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Abstract—The performance of cloud-based small cell networks
(C-SCNs) relies highly on a capacity-limited fronthaul, which
degrade quality of service when it is saturated. Coded caching
is a promising approach to addressing these challenges, as it
provides abundant opportunities for fronthaul multicast and co-
operative transmissions. This paper investigates a cache-enabled
C-SCNs, in which small-cell base stations (SBSs) are connected
to the central processor via fronthaul, and can prefetch popular
contents by applying maximum distance separable (MDS) codes.
To fully capture the benefits of fronthaul multicast and coop-
erative transmissions, an MDS codes-aided transmission scheme
is first proposed. We formulate the problem to minimize the
content delivery latency by jointly optimizing fronthaul band-
width allocation, SBS clustering, and beamforming. To efficiently
solve the resulting nonlinear integer programming problem,
we propose a penalty-based design by leveraging variational
reformulations of binary constraints. To improve the solution
of the penalty-based design, a greedy SBS clustering design
is also developed. Furthermore, closed-form characterization of
the optimal solution is obtained, through which the benefits of
MDS codes can be quantified. Simulation results are given to
demonstrate the significant benefits of the proposed MDS codes-
aided transmission scheme.

Index Terms—Fronthaul multicast, Cooperative beamforming,
C-SCNs, MDS codes

I. INTRODUCTION

C
LOUD-BASED small cell networks (C-SCNs) have

been proposed to be a promising architecture for fifth-

generation wireless networks (5G), as it offers high data rate

and low power consumption [1]–[3]. By connecting multiple

small-cell base stations (SBSs) to the central processor (CP)

via fronthaul, C-SCNs enable cloud computing and dense

deployment of small cells. Hence, these features allow cen-

tralized optimization for resource allocation and interference
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management across multiple SBSs [2]. However, using high-

speed fronthaul links between the CP and SBSs incurs addi-

tional cost, which constitutes a problem given the rapid growth

of mobile data traffic.

Recently, caching at the physical layer is widely recognized

as an effective technique for alleviating traffic burden on the

capacity-limited fronthaul. Mobile data traffic is dominated

by popular multimedia contents. Many users may request the

same popular content, and this practice is referred to as content

reuse [4], [5]. Therefore, caching these frequently requested

contents at SBSs in off-peak sessions can substantially allevi-

ate fronthaul traffic load. Moreover, delivering these contents

without accessing the cloud also assists to reduce delay and

power consumption [5]–[7]. Hence, in cache-enabled C-SCNs,

one needs to study two problems, i.e., content placement and

content delivery. Specifically, the content placement phase

focuses on how to cache contents so that they can be frequently

used over a long period; while the content delivery phase

focuses on how to deliver contents so as to satisfy users’

requests given the cached status in all SBSs [5].

In general, caching strategies can be classified into two

types, i.e., uncoded caching and coded caching. In uncoded

caching, each SBS can either fetch the entire files or fragments

of the files from the cloud. By using file splitting, fetching

the uncoded fragments can give a good content diversity of

cached resources [8], because in practice the cache storage

in SBSs is fairly limited compared with the content library

in the cloud. Moreover, in this case, file splitting could

also increase the cache hit ratio and ensure caching fairness

among various kinds of content requests. Given the massive

amounts of popular files in the cloud and capacity-limited

fronthaul links, coded caching has received increasing research

interests recently. Instead of caching entire files or uncoded

fragments, the idea of using prefetching coded packets has

been demonstrated to have a higher probability to reduce the

fronthaul load over uncoded caching [8], [9]. Specifically, each

file is encoded into multiple coded packets by using network

code such as maximum distance separable (MDS) codes. Due

to the correlation among coded packets, any collection of

a certain number of unique coded packets is sufficient to

recover the entire file. Therefore, the CP can send a few

packets simultaneously to associated SBSs through shared

fronthaul bandwidth without requiring a specific delivery order

of packets for each SBS. Hence, the coded design provides

http://arxiv.org/abs/1907.08756v1
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more opportunities for fronthaul multicast and cooperative

transmissions [8].

However, many existing studies on the coded design gener-

ally focused on content placement [10]–[12]. The study in [13]

proposed an MDS coded caching scheme at the wireless edge

to minimize backhaul cost without considering fronthaul mul-

ticast. The study in [8] investigated the advantages of utilizing

MDS codes in heterogeneous networks by combining multi-

cast and cooperative content sharing. These studies generally

investigated how to store coded packets in terms of optimizing

averaged network performance metrics. The physical-layer

transmissions, i.e., transmission policy of delivering coded

packets to satisfy users’ requests, were not well studied. Some

other works also studied the benefits of coded caching from

the perspective information theory [14]–[16]. Although content

delivery was discussed in these studies, the important problem

of beamforming and SBS collaboration in the content delivery

phase were not considered. To date, from the perspective

of resource allocation and signal processing, the benefits of

fronthaul multicast and cooperative transmissions enabled by

MDS coded caching have not been well unleashed yet.

To fill the aforementioned research gap, in this paper,

under MDS coded caching, we investigate effective content

delivery design for cache-enabled C-SCNs. Specifically, we

study effective strategies for joint fronthaul bandwidth allo-

cation, SBS clustering, and cooperative beamforming, with

the goal of achieving low latency. In this MDS codes aided

design, users requesting the same content form a multicast

group and are served by a cluster of selected SBSs through

cooperative beamforming in the edge link. Benefiting from the

correlation among MDS coded packets, fronthaul multicast

is adopted in the fetching of uncached packets. To balance

the fronthaul traffic load and latency among each multicast

group, the SBS cluster and fronthaul bandwidth should be

judiciously scheduled according to their cached packets and

channel state information (CSI). Otherwise, the capacity-

limited fronthaul may be saturated and thus causes substantial

latency. To this end, we aim to address two fundamental

issues: i) by using MDS codes, how fronthaul multicast

and cooperative transmissions can improve the efficiency

of content delivery in cache-enabled wireless networks; and

ii) under MDS coded caching, how efficient optimization

algorithms can be developed for better resource allocation.

To the best of our knowledge, this is the first work to in-

vestigate the potentials of employing MDS codes in physical-

layer transmissions by jointly considering fronthaul multicast,

beamforming and SBS collaboration. The vast majority of ex-

isting content delivery studies focused on beamformers design

or SBS collaboration by separate costly unicast transmissions

via expensive fronthaul links. For instance, aiming at saving

cost and power consumption, the studies in [5], [6] investi-

gated the content-centric beamforming strategy by fetching

the uncached (entire) files from the CP in unicasting manner.

The works in [17], [18] proposed content delivery schemes

to minimize latency by fetching the uncoded fragments via

fronthaul unicast. The study in [19] also investigated coop-

erative beamforming under the scenario where the uncached

fragments were individually fetched from the CP. Although

[20] investigated MDS codes, it considered beamformer design

only under two modes, namely, each user was provided service

by either all SBSs or one SBS. On the other hand, the authors

in [21] also discussed coded caching in terms of reducing

latency. However, the focus was limited to unicast beamformer

design in the edge link. Besides, this scenario was also used in

[22], and only fixed connectivity was considered without using

fronthaul bandwidth allocation. In contrast to these content

delivery studies, the proposed MDS codes aided design have

different features. One critical feature that distinguishes our

work from [5], [6], [17]–[19] is that given the finite-capacity

fronthaul links in C-SCNs, it is essential to investigate using

the same radio resource to multicast the uncached contents

from the CP. Different from [20]–[22], another feature is that

our work investigates the benefits of joint fronthaul multicast

and SBS collaboration. This is because the utilization of

fronthaul multicast enables more SBSs to participate in the co-

operative transmissions to boost the edge throughputs without

incurring extra fronthaul cost. This process helps to improve

spectrum efficiency and reduce network latency. Lastly, to

ensure latency fairness, fronthaul allocation is performed by

adapting to the fronthaul traffic loads. These features make

our latency-oriented problem more challenging in designing

efficient beamformers for cache-enabled C-SCNs.

