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Abstract

In this paper we consider an un-cooperative spectrum sharing scenario, wherein a radar system is to

be overlaid to a pre-existing wireless communication system. Given the order of magnitude of the trans-

mitted powers in play, we focus on the issue of interference mitigation at the communication receiver. We

explicitly account for the reverberation produced by the (typically high-power) radar transmitter whose

signal hits scattering centers (whether targets or clutter) producing interference onto the communication

receiver, which is assumed to operate in an un-synchronized and un-coordinated scenario. We first show

that receiver design amounts to solving a non-convex problem of joint interference removal and data

demodulation: next, we introduce two algorithms, both exploiting sparsity of a proper representation of

the interference and of the vector containing the errors of the data block. The first algorithm is basically

a relaxed constrained Atomic Norm minimization, while the latter relies on a two-stage processing

structure and is based on alternating minimization. The merits of these algorithms are demonstrated

through extensive simulations: interestingly, the two-stage alternating minimization algorithm turns out

to achieve satisfactory performance with moderate computational complexity.
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Radar/communication co-existence, multi-path, atomic norm, compressed sensing, non-convex, blind

deconvolution, off-grid, sparsity.

I. INTRODUCTION

The ever increasing demand for high data rates in wireless communications has forced co-

existence of communication and radar systems in the same frequency bands [1]: this can be

achieved by either allowing only one system to be equipped by an active properly designed

transmitter - see, e.g. the information embedding strategies [2] to transmit information through a

radar waveform, and the approach in [3], [4], which can somehow be classified as a passive

radar [1], to accomplish sensing functions through communication signals - or considering

architectures with multiple transmitters operating in spectral overlap [5]–[7].

The latter scenario, which is the one considered in this paper, requires proper transceiver

design: the strategies proposed so far range from a geometrical approach, aimed at mitigating

the interference produced by one system on the other through suitable projection operations [8],

[9], to a cognition-based radar waveform design [10]–[12]. A more comprehensive approach

is co-design [13]–[15], wherein the radar waveform(s) and the communication code-book are

jointly designed by minimizing a measure of the mutual interference under certain constraints. A

common point of these strategies is some form of coordination between the two active systems,

and a remarkable degree of prior cognition, to be possibly acquired or updated through the

periodic transmission of pilot signals to handle dynamic scenarios.

In some situations, however, such a cooperation is either un-feasible - due, e.g., to security

reasons - or too costly, whereby the radar and the communication systems should operate with

little or no coordination. Such scenarios have been considered, e.g., in [16], wherein a blind null

space estimation method is proposed as an extension of the results of [17]. A different approach

to handle un-coordinated co-existence is the one proposed in [18], considering full bandwidth

overlap between a pre-existing communication system and multiple overlaid radars: assuming that

the interfering radar waveforms live in the subspace of a known dictionary, the communication

performance is guaranteed by joint interference removal/data demodulation iterative procedures,

leveraging ideas from compressed sensing and atomic norm (AN) minimization techniques. A

major limitation of [18] is that the clutter induced by random scatterers disseminated in the con-

trolled scene and reflecting the radar signal towards the communication receiver is not accounted

for: this is a signal-dependent interference which, if not properly handled, typically produces
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dramatic effects on the radar performance and could totally prevent reliable communication.

Additionally, synchronism between the radar and the communication system is assumed, as well

as prior knowledge of the afore-mentioned dictionary.

The present contribution is aimed at extending the results of [18] by explicitly accounting

for the reverberation produced by a single radar transmitter onto the communication receiver. In

particular, we consider an Orthogonal Frequency Division Multiplexing (OFDM) communication

system co-existing with a short-range radar using a sophisticated waveform: the Pulse Repetition

Interval (PRI) of the radar coincides with the duration of the communication data symbol block,

and a totally un-synchronizated and un-coordinated scenario is considered, nor any assumption

is made on the radar code structure. It is noteworthy that the PRI of the radar coincides

with the duration of the communication data symbol block is possible in practice, as detailed

in the next section. Similar to [18], we focus on the communication receiver performance,

which is justified in the light of several considerations: first, the order of magnitudes of the

powers transmitted by the communication and the radar transmitters is typically very different;

additionally, while the communication transmitter points at the communication receiver whose

location is typically known, whereby its effect on the radar receiver can be mitigated through

beam-forming techniques [19], a search radar employs rather wide and rotating beams, which

produce random and time-varying reverberation onto the communication receiver. To this end,

we propose two different algorithms, both exploiting two types of sparsity: on one hand, indeed,

as scatterers are sparsely distributed in space, the interfering signals hitting the communication

RX are sparse; on the other, an iterative demodulation algorithm should require that the vector

containing the demodulation errors of a data block be itself sparser and sparser as the iterations

go. Since the delays with which the interferers arrive at the communication receiver are con-

tinuous parameters, mere application of compressed sensing theory [20], [21] would produce

unsatisfactory performance [22] in a situation where these signals cannot be sparsely represented

by a finite discrete dictionary [23]–[25]. We consider instead the recently developed mathematical

theory of continuous sparse recovery for super-resolution [26]–[28], and especially of the AN

minimization techniques which are successfully used for continuous frequency recovery, line

spectral estimation and direction-of-arrival estimation [28]–[30]. As an alternative, based on the

fact that the radar code is unknown and the radar interferences impinge on the communication

RX with unknown multiple delays and coupling coefficients, estimating the interfering code and

the multiple delays is inherently linked to solving a blind deconvolution problem [31]–[33],
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Fig. 1. Transmitted radar and communication signals

which is non-convex and ill-posed without further constraints: this motivated us to also explore

the recently developed mathematical theory of blind deconvolution [33]–[35] to improve the

estimation accuracy of the interfering waveform.

The remainder of this paper is organized as follows. In Section II, we present the signal

models of the co-existed radar and communication system and set up the problem. In Section

III, we develop the proposed convex relaxation method using both the AN and the `1-norm. In

Section IV, the proposed two-stage alternating minimization algorithm is developed. Simulation

results are presented in Section V. Finally, in Section VI, we draw conclusions from the results

obtained in this paper.

