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Computing for Data Aggregation in Clustered IoT
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Abstract

One basic operation of Internet-of-Things (IoT) networks is aggregating distributed sensing data

collected over wireless channels to compute a desired function, called wireless data aggregation (WDA).

In the presence of dense sensors, low-latency WDA poses a design challenge for high-mobility or

mission critical IoT applications. A technology called over-the-air computing (AirComp) can dramat-

ically reduce the WDA latency by aggregating distributed data “over-the-air” using the waveform-

superposition property of a multi-access channel. In this work, we design multiple-input-multiple-output

(MIMO) AirComp for computing a vector-valued function in a clustered IoT network with multi-antenna

sensors forming clusters and a multi-antenna access point (AP) performing WDA. The resultant high-

dimensional but low-rank MIMO channels makes it important to reduce channel/signal dimensionality

in AirComp to avoid exposure to noise from channel null-spaces. The design challenge lies in the

integration of simultaneous dimension-reduction and joint-equalization (without decoupling) of many

MIMO channels with correlation and heterogeneous ranks. By tackling the challenge, we develop in

this work a framework of reduced-dimension MIMO AirComp. The key component is decomposed

aggregation beamforming (DAB) for the AP. Consider the case of separable channel clusters with

non-overlapping angle-of-arrival (AoA) ranges. The optimal DAB is proved to have the architecture

where inner components extract the dominant eigen-spaces of corresponding channel clusters and outer

components jointly equalize the resultant low-dimensional channels. Consider the more complex case of

inseparable clusters. We propose a suboptimal DAB design where the inner component performs both

dimension reduction and joint equalization over clustered-channel covariance matrices and the outer

component jointly equalizes the small-scale fading channels. As part of the said framework, we also

design efficient algorithms for rank optimization of individual DAB components and channel feedback

leveraging the AirComp principle. The proposed framework is shown by simulation to substantially

reduce AirComp error compared with the existing design without considering channel structures.

D. Wen, G. Zhu, and K. Huang are with the Dept. of Electrical and Electronic Engineering at The University of Hong Kong,
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I. INTRODUCTION

The future Internet-of-Things (IoT) will collect distributed data from an enormous number

of edge devices (sensors and smartphones), perform computation and inference using the data,

and then use equally many actuators to control the physical environment [1]. Thereby, IoT is

expected to automate various operations of our society such as manufacturing, heathcare, and

traffic control. Among others, one main challenge of designing IoT networks is fast wireless data

aggregation (WDA), referring to fast collection of distributed data from edge devices via wireless

transmission. The challenge arises in scenarios characterized by many devices, high mobility or

heavy data uploading. One example of high-mobility WDA is data collection using a UAV-

mounted reader [2] and another example of heavy data uploading is federated machine learning

[3], both of which are illustrated in Fig. 1. The ultra-low latency requirement of fast WDA

cannot be met by the traditional “transmit-then-compute” approach of designing an air interface

that incurs unacceptable transmission latency in the said scenarios. A more efficient design

approach is “transmit-and-compute” that integrates transmission and computation. A specific

vein of research based on this approach is called over-the-air computation (AirComp), which

attracts increasing research interests recently [4]–[6]. The principle of AirComp is to exploits co-

channel interference for computing a function of distributed data, thereby allowing simultaneous

transmission and dramatic latency reduction. The particular class of functions exactly computable

using AirComp is called nomographic functions [7], [8], that have the following form:

Z̄ = q

(∑

k

fk(Zk)

)
, (1)

where Zk, fk, and q are the input data of the k-th device, the corresponding pre-processing

function, and the post-processing function, respectively. In [9], [10], it is proved that an arbitrary

function can be decomposed as the sum of nomographic functions, which is thus Air-Computable.

In next-generation massive multiple-input and multiple-output (MIMO) IoT networks, large-

scale antenna arrays will support AirComp of vector-valued functions, called MIMO AirComp.

Furthermore, the high-resolution arrays are capable of resolving sensors into clusters [11]–[13].

Exploiting the structure of the resultant clustered channels can reduce noise and facilitate joint

channel equalization (without decoupling) in AirComp, thereby reducing its errors as well as

channel-feedback overhead. This motivates the current work on developing the framework of

reduced-dimension MIMO AirComp.
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Figure 1: Two examples of fast WDA in IoT networks.