Moreover, the challenge of the proposed content delivery de-

sign is twofold. Firstly, the latency objective in our problem is

highly non-convex. Although the studies in [17], [21] provided

a method to decouple the latency objective, it incorporated

SBS transmit beamformers only. In the proposed design, the

tight coupling among fronthaul bandwidth allocations, SBS

beamforming and clustering makes the considered latency

objective much more challenging. Secondly, owing to SBS

clustering, the resultant optimization problem usually falls

into mixed-integer nonlinear program (MINLP), which is NP-

hard in general. For solving MINLP efficiently, some recent

studies have developed sparsity-based methods in wireless

system designs [5], [6], [19], [23], [24], such as the reweighed

l1/l2-minimization approach. However, our problem admits a

very complicated form, i.e., the multicast data rate function,

fractional form of binary variables over continuous ones and

so on. Consequently, applying this method may suffer from

performance loss due to a relaxation gap between the l0-norm

and l1/l2-norm. Another limitation of this method is that the

group sparse structure of the resultant beamformers may not

be preserved [6], [23]. Hence, existing methods are not readily

applied to address the considered problem.

The main contributions of this paper are summarized as

follows:

• To exploit fronthaul multicasting and cooperative beam-

forming, an MDS codes aided transmission scheme is

firstly proposed for cache-enabled C-SCNs. With fairness

among multicast groups, fronthaul bandwidth allocation,

SBS clustering, and beamforming are jointly optimized

under physical layer transmission and fronthaul band-

width constraints.

• A penalty-based design is derived to solve the latency

minimization problem efficiently. In particular, to convert

the resulting MINLP into tractable forms, we recast the
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binary constraints into continuous ones by leveraging a

variational reformulation of the binary constraints. Build-

ing upon the reformulation, an inexact block coordinate

update (BCU) algorithm is developed with convergence

guarantee. Moreover, a greedy SBS clustering design is

also developed to further improve the solution of the

inexact BCU algorithm.

• Although the MINLP problem is known to be difficult to

find the optimal solution, the closed-form characterization

of the optimal solution is developed. These closed-form

expressions not only serve as a tool to reduce complexity

of the proposed algorithm and analyze the impact of

some system parameters, but also give insights into the

performance gain of employing MDS codes over the

alternative concept of uncoded fragments in physical-

layer transmissions.

The remainder of the paper is organized as follows. Section

II describes the system model. Section III shows the problem

formulation and analysis. Section IV presents the inexact

BCU-SCA design. Closed-form characterization of the optimal

solution is shown in Section V. Section VI demonstrates

the performance of the proposed designs through numerical

experiments. Finally, we conclude the paper in Section VII.

Notations: The real part operator and conjugate operator for

complex value are denoted as Re{·} and {·}∗, respectively.

The identity matrix, zero matrix, and 1 matrix are denoted

as I, 0, and 1 with appropriate dimensions, respectively. The

cardinality of a set is denoted as |·|. The operator ∪ denotes the

union of a collection of sets. The operator vec(A) represents

the column-wise vectorization of matrix A.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the downlink transmission

of a B × K cache-enabled C-SCNs, where K users are

cooperatively served by a cluster of B densely deployed SBSs

on the wireless channels, referred to as the edge link. Each

user is equipped with N antennas. Besides, each SBS is

equipped with M antennas and connects to the CP through the

wireless fronthaul link with finite capacity [25]. We assume

that the CP has access to the entire library, which stores a total

of F files. For simplicity, each file is assumed to be equal

in size S bits. Let B = {1, . . . , B},F = {1, . . . , F}, and

K = {1, . . . ,K} denote the sets of SBSs, files in the library,

and users, respectively. We index the files by the order of

popularity, and the probability p(f) of file f being requested

by users follows the Zipf distribution p(f) = cf−γ , where

γ ≥ 0 is a known skewness parameter; and c is a normalization

constant [5]. Each SBS has a local cache with a storage of

µFS bits, where µ ∈ [0, 1] is the fractional caching capacity. A

cache-aided system usually operates in two phases: the content

placement phase and the content delivery phase, which will be

described in subsequent subsections.

A. Content Placement and MDS Coding

According to the principle of MDS codes, in general, each

file is equally split into n fragments and further coded into

m packets without information loss, where m can be any

SBS

User

Fronthaul

Edge Link

Cache

Core NetworkCentral Processor

Fig. 1: An illustration of downlink cache-enabled C-SCNs.

integer satisfying m ≥ n [8], [20]. By taking advantage of the

dependency among these coded packets, any n unique packets

are sufficient to recover the original file. Notably, MDS codes

can be achieved with only an extremely small redundancy [20].

In the cache-enabled C-SCNs, we denote a collection of all

the coded packets of file f as Mf . Consider that each file f
has mf,b unique coded packets cached at each SBS b, where

mf,b ≤ n. Notably, when mf,b = n, it implies that file f is

entirely fetched from SBS b. Besides, we collect the cached

packets of file f in SBS b as the setMf,b, satisfyingMf,b ⊂
Mf . Correspondingly, n − mf,b unique packets are needed

to recover file f in SBS b. For the exploitation of multicast

and reduction of traffic load in the fronthaul link, the CP is

required to deliver at least maxb (n−mf,b) unique packets,

so that each SBS can successfully perform MDS decoding.

Therefore, in the multicast-aware setting, the number of coded

packets for file f should satisfy

m ≥
∣∣ ∪
b∈B
Mf,b

∣∣
︸ ︷︷ ︸

unique packets cached in BSs

+ max
b∈B

(n−mf,b)
︸ ︷︷ ︸

multicast packets delivered from the CP

,

(1)

which ensures that the cached packets in the local SBSs

and the uncached packets fetched via the fronthaul link are

sufficiently different from each other [8].

As mentioned previously, MDS codes are helpful to reduce

the fronthaul traffic load. To provide greater detail about this,

we consider the following simple example: file 1 is split into

three fragments {a1, a2, a3}, i.e., n = 3, and then coded

into packets M1 = {xi|i = 1, · · · , 4}, i.e., m = 4. In

addition, there are three SBSs in total, with cached packets

M1,1 = {x1, x2},M1,2 = {x2, x3}, and M1,3 = {x1, x3},
respectively. Consequently, we have m1,b = 2, ∀b ∈ B =
{1, 2, 3}. According to the principle of MDS codes, any three

unique packets are sufficient to recover file 1. Subsequently,

we can multicast packet x4 to all SBSs via the fronthaul link,

and thus file 1 can be recovered at each SBS. Meanwhile,

for the uncoded design, each SBS stores fragments directly.

For instance, fragments {a1, a2}, {a2, a3}, and {a1, a3} are

cached in each SBS. As a result, all fragments a1, a2, and a3
are transferred in the fronthaul link for file reconstruction in

each SBS, and this process increases traffic load.