II. SYSTEM DESCRIPTIONS & PROBLEM FORMULATION

A. Transmitted Signals

We consider an OFDM communication system coexisting with a radar system. Assume that

the OFDM system consists of N = Nd + Np sub-carriers, with Nd data sub-carriers and Np

cyclic prefix (CP) sub-carriers. The duration of an OFDM block is NT , T being the “sub-pulse

duration.” Denote the nc-th normalized data symbol block as bnc(k), k = 0, ..., Nd− 1, such that
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E[bnc(k)bnc(k)∗] = 1 with (·)∗ denoting the complex conjugate operator. Then, the transmitted

baseband OFDM signal is given by

sc(t) =
∞∑

nc=−∞

Nd−1∑
k=0

bnc(k)e
i2πk t

NdT uc(t− ncNT ), (1)

where

uc(t) =

 1, t ∈ [−NpT,NdT ],

0, otherwise.
(2)

As for the radar signal, we assume that the communication and the radar systems are in full

bandwidth overlap, and the PRI equals the duration of data symbols NdT
1. This assumption

implies that, as shown in Fig. 1, the sub-pulse duration of the radar system and that of the

communication system are the same; and at each PRI, a block of Nd data symbols are transmitted.

On the other hand, when the communication receiver processes one OFDM block of Nd symbols,

there is a complete PRI radar signal overlapping therewith after the cyclic shift, regardless of

whether or not the two systems are synchronized.

We assume that the radar transmits a single sophisticated (i.e., with large duration-bandwidth

product) pulse in any given PRI, which consists of L amplitude-modulated sub-pulses. Denoting

by g = [g(0), g(1), ..., g(L − 1)]T ∈ CL×1 the waveform code and by ξ(t) the basic sub-pulse

waveform, the transmitted baseband radar signal is given by

sr(t) =
∞∑

nr=−∞

L−1∑
`=0

g(`)ξ(t− `T − nrNdT ), (3)

where T << PRI is approximately the inverse of the bandwidth and is related to the radar range

resolution. We remind here that the duty cycle δ = LT
PRI � 1 is typically low in order to guarantee

a proper hearing period [39].

1This assumption is possible in practice. For example, according to the December 2017 3GPP first release of the 5G New

Radio standard, the data symbols of the 5G signal have a duration on the order of 10µs, while short-range civilian radars (e.g.,

automotive radar) typically have a PRI in the order of 10µs [36]. In addition, some WLAN systems use OFDM waveform with

a data symbol duration on the order of 1µs [37], while short-range impulse radars for high speed moving targets detection and

through-the-wall radars may have a PRI in the order of 1µs [38], [39].



6

B. Received Signal

We assume that the communication system operates on a block-fading channel whose coher-

ence time is much larger than the OFDM blocklength, whereby the useful component at the

communication receiver is given by

yc(t) = sc(t) ∗ h(t) = sc(t) ∗
Mc∑
m=1

αmδ(t− τ cm), (4)

In the previous equation ∗ denotes the convolution operator, h(t) is the channel impulse response,

Mc is the total number of propagation paths, αm and τ cm are the m-th path’s complex gain and

delay, respectively.

The presence of a co-existing radar system produces additional interference on the communi-

cation receiver. In particular, if we assume that there are Mr scatterers, whether from clutter or

targets, located in as many different range cells, the signal scattered towards the communication

receiver can be modeled as

yr(t) = sr(t) ∗
Mr∑
m=1

cme
j2πfmtδ(t− τR − τ rm), (5)

where, since the radar and communication systems are un-synchronized, 0 ≤ τR ≤ NdT is the

corresponding delay at a reference interval (i.e., for nc = nr = 0), while cm, τ rm and fm denote

the scattering coefficient, the delay and the Doppler shift of the m-th reflector, respectively.

On the receiver side, we assume that the communication receiver processes one OFDM block

of Nd symbols at a time. Since the duration of an OFDM block is usually small, we have

fmNdT � 1, then the phase rotation due to the Doppler shift over a block duration can

be approximated as constant [40], and is thus not measurable and uninfluential, hence it is

ignored from now on. The CP is removed assuming that its length is no less than the maximum

communication multi-path delay. Let nc = 0 with no loss of generality and thus the subscript nc

is also omitted. Focusing the attention on the interval [0, NdT ], we thus have, for the received

signal, the model:

r(t) =
∞∑

nr=−∞

Mr∑
m=1

cm

L−1∑
`=0

g(`)ξ(t− `T − nrNdT − τR − τ rm)

+
Mc∑
m=1

αm

Nd−1∑
k=0

b(k)e
i2πk

t−τcm
NdT + w̃(t), t ∈ [0, NdT ], (6)

where w̃(t) is a white, complex circularly symmetric Gaussian noise process.
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C. Problem Formulation

The communication receiver is assumed to undertake the standard OFDM operations on each

OFDM packet of duration NdT . In particular, we focus on the first packet occupying the interval

[0, NdT ] [41]. Let

∆m ,

⌊
−τR − τ rm
NdT

⌋
, (7)

τm ,
−τR − τ rm
NdT

−∆m ∈ [0, 1), (8)

where b·c is the floor function. We have r̄(k) for k = 0, ..., Nd − 1,

r̄(k) =
1

NdT

∫ NdT

0

r(t)e
−i2πkt
NdT dt

=
Mr∑
m=1

cm

L−1∑
`=0

g(`)
1

NdT

∫ NdT

0

∞∑
nr=−∞

ξ(t− `T − nrNdT + τmNdT + ∆mNdT )e
−i2πkt
NdT dt

+
Mc∑
m=1

αm

Nd−1∑
n=0

b(n)
1

NdT

∫ NdT

0

e
i2πn

t−τcm
NdT e

−i2πkt
NdT dt+ w(k)

=
Mr∑
m=1

cme
i2πkτm

L−1∑
`=0

g(`)e
−i2πk`
Nd

1

NdT

∫ NdT−τmNdT−`T

−τmNdT−`T

∞∑
nr=−∞

ξ(t− (nr −∆m)NdT )e
−i2πkt
NdT dt︸ ︷︷ ︸

ξ̄(ω)|ω= 2πk
NdT

+
Mc∑
m=1

αme
−i2πk τcm

NdT

Nd−1∑
n=0

b(n)
1

NdT

∫ NdT

0

e
i2π(n−k) t

NdT dt︸ ︷︷ ︸
NdT ·δ(n−k)

+ w(k) (9)

=
Mr∑
m=1

cme
i2πkτm

L−1∑
`=0

g(`)e
−i2πk`
Nd︸ ︷︷ ︸

ḡ(k)

ξ̄

(
2πk

NdT

)
+

Mc∑
m=1

αme
−i2πk τcm

NdT︸ ︷︷ ︸
H(k)

b(k) + w(k), (10)

where we note that in (9)
∑∞

nr=−∞ ξ(t− (nr −∆m)NdT ) is a periodic signal with period NdT ,

and each period is composed of ξ(t), t ∈ [0, T ]; therefore the first integral is its Fourier transform,

i.e.,

ξ̄(ω) =
1

NdT

∫ NdT

0

ξ(t)e−iωtdt (11)

evaluated at ω = 2πk
NdT

. In (10),

w(k) ,
1

NdT

∫ NdT

0

w̃(t)e
−i2πkt
NdT dt ∼ CN (0, σ2

w); (12)

ḡ = [ḡ(0), ḡ(1), ..., ḡ(Nd − 1)]T = FLg ∈ CNd×1 (13)
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is the discrete Fourier transform (DFT) of g, with FL denoting the first L columns of the

Nd-points DFT matrix F ; and

H(k) =

∫ NdT

0

h(t)e
−i2πkt
NdT dt =

Mc∑
m=1

αme
−i2πk τcm

NdT (14)

is the channel transfer function at frequency k
NdT

, which can be estimated using pilot signals [42].