A. Wireless Data Aggregation by AirComp

Consider WDA by AirComp in a multi-access channel where an access point (AP) aims

at obtaining the desired functional value in (1) with minimum distortion. The original idea of

AirComp appeared in [8]. The design relies on structured codes (i.e., lattice codes) to cope with

channel distortion introduced by the multi-access channel. It was subsequently discovered in [14]

that simple analog transmission without coding but with channel pre-equalization can achieve

the minimum distortion if the data sources are independent and identically distributed (i.i.d.)

Gaussian. If this assumption does not hold, coding can be still beneficial e.g., as shown in [15] for

the scenario where data sources follow the bivariate Gaussian distribution [15]. Nevertheless, the

simplicity of the optimal design for the Gaussian case has inspired a series of follow-up research

on making AirComp practical [16]–[18]. By measuring the AirComp distortion using mean

squared error (MSE), the optimal power allocation and outage performance under a distortion

constraint are studied in [16] and [17], respectively. The implementation of AirComp typically

requires CSI at transmitters for channel pre-equalization. An attempt to relax the requirement

was made in [18] where randomized transmission without CSI realizes AirComp at the cost

of increased latency. Another practical issue for implementing AirComp is synchronizing the

transmission of edge devices. One design addressing this issue is proposed in [19] that modulates

the data into transmit power to relax the synchronization requirement. As a result, only coarse

block-synchronization is required for realizing AirComp. An alternative scheme, called AirShare,

is to broadcast a shared clock to all devices [20].
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The prior work described above focuses on AirComp of scalar-valued functions. Most recent

research in the area aims at MIMO AirComp using MIMO techniques to enable vector-valued

functional computation [4]. In particular, receive beamforming targeting WDA, called aggrega-

tion beamforming, is proposed in [4] to compute vector-valued functions by spatial multiplexing

and reduce AirComp distortion by spatial diversity. Along the same vein, the current work targets

clustered IoT networks and addresses the issue of how to exploit channel structure for improving

the performance of MIMO AirComp.

Last, while AirComp is mostly deployed in computation-centric networks as discussed above,

it is worth mentioning that the AirComp operation has been also leveraged in rate-maximization

schemes such as two-way relay [21] and MIMO lattice decoding [22].

B. Reduced-Dimension Design for Massive MIMO Systems

In next-generation wireless systems, large-scale antenna arrays are expected to be deployed

at APs (each with hundreds to thousands of elements) and mobile devices (each with tens of

elements) [23]. In such massive MIMO systems, one research focus is to reduce complexity

in transceiver designs and thereby also reduce overhead for CSI feedback. There exist a rich

literature of such designs [24]. The “phased-zero-forcing (ZF)” precoding scheme proposed in

[25] achieves complexity reduction by combining ZF precoding in the baseband domain and

phase control in the radio frequency (RF) domain. On the other hand, a hierarchical architecture

for implementing multiuser ZF receiver based on user clustering is shown in [26], [27] to yield

complexity reduction. Another popular approach for reduced-dimension MIMO is called hybrid

beamforming that decompose a MIMO transceiver into two cascaded components for analog

and digital implementation [28]–[30]. For clustered MIMO channels, this implementation based

architecture can dramatically reduce the number of required RF chains and the complexity of

digital processing [31].

There exists one more key approach for reduced-dimension precoding design for massive

MIMO downlink, which is closely related to the current work. The high spatial resolution of

a large-scale arrays at an AP makes it possible to resolve the cluster structure embedded in

multiuser MIMO channels. The main principle of the design approach is to decompose each

MIMO channel into a slow-time-scale component, namely its (spatial) covariance matrix, and

a fast-time-scale component, namely small-scale fading [11]–[13], [32], [33]. The covariance

matrix is jointly determined by array and channel-topology parameters including the size and
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antenna-spacing of the transmit array, and angles of arrival (AoA) and angular spreads (AS) of

user clusters. The channel decomposition leads to an efficient hierarchical beamformer structure

cascading a slow-time-scale and a fast-time-scale components, which are computed based on the

covariance and fading matrices, respectively [11]. The former is high-dimensional but requires

infrequent or one-time computation. On the other hand, the latter is low-dimensional and hence

supports efficient periodic computation and CSI feedback. The beamforming structure is proved

in [11] and simultaneously in [12] to be capacity-achieving as the transmit-array size grows. The

inspiring result has motivated a series of follow-up research that extends the mentioned beam-

forming design to millimeter-wave frequency bands [31], includes opportunistic user selection

[32], and considers the minimum mean-square-error (MMSE) criterion [33].

