraded by fading, and

increases throughput. For this reason, buffer-aided relaying has been investigated in different

scenarios extensively (relay-selection [9], [10], multi-hop [11], [12], two-way relaying [13],

[14], MIMO systems [15], energy harvesting [16], physical layer security [17], [18], NOMA

[19], [20], full-duplex relays [21], [22] and CRN [23], [24] etc.). Analysis of performance of

buffered relays in underlay CRN has been carried out for half and full-duplex relays in [25],

[26] and [27] respectively.

Motivation and Contributions

Due to the interference constraints, the link signal to noise ratios (SNRs) in underlay cognitive

radio network (CRN) have large variance. For this reason, use of a buffer-aided relay with link

adaptation is appealing in CRN [27] [28]–[30]. For the same reason, use of rate selection is

well motivated in CRN, and we investigate this aspect here. As noted already, due to power

constraints, the nodes in underlay networks are relatively close to each other for acceptable

quality of service (QoS). Taking the direct channel into consideration is therefore important in

underlay CRNs. In this work, we consider the direct channel, and perform joint rate and link

selection with buffered relays in a two-hop underlay cognitive network. The major contributions

of our work are as follows:

• We provide a general framework for discrete-rate transmission in underlay cognitive relay

networks with a direct path. We first develop the joint rate and link-selection protocol and

analyze the prerequisite for buffer stability.
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• We then rewrite the throughput in a manner that provides deep insights into performance1

and buffer stability.

• We utilize the expressions to analyze throughput performance of two schemes. In the first

one, joint link and rate selection is performed amongst the three links. In the second scheme,

the relay and the source signal using OSTBC based on the Alamouti code whenever the

R-D link is selected. To enable analysis of performance, expressions are derived for joint

complementary commutative distribution function (CCDF) of instantaneous SNRs of the

links for both the schemes. Note that expressions for performance of the traditional non-

cognitive cooperative network follow as a special case.

II. SYSTEM MODEL

We consider a dual-hop underlay cooperative CRN as depicted in Fig.1 in which the primary

network consists of a primary source (not depicted in the figure), and a primary destination (P).

The secondary or unlicensed network consists of the secondary source (S), the secondary desti-

nation (D), together with a half-duplex (HD) decode and forward (DF) buffer-aided secondary

relay (R). All these nodes are assumed to possess a single antenna.

Channel Model: In this paper links 1, 2 and 3 refer to S −R, R−D, and S −D channels

respectively. The links are of fading type with coefficients hi(n), i = 1, 2, 3. The interference

channels from S and R to P are denoted by g1(n) and g2(n) respectively. We will find it

convenient to define g3(n) = g1(n). We assume Rayleigh fading channels so that hi(n) ∼

CN (0,Ωhi
), and gi(n) ∼ CN (0,Ωgi), i = 1, 2, 3. Denote by Ip the interference temperature

limit (ITL) imposed by the primary network, and by Pmax the maximum transmit power at S

and R. We denote by γi(n) the instantaneous SNR of link i, ∀i ∈ {1, 2, 3}. Let γmax = Pmax/No,

and γp = Ip/No, where No is the power spectral density of additive white Gaussian noise samples.

For underlay cognitive radio with peak transmit power (PTP) and peak interference power (PIP)

constraints, γi(n) is given by:

γi(n) = min

{
γmax,

γp
|gi(n)|2

}
|hi(n)|

2. (1)

1Delay analysis is clearly of interest, but it is not included here due to paucity of space. It will be studied separately.
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Fig. 1: Three Node cognitive buffer-aided relay network.

We assume quasi-static Rayleigh fading channels with path-loss exponent α. Hence, Ωhi
= d−α

i

and Ωgi = d−α
ip , where di and dip respectively denote (for link-i) the distances between nodes

in the main and interference link . The probability pi, i ∈ {1, 2}, that the peak interference

(Pmax|gi(n)|2) at P is greater than Ip when transmit power Pmax is used, is given by [27]:

pi = Pr

{
γmax >

γp
|gi(n)|2

}
= e−µi/λi , (2)

where λi = γmax Ωhi
and µi =

γpΩhi

Ωgi

represent the average transmit SNRs when S and R

(respectively) transmit with powers Pmax and Ip/Ωgi . We note once again that d3p = d1p hence

g3(n) = g1(n) and p3 = p1. These notations are used for maintaining consistency in formulating

the problem.

Rate Set: Joint link and rate selection is performed in this paper. We assume that S and R

use capacity achieving codewords of single time slot and pick transmission rate Rki
i when the

ith link is selected. Let R
[0,1,...,Ki]
i = [R0

i , R
1
i , . . . , R

Ki

i ] denote the rate vector with rates arranged

in increasing order so that:

Rate set {R[0,1,...k1...K1]
1 } ≡ SNR threshold set {γ[0,1,...k1...K1]

1 } for link-1 (S −R link),

Rate set {R[0,1,...k2...K2]
2 } ≡ SNR threshold set {γ[0,1,...k2...K2]

2 } for link-2 (R−D link),

Rate set {R[0,1,...k3...K3]
3 } ≡ SNR threshold set {γ[0,1,...k3...K3]

3 } for link-3 (S −D link),

(3)

where γki
i is the SNR threshold for the rate Rki

i , which is defined as γki
i = 2R

ki
i − 1. Note that

the rate set for the S −R and S −D links are identical so that K1 = K3, and we choose a

different index k3 for the third link S −D only for ease of exposition. Also note that initial rate

is zero for every rate-set, i.e. R0
i = 0 hence γ0

i = 0 for i ∈ {1, 2, 3}.
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Link Selection Variables: We will find it useful to define indicator functions that specify if a

particular rate is selected for a link. Specifically, we define the 2(K1 + 1) + (K2 + 1) indicator

functions u
ki
i (n) as follows:

u
ki
i (n)=

{
1 Rate Rki

i is selected

0 otherwise.
i = {1, 2, 3} (4)

Clearly, we can generate the binary link selection variables ui(n) as follows:

ui(n) =
Ki∑
ki=0

uki
i (n). i ∈ {1, 2, 3} (5)

For selecting any one of the three links for transmission, we define a link selection vector as

u(n) = [u1(n), u2(n), u3(n)]. Note that

3∑

i=1

ui(n) = 1 since only one rate corresponding to one

link is selected.

Channel State Parameter and Set of Permissible Rates: For selection of a link, and the rate to

be used on it, we clearly require information on whether the channel is in outage for that rate.

These indicator variables depend on the signalling scheme. We consider two signalling schemes

in this paper. For links-1 and 3, we define these indicator functions for both the signalling

schemes as follows:

Ik1u1
(n) =

{
1 if Rk1

1 (n) ≤ log2(1 + γ1(n))

0 otherwise,
Ik3u3

(n) =

{
1 if Rk3

3 (n) ≤ log2(1 + γ3(n))

0 otherwise.
(6)

It is apparent that Ikiui
(n)Rki

i (n), ki = 0...Ki can be thought of as the decodable rate set for

link-i (i = 1, 3), and its maximum value R
k∗i
i (n) = max

ki=1,...,Ki

(Ikiui
(n)Rki

i (n)) is the best feasible

rate for that link. For link-2, the defintion of Ik2u2
(n) depends on the signalling scheme used. In

scheme-1, when link-2 is selected (in a manner to be discussed later), the relay transmits with

rate R
k∗2
2 (n) = max

k2=1,...,K2

(Ik2u2
(n)Rk2

2 (n)). In scheme-2, both source and relay use the Alamouti

orthogonal space-time block code (OSTBC) to transmit a packet to the destination when link-2

is selected, exploiting the fact that the same packets are also present at the source. Clearly, this

scheme results in higher SNR at the destination.
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In scheme-1, the definition follows that used for links 1 and 3 so that:

Ik2u2
(n) =

{
1 if Rk2

2 (n) ≤ log2(1 + γ2(n)),

0 otherwise.
(7)

In scheme-2, due to the distributed Alamouti coding, we have:

Ik2u2
(n) =

{
1 if Rk2

2 (n) ≤ log2(1 + γ2(n) + γ3(n)),

0 otherwise.
(8)

To facilitate scheme-2, we assume that the rate sets at the source and relay are identical, and

that the source tracks the buffer-content of the relay using a feedback link. Clearly, R
k∗2
2 (n) =

max
k2=1,...,K2

(Ik2u2
(n)Rk2

2 (n)). Furthermore, since the rate sets at the source and relay are identical

for scheme-2, it is clear by comparing (6) and (8) that only rates Rk2
2 ≥ Rk3

3 (or equivalently

index k2 ≥ k3) are permissible for scheme-2. On the contrary, scheme-1 has no such restriction

due to the independence of its outage indicator functions.

Implementation of the Protocol: S and R estimate |g1(n)|2 and g2(n)|2 by observing reverse

channel of the primary network, or using dedicated pilots transmitted by the primary receiver

P . A pilot transmitted by D enables S and R to estimate |h3(n)|
2 and |h2(n)|

2 respectively.

Similarly, a pilot transmitted by R enables S to estimate |h1(n)|2. We therefore assume that S

has knowledge of |g1(n)|2, |h1(n)|2 and h3(n)|2, and that R posseses knowledge |g2(n)|2 and

h2(n)|2. Indices k∗
1, k

∗
2 and k∗

3 of best rates of each link are selected and passed on to a control

unit, which then determines the link selection that maximizes throughput.

III. IMPLEMENTATION OF LINK SELECTION

In this section, we first formulate the throughput maximization problem and determine the

optimal scheduling of reception and transmission.

Throughput Maximization: The average link-rate of link-i over N transmissions is given by:

τi =
1

N

N∑
n=1

Ki∑
ki=0

u
ki
i (n)I

ki
ui
(n)Rki

i (n). ∀i ∈ {1, 2, 3} (9)

The maximum feasible rate R
k∗i
i (n) in link-i is given by:

R
k∗i
i (n) = max

ki
(Ikiui

(n)Rki
i (n)). (10)
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We note that the system throughput τt needs to be maximized (τt = τ2+τ3) by suitable selection

of the signalling rates and the binary link selection variables ui(n) in an optimal fashion while

ensuring buffer stability (τ1 ≤ τ2). The optimization problem can be written as2:

max
u(n)

τt = τ2 + τ3

s.t. C0 : τ1 ≤ τ2, C1 : uki
i (n)(1− uki

i (n)) = 0, C2 :
3∑

i=1

Ki∑
ki=0

uki
i (n) = 1.