Let us now define

ξ̄ = [ξ̄(0), ξ̄(
2π

NdT
), ..., ξ̄(

2π(Nd − 1)

NdT
)]T ∈ CNd×1 (15)

and

H = diag([H(0), H(1), ..., H(Nd − 1)]T ) ∈ CNd×Nd , (16)

i.e., an Nd×Nd diagonal matrix with elements of [H(0), H(1), ..., H(Nd−1)]T on the diagonal.

We also introduce the vectors

r̄ = [r̄(0), r̄(1), ..., r̄(Nd − 1)]T ∈ CNd×1, (17)

b = [b(0), b(1), ..., b(Nd − 1)]T ∈ CNd×1, (18)

w = [w(0), w(1), ..., w(Nd − 1)]T ∈ CNd×1 (19)

and

ντ =
Mr∑
m=1

cma(τm) ∈ CNd×1, (20)

with

a(τ) = [1, ei2πτ , ..., ei2π(Nd−1)τ ]T . (21)

Then, (10) can be given the following compact vector form

r̄ = Hb+ ξ̄ � (FLg)� ντ +w, (22)

where � denotes the pointwise product. Assume that an estimate of the data symbols, b̂, is

available by directly performing demodulation using r̄. We subtract the demodulated data from

r̄, to obtain

z = r̄ −Hb̂ = Hv + ξ̄ � (FLg)� ντ +w, (23)

where

v = b− b̂ ∈ CNd×1. (24)
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Our main problem is to estimate g, ντ and v from the noisy measurements z. To this end, we

first notice that, in a realistic scenario, the number of scatterers is much lower than the number

of OFDM symbols in a packet, i.e. Mr � Nd in (20) ; secondly, we want the demodulation error

rate to be low, i.e. we want to force the vector v to have a small number of non-zero entries:

both are sparsity conditions that we can exploit. Notice however that the delays τm in (20) take

on continuous values, whereby using traditional compressed sensing techniques would entail

heavy losses due to the off-grid problem: as a consequence, we resort here to Atomic Norm

(AN) minimization instead [28], [43]. Conversely, the second type of sparsity simply results in

a suitable constraint in the optimization problem. To be more precise, define the set of atoms

A = {a(τ) : τ ∈ [0, 1)}. Then the `0-atomic norm [44] associated to ντ is given by

‖ντ‖A,0 = inf
cm∈C,τm∈[0,1)

{
M : ντ =

M∑
m=1

cma(τm)

}
. (25)

Our problem can be formulated as

(ĝ, ν̂τ , v̂) = arg min
g∈CL×1,ντ∈CNd×1

v∈CNd×1

‖ντ‖A,0 + λ‖v‖0, (26)

s.t.
∥∥z −Hv − ξ̄ � (FLg)� ντ

∥∥2

2
≤ ε, ‖g‖2 = 1,

where λ > 0 is a weight factor, ε > 0 is the error tolerance and ‖v‖0 � Nd denotes the `0-norm

of v. For the case that the radar signal is strong, we can perform iterative demodulation and

radar interference estimation: in each iteration, after solving (26), we make use of v̂ and the

current b̂ to obtain a refined demodulation

b̃ = arg min
b∈BNd

‖b− b̂− v̂‖2, (27)

where B is the modulation symbol constellation set. Then we update z in (23) by setting b̂← b̃

and solve (26) again.

Note that in (26) the objective function is non-convex since it involves the `0-atomic norm

and the `0-norm. The first constraint is also non-convex, because (FLg)� ντ is the DFT of the

convolution g~(F−1ντ ) with ~ the circular convolution operator, and it is known that the blind

deconvolution problem is non-convex [31]–[33].
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III. THE CONVEX RELAXATION METHOD

Define D = diag(ξ̄)FL ∈ CNd×L, and let dHk ∈ C1×L be the k-th row of D. Then, (23) can

be rewritten as

z(k) = eTk (Hv) + dHk ge
T
k ντ + w(k) = eHk (Hv) + dHk (gνTτ )ek + w(k)

= 〈Hv, ek〉+
〈
gνTτ ,dke

H
k

〉
+ w(k), k = 0, ..., Nd − 1, (28)

where z(k) denotes the k-th element of z, ek is the k-th column of the Nd×Nd identity matrix

and 〈X,Y 〉 = Tr(Y HX). Notice that the original problem in (26) entails estimating g and ντ

separately. In the new formulation, we are interested in estimating gνTτ = g
∑Mr

m=1 cma(τm)T

instead. In particular, we relax (28) by introducing

X =
Mr∑
m=1

cmgma(τm)T ∈ CL×Nd , (29)

i.e., a mixture of atoms from the atom set

Ã =
{
ga(τ)T : τ ∈ [0, 1), ‖g‖2 = 1, g ∈ CL×1

}
. (30)

as the quantity of interest. Further, we replace the `0-atomic norm and the `0-norm in the objective

function of (26) by the `1-atomic norm [43] and the `1-norm, respectively. The `1-atomic norm

seeks the tightest convex relaxation of enforcing sparsity in the atom set Ã, and is defined as

‖X‖Ã,1 = inf
{
η > 0 : X ∈ ηconv(Ã)

}
= inf

cm∈C,τm∈[0,1)
‖gm‖2=1

{∑
m

|cm| : X =
∑
m

cmgma(τm)T

}
,

(31)

where conv(·) denotes the convex hull of the input atom set. It is known that (31) has the

following equivalent form [43]:

‖X‖Ã,1 = inf
u∈CNd×1,T∈CL×L


1

2Nd
Tr(Toep(u)) + 1

2
Tr(T ),

s.t.