In practice, in order to reduce complexity and implementa-

tion cost, the CP usually focuses on designing cache allocation

matrix Q = [qf,b], where each element qf,b , mf,b/n
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indicates the fraction of file f that is randomly cached in

SBS b [8], [13], [20]. In general, cache allocation Q needs

to be designed by taking into account the file popularity,

the finite storage in each SBS and so on. Notably, the file

popularity distribution should vary much slower than the

channel conditions of wireless links. For instance, a film may

remain popular for several days. Hence, the cached resource

is considered to be static, when we design a transmission

scheme to satisfy users’ requests in a much shorter period. In

our content delivery design, we consider that cache allocation

matrix Q is fixed by using certain popular strategies [26], and

elaborate on signal processing and resource allocation in the

content delivery phase. Similar modeling assumption has been

used in previous study (see, e.g., [6], [24], [27]).

B. Content Delivery

For ease of implementation, the content delivery phase is

assumed to operate in a transmission-interval fashion. At the

beginning of each transmission interval, each user k requests

a certain file fk. The set Freq ⊂ F denotes the indexes of

requested files from all users, with cardinality Freq = |Freq|.
Then, users requesting the same file are formed a multicast

group. Specifically, the users in multicast group f are denoted

as Gf , and they are only requesting file f . For this reason, we

have Gf1 ∩Gf2 = ∅, for ∀f1 6= f2. We define a SBS clustering

matrix E = [ef,b] ∈ {0, 1}Freq×B , where each element ef,b = 1
indicates that SBS b is selected to serve the multicast group f ,

otherwise 0. Besides, each file is allowed to be cooperatively

served by a cluster of SBSs, i.e.,

∑
b∈B ef,b ≥ 1, ∀f ∈ Freq. (2)

For the edge link, the signal transmitted from SBS b is

xb =
∑

f∈Freq
vf,bxf , (3)

where vf,b ∈ CM denotes the multicast beamformer for file

f at SBS b, and the signal xf ∈ C independently encodes the

file f for multicast group f , with distribution xf ∼ N (0, I).

Accordingly, the vf =
[
vH
f,1,v

H
f,2, · · · ,vH

f,B

]H
denotes the

aggregate beamformer from all SBSs serving the transmission

of file f . In particular, if SBS b does not serve the transmission

of file f , the corresponding transmit beamformer vf,b should

be 0. Subsequently, we have

(1− ef,b)vf,b = 0. (4)

User k applies the linear combiner uk ∈ CN to mitigate inter-

group interference, which yields the received signal

yk = uH
k Hkvfkxfk︸ ︷︷ ︸
desired signal

+uH
k

∑

f∈Freq\{fk}

Hkvfxf

︸ ︷︷ ︸
inter-group interference

+uH
k zk, (5)

where aggregate channel matrix Hk = [Hk1,Hk2, · · · ,HkB],
and Hkb ∈ CN×M denotes the channel matrix between

SBS b and user k, for any b; and zk denotes the additive

complex Gaussian noise with distribution zk ∼ CN (0, σ2
kI).

For notational simplicity, we define the signal variable Dk =
χk,1(uk,vfk) and the covariance as Jk = χk,2(uk,V), where

χk,1(uk,vfk ) = uH
k Hkvfk , (6)

χk,2(uk,V) = uH
k

(∑
f∈Freq\{fk}

Hkvfv
H
f HH

k

)
uk + σ2

k.

(7)

Assuming that the receiver regards the interference as noise,

the achievable data rate for multicast group f is given by

Rf = min
k∈Gf

B0φ (Dk, Jk) , (8)

where function φ(Dk, Jk) = log
(
1 + |Dk|2/Jk

)
; and B0 is

the bandwidth.

Regarding fronthaul transmission, to ensure that the CP

can serve multiple SBSs simultaneously, we adopt frequency

division multiplexing to schedule the multicast service in

the fronthaul link. Notably, when the requested files are not

entirely cached in the selected SBSs, the missing packets

should be fetched from the CP via fronthaul.1 For ease of

discussion, we consider that the total capacity of the fronthaul

link is limited by CF bps. In addition, the fronthaul radio

frequency is different from the edge link; hence no interference

is observed between the fronthaul and edge links. As a result,

a fraction of the fronthaul bandwidth is allocated to serve the

cluster of SBSs for multicast group f ,

Rfh
f = tfCF ,

∑
f∈Freq

tf = 1, 0 ≤ tf ≤ 1, (9)

where tf is the ratio of the fronthaul bandwidth allocated to

deliver file f ; and Rfh
f denotes the rate for multicast group

f in the fronthaul link. We define vector t = [tf ] ∈ RFreq .

Note that some packets have already been cached in the local

SBSs, and thus the traffic load for file f to be transmitted from

the CP to SBS b should be sf,b = ef,bm
′
f,b, where m′

f,b =
(1− qf,b)S bits. Define the traffic load matrix S = [sf,b] ∈
RFreq×B . Based on the principle of MDS codes, the fronthaul

load for multicast group f is given by

sf = max
b∈B

ef,bm
′
f,b. (10)

The multicast fronthaul load vector is further defined as s =
[sf ] ∈ RFreq . Note that when sf = 0 bit, we have the tf = 0
and Rfh

f = 0. By recalling (4), a proper SBS clustering matrix

not only balances the fronthaul traffic load, but also increases

spatial diversity in the edge links.

C. Network Latency Model

In this work, we focus on the latency caused by content

delivery through the fronthaul link and edge link, and ignore

the latency due to geometry propagation, requests queuing, and

1We consider the case where each SBS needs to collect the missing packets
of the requested file so as to recover the entire file, similar to [7], [8], [19].
In this case, multiple SBSs are clustered on file level and use cooperative
beamforming to deliver the same information to the dedicated users, which
can boost the edge throughputs. If different SBSs directly transmit distinct
fragments or packets to users, all SBSs are clustered on fragment/packet level.
In other words, all SBSs need to dynamically form different clusters in order
to complete the transmission of each fragment/packet. This process may cause
excessive signaling overhead and synchronization cost in practice.
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other factors. The latency in the network is further defined as

the number of symbols or channel uses needed to accomplish

the requested files transmission [17], [21], [28]. We assume

that the messages delivery is half-duplex [15]; thus, the system

operates in a serial mode. In other words, the CP first commu-

nicates with SBSs and is then followed by edge transmissions.

For balancing traffic load in the network, min-max fairness is

considered in our model. With SBS cooperation and multicast

beamforming, edge latency is evaluated as

TE =
S

minf∈Freq
Rf

, (11)

where the minimization is over all multicast groups. Regarding

the multicast transmission via fronthaul, when file f is fully

cached in the selected BS cluster, i.e., sf = 0 and Rfh
f = 0, no

fronthaul latency is detected in multicast group f . To balance

fronthaul traffic load, fronthaul latency is evaluated as

TF = max
f∈Freq,Rfh

f
6=0

sf/R
fh
f , (12)

under the condition of (1). Denote U = {uk, ∀k ∈ K}, V =
{vf , ∀f ∈ Freq}. Therefore, by adopting fronthaul multicast

and cooperative beamforming, the total latency of the network

is evaluated as

T FM
total (U ,V ,E, t) =

αE
S

min
f∈Freq

min
k∈Gf

B0φ (Dk, Jk)
+ αF max

f∈Freq,b∈B

ef,bm
′
f,b

tfCF + τ0
,

(13)

where τ0 > 0 is a small constant that is used for preventing

zero denominator, when a null load is present in the fronthaul

link for certain multicast groups. Weights αE > 0 and αF > 0
balance the importance of the latency in the edge link and

fronthaul link, respectively. Similar performance metrics have

been used in previous studies [21], [28], [29].

III. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation for MDS Coded Design

In the considered cache-enabled C-SCNs, all CSI, the

cached contents in the local SBSs, and the requested files are

known at the CP. Hence the optimization problem is stated as

PMDS
0 : min

U ,V,E,t
T FM

total (U ,V ,E, t) (14a)

s.t.
∑

f∈Freq
‖vf,b‖22 ≤ Pb, b ∈ B, (14b)

‖uk‖2 = 1, k ∈ K, (14c)

(1− ef,b)vf,b = 0, ∀b ∈ B, f ∈ Freq, (14d)

ef,b ∈ {0, 1} , ∀b ∈ B, f ∈ Freq, (14e)
∑

b∈B ef,b ≥ 1, ∀f, (14f)
∑

f∈Freq
tf = 1, 0 ≤ tf ≤ 1, f ∈ Freq, (14g)

where constraint (14b) shows that the peak transmit power for

the b-th SBS is limited by Pb. The receive combiner uk has

unit power, which is utilized for the mitigation of interference

among different multicast groups. Constraint (14d) reflects

the relation between beamformer design and SBS clustering.

Constraint (14f) is used to exploit BS cooperation and prevent

a standstill service. The bandwidth allocation for all multicast

groups is provided by fronthaul constraint (14g).

B. Problem Reformulation and Analysis

As can be seen that the latency objective (14a) in problem

PMDS
0 is combinatorial in nature, which incorporates the binary

variables, i.e., E, and continuous ones, i.e., U ,V , t. Obtaining

the optimal solution is very difficult. This is because even if we

use exhaustive search on 2BFreq possible BS clustering matrix

E, the resulting subproblems are still highly nonconvex.

Therefore, to make the objective (14a) in PMDS
0 more

tractable, we introduce some slack variables tE , tF , and thus

problem PMDS
0 is equivalently expressed as

min
U ,V,E,t,tE,tF

αEtE + αF tF (15a)

s.t. tE ≥
S

B0φ (Dk, Jk)
, ∀k, (15b)

tF ≥
ef,bm

′
f,b

tfCF + τ0
, ∀f, b, (15c)

(14b) − (14g), (15d)

by using the epigraph reformulation. For the nonconvex con-

straint (14d), it can be written as

‖vf,b‖22 ≤ ef,bPb, ∀f, b. (16)

Furthermore, constraint (15b) can be decoupled by introducing

another slack variables {rk}, which yields

log(tE) + log(rk) ≥ log(S), ∀k, (17)

rk ≤ B0φ (Dk, Jk) , ∀k. (18)

We denote set r = {rk, ∀k ∈ K} and set Θ =
{U ,V ,E, t, r, tE, tF }. Finally, the original problem PMDS

0 is

equivalent transformed as

P1 : min
Θ

αEtE + αF tF (19a)

s.t. (14b), (14c), (14e)− (14g), (15c), (16)− (18). (19b)

By now, problem P1 is still the MINLP. The difficulties

arise from the involvement of binary variables {ef,b} and the

noncovexity of the rate function in constraint (18). A ready

approach for tackling the difficulty of binary variables is to

replace each ef,b by ‖‖vf,b‖2‖0 and thus convert the MINLP

to the sparse optimization problem [5], [6]. Nevertheless, such

a replacement will make our problem more complex than itself

due to these coupling constraints (14f), (15c), (16). Besides,

when solving such a complex problem, it may suffer from

performance loss due to the relaxation gap between term

‖‖vf,b‖2‖0 and approximated term, e.g., reweighed l1/l2-

norm in [6]. Regarding the data rate function incorporated in

our problem, it was linearized by using semidefinite relaxation

(SDR) technique in previous studies [17], [21]. However, this

method usually incurs a high complexity because it is done at

a cost of lifting the dimensions of beamformer vf . Moreover,

the probability of finding a low rank solution is fairly small as

the number of users grows large [30]. This also probably leads
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to the solution far from optimal. Considering the challenges

identified above, developing a working algorithm is necessary

but obviously non-trivial.

IV. PROPOSED INEXACT BCU-SCA DESIGN

In this section, we develop two efficient algorithms to handle

problem P1 by applying some of the variational reformulations

of binary constraint (14e), the successive convex approxima-

tion (SCA) technique, and the inexact BCU method.

A. A Variational Method

To combat the discontinuity in problem P1, we first intro-

duce a variational reformulation of the binary constraints.

Lemma 1: We define set Ω =
{
(E,Z)

∣∣(2vec(E) −
1)T (2vec(Z) − 1) = BFreq. ‖2Z − 1‖2F ≤ BFreq,0 ≤
E ≤ 1,Z ∈ CB×Freq

}
. If (E,Z) ∈ Ω, then we have

E ∈ {0, 1}B×Freq and Z = E.

Lemma 1 is a generalized form of Lemma 1 in [31], which

can be proved by Cauchy-Schwarz inequality. Accordingly, by

using an auxiliary matrix Z, problem P1 can be rewritten as

min
Θ,Z

αEtE + αF tF (20a)

s.t. 0 ≤ ef,b ≤ 1, ∀b, f, (20b)

(2vec(E)− 1)T (2vec(Z)− 1) = BFreq, (20c)

‖2Z− 1‖2F ≤ BFreq, (20d)

(14b), (14c), (14f), (14g), (15c), (16)− (18). (20e)

Although problem (20) turns to be continuous, the resulting

equilibrium constraint (20c) still makes the problem difficult

to handle. Hence, we construct the following penalty function

h1(E,Z) = BFreq − (2vec(E)− 1)T (2vec(Z)− 1), (21)

which is always non-negative, for any feasible (E,Z) satis-

fying constraints (20b) and (20d). Taking advantage of this

property, the proposed design can be reformulated as

R1 : min
Θ,Z

αEtE + αF tF + λh1(E,Z) (22a)

s.t. (20b), (20d), (20e), (22b)

where λ > 0 serves as a penalty parameter. Notably, an op-

timal solution (E∗,Z∗) meets the condition h1(E
∗,Z∗) = 0;

for any other (E,Z) feasible to constraints (20b) and (20d),

we have h1(E
∗,Z∗) > 0. Hence, we tackle problem R1

by iteratively increasing λ to penalize the violation of the

equilibrium constraint (20c), resulting in binary values of SBS

clustering matrix E.

B. Inexact BCU-SCA Design

In this subsection, we decompose the sophisticated problem

R1 into two subproblems: the first one is used to update

variables {V ,E} without any increase in dimensions of beam-

formers while the other one is used to update other variables

{U , t,Z} with closed-form expressions.

First, we solve the original problem P1 by addressing

problem R1 with a fixed penalty parameter λ. When the

block {U , t,Z} is fixed, problem R1 can be simplified as the

following subproblem

R2(U , t,Z) : min
V,E,tE,tF ,r

αEtE + αF tF + λh1(E,Z)

s.t. tF ≥
ef,bm

′
f,b

tfCF + τ0
, ∀f, b, (23a)

rk ≤ B0φ
(
D′

k, J
′
k|U

)
, ∀k, (23b)

(14b), (14f), (16), (17), (20b), (23c)

where {U , t,Z} denotes the solution in the last iteration, D′
k =

χk,1(uk,vfk), and J ′
k = χk,2(uk,V). The main challenge of

the subproblem R2 is the non-convexity in constraint (23b).