(11)

Since allowing the link selection variables to take values between 0 and 1 simplifies the problem

but leads to the same solution [26], we relax the binary constraint on them. We note that for

infinite-size buffers, using τ1 < τ2 for buffer stability simply leads to loss in throughput. We

therefore optimize so that τ1 = τ2. The throughput maximization problem can then be re-written

as follows:

max
u(n)

τt = τ2 + τ3 s.t. C0 : τ1 = τ2,

C1a : uki
i (n) ≥ 0, C1b : uki

i (n) ≤ 1, C2a :
3∑

i=1

Ki∑
ki=0

uki
i (n) ≥ 0, C2b :

3∑
i=1

Ki∑
ki=0

uki
i (n) ≤ 1.

(12)

where constraint C0 is required for buffer stability, and linear constraints C1a, C1b, C2a and C2b

arise on relaxing the binary constraint C1 in (11).

Mode of Operation: We first note that several modes of operation arise depending on which

nodes are eligible to transmit with non-zero rate. We denote by N the mode when no link is

selected to transmit (all can transmit only with rate 0), and by Ñ the mode when all links can

transmit at some (non-zero) rate. Similarly, mode i arises when only link-i can transmit at a

non-zero rate, and ĩ implies that all links other than i can transmit at non-zero rate. As there are

a total of 3 links with 2 states (on-off) each, the number of modes is clearly 23 = 8. We represent

mode by e where e ∈ {N, 1, 2, 3, 1̃, 2̃, 3̃, Ñ} ≡ {i,N, ĩ, Ñ}. Please note that for convenience we

denote the union of more than one mode, e.g. {1∪ 2̃∪ 3̃∪ Ñ}, which means the union of mode

1, 2̃, 3̃, and Ñ, by {1, 2̃, 3̃, Ñ}.

Coin-toss Events: In situations when multiple links can transmit at a non-zero rate, the solution

to the optimization problem (as discussed in what follows) invokes coin toss to select a link.

In mode ĩ, the discrete rate R
kj
j 6=i(n) for link-j is chosen by coin toss event C ĩ

j 6=i(n), whose

2We assume finite N initially as the link and rate selection policies remain the same for both finite and infinite N .
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probability is given as:

P ĩ
j 6=i = Pr{C ĩ

j 6=i(n) = 1}. i ∈ {1, 2, 3} (13)

For example in mode 3̃, where either link-1 or 2 can be selected, a choice is made between R
k∗
1

1 (n)

and R
k∗
2

2 (n) by coin toss events C 3̃
1 (n) or C 3̃

2 (n), whose probabilities are P 3̃
1 = Pr{C 3̃

1(n) = 1}

and P 3̃
2 = Pr{C 3̃

2(n) = 1} = 1 − P 3̃
1 = P

3̃

1 respectively. Similarly in mode Ñ, the discrete rate

R
k∗i
i (n) for link-i is chosen with the coin toss event C Ñ

i (n), with probabilities P Ñ
i = Pr{C Ñ

i (n) =

1} i ∈ {1, 2, 3}.

Lagrangian dual function and variables: We now use the method of Lagrangian to perform

the optimization. For convenience, we drop the time-index in uki
i (n) and Rki

i (n). Using Lagrange

multipliers αw, βki
i , β̃ki

i , β̃N and βN, we can write the Lagrangian cost function L as:

L= −τ2 − τ3 − αw(τ1 − τ2)−
N∑

n=1

[
3∑

i=1

Ki∑

ki=0

[
βki
i

{
1− uki

i

}

+β̃ki
i uki

i

]
− β̃N

[
1−

3∑

i=1

Ki∑

ki=0

uki
i

]
− βN

3∑

i=1

Ki∑

ki=0

uki
i , (14a)

which can also be written as follows:

L= −αwτ1 − (1− αw)τ2 − τ3 −
N∑

n=1

[
3∑

i=1

Ki∑

ki=0

βki
i + β̃N

]

+

N∑

n=1

Ki∑

ki=0

u
ki
i

[
3∑

i=1

(βki
i − β̃ki

i ) + β̃N − βN

]
. (14b)

It is clear from the above equation that a group of Lagrangian multipliers is coupled with

parameter u
ki
i . Define Υ ki

i as follows:

Υ ki
i = N

[
(βki

i − β̃ki
i ) + β̃N − βN

]
. (15)

Substituting the values of τ1, τ2 and τ3 from (9) in the expression for L in (14b), and using (15),

we get:
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L=−
1

N

N∑

n=1

[
αw

K1∑

k1=0

uk1
1 Ik1u1

Rk1
1

︸ ︷︷ ︸
τ1

+ (1− αw)

K2∑

k2=0

uk2
2 Ik2u2

Rk2
2

︸ ︷︷ ︸
τ2

+

K3∑

k3=0

uk3
3 Ik3u3

Rk3
3

︸ ︷︷ ︸
τ3

+

3∑

i=1

Ki∑

ki=0

(Nβki
i − u

ki
i Υ ki

i )−Nβ̃N

]
. (16)

We note that 15 and (16) play a crucial role in the development of throughput maximization

protocol.

Optimal rule for throughput maximization: Now, we next state the link selection policy.

Theorem 1: The choice of the link-i for transmission is carried out according to (18)3, which

is expressed in terms of the maximality of the rate decision metrics Υ ki∗
i (n) given by:

Υ
k∗1
1 (n) = αw∗R

k∗1
1 (n), Υ

k∗2
2 (n) = (1− αw∗)R

k∗2
2 (n), Υ

k∗3
3 (n) = R

k∗3
3 (n), (17)

where there exist parameter αw∗, and associated coin-toss probabilities4 P ĩ
j 6=i(αw∗) and P Ñ

i (αw∗)

such that the system throughput is maximized.

u(n)≡



u1(n)
u2(n)
u3(n)




T

=





[0 0 0] : Υ
k∗
1

1 (n) = Υ
k∗
2

2 (n) = Υ
k∗
3

3 (n) = 0 (mode N),

[1 0 0] : Υ
k∗
1

1 (n) > max(Υ
k∗
2

2 (n), Υ
k∗
3

3 (n)) (mode 1),

[0 1 0] : Υ
k∗2
2 (n) > max(Υ

k∗3
3 (n), Υ

k∗1
1 (n)) (mode 2),

[0 0 1] : Υ
k∗3
3 (n) > max(Υ

k∗1
1 (n), Υ

k∗2
2 (n)) (mode 3),

[0 C 1̃
2(n) C 1̃

3 (n)] : Υ
k∗
2

2 (n) = Υ
k∗
3

3 (n) > Υ
k∗
1

1 (n) (mode 1̃),

[C 2̃
1(n) 0 C 2̃

3 (n)] : Υ
k∗
1

1 (n) = Υ
k∗
3

3 (n) > Υ
k∗
2

2 (n) (mode 2̃),

[C 3̃
1(n) C 3̃

2(n) 0] : Υ
k∗
1

1 (n) = Υ
k∗
2

2 (n) > Υ
k∗
3

3 (n) (mode 3̃),

[C Ñ

1 (n) C Ñ

2 (n) C Ñ

3 (n)] : Υ
k∗1
1 (n) = Υ

k∗2
2 (n) = Υ

k∗3
3 (n) > 0 (mode Ñ).

(18)

Proof: We first make the following observations about the optimization’s conditions:

1) Dual Feasibility Condition: All the Lagrange multipliers for the inequality constraints have

to be non-negative, i.e. β̃N, βN ≥ 0 and βki
i , β̃ki

i ≥ 0, ∀i = {1, 2, 3}. Further, 0 ≤ αw ≤ 1.

3
x
T denotes the transpose of vector x.

4We highlight the dependence of these probabilities on α∗
w by writing these probabilities as functions of α∗

w.
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2) Complementary Slackness Condition: If an inequality is inactive, i.e. the optimal solution

is in the interior of the set, the corresponding Lagrangian multiplier is zero. Therefore for

i = {1, 2, 3}, we obtain:

βki
i

[
1− uki

i

]
= 0, β̃ki

i uki
i = 0, β̃N

[
1−

3∑
i=1

Ki∑
ki=0

uki
i

]
= 0, βN

3∑
i=1

Ki∑
ki=0

uki
i = 0.

3) Stationarity w.r.t. primal variables: According to the stationary condition, differentiation

w.r.t. to sub-primal variables uk1
1 , uk2

2 and uk3
3 should be zero. Hence, we get:

∂L

∂ uk1
1

= Υ k1
1 − αwI

k1
u1
Rk1

1 = 0,
∂L

∂ uk2
2

= Υ k2
2 − (1− αw)I

k2
u2
Rk2

2 = 0,
∂L

∂ uk3
3

= Υ k3
3 − Ik3u3

Rk3
3 = 0.

After solving the above stationary conditions, we get:

Υ k1
1 = αwI

k1
u1
Rk1

1 , Υ k2
2 = (1− αw)I

k2
u2
Rk2

2 , Υ k3
3 = Ik3u3

Rk3
3 . (19)

Table-I lists the rate decision metrics for the case when either silence occurs, or one of the links

is selected for transmission. It is accomplished by finding whether the relevant multipliers are

active or not (using complementary slackness condition), and then using the multipliers in the

stationarity condition.

Table I: Rate selection-metrics for different link-selections

ui(n) = 0, ∀i ∈ {1, 2, 3} ui∗(n) = 1, ui 6=i∗(n) = 0

βki
i = β̃N = 0, ∀i ∈ {1, 2, 3}, β̃

k∗i
i∗ = βki

i 6=i∗ = βN = 0, β
k∗i
i∗ , β̃ki

i 6=i∗ , β̃N > 0,

β̃ki
i , βN > 0, ∀i ∈ {1, 2, 3}, Υ

k∗i
i∗ = N(+β

k∗i
i∗ + β̃N) > 0,

Υ ki
i = N(−β̃ki

i − βN) < 0. Υ
ki 6=k∗i
i∗ = N(−β̃

ki 6=k∗i
i∗ + β̃N) < Υ

k∗i
i∗ , Υ ki

i 6=i∗ = N(−β̃ki
i 6=i∗ + β̃N) < Υ

k∗i
i∗ .

Whenever silence occurs, uki
i = 0, therefore it is clear from the Table-I that Υ ki

i < 0, ki 6= 0.