 Toep(u) XH

X T

 � 0

 , (32)

where u ∈ CNd×1 is a complex vector whose first entry is real, Toep(u) denotes the Nd ×Nd

Hermitian Toeplitz matrix whose first column is u, and T is a Hermitian L×L matrix. Equations

(31) and (32) are related through the relationship

Toep(u) =
∑
m

|cm|a(τm)a(τm)H , (33)

T =
∑
m

|cm|gmgHm . (34)
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Finally, we can relax the original problem in (26) to the following semi-definite programming

(SDP) [18], [33], [45]

(X̂, v̂) = arg min
X∈CL×Nd ,T∈CL×L
u∈CNd×1,v∈CNd×1

Tr (Toep(u))

2Nd

+
Tr(T )

2
+ λ̄‖v‖1, (35)

s.t.
Nd−1∑
k=0

∣∣z(k)− 〈Hv, ek〉 −
〈
X,dke

H
k

〉∣∣2 ≤ ε, Toep(u) XH

X T

 � 0,

where λ̄ > 0 is a weight factor. Since problem (35) is convex, it can be solved with standard

convex solvers, e.g., CVX [46].

Once an estimate X̂ ofX is obtained, estimates of the delays {τm} and of the radar code g can

be obtained by either solving the dual problem of (35) as in [18], [33], or using the MUltiple

SIgnal Classifier (MUSIC) method as in [47]. Note that by relaxing the original problem of

estimating gνTτ = g
∑Mr

m=1 cma(τm)T to estimating X =
∑Mr

m=1 cmgma(τm)T , we may obtain

spurious scatterers in solving the relaxed problem. As an example, suppose that the true code is

g = [ 1√
2
, 1√

2
, 0, ..., 0]T ∈ CL×1, and there are two scatters with

τ1 = τ ∈ [ 1
Nd
, 1− 1

Nd
), c1 =

√
2,

τ2 = τ − 1
Nd
, c2 =

√
2.

(36)

Then the following is a spurious solution to the relaxed problem:

g1 = [
1√
3
,

1√
3
,

1√
3
, 0, ..., 0]T ∈ CL×1,

g2 = [0, 0, 1, 0, ..., 0]T ∈ CL×1, (37)

τ ′1 = τ, c′1 =
√

3, τ ′2 = τ +
1

Nd

, c′2 = 1,

in the sense that we have〈
gνTτ ,dke

H
k

〉
= ξ̄(k)

(
ei2πkτ + 2e

i2πk(τ− 1
Nd

)
+ e

i2πk(τ− 2
Nd

)
)

=
〈
X,dke

H
k

〉
, k = 0, ..., Nd − 1, (38)

where

ντ = c1a(τ1) + c2a(τ2),

X = c′1g
′
1a(τ ′1)T + c′2g

′
2a(τ ′2)T . (39)
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IV. A TWO-STAGE ALTERNATING MINIMIZATION ALGORITHM

Here we propose a new method to solve the non-convex problem in (26). The basic idea

is to alternatively solve with respect to (w.r.t) g and (ντ ,v); and in solving w.r.t. g, we use

the conjugate gradient search on Riemannian manifold; in solving w.r.t. (ντ ,v), we take the

matching-pursuit and greedy demixing approach. Moreover, we solve the problem in (26) twice

in a two-stage fashion: the first stage obtains a local optimum and the second stage makes use of

the first-stage solution in forming the initial condition and solves a higher dimensional problem

that leads to an approximate global optimum.

A. Stage 1 - Obtaining Local Optimum

We first obtain a locally optimal solution to the non-convex problem (26) by iteratively solving

w.r.t. g and (ντ ,v) as follows:

S-1: Let ĝ be the estimate - available from the previous iteration - of g, and define

Φ , diag(ξ̄ � (FLĝ)). (40)

Then the new estimates (ν̂τ , v̂) can be obtained by solving the problem:

(ν̂τ , v̂) = arg min
ντ∈CNd×1

v∈CNd×1

‖ντ‖A,0 + λ‖v‖0, s.t. ‖z −Hv −Φντ‖2
2 ≤ ε. (41)

S-2: With the estimates ν̂τ and v̂ of the previous step, defining

z̄ , z −Hv̂, (42)

W , diag(ξ̄ � ν̂τ )FL. (43)

g can be easily updated by solving:

ĝ = arg min
g∈CL×1

‖z̄ −Wg‖2
2 , s.t. ‖g‖2 = 1. (44)

The above alternating minimization procedure can be initialized by a random radar code ĝ. We

next present the details of the two steps.

1) Greedy-demixing for solving S-1: Since ντ =
∑Mr

m=1 cma(τm), estimating ντ in (41) im-

plies estimating Mr as well as two vectors c = [c1, c2, ..., cMr ]
T ∈ CMr and τ = [τ1, τ2, ..., τMr ]

T ∈

[0, 1)Mr in ντ = Θ(τ )c, where

Θ(τ ) = [a(τ1),a(τ2), ...,a(τMr)] ∈ CNd×Mr . (45)
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If the delays are on-grid, it is easy to estimate v and τ in (41) using an orthogonal matching

pursuit (OMP) algorithm [48]. However, since the delays here are off-grid, step S-1 involves not

only demixing v and ντ , but also super-resolving the delays in ντ . In the spirit of the matching-

pursuit method [49] and the greedy-demixing approach of [50], we adopt the following procedure

for solving (41) in step S-1.

S-1(a) Initialization: Let S be the set of support of v, and T be the set of delays, and initialize

them as S ← ∅, T ← ∅. Define a residual rres ∈ CNd×1 and initialize it as rres ← z.

S-1(b) Selection: Find the highest correlation with the current residual rres and update either

S or T . In particular, compute

k� = arg max
k∈{0,1,...,Nd−1}

|〈H(:, k), rres〉|, (46)

τ � = arg max
τ∈[0,1)

|〈Φa(τ), rres〉|. (47)

If λ̃|〈H(:, k�), rres〉| > |〈Φa(τ �), rres〉|, then S ← S ∪ {k�} otherwise T ← T ∪ {τ �},

where λ̃ is a weight factor. To compute (47), we first search over a fine grid on [0, 1)

with Nf > Nd points. Then we perform a local search around the best grid point τ �grid.

In particular, it is shown in Appendix A that (47) has the following equivalent form

τ � = arg min
τ∈[0,1)

Tr{A⊥(τ)Rres}, (48)

where

Rres = (Φ−1rres)(Φ
−1rres)

H ∈ CNd×Nd , (49)

A⊥(τ) = INd −
1

Nd

a(τ)a(τ)H ∈ CNd×Nd . (50)

Problem (48) can be solved using Newton’s method as

τ i+1 = τ i − µiK(τ i)−1p(τ i), i = 0, 1, ... (51)

where τ 0 = τ �grid; µi is the step size which is chosen according to the backtracking line

search [51], given in Appendix B; p(τ) and K(τ) are the gradient and Hessian, given

respectively by [52], [53]

p(τ) = ∇τ

[
Tr{A⊥(τ)Rres}

]
= −2Re

{
1

Nd

aH(τ)RresA
⊥(τ)

∂a(τ)

∂τ

}
∈ R, (52)

K(τ) = ∇2
τ

[
Tr{A⊥(τ)Rres}

]
≈ 2Re

{(
(
∂a(τ)

∂τ
)HA⊥(τ)

∂a(τ)

∂τ

)
a(τ)HRresa(τ)

N2
d

}
∈ R, (53)
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where

∂a(τ)

∂τ
=
[
1, i2πei2πτ , ..., i2π(Nd − 1)ei2π(Nd−1)τ

]T ∈ CNd×1. (54)

The iteration in (51) stops when |K(τ i)−1p(τ i)| < δ, where δ is the error tolerance, or

the maximum iteration number I is reached.