Subsequently, we seek an inner approximation of the con-

straint (23b). To get rid of the relaxation gap introduced by the

SDR technique, we consider the following quadratic minorant

function of the rate function φ(D′
k, J

′
k|U),

φ̃k(V|U ,V) = q0 + 2Re{D′
kq

∗
1} − (|D′

k|2 + J ′
k)q2, (24)

for ∀k ∈ K, at any local point {U ,V}, where constants q0 =
φ(Dk, Jk)− |Dk|2/Jk, q1 = Dk/Jk, q2 = 1/Jk − 1/(Jk +
|Dk|2) ≥ 0, Dk = χk,1(ufk ,V), and Jk = χk,2(ufk ,V).

Equation (24) is provided by the theorem 1 in [32]. It

holds true that φ(D′
k, J

′
k|U) is always lower bounded by

the quadratic minorant φ̃k(V|U ,V), and the equality holds

at the local point {U ,V}, i.e., φ(Dk, Jk|U) = φ̃k(V|U ,V).
Accordingly, problem R2 can be inner approximated by the

following convex program

R̃2(U ,V , t,Z) : min
V,E,tE,tF ,r

αEtE + αF tF + λh1(E,Z)

(25a)

s.t. rk ≤ B0φ̃k(V|U ,V), ∀k, (25b)

(23a), (23c), (25c)

which can be efficiently solved by interior point methods using

standard solvers, such as CVX [33]. Now we turn to the other

subproblem of updating the block {U , t,Z}. In particular,

when {V ,E} are fixed, the resulting subproblem is given by

R3(V ,E) : min
U,t,Z,tE ,tF ,r

αEtE + αF tF + λh1(E,Z) (26a)

s.t. tF ≥
ef,bm

′
f,b

tfCF + τ0
, ∀f, b, (26b)

rk ≤ B0φ
(
D′

k, J
′
k|V

)
, ∀k, (26c)

(14c), (14g), (17), (20d), (26d)

where the point {V ,E} denotes the solution in the last

iteration, D′
k = χk,1(uk,vfk), and J ′

k = χk,2(uk,V). We

claim that subproblem R3 has a closed-form solution.

Proposition 1: Define the multicast traffic load vector s =
[sf ], where the f-th element sf = maxb ef,bm

′
f,b, ∀f ∈ Freq.

Consider the case where constant τ0 approaches 0 and s 6= 0.
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An optimal solution (U∗, t∗,Z∗) to problemR3(V ,E) is given

as

u∗
k = (Jk)

−1Hkvfk

/∥∥(Jk)
−1Hkvfk

∥∥
2
, ∀k, (27)

t∗f =
max

b
ef,bm

′
f,b

‖s‖1
, ∀f ∈ Freq, (28)

Z∗ =





any feasible value, if each ef,b =
1
2 , ∀f, b,√

BFreq(2E−1)

2‖2E−1‖F
+ 1

2 , otherwise,
(29)

where Jk =
∑

f∈Freq\{fk}
Hkvfv

H
f HH

k + σ2
kI, for ∀k.

Proof. See Appendix A.

Clearly, these closed-form solutions can greatly reduce

the computational complexity of the proposed algorithm.

Moreover, it is worth pointing out that the three variables

(U∗, t∗,Z∗) are decoupled in (27)-(29). Hence, they can be

updated in parallel. Finally, we adopt the inexact BCU method

to update both block variables, and the whole procedure for

this design is shown in Algorithm 1. Although we can start

with any feasible point, the penalty parameter λ > 0 is

generally initialized as a small value for a proper starting point.

Algorithm 1 Inexact BCU-SCA Design for Problem (14)

1: Initialize i = 0 , U (0),V(0),Z(0), t(0), λ > 0, η > 1, I
2: Repeat

3: Solve problem R̃2(U (i),V(i), t(i),Z(i)) to obtain an

optimal solution V(i+1),E(i+1)

4: Solve problemR3(V(i+1),E(i+1)) to obtain an optimal

solution t(i+1),U (i+1),Z(i+1)

by (27), (28), and (29)

5: Update λ← λ× η every I iterations

6: i← i+ 1
7: Until some stopping criterion is satisfied

8: Output U∗,V∗,E∗, t∗

Obviously, any feasible solution for R̃2 is also feasible for

problem R1, but the reverse claim does not necessarily hold.

Therefore, the optimal value of R̃2 normally serves as an

upper bound of that of problem R1. For any fixed penalty

parameter λ > 0, i.e., η = 1, Algorithm 1 generates a sequence

{U (i),V(i),E(i), t(i),Z(i)}, which gives a monotonically non-

increasing objective value of problem R1. When η > 1, λ will

be lifted gradually to enforce the satisfaction of h1(E,Z) = 0.

Therefore, the sequence {E(i)} generated by Algorithm 1

eventually converges to binary values. Regarding complexity,

it is dominated by solving the convex problem R̃2 in step

3. Accordingly, it can be solved in polynomial time with

regard to the size of the problem, i.e., the dimension of

involved variables {V ,E, tE, tF , r}, which is in the order

O((M + 1)BFreq + 2 +K).

C. Greedy SBS clustering Design

Although the proposed Inexact BCU-SCA design can gener-

ally guarantee that each element of beamformer vf,b converges

to 0, when ef,b = 0, the global optimal solution for PMDS
0

is still hard to obtain. To further improve the performance

of the proposed design, we develop a greedy SBS clustering

(GBSC) design, which is built upon the solution generated by

Algorithm 1. In cache-enabled wireless networks, the transmit

beamformers at SBSs usually admit a group sparse structure

[6], [23], which indicates a sparse connectivity in the edge

network. Besides, a group sparse structure of the transmit

beamformers is likely to bring along benefits such as reduction

in power consumption and signaling overhead. Motivated by

these facts, the crucial idea of GBSC design is as follows:

starting with the SBS clustering matrix E∗ = [e∗f,b] provided

by the inexact BCU-SCA design, we iteratively remove one

redundant edge link in each step, and thus the problem is

re-optimized. This procedure is terminated until the objective

value cannot be improved; the detailed implementation of

GBSC is given in Algorithm 2. For notational convenience,

Algorithm 2 Greedy SBS clustering Design for Problem (14)

1: Initialize E0 = {(f, b)|e∗f,b = 1}, Tmin = +∞, r = 0
2: Iterate

3: E ← Er
4: If select any (f̄ , b̄) ∈ E , and E(E\{(f̄ , b̄)}) is infeasible

to problem R1, go to step 6

5: Set E ← E\{(f̄ , b̄)}, and obtain objective value T (f̄ , b̄)
of problem R1 by inexact BCU-SCA with fixed

E = E(Er\{(f̄ , b̄)}) and Z = E. Go to step 4

6: (fr, br) = argmin(f,b)∈Er
T (f, b)

7: If Tmin > T (fr, br)
8: Tmin ← T (fr, br), Er ← Er\{(fr, br)}, and r ←

r + 1
9: Else terminate

10: Output E(Er)

matrix E(E) denotes that each element ef,b = 1, when

(f, b) ∈ E , otherwise 0. In the worst case, the complexity

is approximately O(B2F 2
req) of the complexity of the inexact

BCU-SCA design.

V. CLOSED-FORM CHARACTERIZATION FOR OPTIMAL

SOLUTION AND ANALYSIS

A. Closed-Form Characterization for Optimal Solution

Different from most existing studies on beamformer design

in cache-enabled wireless networks, although the proposed

content delivery design PMDS
0 is an MINLP problem, the opti-

mal solution can be characterized by the following Proposition.