Since 0 ≤ αw ≤ 1, it is clear from (19) that silence occurs when Υ 0
i = maxki(Υ

ki
i ) = 0 ⇒

R
k∗i
i = 0, ∀i. Whenever one of the link i = i∗ transmits, u

k∗i
i∗ = 1, it is again clear from the

Table-I that Υ
k∗i
i∗ > 0 and Υ

k∗i
i∗ > Υ

ki 6=k∗i
i∗ and Υ

k∗i
i∗ > Υ ki

i 6=i∗ . Hence in order to get optimum system

throughput, we take the maximum of Υ ki
i per time slot, which is expressed in terms of R

k∗i
i in

(19). Now, variable αw adjusts the selection of links and rates. If for some αw, the value of two

or more decision metrics are the same, the link i∗ among these is chosen for transmission, i.e.

ui∗(n) = 1, based on the relevant coin-toss probabilities. �
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It is clear that given αw, the maximal feasible rate of either link 1, 2 or 3 is chosen if the

corresponding decision-metric is greater than the decision-metric of the maximal feasible rate of

other links (when there is equality, a coin toss is used to select a link). When Υ ki∗
i is maximum,

then its corresponding u
k∗i
i is set to unity (which also sets β

k∗i
i∗ , β̃N and resets βN, β̃

k∗i
i∗ ). The choice

of αw∗ and the coin toss probabilities depend on the channel statistics and is discussed in the

following sections.

IV. PERFORMANCE EVALUATION

In this section, we express the throughput in terms of the rates obtained in various operating

modes listed in (18). This will yield insights on choice of αw for buffer stability. We also describe

the coin-toss probabilities and associated link-rates (buffered, direct and total) for various cases.

In the second part of this section, we discuss performance with the two signalling schemes.

Average link-rate for a mode of operation: Now, in order to obtain an expression for average

throughput, we need to represent the link rate of (9) in a different form. To this end, we first

derive an expression for the joint probability P
R

k1
1

R
k2
2

R
k3
3

of {Rk1
1 , Rk2

2 , Rk3
3 } (≡ (k1, k2, k3)) being

selected as the maximum permissible rates by links 1, 2 and 3 respectively in any signalling

interval. It is defined as:

P
R

k1
1

R
k2
2

R
k3
3

= Pr{max
kℓ

(Ikℓu1
Rkℓ

1 ) = Rk1
1 ,max

kℓ
(Ikℓu2

Rkℓ
2 ) = Rk2

2 ,max
kℓ

(Ikℓu3
Rkℓ

3 ) = Rk3
3 }. (20)

It is clear from (18) that link selection is associated with modes and range of indices (k1, k2, k3),

we will find it convenient to study the link-rate of link- i associated with the mode e, which can

be expressed as follows:

Re
i (αw) =

∑

Ue(αw)

P
R

k1
1

R
k2
2

R
k3
3

Rki
i , (21)

where the link-rate is averaged over the domain set for the given mode e denoted by Ue(αw)

(note that Ue(αw) is the collection of all the index-triplets (k1, k2, k3) associated with that mode).
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Hence we express the domain-set for all the possible modes as follows:

UN(αw) ≡ {(k1, k2, k3)|αwR
k1
1 = (1− αw)R

k2
2 = Rk3

3 = 0},

U i(αw) ≡ {(k1, k2, k3)| Υ
ki∗
i > max

j
(Υ

kj∗
j 6=i)}, i ∈ {1, 2, 3}

U ĩ(αw) ≡ {(k1, k2, k3)| Υ
kj1∗

j1 6=i = Υ
kj2∗

j2 6=i > Υ ki∗
i }, i ∈ {1, 2, 3}

U Ñ(αw) ≡ {(k1, k2, k3)|αwR
k1
1 = (1− αw)R

k2
2 = Rk3

3 > 0}.

(22)

We will use the above to balance the buffer and to derive an expression for the total system

throughput.

Set of possible discrete αw values: Since there are set of discrete rates available at S and R,

it can be seen from (15) and (19) that αw takes discrete values. We first observe all possible
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Fig. 2: Rate triplets represented as a cubic lattice constellation for Rk1

1
= Rk2

2
= Rk3

3
= {0, 1, 2} in scheme-1.
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Fig. 3: Rate triplets represented as a prismatic lattice constellation for Rk1

1
= Rk2

2
= Rk3

3
= {0, 1, 2} in scheme-2.
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discrete values of αw from domain set U 1̃(αw), U
3̃(αw) and U 2̃(αw) as follows:

Rk3
3 = (1− αw)R

k2
2 ⇒ αw = 1− Rk3

3 /Rk2
2 for U 1̃(αw),

αwR
k1
1 = (1− αw)R

k2
2 ⇒ αw = Rk2

2 /(Rk2
2 +Rk1

1 ) for U 3̃(αw),

Rk3
3 = αwR

k1
1 ⇒ αw = Rk3

3 /Rk1
1 for U 2̃(αw).

We denote by Λ the set of all possible αw values. In order to constraint 0 ≤ αw ≤ 1, we always

choose link-3 whenever Rk3
3 > Rk1

1 and Rk3
3 > Rk2

2 (Rk3
3 > max(Rk1

1 , Rk2
2 )). We define the set

of αw, i.e., Λ as:

αw ∈ Λ ≡ sort{1− Rk3
3 /Rk2

2 , Rk2
2 /(Rk2

2 +Rk1
1 ), Rk3

3 /Rk1
1 : s.t. Rk3

3 ≤ max(Rk1
1 , Rk2

2 )},

≡ {α0 = 0, α1, α2....αW−1, αW = 1}. (23)

where sort{x} arranges elements of set x in increasing order.

Example: Consider an example with rate set R
[0,1,2]
1 = R

[0,1,2]
2 = {0, 1, 2} (rate set R

[0,1,2]
3 =

R
[0,1,2]
1 is implied). It is clear from (23) that αw ∈ Λ ≡ {0, 1

3
, 1
2
, 2
3
, 1}. The rate triplets can be

visualized as points on a lattice constellation. Fig. 2 and 3 depict the rate triplets in the form of

the constellation diagrams for scheme-1 and 2, which are in cube and prism shapes respectively.

Furthermore, the regions belonging to three different links for αw equal to 1/3, 1/2, and 2/3 are

depicted for both the schemes. Red, green and blue constellation points correspond to indices that

lead to selection of link-1, 2 and 3 respectively. It is clear from the figures that the intersecting

planes for U 3̃ is always OGHO, and the point (2, 2, 1) lies on it for αw = 1/2. Again for

αw = 1/2, the planes OAGO and OCGO belong to U 2̃ and U 1̃ respectively. For scheme-1, the

planes OGHO, OAGO and OCGO generate the two rectangular pyramids for link-1 and link-2,

whose bases are AGHDA and CGHFC. Any constellation point which lies inside any of the two

pyramids belongs to the respective link. When we choose αw = 1/3, the region belonging to

link-1 is still a rectangular pyramid with base AGHDA, whereas the region belonging to link-2

changes to a trapezoidal pyramid, whose base is BCFEB. The region belonging to link-3 is

the rest of the rectangular pyramid, generated by U 1̃ and U 2̃. Similar arguments are valid for

αw = 2/3. For scheme-2, everything remains the same except that the rate triplets for which

k2 < k3 are no longer relevant.
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Properties of link rate over domain set, i.e. Re
i (αw): We have already defined the link rate of

link i, over the domain set Ue(αw) in (21). The next lemma addresses two properties of these

rates. The first property describes relations between the rates in the events involving a coin-toss,

and the second investigates how rate continuity is maintained when αw changes to αw+1 or

αw−1. These properties will be used later to determine the αw that can stabilize the buffer, and

to derive throughput expressions.

Lemma 1: The link rates over the domain set have two important properties as follows:

Property 1 (Rate-equality property): The link rates over the domain sets U 1̃(αw), U
2̃(αw), U

3̃(αw)

and U Ñ(αw), which involve coin toss satisfy the following relations:

R1̃
3(αw) = (1− αw)R1̃

2(αw), R2̃
3(αw) = αwR2̃

1(αw),

αwR3̃
1(αw) = (1− αw)R3̃

2(αw),

RÑ

3 (αw) = αwR
Ñ

1 (αw) = (1− αw)R
Ñ

2 (αw).

(24)

Property 2 (Rate-continuity property): For w ∈ {1, 2, ...,W−1}, the following recursive relations

hold:

R{1,2̃,3̃,Ñ}
1 (αw) = R1

1(αw+1), R{2,1̃,3̃,Ñ}
2 (αw) = R2

2(αw−1), R{3,2̃}
3 (αw) = R{3,1̃}

3 (αw−1),(25)

and we also have R{1,2̃,3̃,Ñ}
1 (α0 = 0) = R{2,1̃,3̃,Ñ}

2 (αW = 1) = 0.

Proof: Property 1: We prove R2̃
3(αw) = αwR2̃

1(αw) first. We write R2̃
3(αw) from (21) as follows:

R2̃
3(αw) =

∑

U 2̃(αw)

P
R

k1
1

R
k2
2

R
k3
3

Rk3
3 =

∑

U 2̃(αw)

P
R

k1
1

R
k2
2

R
k3
3

αwR
k1
1 = αw

∑

U 2̃(αw)

P
R

k1
1

R
k2
2

R
k3
3

Rk1
1 = αwR

2̃
1(αw),

where it is clear from (22) that the relation Rk3
3 = αwR

k1
1 holds true for the domain set U 2̃(αw).

The other relations can be proved in a similar manner.

Property 2: We prove R{1,2̃,3̃,Ñ}
1 (αw) = R1

1(αw+1) first. It is clear from (22) that following

relation holds true:

U1(αw) ≡ {(k1, k2, k3)|αwR
k1
1 > max(Rk3

3 , (1− αw)R
k2
2 )},

U 2̃(αw) ≡ {(k1, k2, k3)|αwR
k1
1 = Rk3

3 > (1− αw)R
k2
2 },

U 3̃(αw) ≡ {(k1, k2, k3)|αwR
k1
1 = (1− αw)R

k2
2 > Rk3

3 },

U Ñ (αw) ≡ {(k1, k2, k3)|αwR
k1
1 = Rk3

3 = (1− αw)R
k2
2 }.
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Since αw−1 < αw < αw+1, it is apparent from the above equation that if we increase αw to

αw+1, all these above mentioned domain-sets transform into the following single domain-set:

U1(αw+1) ≡ {(k1, k2, k3)|αw+1R
k1
1 > max

(
Rk3

3 , (1− αw+1)R
k2
2

)
}.

Hence, it is clear that U{1,2̃,3̃,Ñ}(αw) and U1(αw+1) are equal sets which we denote by U1(αw+1) ≡

U{1,2̃,3̃,Ñ}(αw). It is also clear that if α0 = 0, then U{1,2̃,3̃,Ñ}(α0 = 0) ≡ {φ} holds true, where φ

is a null set. Hence, the following outcome is obvious:

U{1,2̃,3̃,Ñ}(αw) ≡ U1(αw+1) ⇒ R{1,2̃,3̃,Ñ}
1 (αw) = R1

1(αw+1);

U{1,2̃,3̃,Ñ}(α0 = 0) ≡ {φ} ⇒ R{1,2̃,3̃,Ñ}
1 (α0 = 0) = 0.