S-1(c) Updating τ using Newton’s method: If T is updated in step S-1(b), for the current v̂,

using z̄ = z−Hv̂, we refine the estimates of the delays in T by solving the following

problem

min
τ∈[0,1)|T |,c∈C|T |

‖z̄ −ΦΘ(τ )c‖2
2. (55)

Substituting the solution ĉ = Θ(τ )†Φ−1z̄, where (·)† denotes the pseudo-inverse, i.e.,

Y † = (Y HY )−1Y H , back to (55) results in the following optimization problem [52],

[53]:

τ̂ = arg min
τ∈[0,1)|T |

Tr{P⊥(τ )R}, (56)

where

R = (Φ−1z̄)(Φ−1z̄)H ∈ CNd×Nd , (57)

P⊥(τ ) = INd −Θ(τ )Θ(τ )† ∈ CNd×Nd . (58)

Problem (56) can be solved using Newton’s method as

τ i+1 = τ i − µ̄iK(τ i)−1p(τ i), i = 0, 1, ... (59)

where τ 0 is taken as the current elements in T ; µ̄i is the step size which is chosen

according to the backtracking line search [51], given in Appendix B; p(τ ) and K(τ )

are the gradient and Hessian matrix, given respectively by [52], [53]

p(τ ) = ∇τ

[
Tr{P⊥(τ )R}

]
= −2Re

{
vec-diag

[
Θ†(τ )RP⊥(τ )T (τ )

]}
∈ R|T |×1,

(60)

K(τ ) = ∇2
τ

[
Tr{P⊥(τ )R}

]
∈ R|T |×|T |

≈ 2Re
{

(T (τ )HP⊥(τ )T (τ ))� (Θ(τ )†RΘ(τ )†H)T
}
, (61)
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where vec-diag[Y ], with Y being a square matrix, denotes a column vector formed by

the diagonal elements of Y , and T (τ ) is given by

T (τ ) =

[
∂a(τ)

∂τ

∣∣∣∣
τ=τ1

,
∂a(τ)

∂τ

∣∣∣∣
τ=τ2

, ...,
∂a(τ)

∂τ

∣∣∣∣
τ=τ|T |

]
∈ CNd×|T |

=


1 1 · · · 1

i2πei2πτ1 i2πei2πτ2 · · · i2πei2πτ|T |

...
... . . . ...

i2π(Nd − 1)ei2π(Nd−1)τ1 i2π(Nd − 1)ei2π(Nd−1)τ2 · · · i2π(Nd − 1)ei2π(Nd−1)τ|T |

 .
(62)

The iteration in (59) stops when ‖K(τ i)−1p(τ i)‖2 < δ or the maximum iteration

number I is reached.

S-1(d) Updating (v, c) using least-squares: With the current S and T , estimate v and c by

solving the following least-squares problem:

(v̂, ĉ) = arg min
v(S)∈C|S|
c∈C|T |

‖z −H(:,S)v(S)−ΦΘ(τ̂ )c‖2
2, (63)

where H(:,S) and v(S) denote the columns and elements of H and v respectively

indexed by S. Then, we remove any atoms in T whose corresponding coefficients are

smaller than a small threshold δ̃.

S-1(e) Residual update:

rres = z −Hv̂ −ΦΘ(τ̂ )ĉ (64)

and repeat steps S-1(b) to S-1(e) until ‖rres‖2
2 ≤ ε, or the maximum iteration number

I ′ is reached.

2) Conjugate gradient descent for solving S-2: The constraint ‖g‖2 = 1 in (44) can be

regarded as forcing g on a unit sphere, which belongs to the Riemannian manifolds. We thus

resort to the conjugate gradient method on Riemannian manifold [54] to update g. The Euclidean

gradient of the cost function in (44) is

q(g) = ∇g ‖z̄ −Wg‖2
2 = −2WH(z̄ −Wg). (65)

Projecting the Euclidean gradient to the tangent space of Riemannian manifold yields the Rie-

mannian gradient [54], [55]

qR(g) = q(g)− Re(q(g)� g∗)� g. (66)
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Then the search direction in the i-th iteration is given by [54]

qC(gi) = γi[qC(gi−1)− Re(qC(gi−1)� (gi)∗)� gi]− qR(gi), i = 1, 2..., (67)

with qC(g0) = −qR(g0), where

γi =
qR(gi)T (qR(gi)− qR(gi−1))

‖qR(gi−1)‖2
2

. (68)

Then, problem (44) can be solved by the following iterations

gi+1 =
gi + µ̃iqC(gi)

‖gi + µ̃iqC(gi)‖2
2

, i = 0, 1, ..., (69)

where µ̃i is a step size, which is also chosen according to the backtracking line search [51],

given in Appendix B. The iteration in (69) stops when ‖gi+1 − gi‖2 < δ̄, where δ̄ is the error

tolerance, or the maximum iteration number Ī is reached.

B. Stage 2 - Inferring the Global Optimum

After Stage 1, we obtain a locally optimum solution (ĝ, τ̂ , ĉ) to problem (26). To further search

for the global optimum, we make use of a theoretical result in [35]. Recall that (FLg)� ντ =

F (g ~ (F−1ντ )). When g ∈ CL×1 with L � Nd, and F−1ντ ∈ CNd is a sparse vector, then

g~ (F−1ντ ) is the so-called short-and-sparse (SaS) convolution. It is shown in [35] that, for the

SaS blind deconvolution problem, if F−1ντ follows the Bernoulli-Gaussian (BG) model, then

any local optimum ĝ is close to certain signed shift truncation of the global optimum g? with

high probability. The signed shift truncation is the result of truncation, circular shift and sign

changes on a sequence (see the two examples in Fig. 2). Hence, we speculate that the estimated

code ĝ obtained by Stage 1 is close to a signed shift truncation of the global optimum g?. In

fact, this conjecture is corroborated by extensive simulations. For example, the landscape of the

objective function in (26) when v = 0 and L = 3 is shown in Fig. 3. In particular, for a given

point on the sphere ‖g‖2 = 1, we calculate the corresponding min ‖ντ‖A,0 via steps S-1(a)-(e).