Proposition 2: For MDS coded design, let
{
V∗,E∗, t∗

}
be an

optimal solution to PMDS
0 . It holds true that

t∗f =
max

b

∥∥‖v∗
f,b‖2

∥∥
0
m′

f,b

‖s∗‖1
, ∀f ∈ Freq, (30)

where the multicast traffic load vector s∗ = [s∗f ] and s∗f =
maxb e∗f,bm

′
f,b.

Proposition 2 is a direct deduction of Propositions 1. This

Proposition implies that the optimal scheduling of the fron-

thaul bandwidth allocation, the patterns of SBS collaboration,

and the multicast beamformers design are tightly coupled in

practice. From the perspective of engineering implementation,

this closed-form characterization can help us build the algo-

rithm and reduce computational complexity (e.g., step 4 in
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Algorithm 1). Proposition 2 can also serve as a tool to study

the impact of the caching strategy on the optimal delivery

policy and network latency. To provide the insight in greater

detail, we analyze two caching strategies, i.e., the Fractional

Cache Distinct (FCD) (see, e.g., [26]), and the Probabilistic

Caching (ProbC) (see, e.g., [5], [6]), under MDS coding.

Example 1: (FCD Scheme) This caching scheme aims to

boost the cache-hit ratio and provide caching fairness for each

requested file. Specifically, each SBS randomly and uniformly

stores the same fraction q of each file. That is, a total of

⌊qn⌋ coded packets of file f is randomly cached in SBS b.
Consider full SBS cooperation, i.e., each user is served by all

SBSs simultaneously. By using Proposition 2, we obtain that

1/Freq of the fronthaul bandwidth should be allocated for each

file in the fetching of uncached packets. Moreover, due to the

finite storage in SBSs, q ≤ µ should hold. In this case, the

lower bound of the fronthaul latency is
(1−µ)SFreq

CF
.

Example 2: (ProbC Scheme) This caching scheme is

popularity-aware, i.e., each SBS randomly fetches certain

fraction of each file by following the file popularity distri-

bution. Specifically, we generate one file index f ′ by the Zipf

distribution at each time; and then randomly cache one coded

packet of that file f ′; and we iterate this process until it reaches

the storage limit, i.e.,
∑

f∈F mf,b = ⌊µFn⌋, ∀b ∈ B. Notably,

to avoid overlapping and enhance caching efficiency, each SBS

can only store unique packets of each file and mf,b ≤ n
should hold. Clearly, the more popular the file is, the larger

fraction of this file is likely to be cached in the SBSs. Recall

that the probability of file f being requested is pf = cf−γ .

Thus, for file f , the expected fraction qf,b can be estimated

by min{ ⌊µFn⌋cf−γ

n , 1}. When µFn is an integer, the cache

allocation matrix is generally independent of the number of

fragments n. Moreover, when the popularity order f becomes

smaller and the skewness parameter γ becomes larger, by using

Proposition 2, the required fronthaul bandwidth for delivering

file f tends to be narrower.

B. Performance Gain Over Fronthaul Unicast

As aforementioned, many previous content delivery studies

investigate cooperative beamforming by adopting separate

costly unicast transmissions to fetch the entire contents (e.g.,

[5], [6]) or uncoded fragments (e.g., [17]). These unicast-

ing transmissions incur higher fronthaul burden which may

hinder the collaboration among SBSs from being effective.

To investigate the the performance gain of joint design of

fronthaul multicast and cooperative beamforming, we consider

the following uncoded design where any cache miss is dealt

by unicast transmissions.

For the fairness of comparison, we also use fronthaul

bandwidth allocation to balance the fronthaul latency for each

requested file. Specifically, a fraction 0 ≤ tf,b ≤ 1 of fronthaul

bandwidth should be allocated for each SBS b to fetch the

missing contents of file f . We define the fronthaul bandwidth

allocation matrix as T = [tf,b] ∈ RFreq×B . Moreover, we

also consider SBS clustering and multicast beamforming in

the edge link. Accordingly, by adopting fronthaul unicast

and cooperative beamforming, the network latency for this

uncoded design is given by

T FU
total (U ,V ,E,T) = αE

S

min
f∈Freq

min
k∈Gf

B0φ (Dk, Jk)

+ αF max
f∈Freq,b∈B

ef,bm
′
f,b

tf,bCF + τ0
. (31)

As can be observed, the utilization of fronthaul unicast may

lead to a low spectrum efficiency in the fronthaul links in

contrast with the latency (13) in MDS coded design (i.e., using

the same spectrum tfCF to send uncached contents). Hence,

the optimization problem of uncoded design is given as

PFU
0 : min

U ,V,E,T
T FU

total (U ,V ,E,T) (32a)

s.t.
∑

f∈Freq,b∈B

tf,b = 1, 0 ≤ tf,b ≤ 1, ∀f, b, (32b)

(14b)− (14f). (32c)

Since problem PFU
0 takes the similar mathematical form to

problem PMDS
0 , it can also be handled by using the idea of

the proposed inexact BCU-SCA design (see Algorithm 1).

Moreover, by the principles of Propositions 1 and 2, the

following proposition can also be easily obtained.

Proposition 3: Let
{
V∗,E∗,T∗

}
be an optimal solution to

problem PFU
0 . It holds true that

t∗f,b =

∥∥‖v∗
f,b‖2

∥∥
0
m′

f,b

‖vec(S∗)‖1
, ∀f ∈ Freq, b ∈ B, (33)

where the load matrix S∗ = [s∗f,b], and s∗f,b = e∗f,bm
′
f,b.

According to Propositions 2 and 3, we have the following

Corollary.

Corollary 1: Given that a fixed SBS clustering matrix E∗ and

capacity-limited fronthaul, the proposed MDS coded design

PMDS
0 , i.e., multicast the missing packets to SBSs for file

reconstruction, can achieve a gain of ‖vec(S∗)‖1/‖s∗‖1 for

fronthaul latency, in contrast to such an uncoded design PFU
0 ,

i.e., send the uncoded fragments to SBSs individually for

file reconstruction. In particular, for full BS cooperation and

homogeneous caching, i.e., using FCD scheme and mf,b =
m, ∀f, b, the fronthaul latency arising from fetching the MDS

coded packets can be only as much as 1/B of that of fetching

the uncoded fragments.

Moreover, we also analyze another case, where popular files

are entirely cached in SBSs, i.e., mf,b ∈ {0, n}. When the

uncached files are handled by costly fronthaul unicast (e.g.,

[5], [6]), Proposition 3 shows that the fronthaul latency is

n1S/CF , where n1 is the total number of files that all SBSs

need to fetch from the CP and 0 ≤ n1 ≤ BFreq holds.