Similarly, other relations can be proved by the following inferences:

U{2,1̃,3̃,Ñ}(αw) ≡ U2(αw−1) ⇒ R{2,1̃,3̃,Ñ}
2 (αw) = R2

2(αw−1);

U{2,1̃,3̃,Ñ}(αW = 1) ≡ {φ} ⇒ R{2,1̃,3̃,Ñ}
2 (αW = 1) = 0;

U{3,2̃}(αw) ≡ U{3,1̃}(αw−1) ⇒ R{3,2̃}
3 (αw) = R{3,1̃}

3 (αw−1).w 6= 0�

Example (Contd.): Consider the previous example for αw = 1/2 in scheme-1 to understand

these two properties. First, the following domain-sets are also evident from Fig. 2:

U1(1/2) ≡ {(1, 0, 0), (2, 0, 0), (2, 1, 0)}, U2(1/2) ≡ {(0, 1, 0), (0, 2, 0), (1, 2, 0)},

U 1̃(1/2) ≡ {(0, 2, 1), (1, 2, 1)}, U 2̃(1/2) ≡ {(2, 0, 1), (2, 1, 1)}, U 3̃(1/2) ≡ {(1, 1, 0), (2, 2, 0)},

U Ñ(1/2) ≡ {(2, 2, 1)}.

Suppose we want to validate αwR3̃
1(αw) = (1−αw)R3̃

2(αw) for α = 1/2 (R3̃
1(1/2) = R3̃

2(1/2)),

which is based on the domain set U 3̃(αw = 1/2) ≡ {(1, 1, 0), (2, 2, 0)}, the link-rates R3̃
1(1/2)

and R3̃
2(1/2) are written as follows, and αwR3̃

1(αw) = (1− αw)R3̃
2(αw) holds for α = 1/2:

R3̃
1(1/2) = PR1

1
R1

2
R0

3
R1

1 + PR2
1
R2

2
R0

3
R2

1 = P1,1,0 + 2P2,2,0,

R3̃
2(1/2) = PR1

1
R1

2
R0

3
R1

2 + PR2
1
R2

2
R0

3
R2

2 = P1,1,0 + 2P2,2,0.

From property 2, it is inferred that U1(2/3) ≡ U{1,2̃,3̃,Ñ}(1/2) and U2(1/3) ≡ U{2,1̃,3̃,Ñ}(1/2)
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whereas U{1,2̃,3̃,Ñ}(1/2) and U{2,1̃,3̃,Ñ}(1/2) can be written as:

U{1,2̃,3̃,Ñ}(1/2) ≡ {

U1(1/2)︷ ︸︸ ︷
(1, 0, 0), (2, 0, 0), (2, 1, 0),

U 2̃(1/2)︷ ︸︸ ︷
(2, 0, 1), (2, 1, 1),

U 3̃(1/2)︷ ︸︸ ︷
(1, 1, 0), (2, 2, 0),

U Ñ(1/2)︷ ︸︸ ︷
(2, 2, 1)},

U{2,1̃,3̃,Ñ}(1/2) ≡ {(0, 1, 0), (0, 2, 0), (1, 2, 0)︸ ︷︷ ︸
U2(1/2)

, (0, 2, 1), (1, 2, 1)︸ ︷︷ ︸
U 1̃(1/2)

, (1, 1, 0), (2, 2, 0)︸ ︷︷ ︸
U 3̃(1/2)

, (2, 2, 1)︸ ︷︷ ︸
U Ñ(1/2)

}.

However, (2, 0, 1) (for which k2 < k3) is invalid rate triplet for scheme-2 in this example.

Average link-rate for link-i: We now express the average link-rate in terms of link-rates of

possible modes for link-i. It is evident from (13) that there are several coin toss probabilities.

It will be shown later in lemma-3 of this section that the overall throughput does not depend

on these coin toss probabilities. Instead, these probabilities only alter individual link rates. We

can associate the coin toss probabilities of mode Ñ with modes 1̃, 2̃ or with 3̃. Since associating

these probabilities with mode 3̃ might increase the buffer-usage in some cases, we associate

them with modes 1̃ and 2̃ as follows:

P Ñ
1 (αw) = P 2̃

1 (αw) and P Ñ
2 (αw) = P 1̃

2 (αw).

The link rate of link-i, i.e. τi for i ∈ {1, 2, 3}, are now expressed as follows:

τ1(αw, P
1
1 , P

2̃
1 , P

3̃
1 ) = P 1

1 (αw)R
1
1(αw) + P 2̃

1 (αw)R
{2̃,Ñ}
1 (αw) + P 3̃

1 (αw)R
3̃
1(αw),

τ2(αw, P
2
2 , P

1̃
2 , P

3̃
2 ) = P 2

2 (αw)R
2
2(αw) + P 1̃

2 (αw)R
{1̃,Ñ}
2 (αw) + P 3̃

2 (αw)R
3̃
2(αw), (26)

τ3(αw, P
2̃
1 , P

1̃
2 )=R3

3(αw) + P
2̃

1(αw)R
2̃
3(αw) + P

1̃

2(αw)R
1̃
3(αw) +

(
P 1̃
2 (αw) + P 2̃

1 (αw)
)
RÑ

3 (αw),

where probabilities P 1
1 (αw) and P 2

2 (αw) are useful in some special scenarios described later in

the paper. The above equation will be utilized (in what follows) to find an expression for the

optimum system throughput and to establish the buffer-stability conditions in various scenarios.

Use cases for buffer stability: In underlay cognitive radio networks, the average SNR of a link

is dependent on the forward and the interference links to the primary receiver. For this reason,

asymmetry in average SNRs of links is common in a two-hop network, even when the relay is

located mid-way between the source and the destination. Three use cases are clearly of interest.

In case-1, link-2 is heavily attenuated, whereas in case-2, link-1 is heavily attenuated. In case-3,

neither link-1 nor link-2 is heavily attenuated. We discuss buffer-balancing conditions in these

use cases.
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Lemma 2: The buffer is stable for αw ≤ αw∗ , with:

w∗ =





0 if R2
2(α0) < R1

1(α1) : case-1

W − 1 if R1
1(αW ) < R2

2(αW−1): case-2

z if R2
2(αz−1) ≥ R1

1(αz) &R1
1(αz+1) ≥ R2

2(αz) : case-3

(27)

where z is an integer such that z ∈ {1, 2, ....,W − 1}.

Proof: We first consider case-1 and case-2. Using the rate continuity property R{2,1̃,3̃,Ñ}
2 (αw) =

R2
2(αw−1) of (25) with w = 1, we infer the following:

R{2,1̃,3̃,Ñ}
2 (α1) = R2

2(α0) ⇒ R2
2(α1) ≤ R2

2(α0).

If we assume that link-2 is attenuated such that R2
2(α1) < R{1,2̃,3̃,Ñ}

1 (α1), then we assign all

the coin-toss events to link-2, so that τ2(α1, 1, 0, 0) = R2
2(α1) increases to τ2(α1, 1, 1, 1) =

R{2,1̃,3̃,Ñ}
2 (α1), which is equal to R2

2(α0). We summarize this as follows:

P 2̃
1 (α1) = P

1̃

2(α1) = P 3̃
1 (α1) = 0 ⇒

τ1(α1, 1, 0, 0) = R1
1(α1), τ2(α1, 1, 1, 1) = R{2,1̃,3̃,Ñ}

2 (α1) = R2
2(α0), τ3(α0, 0, 1) = R{3,2̃}

3 (α1).
(28)

If the link-2 is so heavily attenuated that condition R2
2(α0) < R1

1(α1) still holds, lowering αw

further in an attempt to stabilize the buffer is not feasible since there is no inflow rate. We

summarize this state as follows:

P 2̃
1 (α0) = P

1̃

2(α0) = P 3̃
1 (α0) = 1 ⇒

τ1(α0, 1, 1, 1) = R{1,2̃,3̃,Ñ}
1 (α0) = 0, τ2(α0, 1, 0, 0) = R2

2(α0), τ3(α0, 1, 0) = R{3,1̃}
3 (α0).

(29)

However, it is evident from (28) that we can change the link selection probability P 1
1 (α1) to

balance the buffer. Clearly, the buffered and direct throughput of R2
2(α0) and R{3,1̃}

3 (α0) can

maximally be achieved and buffer can be balanced with α1 when P 1
1 (α1) = R2

2(α0)/R1
1(α1).

Similar arguments can be given for condition R2
2(αw−1) < R1

1(αw) in case-2, when link-1 is

heavily attenuated. In this case, the buffer throughput of R1
1(αW ) can maximally be achieved

with direct throughput R{3,1̃}
3 (αW−1) = R{3,2̃}

3 (αW ), and buffer can be balanced with αW−1

when P 2
2 (αW−1) = R1

1(αW )/R2
2(αW−1).

Now consider case-3, in which neither link-1 nor link-2 is heavily attenuated. It is appar-

ent from (26) that for some αw∗ = αz, if the conditions τ1(αz, 1, 1, 1) ≥ τ2(αz, 1, 0, 0) and
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τ1(αz, 1, 0, 0) ≤ τ2(αz, 1, 1, 1) are satisfied, the inflow rate is equal to that of the outflow for

some combination of these coin toss probabilities. After applying the rate-continuation property

for link-1 and 2 for z ∈ {1, 2, ...,W − 1}, we get the following:

τ1(αz, 1, 1, 1) = R{1,2̃,3̃,Ñ}
1 (αz) = R1

1(αz+1), τ1(αz, 1, 0, 0) = R1
1(αz),

τ2(αz, 1, 1, 1) = R{2,1̃,3̃,Ñ}
2 (αz) = R2

2(αz−1), τ2(αz, 1, 0, 0) = R2
2(αz).