Dark blue represents small values while dark red represents large values. The landscape clearly

shows that (26) is non-convex. Furthermore, we calculate all the signed shift truncations of the

ground truth g? and mark them on the sphere. We can see that the local optima are very close

to certain signed shift truncations of the ground truth.

As the local optimum still captures a considerable portion of the global optimum, then in a

higher dimensional space, the zero-padded local optimum should be close to one cyclic shift
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0  1  2  3  4
Global optimum

0  1  2  3  4 0  1  2  3  4
Signed shift truncation

Fig. 2. Two examples of signed shift truncation.

Fig. 3. Geometry of the objective function of (26) on the `2 ball when error v = 0. Dark blue represents small values indicating

a local optimum. All local optima are close to signed shift truncations of the ground truth g?.

of the zero-padded global optimum (see Fig. 4). Hence, we first estimate a cyclic shifted zero-

padded global optimum instead of estimating the global optimum directly, and the zero-padded

local optimum serves as a significantly better initialization than a random initial value in a higher

dimensional space [34].

The estimated ĝ of Stage 1 after zero-padding is g̃0 =
[
0̄T , ĝT , 0̄T

]T ∈ C(3L−2)×1, where

0̄ ∈ C(L−1)×1 is the all-zero vector2. Problem (26) in a higher dimensional space is given by

(g̃h, ν̃, ṽ) = arg min
ν∈CNd×1,v∈CNd×1

gh∈C(3L−2)×1

‖ν‖A,0 + λ‖v‖0, (70)

s.t.
∥∥z −Hv − ξ̄ � (F3L−2gh)� ν

∥∥2

2
≤ ε, ‖gh‖2 = 1,

where F3L−2 denotes the first 3L− 2 columns of F . Solving (70) by using the same alternating

minimization algorithm outlined in Section IV.A with initial value g̃0 yields the estimates g̃h, c̃,

2Note that if ĝ is shifted by more than its own length L, there will be no truncation of global optimum g? retained. Therefore,

the length of zero padding vector 0̄ is set as L− 1.
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0  1  2  3  4

Global optimum

Local optimum

Zero-padded local optimum

0  1  2  3  4 0  1  2  3  4  5  6  7  8  9 101112

Zero-padded global optimum

Cyclic shift

Some part close

Higher 

dimensional

0  1  2  3  4  5  6  7  8  9 101112

Fig. 4. An example of local optimum and global optimum, and their relationship in the higher dimensional space. Some part

of the zero-padded local optimum and the cyclic shift of the zero-padded global optimum are close.

0  1  2  3  4  5  6  7  Delay

0.50 1

0.5 1

=
0  1  2  3  4  Delay

0.50 1

=

Global optimum

Zero-padded global optimum

Fig. 5. Shift ambiguity in short-and-sparse deconvolution.

τ̃ and ṽ. Since g̃h is an estimate of the cyclic shifted zero-padded global optimum g?, we need

to extract the estimate of g? by detecting the first element that is larger than a small threshold

δh, i.e.,

˜̀= arg min
`∈{0,1,...,3L−2}

`, s.t. g̃h(`) > δh, (71)

where g̃h(`) is the `-th element of g̃h. Then the estimated global optimum code is g̃? =

[g̃h(˜̀), g̃h(˜̀+1), ..., g̃h(˜̀+L−1)]T ∈ CL×1. Note that convolution has the shift ambiguity property.

Extracting g? from g̃h is equivalent to a cyclic shift of length − ˜̀

Nd
on τ in the convolution

g ~ (F−1ντ ) (see Fig. 5). Hence, the estimated global optimum delay is τ̃? = τ̃ +
˜̀

Nd
.

Finally, we summarize the proposed two-stage alternating minimization (2-AltMin) method

in Algorithm 1. The main computational load of Algorithm 1 is the calculation of gradient and

Hessian in Newton’s method, with complexities O(N3
d ) and O(MrN

2
d ) per iteration, respectively.
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Algorithm 1 Two-stage alternating minimization procedure for solving (26).

Input z, H , ξ̄, λ̃, ε, δ, δ̄, δ̃, I , I ′, Ī and δh.

1, Initialize ĝ as a random code.

Repeat (Stage 1)

2, Obtain v̂, τ̂ and ĉ via S-1.

3, Obtain ĝ via S-2.

4, b̂← b̃ = arg minb∈BNd ‖b− b̂− v̂‖2.

5, z = r̄ −Hb̂.

Until b̃ = b̂.

6, g̃0 =
[
0̄T , ĝT , 0̄T

]T
.

Repeat (Stage 2)

7, Obtain g̃h, τ̃ , c̃ and ṽ by performing steps 2-5 with the

higher dimensional gh initialized as g̃0.

Until b̃ = b̂.

8, Obtain ˜̀ by using (71).

9, g̃? = [g̃h(˜̀), g̃h(˜̀+ 1), ..., g̃h(˜̀+ L− 1)]T .

10, τ̃? = τ̃ +
˜̀

Nd
.

Return g̃?, τ̃?, c̃? and ṽ?.

Hence the computational complexity of Algorithm 1 is O(N3
d ) per iteration. On the other hand,

the complexity of the convex relation (CR) method discussed in Section III is O((Nd + L)6)

per iteration if the interior point method is used [18]. Hence the proposed 2-AltMin method is

both computationally more efficient and more accurate as shown by simulation results in the

next section.

V. SIMULATION RESULTS

A. Baseline for Comparison: On-grid Method

As a baseline of comparison, we consider the on-grid method for estimating the continuous

delays {τ}, by using an overcomplete dictionary matrix

Ã = [a0,a1, ...,aM̃−1] ∈ CNd×M̃ , (72)

where M̃ ≥ Nd and am = a(m
M̃

), m = 0, 1, ..., M̃ − 1. For sufficiently large M̃ , the delay is

densely sampled. Following the convex relaxation used in Section III, define

ς = [c1g
T
1 , c2g

T
2 , ..., cM̃g

T
M̃

]T ∈ CM̃L×1 (73)
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as the sparse vector whose non-zero elements correspond to cmg in (28). The original problem

(26) can be relaxed to the following on-grid optimization problem

(ς̂, v̂) = arg min
ς∈CM̃L×1,v∈CNd×1

‖ς‖1 + η̄‖v‖1, (74)

s.t. ‖z −Hv −Υς‖2
2 ≤ ε,

where η̃ is a weight factor and Υ is given by

Υ =


aH0 e0d

H
0 aH1 e0d

H
0 · · · aH

M̃−1
e0d

H
0

aH0 e1d
H
1 aH1 e1d

H
1 · · · aH

M̃−1
e1d

H
1

...
... . . . ...

aH0 eNd−1d
H
Nd−1 aH1 eNd−1d

H
Nd−1 · · · aH

M̃−1
eNd−1d

H
Nd−1

 ∈ CNd×M̃L. (75)

Since problem (74) is convex, it can be solved with standard convex solvers, e.g., CVX [46].