Consider the multicast scenario, where the uncached files are

fetched by multicast transmissions via fronthaul; by using

Proposition 2, the fronthaul latency is n2S/CF , where n2

is the number of files that should be fetched from the CP

and 0 ≤ n2 ≤ Freq hold. Notably, different patterns of SBS

collaboration, i.e., E∗, may also give rise to different n1 and

n2.
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VI. PERFORMANCE EVALUATIONS

In this section, we provide numerical simulations to ex-

amine the performance of the proposed designs. Similar

to [23], we consider a network covering a square area

[−1km, 1km] × [−1km, 1km], where B SBSs and K users

are randomly and uniformly placed in this area. Furthermore,

no user is present in each SBS within a radius of 10 m. The

wireless channel between SBS b and user k is modeled as

Hk,b = 10−L(dk,b)/20
√
κχGk,b, where L(dk,b) denotes the

path-loss w.r.t. distance dk,b; κ is the log-normal shadowing

parameter; χ is the antenna power gain, and Gk,b is the small-

scale fading coefficient. In our simulation, we consider the

following default parameters: for each user, L(dk,b) = 36.8

+ 36.7log(dk,b); κ = 7 dB and χ = 5 dBi; gk,b follows

CN (0, I); bandwidth for edge link B0 is 10 MHz and noise

power is -102 dBm; transmit power in each SBS Pb is limited

by 1 W; the total number of files in library is 100; all SBSs

are assumed to be equipped with the same fractional caching

capacity µ. Users’ requests from the library follow the Zipf

distribution. For content placement phase, we adopt the FCD

and ProbC strategies. The detailed implementation of each

caching strategy could be referred to Sec. V. Without loss of

generality, we consider that each file is split into the same

number of fragments, i.e., n = 5, ∀f ∈ F , and coded into

mf packets with size of 100 MB, which is specified by (1).

Moreover, from the perspective of mobile users, fronthaul

latency and edge latency are considered to have the same

importance in our experiments, i.e., αE = αF = 1. All of the

experimental results were obtained by averaging 100 trials.

We first demonstrate the performance of the proposed algo-

rithms for our MDS coded design. If the system parameters

are not particularly specified, we consider a cache-enabled C-

SCNs with the following default scenario: 3 SBSs and 5 active

users, which are equipped with M = 5 and N = 3 antennas,

respectively. The ProbC is adopted in the considered scenario,

where the fractional caching capacity µ is 20%, and content

popularity parameter γ = 1. The capacity of the fronthaul link

is set to 10 Mbps. As a comparison, the following algorithms

are also implemented to solve problem PMDS
0 :

• SB-SCA: As in [6], binary variable ef,b is replaced by

the sparsity of beamforming (SB) vector wf,b, and further

approximated by the reweighed-l1/l2 norm. Similar to

the inexact BCU-SCA, the SCA technique is adopted to

tackle the non-convexity of the rate function.

• NA-SCA: This algorithm is derived according to [21],

[22], in which a joint scheme is investigated under given

user association strategies, i.e., each ef,b is prefixed. Here,

we consider the nearest association (NA), where users

access their nearest SBSs, regardless of the local caches.

By applying the SCA technique, NA-SCA is used for the

evaluation of the upper bound of problem PMDS
0 .

Firstly, we illustrate the convergence behavior of the inexact

BCU-SCA design in Fig. 2. In particular, the initial penalty

parameter λ = 0.1 and then is increased by factor η, after

every 5 iterations. Herein, we study the impact of factor η
on the algorithm. Each ef,b is given by random initialization,

i.e. uniformly generated within [0, 1], but remains fixed for

each trial. As depicted in Fig. 2(a), the objective value in

each trial first monotonically decreases within five iterations

(for fixed λ), and is then lifted due to the increase in the

penalty parameter λ. Furthermore, a larger η may lead to

a faster convergence speed but is more likely to give a

suboptimal solution; while a smaller one could give a more

accurate solution but slow down the convergence speed. To

obtain a better result, we empirically set η = 5 in all other

cases. We also compare the results between full cooperation

initialization, i.e., each ef,b = 1, and random initialization.

As can be seen in Fig. 2(b), each curve converges to the same

value regardless of the initialization. This finding indicates that

the proposed design is not sensitive to the initial setting.
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Fig. 2: Convergence behavior of inexact BCU-SCA design

In Fig. 3, we compare the performance of different al-

gorithms with the number of SBSs. It can be seen that

the latencies achieved by the two proposed algorithms are

lower than those of the existing SB-SCA and NA-SCA. This

observation demonstrates the effectiveness of the proposed

variational reformulation of binary constraints and the penalty-

based methods. When the number of SBSs increases, the

average latency reduces consistently. This is because more

SBSs produce more opportunities for BS cooperation and

higher spatial degrees of freedom. More importantly, compared

with the GBSC design, the inexact BCU-SCA design achieves

almost comparable results with significantly lower complexity.

In Fig. 4, we demonstrate the performance of the pro-

posed algorithms with different numbers of active users. The

proposed algorithms are observed to achieve lower latency

compared with SB-SCA and NA-SCA again. In particular,

when there are more users making requests, the size of

the gaps between the two proposed designs and SB-SCA

increases. Therefore, this implies that the proposed algorithms

provide a greater advantage over existing algorithms in a large

system. Moreover, the inexact BCU-SCA design also obtains

results that are very close to that of the GBSC, which confirms

the effectiveness of the penalty-based method.

Based on the above comparisons, we conclude that the pro-

posed algorithms exhibit superior performance over existing

schemes. Note that the inexact BCU-SCA design can provide

comparable results with significant lower complexity in con-

trast to GBSC design. Hence, in the following simulation, we

only consider adopting the inexact BCU-SCA design.

In particular, we consider a large system with 10 SBSs an

15 active users, which in turn, have M of 8 and N of 3. Fur-

thermore, we set the default capacity of the fronthaul link to



10

2 3 4 5 6

Number of BSs

200

250

300

350

400

450

A
ve

ra
g
e
 n

e
tw

o
rk

 la
te

n
cy

 (
ch

a
n
n
e
l u

se
)

Inexact BCU-SCA
SB-SCA
NA-SCA
GBSC

Fig. 3: Average network latency versus the number of BSs.

30 Mbps, the fractional capacity to 20% and the content pop-

ularity parameter as 1, if not specified otherwise. To evaluate

the benefits of the proposed MDS coded transmission scheme

over the alternative case where any uncached fragments are

dealt by adopting separate costly unicast transmissions, we

consider the following uncoded designs:

• Uncoded Design I (Uncoded I): This design can be com-

pleted by solving PFU
0 . In the edge link, we also consider

SBS clustering and multicast beamforming. Different

from the MDS coded scheme, the CP adopts unicast

to deliver uncoded fragments in the fronthaul link. This

design aims at evaluating the potentials of performing

cooperative beamforming under fronthaul multicast. The

reader is referred to Sec. V for greater detail.

• Uncoded Design II (Uncoded II): To further evaluate

the potentials of effective SBS clustering, all SBSs are

allowed to fully cooperate. Accordingly, we solve PFU
0 ,

with fixed ef,b = 1, for ∀f, b.
1) Impact of Cache Storage: In Fig. 5, we compare the

proposed designs with the uncoded designs under different

cache storages. Under both caching strategies FCD and ProbC,

the MDS coded designs achieve lower latency than the other

uncoded designs, especially in the low cache storage region. In

particular, in the absence of caching capability at SBSs, i.e.,

µ = 0, the MDS coded design obtains only approximately

10.66% latency of the uncoded design II, under two caching

strategies. This observation indicates the superior benefits of

fronthaul multicast and SBS clustering. In contrast to the

FCD, the ProbC is popularity-aware. Hence, when µ ≥ 0.2,

it tends to provide rich opportunities for storing the requested

contents, and thus achieves low latency. Moreover, uncoded

design II obtains the poorest result in general, because all SBSs

are enabled for cooperative transmissions without carefully

clustering, and this situation may lead to a significant increase

in the fronthaul load. Note that when the cache storage

increases, the advantages of the proposed designs tend to fade

gradually, because the number of requested contents that can

be accessed from the SBSs increases without experiencing

fronthaul latency.