The following conditions hold from the above equation and the argument stated previously:

R2
2(αz−1) ≥ R1

1(αz) and R1
1(αz+1) ≥ R2

2(αz), (30)

which is given by (27). Now we establish two recursions:

R2
2(αz−1) ≥ R1

1(αz)
l
⇔ R2

2(αz−1) ≥ R{1,2̃,3̃,Ñ}
1 (αz−1)

m
⇒ R{2,1̃,3̃,Ñ}

2 (αz−1) ≥ R1
1(αz−1)

l
⇔ R2

2(αz−2) ≥ R1
1(αz−1),

R1
1(αz+1) ≥ R2

2(αz)
l
⇔ R1

1(αz+1) ≥ R{2,1̃,3̃,N}
2 (αz+1)

m
⇒ R{1,2̃,3̃,N}

1 (αz+1) ≥ R2
2(αz+1)

l
⇔ R1

1(αz+2) ≥ R2
2(αz+1),

where l is implied by the rate-continuity property and m due to change in coin-toss probabilities

P 2̃
1 (αz), P

1̃

2(αz), P
3̃
1 (αz) from 1 to 0 or 0 to 1. It is clear from the above recursions that

R2
2(αz−2) ≥ R1

1(αz−1) and R1
1(αz+2) ≥ R2

2(αz+1). Hence, it is evident that the following

will clearly hold true:

R2
2(α0) ≥ R1

1(α1) and R1
1(αW ) ≥ R2

2(αW−1), (31)

Note that the above contradict conditions for case-1 and case-2. This shows that when case-3

holds, case-1 and 2 can be ruled out. Now, in order to show that αz is unique, we re-write the

conditions for αz−1, αz, and αz+1 together as follows:

R2
2(αz−2) ≥ R1

1(αz−1) and R1
1(αz) ≥ R2

2(αz−1), for αz−1,

R2
2(αz−1) ≥ R1

1(αz) and R1
1(αz+1) ≥ R2

2(αz), for αz,

R2
2(αz) ≥ R1

1(αz+1) and R1
1(αz+2) ≥ R2

2(αz+1), for αz+1.

(32)

It is clear from the above that when the middle equation for αz holds, the other two cannot hold

simultaneously (the conditions are contradictory). Following these arguments, it can therefore

be inferred that case-3 condition is indeed satisfied by a unique αz only. �
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Expression for optimum system throughput τt: Now, in the next lemma we present an expres-

sion for optimum system throughput for the given system model, which is valid for both the

used schemes.

Lemma 3: The average throughput of the system can be written in a simplified form as:

τt = min
αw∈Λ

(
αwR

{1,2̃,Ñ,3̃}
1 (αw) + (1− αw)R2

2(αw) +R{3,1̃}
3 (αw)

)
, w 6= W

= min
αw∈Λ

(
αwR1

1(αw) + (1− αw)R
{2,1̃,Ñ,3̃}
2 (αw) +R{3,2̃}

3 (αw)
)
. w 6= 0

(33)

Proof: Please see Appendix A.�

Remark 1: It is clear from (33) that in calculating the optimum average rate of the system, the

inflow, outflow and direct link rates are weighed by αw∗ , 1−αw∗ and 1 due to buffer balancing.

The optimum value of αw was deterxmined using lemma-2. It should be noted that (33) can also

be used to determine the optimum value of αw by looking for the value of αw for which the

terms in the brackets of right-hand side is minimized.

Remark 2: There are many combinations of coin-toss probabilities which leads to the same

optimum solution of system throughput with a balanced buffer. The optimum throughput of the

balanced buffer and the direct path might change, but optimum system throughput remains

the same for these coin-toss probability combinations. It is apparent from (16) that coin-toss

probabilities assist in balancing the buffer, not in maximizing throughput of the system.

we now discuss the buffered/direct throughput and coin-toss probabilities next.

Expression of coin-toss probabilities and link throughput: There exist more than one unique

combination of coin-toss probabilities that yield the same optimum system throughput. For

case-1 and 2, we have already discussed about the choice of P 1
1 (α1) and P 2

2 (αW−1) and the

relevant buffered/direct-link throughput. We now provide some analytical expressions for coin-

toss probabilities in case-3. The buffer is balanced by suitable choice of P 3̃
1 (αz) (and thereby

P 3̃
2 (αz) = 1 − P 3̃

1 (αz)) when either link-1 or link-2 are relatively weak (while not being weak

enough to belong to case-1 or case-2 ). Three subcases arise as listed in Table II. In case-3a,

link-2 is relatively weak so that R1
1(αz) ≥ R{2̃,3̃}

2 (αz) and R{1,3̃}
1 (αz) ≥ R2

2(αz). In this case,

we set both P 2̃
1 (αz) and P 1̃

2 (αz) to zero and use P 3̃
1 (αz) (and thereby P 3̃

2 (αz)) to balance the

buffer (note that this might reduce throughput of the direct path). The choice of P 2̃
1 (αz) then

follows from (26). Case-3c follows similarly when link-1 is relatively weak. Case-3b arises when

R{2,3̃}
2 (αz) ≥ R1

1(αz) and R{1,3̃}
1 (αz) ≥ R2

2(αz). The fourth sub-case does not exist because
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R1
1(αw) ≥ R{2,3̃}

2 (αw) implies R{1,3̃}
1 (αw) ≥ R2

2(αw) and vice-versa.

Table II: Different use-cases, their conditions, coin-toss probabilities and buffered/direct throughputs

Use

case

Condition Coin-toss Probability (Buffered/Direct) throughput (using (26))

1 R2
2(α0) < R1

1(α1) (α0) : P
2̃
1 = P

1̃

2 = P 3̃
1 = 1 τ1 = τ2 = R{2,1̃,3̃,Ñ}

2 (α1) = R2
2(α0)

with P 1
1 (α1) =

R2
2
(α0)

R1
1
(α1)

(α1) : P
2̃
1 = P

1̃

2 = P 3̃
1 = 0 τ3 = R{3,2̃}

3 (α1) = R{3,1̃}
3 (α0)

2 R1
1(αW ) < R2

2(αW−1) (αW−1):P
2̃
1 = P

1̃

2 = P 3̃
1 = 1 τ1 = τ2 = R{1,2̃,3̃,Ñ}

1 (αW−1) = R1
1(αW )

with P 2
2 (αW−1) =

R1
1
(αW )

R2
2
(αW−1)

(αW ) : P 2̃
1 = P

1̃

2 = P 3̃
1 = 0 τ3 = R{3,1̃}

3 (αW−1) = R{3,2̃}
3 (αW )

3a R2
2(αz−1) ≥ R1

1(αz) ≥ R{2,3̃}
2 (αz) (αz) : P

2̃
1 = P 3̃

1 = 0 τ1 = τ2 = R1
1(αz)

R1
1(αz+1) ≥ R{1,3̃}

1 (αz) ≥ R2
2(αz) P 1̃

2 =
R1

1
(αz)−R

{2,3̃}
2

(αz)

R
{1̃,Ñ}
2

(αz)
τ3 = R{3,1̃,2̃,Ñ}

3 (αz)− (1− αz)(R1
1(αz)−R{2,3̃}

2 (αz))

3b
R2

2(αz−1) ≥ R{2,3̃}
2 (αz) ≥ R1

1(αz) (αz) : P
2̃
1 = P 1̃

2 = 0 τ1 = τ2 = R1
1(αz) + (1− αz)(R

{2,3̃}
2 (αz)−R1

1(αz))

P 3̃
1 =

R
{2,3̃}
2

(αw)−R1
1(αz)

R3̃
1
(αz)+R3̃

2
(αz)

τ1 = τ2 = R2
2(αz) + αz(R

{1,3̃}
1 (αz)−R2

2(αz))

R1
1(αz+1) ≥ R{1,3̃}

1 (αz) ≥ R2
2(αz) P 3̃

2 =
R

{1,3̃}
1

(αw)−R2
2
(αz)

R3̃
1
(αz)+R3̃

2
(αz)

τ3 = R{3,1̃,2̃,Ñ}
3 (αz)

3c R2
2(αz−1) ≥ R{2,3̃}

2 (αz) ≥ R1
1(αz) (αz) : P

1̃
2 = P 3̃

2 = 0 τ1 = τ2 = R2
2(αz)

R1
1(αz+1) ≥ R2

2(αz) ≥ R{1,3̃}
1 (αz) P 2̃

1 =
R2

2
(αz)−R

{1,3̃}
1

(αz)

R
{2̃,Ñ}
1

(αz)
τ3 = R{3,1̃,2̃,Ñ}

3 (αz)− αz(R2
2(αz)−R{1,3̃}

1 (αz))

Lemma 4: The relevant conditions for all possible cases that are formulated from the condition

of buffer stability in (27) are presented in Table-II. The coin-toss probability and throughput of

relevant cases, which are subsequently derived from (26), are also summarized in Table-II.

Proof: Use cases 1 and 2 have been discussed already. The conditions for cases 3a, 3b, and

3c are mentioned in Table-II. We first prove case 3a, and cases 3b and 3c can be proved

in a similar fashion. In this subcase of case 3, link-2 is weak enough so that even after

setting P 2̃
1 (αz) = P 3̃

1 (αz) = 0, condition R1
1(αz) ≥ R{2,3̃}

2 (αz) holds. Hence, after substituting

P 2̃
1 (αw) = P 3̃

1 (αw) = 0 in (26) and using the relation R{1̃,Ñ}
3 (αw) = (1 − αw)R

{1̃,Ñ}
2 (αw) from

(24), we get:

τ1(αw, 1, 0, 0) = R1
1(αw)

τ2(αw, 1, P
1̃
2 , 1) = R{2,3̃}

2 (αw) + P 1̃
2 (αw)R

{1̃,Ñ}
2 (αw)

τ3(αw, 0, P
1̃
2 ) = R{3,1̃,2̃,Ñ}

3 (αw)− (1− αw)P
1̃
2 (αw)R

{1̃,Ñ}
2 (αw).

After balancing the buffer, we get the expressions for P 1̃
2 (αw) and τi as listed in the Table. The

listed expressions for 3b and 3c can be proved in a similar fashion.

Remark 3: It is clear from the Table-II that in case 3b, the buffered throughput is more than

R1
1(αw) and R2

2(αw) with direct throughput R{3,1̃,2̃,Ñ}
3 (αz), if P 3̃

1 (αw) can balance out the buffer.
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Otherwise, depending on P 1̃
2 (αw) or P 2̃

1 (αw) used, the buffered throughput is either R1
1(αw) or

R2
2(αw), with direct throughput less than R{3,1̃,2̃,Ñ}

3 (αz).

Joint CCDF of Link SNRs in Scheme-1 and Scheme-2: As defined in (20) and (21) the joint

probability of the rate combination Rk1
1 , Rk2

2 and Rk3
3 being the maximum feasible rates for linsk-

1, 2 and 3, i.e. P
R

k1
1

R
k2
2

R
k3
3

is required for carrying out the throughput analysis. This probability

depends on the joint CCDF of link SNRs, i.e. F c
γ1,γ2,γ3

(y1, y2, y3). In this subsection, we evaluate

the joint probability of rate-triplet P
R

k1
1

R
k2
2

R
k3
3

for scheme-1 and scheme-2. We first state the

necessary statistics required for the formulating the joint probability of both the schemes.