And the complexity in each iteration is O((M̃L+Nd)
3) if the interior point method is used [18].

Then, the radar delays and code can be identified by locating the non-zero entries of ς̂ , i.e., if

[ς̂mL, ς̂mL+1, ..., ς̂(m+1)L−1] has elements larger than a pre-set small threshold, then a radar delay

exists at m
M̃
NdT and normalizing [ς̂mL, ς̂mL+1, ..., ς̂(m+1)L−1] yields the corresponding estimated

radar code.

Note that this on-grid method is also a relaxed method, and similar to the example given in

Section III, it can be shown that some columns of Υ can be identical. Hence, Υ is coherent [20]

and many delay false alarms could be generated in ς , which will be illustrated in the simulations.

B. Simulation Setup

In order to demonstrate the performance of the proposed algorithms, we consider a scenario

where a radar transmitter produces multiple reflections towards a communication receiver. The

communication system uses an OFDM signal with Nd = 256, Np = 64 and a total bandwidth of

2.56 MHz, i.e, the frequency spacing between adjacent subcarriers is 10 kHz. Hence the duration

of data symbols NdT = 100 µs and a quadrature phase-shift keying (QPSK) modulation is used.

The transmitted OFDM signal is generated according to (1) with normalized data symbols. Since

the communication takes place over a multi-path Rayleigh-fading channel (see eq. (4)), the path

gains {αm} are i.i.d. complex Gaussian distributed, αm ∼ CN (0, σ2
h). Based on (10), we define

the SNR at the communication RX as

SNR =
E{|

∑Mc

m=1 αme
−i2πk τcm

NdT |2}
σ2
w

=

∑Mc

m=1 E{|αm|2}
σ2
w

=
Mcσ

2
h

σ2
w

, (76)
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Fig. 6. Plots of signal waveforms in (a) time domain and (b) frequency domain. In (a), the magnitude of the radar interference,

communication signal and the received signal of communication RX are plotted against time. In (b), the real part of the

interference on communication data, communication data and their combination are plotted versus frequency sample.

where σ2
w is the variance of the Gaussian noise sample w(k) in (10). In the following simulations,

we set Mc = 10 and σ2
h = 0.1.

In (3), the radar uses a pulse coded waveform and pulse uses Gaussian random code with

length L, and then we normalize the code to let ‖g‖2 = 1 for the simplicity of evaluation. The

sub-pulse of radar signal ξ(t), t ∈ [0, T ] is set as the normalized rectangular pulse of duration T .

The reference delay τR and the delays τ rm of the scatters are randomly generated between 0 and

100 µs. The radar PRI is set as NdT = 100 µs. The scatterers are modeled as point sources in

our simulations, and the complex scattering coefficient cm of the m-th scatter is generated with

fixed magnitude c0 and random phase for convenience of evaluation. Specifically, based on (10),

we define the interference-to-signal ratio (ISR), which is the average power ratio of the radar

interference and the communication signal, at the communication RX as

ISR =

1
Nd

Nd−1∑
k=0

E

{∣∣∣∣ḡ(k)ξ̄( 2πk
NdT

)
Mr∑
m=1

cme
i2πkτm

∣∣∣∣2
}

Mcσ2
h

=

Mr|c0|2
Nd−1∑
k=0

∣∣∣ḡ(k)ξ̄( 2πk
NdT

)
∣∣∣2

NdMcσ2
h

. (77)

We evaluate the mean absolute error (MAE) of the radar delay estimate and the mean-squared-

error (MSE)3 of the estimated radar code for the on-grid method, the CR method and the 2-AltMin

3We use the relative MSE rather than the RMSE to evaluate the accuracy because it reflects the loss in energy.
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algorithm. Note that in each case the algorithm returns a bunch of delays, which can be either

true detections or false alarms. In the simulations, for each estimated delay τ̂ r` , ` = 1, ..., |T |,

we calculate the minimum absolute error AE` with the ground truth delays τ rm,m = 1, ...,Mr,

i.e., AE` = min({τ̂ r` − τ rm}Mr
m=1). Then, the delay MAE and the relative waveform MSE are

respectively calculated as

MAEτ =
1

MC

MC∑
nMC=1

1

|T |

|T |∑
`=1

AE(nMC)
` , (78)

MSEg =
1

MC

MC∑
nMC=1

∥∥∥|g(nMC)| − |g̃(nMC)
? |

∥∥∥2

2

‖|g(nMC)|‖2
2

, (79)

where MC is the number of Monte Carlo runs; AE(nMC)
` is the minimum absolute error of the

`-th estimate in the nMC-th run; g(nMC) and g̃(nMC)
? are the radar code and the estimated radar

code at the nMC-th run, respectively.

The error tolerance is usually set smaller than ε w 0.05‖z‖2
2, which implies that the iteration

stops when the relative error is smaller than 5% [56]. For the proposed algorithms, we set the

error tolerance in (26) as ε w 0.01‖z‖2
2 for better performance. The weight factors for the on-grid

method in (74) and the CR method in (35) are respectively set as η̄ = 1 and λ̄ = 1√
Nd

[18]. And

the weight factor for the 2-AltMin algorithm in step S-1(b) is set as λ̃ = 6√
NdMcσ2

h

. The grid

number M̃ in (72) is set as M̃ = 512. The error tolerances for Newton’s method and conjugate

gradient method are both set as δ = δ̄ = 10−6, and the threshold in step S-1(d) and (71) are

respectively set as δ̃ = 0.05 and δh = 0.05. The maximum iteration numbers for Newton’s

method, step S-1(e) and the conjugate gradient method are respectively set as I = 10, I ′ = 50

and Ī = 10. In addition, ρ and ρ̄ for the backtracking line search in Algorithm 2 are respectively

set as 0.5 and 0.01.

In order to show the performance of the proposed methods, we compare the symbol error

rate (SER) of the proposed methods with the SER of directly performing demodulation using r̄,

which is named “Iteration 0” because its result is the initial point of the iterative algorithms. In

addition, we compare the performance of the Stage 1 of the 2-AltMin method, which is named

“Stage 1”.
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Fig. 7. SER performance comparison when the ISR of communication is (a) 5 dB and (b) -5 dB.
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Fig. 8. Realizations of the delay minimum absolute errors. (a) On-grid and CR methods, (b) Stage 1 and 2-AltMin methods.