2) Impact of Fronthaul Capacity: Fig. 6 demonstrates the

effects of the fronthaul capacity under different schemes. The

proposed design outperforms uncoded designs in the entire

curves under each caching strategy. Specifically, when the

fronthaul capacity is 5 Mbps, the latency achieved by the

ProbC-MDS is reduced by 89.91% compared with the ProbC-

Uncoded II. This demonstrates that the fronthaul multicast

improves bandwidth efficiency compared with the unicast

transmission. Moreover, the notable gap between ProbC-

Uncoded I and ProbC-Uncoded II confirms the effectiveness

of SBS clustering, especially at limited fronthaul capacity.

Moreover, when the fronthaul capacity is larger than 45 Mbps,

no significant decrease in latency is observed in each scheme.

Hence, edge latency starts to dominate content delivery.

3) Impact of Content Popularity: Fig. 7 illustrates the

performance of all schemes under the variation of the pop-

ularity parameter γ. Clearly, when the content popularity

parameter γ increases, the average latency reduces gradually,

because users make requests following an increasingly cen-

tered popularity distribution, and thus few multicast groups

are formed. Hence, edge latency is substantially reduced.

Interestingly, when γ ≥ 1, the performance of the ProbC

strategy degrades dramatically, while the FCD strategy only

witnesses a relatively flat decrease. The reason is for this that

the requested contents from users are available in the SBSs

with higher opportunity compared with the FCD under the

ProbC strategy. Obviously, this fact gives a reduction for both

fronthaul and edge latency, which makes curves degrade faster

than FCD. When γ ≥ 2, the MDS coded design performs

nearly the same as uncoded design I, but still better than

uncoded design II. This finding indicates that all requests

are almost available in SBSs already, and total latency is

dominated by edge transmission. Therefore, the gap between

ProbC-MDS and ProbC-Uncoded II reveals the potentials of

proper SBS clustering.

VII. CONCLUSION

In this paper, we have developed an MDS codes-aided

transmission scheme in cache-enabled C-SCNs, by exploit-

ing fronthaul multicast and cooperative beamforming. We

have formulated the problem to minimize latency of both

fronthaul and edge links under physical layer transmission

and fronthaul bandwidth constraints. To solve the resulting

mixed-integer nonlinear program, a penalty-based design has

been derived with low complexity and convergence guarantee.

Building upon the solution of the inexact BCU-SCA design,

the greedy SBS clustering design has been further developed

to improve the solution of BCU-SCA, yet at the cost of

computational complexity. Finally, closed-form characteriza-

tion of the optimal solution has been investigated, from which

the performance gain of MDS codes has been corroborated.

Simulation results have been presented to demonstrate the

superior performance of the proposed designs.

Moreover, it is worth pointing out that the derived closed-

form characterization of the optimal solution reveals that

the caching strategy impacts the collaborative patterns of

SBSs, beamformer design, and fronthaul bandwidth allocation.

Indeed, it is promising to study the mixed timescale problem

by jointly optimizing cache updating and content delivery so
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parameter.

as to further shorten latency and enhance users’ quality of

service. Nevertheless, to solve such a complex problem, it is

very challenging but necessary to develop low-complexity al-

gorithms for engineering implementation in wireless networks.

This problem is beyond the scope of this paper and worthy of

an independent work. A preliminary design has been studied

in [34]. In our future work, we shall explore more efficient

strategies for the joint consideration of cache updating and

content delivery.

APPENDIX A

PROOF FOR PROPOSITION 1

Note that problem R3 can be decomposed into three sub-

problems, which are given as follows

min
U ,tE,r

tE s.t. {(14c), (17), (26c)}, (34)

min
Z

− 2(vec(E)− 1)T (2vec(Z)− 1) s.t. (20d), (35)

min
t,tF

tF s.t. {(14g), (26b)}. (36)

For problem (34), the optimal solution can be achieved

when the rate of each user is maximized. Hence, problem

(34) can be solved by optimizing a group of rate maximization

problems

rk = max
uk

log(Dk + Jk)− log(Jk) s.t. ‖uk‖2 = 1,

(37)

for all k ∈ K, Dk = uH
k HkWfkH

H
k uk, and Jk =

χk,3(uk,W). By now, we observe that an optimal u∗ for

problem (37) can be obtained by maximizing the signal-to-

interference-plus-noise-ratio (SINR) [35]. By the (31) in [35],

we have the closed-form expression (27). Then, we elaborate

on the deduction for (29). The auxiliary variable Z is updated

by solving problem (35), where the equality in the constraint

of problem (35) should be active when the optimal solution is

achieved. By the Cauchy–Schwarz inequality, we can obtain

(29). Regarding problem (36), it can be rewritten as

mint,tF tF (38a)

s.t. tF ≥
sf

tfCF + τ0
, ∀f ∈ Freq, (38b)

0 ≤ tf ≤ 1, ∀f ∈ Freq, (38c)
∑

f∈Freq
tf = 1, (38d)

which is a convex problem. We have the following observa-

tions: when sf = 0, it indicates the absence of a fronthaul

traffic load for file f . Thus, zero bandwidth is assigned for

multicast group f . For problem (38), as τ approaches 0, an

optimal solution is given by t∗f = 0, when sf = 0. Moreover,

when s = 0, we have the optimal value t∗F = 0, for any

feasible solution. In the following, we discuss the case with

sf > 0, ∀f ∈ Freq. Consider that τ approaches 0. Hence,

t∗f > 0, ∀f ∈ Freq, otherwise, the positive infinity objective

value will be achieved. By constraint (38b), we have the

optimal value T ∗
F > 0. The Lagrangian function of problem

(38) is given by

L =tF +
∑

f∈Freq

[
µf (

sf
tfCF

− tF ) + σf,1(tf − 1)− σf,2tf
]

+ γ(
∑

f∈Freq
tf − 1) (39)

where the non-negative Lagrange multipliers µf , σf,1, σf,2 are

associated with constraints (38b), (38c), respectively; and the

Lagrange multiplier γ is associated with constraint (38d).

According to the Karush-Kuhn-Tucker conditions, we differ-

entiate (39) w.r.t tF and tf and set these partial derivatives to

zero, resulting in the following equations
∑

f∈Freq
µf = 1,− sfµf

t∗2
f

CF
+ σf,1 − σf,2 + γ = 0, ∀f, (40)

for the optimal solution t∗ and t∗F . By complementary slack-

ness, we also have

sfµf/(t
∗
fCF ) = t∗Fµf , σf,1(t

∗
f − 1) = 0, σf,2t

∗
f = 0, ∀f.

(41)

Subsequently, we consider two cases. Case 1: when 0 < t∗f <
1 for all f ∈ Freq, it obtains that σf,1 = σf,2 = 0, for all

f ∈ Freq. Substituting (41) into (40), it follows that

t∗fγ = t∗Fµf , ∀f. (42)

Recalling (40) and (38d), equation (42) further shows the

following results: γ = t∗F , and t∗f = µf > 0, ∀f. As a

consequence, based on (41), we obtain t∗F =
sf

t∗
f
CF

, ∀f ∈ Freq.

Furthermore, by (38d), we obtain t∗f = sf/‖s‖1. Case 2: when

there exists one t∗f ′ = 1 for multicast group f ′, it shows that

only file f ′ is transferred via fronthaul. By combining all cases

discussed above, we conclude that Proposition 1 holds true.
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