Lemma 5: The expressions for CCDF and PDF of instantaeous SNR of link-2, i.e., F c
γ2(y2),

fγ2(y2) together with the joint CCDF of instantaneous SNRs of link-1 and 3, i.e., F c
γ1,γ3(y1, y3)

are given by:

F c
γ2
(y2) = e

−
y2
λ2

{
1− p2 +

p2
1+

y2
µ2

}
,

fγ2(y2) = 1
λ2
e
−

y2
λ2

{
1− p2 +

p2
1+

y2
µ2

+ p2λ2/µ2(
1+

y2
µ2

)2

}
,

F c
γ1,γ3

(y1, y3) = e
−
(

y1
λ1

+
y3
λ3

){
1− p1 +

p1
1+

y1
µ1

+
y3
µ3

}
.

(34)

Proof: Please see Appendix B.�

Joint Probability of Rate-Triplet for Scheme-1 and Scheme-2: We next formulate the joint

probability of rate triplet for scheme-1 and scheme-2. As mentioned earlier, the elements of

the index set {k1, k2, k3} can take any value independently in scheme-1 due to the mutual

independence of indicator functions (6) and (7), which leads to the cubic rate constellations.

Lemma 6: The joint probability of rate triplet Rk1
1 Rk2

2 Rk3
3 in scheme-1 is expressed as follows:

P
R

k1
1

R
k2
2

R
k3
3

=
∑

j1∈{0,1}

∑
j2∈{0,1}

∑
j3∈{0,1}

(−1)j1+j2+j3F c
γ1,γ2,γ3

(γj1+k1
1 , γj2+k2

2 , γj3+k3
3 ), (35)

where F c
γ1,γ2,γ3(y1, y2, y3) is the joint CCDF of instantaneous SNRs of link 1, 2 and 3, which is

given by (37) for scheme-1.

Proof: Using (6), (7) and (20), we write the joint probability in terms of instantaneous SNR as:

P
R

k1
1

R
k2
2

R
k3
3

= Pr{γk1
1 ≤ γ1 < γk1+1

1 , γk2
2 ≤ γ2 < γk2+1

2 , γk3
3 ≤ γ3 < γk3+1

3 }. (36)

Now, after expanding the above equation using Pr{γki
i ≤ γi < γki+1

i } = F c
γi
(γki

i )− F c
γi
(γ1+ki

i ),

we get (35). Furthermore, it is clear from the Fig. 1 and equation (1), that g1 = g3 is common
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F c
γ1,γ2,γ3(y1, y2, y3)=e

−
(

y1
λ1

+
y2
λ2

+
y3
λ3

)[
1− p1 +

p1
1 + y1

µ1
+ y3

µ3

][
1− p2 +

p2
1 + y2

µ2

]
; In scheme-1.(37)

to both link-1 and link-3, which makes SNRs γ1 and γ3 dependent. Hence, after substituting the

expressions of F c
γ1,γ3

(y1, y3) and F c
γ2
(y2) from (34) in F c

γ1,γ2,γ3
(y1, y2, y3) = F c

γ1,γ3
(y1, y3)F

c
γ2
(y2),

we get (37).�

Substituting (37) in (35), we get the closed form expression of joint probability in scheme-1.

For scheme-2, the elements of a index-set {k1, k2, k3} for which k2 < k3, are restricted (the

probability of occurrence of such events is zero) due to dependence of Ik2u2
on Ik3u3

given by (6)

and (8), , which leads to the prism rate constellations. The probability of occurrence of index

k2 for k2 = k3 increases due to the enhancement of the probability activation/partition region

for γ2 from γk2
2 ≤ γ2 ≤ γk2+1

2 to 0 ≤ γ2 ≤ γk2+1
2 . Hence, it is clear that j2 of γj2+k2

2 in (35) is

not j2 = 0 but j2 = −k2 when k2 = k3, and in sign-flip argument, j2 is replaced by max(j2, 0)

to maintain consistency.

Lemma 7: The joint probability of rate index Rk1
1 Rk2

2 Rk3
3 in scheme-2 is expressed as follows:

P
R

k1
1

R
k2
2

R
k3
3

=
∑

j1∈{0,1}

∑
j2∈I(k2,k3)

∑
j3∈{0,1}

(−1)j1+max(j2,0)+j3F c
γ1,γ2+γ3,γ3(γ

j1+k1
1 , γj2+k2

2 , γj3+k3
3 ),(38)

where j2 takes value over the integer set I(k2, k3), which depends on k2 and k3, and is given

as:

I(k2, k3) =






{φ} if k2 < k3

{−k2, 1} if k2 = k3

{0, 1} if k2 > k3,

(39)

where F c
γ1,γ2,γ3(y1, y2, y3) is the joint CCDF of instantaneous SNRs of links 1, 2 and 3, which is

given by (40) for scheme-2.

Proof: The joint CCDF for scheme-2, i.e. F c
γ1,γ2+γ3,γ3

(y1, y2, y3) is expressed as follows:

F c
γ1,γ2+γ3,γ3

(y1, y2, y3) = Pr{γ1 ≥ y1, γ2 + γ3 ≥ y2, γ3 ≥ y3}

= Pr{γ1 ≥ y1, γ2 ≥ y2 − γ3, γ3 ≥ y3},



23

F c
γ1,γ2,γ3

(y1, y2, y3)=F c
γ1,γ3

(y1, y3)F
c
γ2
(y4)︸ ︷︷ ︸

I

−Fγ2(y2)F
c
γ1,γ3

(y1, y2)︸ ︷︷ ︸
II

+

y4∫

0

F c
γ1,γ3

(y1, y2 − x)fγ2(x)dx

︸ ︷︷ ︸
III

;

where y4 = max((y2 − y3), 0) In scheme-2, (40)

F c
γ1,γ2,γ3

(y1, y2, y3)
PIP
≡

(
1 + y1

µ1
+ y3

µ3

)−1 (
1 + y4

µ2

)−1

−
(
1 + y1

µ1
+ max(y2,y3)

µ3

)−1

×

[
1−

(
1 + y2

µ2

)−1
]

y4
µ2

(1+
y4
µ2

)(1+
y1
µ1

+
y2+µ2

µ3
)
+

µ2
µ3

(1+
y1
µ1

+
y2+µ2

µ3
)2
log

[
(1 +

y4
µ2

µ3
µ2

(1+
y1
µ1

+
y3
µ3

)
)(1 + y4

µ2
)

]
;

where y4 = max((y2 − y3), 0) for PIP case, in scheme-2.

(41)

γ2

γ3

y2

y3

y4 = y2 − y3 γ2

γ3

y2

y3

γ2 + γ3 = y2

y2

y3 > y2
y3 < y2

y2

γ2 + γ3 = y2

II II

III

y4 = 0

I

I

Fig. 4: SNR region of γ2 and γ3 given γ1 ≥ y1

which can be broken in two parts, i.e. y2 > y3 and y2 ≤ y3, as follows:

F c
γ1,γ2+γ3,γ3

(y1, y2, y3) =





Pr{γ1 ≥ y1, γ2 ≥ y2 − γ3, γ3 ≥ y3} if y2 > y3

Pr{γ1 ≥ y1, γ2 ≥ 0, γ3 ≥ y3} if y2 = y3,

0 if y2 < y3.

(42)

When complete adaptive (continuous) rate transmission is used, combined γ2 + γ3 is always

superior to γ3. But, with discrete rate transmission considered here, γ2 + γ3 might not result

in higher rate than γ3. Also, much of the advantage of direct path is captured by rate and

link selection, and as will be shown in the next section, combining offers very little additional

throughput. After defining y4 = max(y2−y3, 0), the resultant CCDF can be broken in two parts.

Fig. 4 indicates the SNR regions of γ2 and γ3 given γ1 ≥ y1 for the two regions i.e. y4 > 0 and

y4 = 0. It is clear from this figure that when y3 > y2, CCDF of both the schemes are the same.

Hence using Fig. 4, the CCDF of link SNRs with scheme-2 is given by (40).�
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After substituting the expressions for F c
γ1,γ3(y1, y3) and F c

γ2(y2) from (34) in (40), we expand

the expression. The integral in (40) can be expressed in closed form, but is omitted due to

paucity of space. We however present the closed-form expression for PIP case in (41) (when

λ1, λ2, λ3 → ∞ and p1 = p2 = 1).

V. NUMERICAL EXAMPLE AND SIMULATIONS

In this section, we evaluate the throughput performance by simulation, and compare the same

with the derived analytical expressions.

We first show using a numerical example that scheme-2 is beneficial only when link-2 is

weak. Table-III lists the probabilities of selection of various modes for single equal rate at the

source and relay. The rates are set as R1
1 = R1

2 = 2 in the PIP regime where γp = −5 dB.

The normalized distances used are d1 = d2 = 1, d3 = 2 and d1p = 3. Now for comparison

purpose, we assume the primary is relatively close to relay i.e. d2p = 1.5 in the first scenario

than in the second scenario, in which d2p = 3.0. It is clear from Table-III that when scheme-2

Table III: Joint Probabilities associated with domain sets for equal single rate

R1
1 = R2

2 = 2, γp = −5 dB, d1 = d2 = 1, d3 = 2, d1p = 3, and d2p = 1.5.

αw Scheme U
1

U
2

U
3

U
1̃

U
2̃

U
3̃

U
Ñ

U
N τt(αw)/2

α0 1 0 0.1935 0.1935 0.0689 0 0 0 0.5440 0.4559

α0 2 0 0.2689 0 0.2624 0 0 0 0.4687 0.5313

α1 1 0.3686 0.0624 0.2624 0 0 0.1311 0 0.1754 0.5435

α1 2 0.3105 0.0797 0.2624 0 0 0.1892 0 0.1582 0.5521

α2 1 0.4997 0 0.0221 0 0.2403 0 0 0.2379 0.7621

α2 2 0.4997 0 0.0221 0 0.2403 0 0 0.2379 0.7621

R1
1 = R2

2 = 2, γp = −5 dB, d1 = d2 = 1, d3 = 2, d1p = 3, and d2p = 3.

αw Scheme U
1

U
2

U
3

U
1̃

U
2̃

U
3̃

U
Ñ

U
N τt(αw)/2

α0 1 0 0.5458 0.0682 0.1942 0 0 0 0.1918 0.8082

α0 2 0 0.5936 0 0.2624 0 0 0 0.1440 0.8560

α1 1 0.1299 0.1760 0.2624 0 0 0.3698 0 0.0618 0.6003

α1 2 0.0939 0.1878 0.2624 0 0 0.4058 0 0.0501 0.6062

α2 1 0.4997 0 0.0221 0 0.2403 0 0 0.2379 0.7621

α2 2 0.4997 0 0.0221 0 0.2403 0 0 0.2379 0.7621

is used, the probability of silence intervals (mode UN) decreases for α0 and α1. Also, the direct

path is not affected by scheme-2. Since according to stability condition R2
2(α0) < R1

1(α1) for

both the schemes, the buffer is stable for α0, which is also clear by looking at the minimum of

τt(αw). It is clear from the table that as αw decreases, the system has fewer silent intervals with



25

scheme-2 as compared to scheme-1. Hence, the advantage of scheme-2 will be more pronounced

when link-2 is heavily attenuated. The additional advantage due to combining is minimal for

larger value of αw in CRN, and most throughput gains are attained due to link and rate selection

itself. When link-2 is not heavily attenuated, there is very little gain in throughput with use of

scheme-2 as the buffer already underflows for lower αw.