C. Performance

In the first simulation, the number of scatterers is set as Mr = 2 and the length of radar pulse

is set at L = 10. Fig. 6 gives the signal at the communication RX and the interference and data

for demodulation when the ISR is set at −5 dB. We can find that the effect of interference is

significant even if there are only two multi-paths radar echo and the ISR is moderate. Then, we

compare the SER performance of various algorithms. In Fig. 7, the effect of the SNR is studied:
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the on-grid, CR and 2-AltMin methods all provide better SER performance than Iteration 0. The

2-AltMin method also outperforms the on-grid and CR methods in all situations. It is worth

mentioning that there is a significant improvement when the Stage 2 of 2-AltMin is used in all

cases.

We then evaluate the relative code MSE and delay MAE of the proposed methods. We first

plot the delay minimum absolute errors AE(nMC)
` of different methods when the SNR is 15 dB

in Fig. 8. We can clearly see that the on-grid, CR and Stage 1 methods all reach many local

optima, while the 2-AltMin method reaches the global optimum with high probability. And the

on-grid method produces a large number of delay false alarms, because some columns of Υ in

(75) are coherent. Then, the relative waveform MSE and delay MAE are plotted against the SNR

in Fig. 9. Note that when the SNR is low, there are some very large delay minimum absolute

errors, which affect the analysis of the average. Hence we remove the minimum absolute errors

that are larger than 5 µs. Then the delay MAE in Fig. 9(b) is calculated according to (78).

As expected, the 2-AltMin method provides much better accuracy than other methods in all

situations. In addition, we can see that the interference estimation accuracy may not necessarily

improve with the ISR. When the SNR is low, the delay estimation performance is better when

ISR = 5 dB, because strong radar interference can prevail the noise. While when the SNR

is large, the delay estimation performance is better when ISR = −5 dB because large SNRs

guarantee good demodulation performance, with a beneficial effect on the radar interference

estimation due to the coupling.

The effects of Mr and L are shown in Fig. 10. The simulations are run with an SNR of

15 dB and an ISR of 5 dB. In Fig. 10(a), we set L = 6 and plot the SER against the number of

scatterers: As Mr increases, the sparsity of the problem is reduced, and the sources of interference

- with the respective unknown parameters to be estimated - increase, which obviously results in a

visible performance degradation for all algorithms. In Fig. 10(b), the number of scatterers is set

as Mr = 2 and we examine the SER behavior for varying radar pluse length L. A performance

degradation is also evident for all algorithms.

Finally, we give an example of the convergence behavior of the three algorithms, which is

shown in Fig. 11. The number of scatterers, the length of radar pulse, the ISR and the SNR are

respectively set as Mr = 2, L = 10, ISR = 5 dB and SNR = 15 dB. The on-grid method takes

1616.3 seconds with 4 iterations by using CVX [46]. The CR method takes 1203.5 seconds with

5 iterations by using CVX, while the 2-AltMin method only takes 2.3 seconds with 12 iterations
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Fig. 9. (a) Relative waveform MSE performance comparisons. (b) Delay MAE performance comparisons.
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Fig. 10. SER performance against (a) Mr , and (b) L.

total (8 iterations in Stage 1 and 4 iterations in Stage 2). The experiments were carried out on

a MacBook Pro computer with a 2.3 GHz Intel Core i5 CPU and 8 GB of RAM. The proposed

2-AltMin method is substantially faster than the CR method and the on-grid method and appears

much well suited for real-time implementations.
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VI. CONCLUSIONS

In this paper, we have proposed two algorithms for removing the radar interference to facilitate

more reliable data demodulation in a communication system overlaid with a radar system.

The first one is based on forcing an atomic norm constraint, and estimating the combination

of the radar parameters by solving a convex problem under some relaxations. The second

algorithm estimates the radar parameters and the communication demodulation errors by two-

stage processing. The first stage obtains a local optimum by alternating minimization, and the

second stage infers the global optimum in a higher dimensional space by using the estimates of

the first stage. The atomic norm and the `0-norm are used to exploit the sparsity of the radar

signal components and the sparsity of the demodulation error, respectively. Simulation results

show that both algorithms provide much better SER performance compared to the conventional

on-grid method. Moreover, the proposed 2-AltMin algorithm offers superior performance and is

computationally efficient.
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APPENDIX

A. Proof of (48)

By noting that (Φ−1)H(Φ−1) � 0 we have

arg max
τ∈[0,1)

|〈Φa(τ), rres〉| = arg max
τ∈[0,1)

|rHresΦa(τ)|

= arg max
τ∈[0,1)

|rHres(Φ
−1)H(Φ−1)Φa(τ)|

= arg max
τ∈[0,1)

|(Φ−1rres)
Ha(τ)|

= arg max
τ∈[0,1)

((Φ−1rres)
Ha(τ))H(Φ−1rres)

Ha(τ)

= arg max
τ∈[0,1)

Tr{a(τ)a(τ)H(Φ−1rres)(Φ
−1rres)

H}

= arg min
τ∈[0,1)

Tr{(INd −
a(τ)a(τ)H

Nd

)︸ ︷︷ ︸
A⊥(τ)

(Φ−1rres)(Φ
−1rres)

H︸ ︷︷ ︸
Rres

}. (80)

Since a(τ) = [1, ei2πτ , ..., ei2π(Nd−1)τ ]T , then 1
Nd
a(τ)H = (a(τ)Ha(τ))−1a(τ)H = a(τ)†. Thus

we have A⊥(τ) = INd − a(τ)a(τ)† in the last line.

B. Backtracking Line Search

The backtracking line search approach ensures the selected step size is small enough to guar-

antee a sufficient decrease of the cost function but not too small. For simplify, define the objective

functions for (51), (59) and (69) respectively as L(τ) = Tr{A⊥(τ)Rres}, L(τ ) = Tr{P⊥(τ )R}

and L(g) = ‖z̄ −Wg‖2
2. And define their search directions respectively as D(τ) = K(τ)−1p(τ),

D(τ ) = K(τ )−1p(τ ) and D(g) = −qC(g). As an example, in Algorithm 2 we summarize

the backtracking line search for calculating µi in (51). Then µ̄i in (59) and µ̃i in (69) can

Algorithm 2 Backtracking line search

Input L(τ), τ i, D(τ), ρ ∈ (0, 1) and ρ̄ ∈ (0, 1/2).

1, Initialize µi = 1.

2, Repeat

3, µi = ρµi

4, Until L(τ i − µiD(τ i)) ≤ L(τ i)− ρ̄µi‖D(τ i)‖22.

Return µi.
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be obtained with Algorithm 2 by replacing (L(τ),D(τ), τ i, µi) with (L(τ ),D(τ ), τ i, µ̄i) and

(L(g),D(g), gi, µ̃i), respectively.
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