Simulation: For Fig. 5, 6 and 7, R1
1 = R2

1 = S = 1 (integer S), we set distances d1 = d2 =

1, d3 = 2.

Fig. 5 and Fig. 6 compare the performance of scheme-1 and 2 in PIP case when γp = −5

dB. Fig. 5 depicts the system throughput for different combination of d1p and d2p, whereas Fig.

6 depicts the buffered and direct throughput related to 5. It is observed in Fig. 5 that system

throughput is not always a differentiable function of the rate calibration factor S. This is because

of the switch between different regions that arises due to discrete rates. It is clear from the Fig.

5 that scheme-2 does not always result in substantially larger throughput than scheme-1. More

insight is obtained from the Fig. 6, where it is observed that when source is close to primary,

direct as well as buffered throughputs are small, and hence there is little difference between

performance of scheme-1 and scheme-2. On the other hand, when link-2 is weak, scheme-2

results in much better performance than scheme-1. The difference between the two schemes is

higher for larger S, which is evident from Fig. 5. It was shown in Fig. 5 and 6 that the derived

expressions are accurate, and perfectly match with the simulation results. Extensive computer

simulations have shown that the derived expressions are accurate for all system parameters. To

ensure clarity, we omit the simulation plots in subsequent figures.

Fig. 7 shows the throughput vs γp in both PTP and PIP regimes with d2p = drp = 2 for various

γmax when R1
1 = R1

2 = 1. The throughput is plotted for peak SNR γmax of 30, 10.6 and 0 dB.

The throughput for the case when the direct path is shadowed is also plotted for γmax = 10.6 dB.

It is clear from these plots that the direct path is almost always picked in high-SNR scenarios.

In other scenarios, the role of relay and its buffer becomes apparent. In other words, under fixed

statistics and SNR, the direct path is picked for lower rates, which minimises the usage of buffer,

whereas the relayed path is used more often at higher rates.

For Fig. 8, 9 and 10, we set symmetric distances d1 = d2 = 1, d3 = 2, d1p = d2p = 3. Fig. 8

and Fig. 9 depict the throughput performace versus γp in scheme-1 assuming discrete rates with

S = 1 and S = 1.75. It is apparent from these figures that in high-SNR (low-SNR) scenario, the
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throughput is mainly due to selection of the largest (smallest) rate. In the medium-SNR regime,

the contribution of all rates is evident. Adding more discrete rates is not going to increase the

throughput at low and medium SNRs.

Fig. 10 depicts the throughput performace versus S of scheme-1 and 2 assuming discrete

rates in the PIP regime, when γp = −5 dB. The importance of using discrete rates is apparent

at medium and high SNRs. The contribution of scheme-2 is minimal as link-2 is not weak.

CONCLUSION

In this paper, we presented analysis of performance of a buffered DF relay based three-node

underlay cooperative cognitive relay network with a direct path. We assumed use of multiple

rates at the source and the relay. We performed joint link and rate selection. It was shown that

combining the signal from the source and the relay does not improve performance except when
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the second hop is weak. Comprehensive analysis was presented that brought insights on buffer

stability and throughput.

APPENDIX A

PROOF OF LEMMA-3

As already discussed, we consider three primary cases: case-1 when link-2 is weak, case-2

when link-1 is weak, and case-3 when neither link-1 nor link-2 is weak. First we consider case-3.

We also consider the general case when U 1̃(αw),U
2̃(αw),U

3̃(αw) and U Ñ(αw) are not empty

domain-sets. For z ∈ {1...W − 1}, it is easy to re-write τ1(αz, 1, P
2̃
1 , P

3̃
1 ) and τ2(αz, 1, P

1̃
2 , P

3̃
2 )

from (26) in terms of τ1(αz, 1, P
2̃
1 , 1) and τ2(αz, 1, P

1̃
2 , 0) as follows:

τ1(αz, 1, P
2̃
1 , P

3̃
1 ) = τ1(αz, 1, P

2̃
1 , 1)− P 3̃

2 (αz)R
3̃
1(αz),

τ2(αz, 1, P
1̃
2 , P

3̃
2 ) = τ2(αz, 1, P

1̃
2 , 0) + P 3̃

2 (αz)R
3̃
2(αz).

(43)

Now after equating the inflow rate to that of outflow, i.e. τ1(αz, 1, P
2̃
1 , P

3̃
1 ) = τ2(αz, 1, P

1̃
2 , P

3̃
2 ),

and solving for P 3̃
1 (αz) or P 3̃

2 (αz), we get:

P 3̃
2 (αz) =

τ1(αz, 1, P
2̃
1 , 1)− τ2(αz, 1, P

1̃
2 , 0)

R3̃
1(αz) +R3̃

2(αz)
, P 3̃

1 (αz) =
τ2(αz, 1, P

1̃
2 , 1)− τ1(αz, 1, P

2̃
1 , 0)

R3̃
1(αz) +R3̃

2(αz)
. (44)

After substituting (44) in (43), we get:

τ1(αz, 1, P
2̃
1 , P

3̃
1 ) = τ2(αz, 1, P

1̃
2 , P

3̃
2 ) = αzτ1(αz, P

2̃
1 , 1) + (1− αz)τ2(αz, P

1̃
2 , 0),

τt(αz) = αzτ1(αz, P
2̃
1 , 1) + (1− αz)τ2(αz, P

1̃
2 , 0) + τ3(αz, P

2̃
1 , P

1̃
2 ).

(45)

After substituting the values of τ1(αz, P
2̃
1 , 1), τ2(αz, P

1̃
2 , 0) and τ3(αz, P

2̃
1 , P

1̃
2 ) from (26) in (45)

and some manipulations, we get the expression of link-rate τi for i ∈ {1, 2, 3} as follows:

τ1(αz, 1, P
2̃
1 , P

3̃
1 ) = αzR

{1,2̃,3̃,Ñ}
1 (αz) + (1− αz)R

2
2(αz)− αzP

2̃

1R
{2̃,Ñ}
1 (αz) + (1− αz)P

1̃
2R

{1̃,Ñ}
2 ,

τ2(αz, 1, P
1̃
2 , P

3̃
2 ) = αzR

1
1(αz) + (1− αz)R

{2,1̃,3̃,Ñ}
2 (αz) + αzP

2̃
1R

{2̃,Ñ}
1 (αz)− (1− αz)P

1̃

2R
{1̃,Ñ}
2 ,

τ3(αz, P
2̃
1 , P

1̃
2 ) = R{3,1̃}

3 (αz) + αzP
2̃

1R
{2̃,Ñ}
1 (αz)− (1− αz)P

1̃
2R

{1̃,Ñ}
2 (αz),

= R{3,2̃}
3 (αz)− αzP

2̃
1R

{2̃,Ñ}
1 (αz) + (1− αz)P

1̃

2R
{1̃,Ñ}
2 (αz).
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Substituting the expressions of link-rates τi given above in τt = τ1 + τ3 = τ2 + τ3, we get the

expression of optimum system throughput as follows:

τt(αz) = αzR
{1,2̃,Ñ,3̃}
1 (αz) + (1− αz)R

2
2(αz) +R{3,1̃}

3 (αz),

= αzR
1
1(αz) + (1− αz)R

{2,1̃,Ñ,3̃}
2 (αz) +R{3,2̃}

3 (αz). (46)

Further, in order to prove the minimum constraint, we write first the expression of τt(αz+1),

τt(αz), and τt(αz−1) from (46) as follows:

τt(αz+1) = αz+1R
1
1(αz+1) + (1− αz+1)R

{2,1̃,Ñ,3̃}
2 (αz+1) +R{3,2̃}

3 (αz+1),

τt(αz) = αzR
{1,2̃,Ñ,3̃}
1 (αz) + (1− αz)R2

2(αz) +R{3,1̃}
3 (αz),

= αzR1
1(αz) + (1− αz)R

{2,1̃,Ñ,3̃}
2 (αz) +R{3,2̃}

3 (αz),

τt(αz−1) = αz−1R
{1,2̃,Ñ,3̃}
1 (αz−1) + (1− αz−1)R2

2(αz−1) +R{3,1̃}
3 (αz−1).

(47)

After substracting τt(αz) from τt(αz+1) and τt(αz−1) using (47) and applying the rate continuity

property from (25), we get:

τt(αz+1)− τt(αz) = (αz+1 − αz)(R1
1(αz+1)−R2

2(αz)),

τt(αz−1)− τt(αz) = (αz−1 − αz)(R1
1(αz)−R2

2(αz−1)).
(48)

Now using the buffer-stability properties given in (27), we conclude that for αz to be optimum for

buffer-stability, we require that R1
1(αz+1) ≥ R2

2(αz) and R1
1(αz) ≤ R2

2(αz−1), which concludes

the proof for z ∈ {1, 2, ...,W − 1} since τt(αz+1) ≥ τt(αz) and τt(αz−1) ≥ τt(αz).

Now, it is evident that the expression (46) is not valid for case-1 and 2 as the buffer cannot be

balanced with z ∈ {1, 2, ...,W − 1}. However, as described by (29) for case-1 and using similar

arguments for case-2, the system throughput can be obtained by substituting respectively z = 0

and z = W in the first and second equation of (46) as follows:

τt(α0) = α0R
{1,2̃,Ñ,3̃}
1 (α0) + (1− α0)R

2
2(α0) +R{3,1̃}

3 (α0) = R2
2(α0) +R{3,1̃}

3 (α0),

τt(αW ) = αWR1
1(αW ) + (1− αW )R{2,1̃,Ñ,3̃}

2 (αW ) +R{3,2̃}
3 (αW ) = R1

1(αW ) +R{3,2̃}
3 (αW ).(49)

In order to prove the minimum constraint, we substitute respectively z = W − 1 and z = 1 in
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the first and second equation of (46) as follows:

τt(αW−1) = αW−1R
{1,2̃,Ñ,3̃}
1 (αW−1) + (1− αW−1)R

2
2(αW−1) +R{3,1̃}

3 (αW−1),

τt(α1) = α1R
1
1(α1) + (1− α1)R

{2,1̃,Ñ,3̃}
2 (α1) +R{3,2̃}

3 (α1). (50)

After substracting τt(α0) from τt(α1) and τt(αW−1) from τt(αW ) using (49) and (50) and applying

the rate continuity property from (25), we get:

τt(α1)− τt(α0) = α1(R1
1(α1)−R2

2(α0)),

τt(αW−1)− τt(αW ) = (αW−1 − αW )(R1
1(αW )−R2

2(αW−1)).

It is evident using (48) and (51) that τt(α0) and τt(αW ) are indeed minimum for case-1 and

case-2 respectively.�

APPENDIX B

PROOF OF LEMMA-5

In this appendix, we derive the expression for CCDFs F c
γ1,γ3

(y1, y3) and F c
γ2
(y2). The expres-

sion for fγ2(y2) can be found by differentiating F c
γ2
(y2). It is obvious from (1) that F c

γ2
(y2) can

be expressed as follows:

F c
γ2
(y2) = Pr

{
min

(
γmax,

γp
|g2|2

)
|h2|2 ≥ y2

}
.

In order to evaluate the F c
γ2
(y2), we use the CCDF of the inverse channel. Let Gi be the inverse of

transmit SNR, which is defined as Gi = min
(
γmax,

γp
|gi|2

)−1

= max
(

1
γmax

, |gi|
2

γp

)
for i ∈ {1, 2, 3}.

We first express F c
γ2
(y2) in terms of CCDF of G2, i.e. F c

G2
(x), as follows:

F c
γ2
(y2) = EG2

[Pr{|h2|2 ≥ y2G2}] = EG2

[
exp

(
−y2G2

Ω2

)]
=

∞∫

0

exp(−
y2x

Ω2
)fG2

(x)dx,

= 1− y2
Ω2

∞∫

0

exp(−
y2x

Ω2
)F c

G2
(x)dx,

(51)

where the last line is obtained after performing integration by parts. Now we evaluate F c
Gi
(x)

as follows:

F c
Gi
(g) = Pr{Gi ≥ g} = Pr

{
max

(
γp

γmax
, |gi|2

)
≥ gγp

}
,

= Pr
{

1
γmax

≥ g, |gi|2 ≤
γp

γmax

}
+ Pr

{
|g2|2 ≥ gγp, |gi|2 ≥

γp
γmax

}
,
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where the last line is obtained after expanding the max argument. After expanding the second

term into 1
γmax

≥ g and 1
γmax

≤ g and some simplification, we get:

F c
Gi
(g) = Pr

{
1

γmax
≥ g

}
+ Pr

{
1

γmax
≤ g, |gi|

2 ≥ gγp

}
,

= u
(

1
γmax

− g
)
+ u

(
g − 1

γmax

)
exp

(
−gγp

Ωip

)
.

Substituting the value of F c
G2
(x) in (51), we get:

F c
γ2(y2) = 1− y2

Ω2

∞∫
0

exp(−y2x
Ω2

)F c
G2
(x)dx,

= 1− y2
Ω2

1/γmax∫
0

exp(−y2x
Ω2

)dx− y2
Ω2

∞∫
1/γmax

exp
(
−
(

y2
Ω2

+ γp
Ω2p

)
x
)
dx,

= exp
(
− y2

λ2

) [
1− p2

y2
y2+µ2

]
= exp

(
− y2

λ2

)[
1− p2 + p2

1
1+

y2
µ2

]
.

In a similar way, the expression for F c
γ1,γ3

(y1, y3) can also be derived.�

REFERENCES

[1] Y. Xing, C. N. Mathur, M. A. Haleem, R. Chandramouli, and K. P. Subbalakshmi, “Dynamic spectrum access with QoS

and interference temperature constraints,” IEEE Trans. Mobile Comput., vol. 6, no. 4, pp. 423–433, Apr. 2007.

[2] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information

theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[3] Z. Ding, Y. Gong, T. Ratnarajah, and C. F. N. Cowan, “On the performance of opportunistic cooperative wireless networks,”

IEEE Trans. Commun., vol. 56, no. 8, pp. 1236–1240, August 2008.

[4] F. Hu, B. Chen, and K. Zhu, “Full spectrum sharing in cognitive radio networks toward 5G: A survey,” IEEE Access,

vol. 6, pp. 15 754–15 776, 2018.

[5] A. James, A. S. Madhukumar, S. D. Tio, and E. Kurniawan, “Throughput optimization in cooperative communications

based on incremental relaying,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 317–323, Jan 2011.

[6] T. Issariyakul and E. Hossain, “Channel-quality-based opportunistic scheduling with arq in multi-rate wireless networks:

modeling and analysis,” IEEE Trans. Wireless Commun., vol. 5, no. 4, pp. 796–806, April 2006.

[7] N. Zlatanov, A. Ikhlef, T. Islam, and R. Schober, “Buffer-aided cooperative communications: opportunities and challenges,”

IEEE Commun. Mag., vol. 52, no. 4, pp. 146–153, April 2014.

[8] N. Nomikos, T. Charalambous, I. Krikidis, D. N. Skoutas, D. Vouyioukas, M. Johansson, and C. Skianis, “A survey on

buffer-aided relay selection,” IEEE Commun. Surv. Tut., vol. 18, no. 2, pp. 1073–1097, 2016.

[9] K. Teh and S. Luo, “Buffer state based relay selection for buffer-aided cooperative relaying systems,” IEEE Trans. Wireless

Commun., vol. 14, no. 10, pp. 5430–5439, 2015.

[10] W. Raza, N. Javaid, H. Nasir, N. Alrajeh, and N. Guizani, “Buffer-aided relay selection with equal-weight links in

cooperative wireless networks,” IEEE Commun. Lett., vol. 22, no. 1, pp. 133–136, Jan 2018.

[11] Z. Tian, Y. Gong, G. Chen, Z. Chen, and J. Chambers, “Buffer-aided link selection with network coding in multihop

networks,” IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7195–7206, Sept 2016.



31

[12] Y. Yang, K. Wang, W. Chen, M. Zhou, and G. Mao, “Energy-efficient scheduling for buffer-aided relaying with opportunistic

spectral access (invited paper),” in 2017 9th International Conference on Wireless Communications and Signal Processing

(WCSP), Oct 2017, pp. 1–6.

[13] V. Jamali, N. Zlatanov, and R. Schober, “Bidirectional buffer-aided relay networks with fixed rate transmissionpart i:

Delay-unconstrained case,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1323–1338, March 2015.

[14] ——, “Bidirectional buffer-aided relay networks with fixed rate transmissionpart ii: Delay-constrained case,” IEEE Trans.

Wireless Commun., vol. 14, no. 3, pp. 1339–1355, March 2015.

[15] X. Tang, Y. Cai, Y. Huang, T. Q. Duong, W. Yang, and W. Yang, “Secrecy outage analysis of buffer-aided cooperative

mimo relaying systems,” IEEE Trans Veh. Technol., vol. 67, no. 3, pp. 2035–2048, March 2018.

[16] Y. Liu, Q. Chen, and X. Tang, “Adaptive buffer-aided wireless powered relay communication with energy storage,” IEEE

Trans. Green Commun. Netw., vol. 2, no. 2, pp. 432–445, June 2018.

[17] X. Liao, Y. Zhang, Z. Wu, Y. Shen, X. Jiang, and H. Inamura, “On security-delay trade-off in two-hop wireless networks

with buffer-aided relay selection,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1893–1906, March 2018.

[18] D. Wang, P. Ren, and J. Cheng, “Cooperative secure communication in two-hop buffer-aided networks,” IEEE Trans.

Commun., vol. 66, no. 3, pp. 972–985, March 2018.

[19] Q. Zhang, Z. Liang, Q. Li, and J. Qin, “Buffer-aided non-orthogonal multiple access relaying systems in rayleigh fading

channels,” IEEE Trans. Commun., vol. 65, no. 1, pp. 95–106, Jan 2017.

[20] H. Cao, J. Cai, S. Huang, and Y. Lu, “Online adaptive transmission strategy for buffer-aided cooperative noma systems,”

IEEE Trans. Mobile Comput., pp. 1–1, 2018.

[21] M. M. Razlighi and N. Zlatanov, “Buffer-aided relaying for the two-hop full-duplex relay channel with self-interference,”

IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 477–491, Jan 2018.

[22] N. Nomikos, T. Charalambous, D. Vouyioukas, R. Wichman, and G. K. Karagiannidis, “Power adaptation in buffer-aided

full-duplex relay networks with statistical csi,” IEEE Trans. Veh. Technol., pp. 1–1, 2018.

[23] M. Shaqfeh, A. Zafar, H. Alnuweiri, and M. Alouini, “Overlay cognitive radios with channel-aware adaptive link selection

and buffer-aided relaying,” IEEE Trans. Commun., vol. PP, no. 99, pp. 1–1, 2015.

[24] K. Kulkarni and A. Banerjee, “On optimal spectrum access of cognitive relay with finite packet buffer,” IEEE Trans. Veh.

Technol., vol. 66, no. 8, pp. 7584–7588, Aug 2017.

[25] M. Darabi, V. Jamali, B. Maham, and R. Schober, “Adaptive link selection for cognitive buffer-aided relay networks,”

IEEE Commun. Lett., vol. 19, no. 4, pp. 693–696, April 2015.

[26] M. Darabi, N. Namvar, B. Maham, W. Saad, and M. Debbah, “Adaptive mode selection in cognitive buffer-aided full-duplex

relay networks with imperfect self-interference cancellation for power and delay limited cases,” in 2017 IEEE International

Conference on Communications Workshops (ICC Workshops), May 2017, pp. 918–923.

[27] B. Kumar and S. Prakriya, “Performance of adaptive link selection with buffer-aided relays in underlay cognitive networks,”

IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1492–1509, Feb 2018.

[28] N. Zlatanov, R. Schober, and P. Popovski, “Buffer-aided relaying with adaptive link selection,” IEEE J. Sel. Areas in

Commun., vol. 31, no. 8, pp. 1530–1542, August 2013.

[29] N. Zlatanov and R. Schober, “Buffer-aided relaying with adaptive link selection—fixed and mixed rate transmission,” IEEE

Trans. Inf. Theory, vol. 59, no. 5, pp. 2816–2840, May 2013.

[30] W. Wicke, N. Zlatanov, V. Jamali, and R. Schober, “Buffer-aided relaying with discrete transmission rates for the two-hop

half-duplex relay network,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 967–981, Feb 2017.


	I Introduction
	II System Model
	III Implementation of Link Selection
	IV Performance Evaluation
	V Numerical Example and Simulations
	References