The current work builds on the above prior work to design reduced-dimension aggregation

beamforming for MIMO AirComp. In particular, we consider the same model of clustered

massive MIMO channel and the same decomposed beamforming structure as in [11]–[13].

However, prior work targets rate-centric downlink systems and thus the objective for multiuser

beamforming is sum-rate maximization. In contrast, we consider a computation-centric IoT sys-

tem and the design criterion for aggregation beamforming is minimizing distortion in functional

computation. As a result of different design criteria, the two types of beamforming can be

differentiated in two aspects described as follows.

1) (DoF usage) For multiuser beamforming, the spatial degrees-of-freedom (DoF) at the AP

are first allocated for decoupling users’ data streams by suppressing inter-user interference;

the remaining DoF are then applied to enhancing the reliability of individual streams. As a

result, the required number of DoF scales linearly with the number of simultaneous users.

In contrast, aggregation beamforming utilizes all DoF for suppressing computation errors

via joint multiuser-channel equalization without decoupling them. In other words, user

separation is unnecessary and the aggregation process leverages “interference” instead of

suppressing it [21]. As a result, AirComp does not incur the said scaling and thus requires

far fewer DoF than the rate-maximization counterpart when the number of users is large.

2) (User separability) Multiuser beamforming is infeasible when users lack spatial sepa-

rability e.g., in the case of overlapping AoA ranges [11], [12]. In contrast, aggregation

beamforming does not require user/channel separability.

The above fundamental differences pose new challenges in aggregation-beamforming design.
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C. Contributions and Organization

In this paper, we consider WDA in a clustered massive MIMO network, where an AP equipped

with a large-scale array performs MIMO AirComp over distributed transmissions by mobile

devices. The existing design of aggregation beamforming assuming structureless channels with

rich scattering [4]. Its direct application in the current case would unnecessarily expose AirComp

to strong noise from null spaces of low-dimensional cluster channels. This motivates reduced-

dimension aggregation beamforming, whose design faces the following challenges.

• A naive approach for reduced-dimension aggregation beamforming is to use the large-

scale receive array to extract and separate low-dimensional signals from the dominant eigen-

spaces of different cluster channels, which are then aggregated. First of all, this approach is

infeasible when the clusters are inseparable due to overlapping AoA ranges [11]. Even if they

are separable, the signals with heterogeneous dimensionality cannot be directly aggregated,

and the said approach may not be optimal.

• Signal-dimension reduction shortens the distances between the resultant channel sub-spaces

of different devices, thereby reducing the AirComp error. On the other hand, the operation

also reduces received signal power and hence increases the error. Balancing these two effects

of signal-dimension reduction gives rise to a new problem called channel-rank selection.

• Channel feedback should exploit channel low-dimensionality and AirComp operation for

feedback-overhead reduction.

In this work, we attempt to tackle the above challenges. The main contributions of the work

are summarized below.

• Decomposed Aggregation Beamforming (DAB) for Disjoint Clusters: Consider the

relatively simple case in the literature (see e.g., [11], [12]) where clusters are separable with

non-overlapping AoA ranges. We prove that the optimal aggregation beamformer has a de-

composed architecture consisting inner and outer components. The inner components match

the dominant eigen-subspaces of different clustered channels to receive low-dimensional

signals from them. The outer components then aggregate the weighted signals to compute

the desired vector function, where the weights are determined by minimum eigen-values of

the said channel eigen-subspaces.

• DAB for Overlapping Clusters: Consider the more challenging case of inseparable clusters

due to overlapping AoA ranges. We propose an DAB architecture consisting of a single inner
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and a single outer components. By solving an approximate AirComp-error minimization

problem, we prove that the designs of inner and outer DABs can be separated and the

separate optimization problems have the identical forms. As a result, the inner DAB performs

aggregation over reduced-dimensional covariance matrices of different clustered channels

and the the outer one over small-scale fading channels of different devices.

• Clustered-Channel Rank Selection: For the case of disjoint clusters, practical algorithms

are designed for choosing the ranks of reduced-dimension clustered channels (or received

signals) under the criterion of minimum AirComp errors.

• Channel Feedback: To enable the preceding DAB design, schemes are presented for analog

channel feedback for both the cases of disjoint and overlapping clusters. The schemes feature

simultaneous reduced-dimension feedback by devices in a same cluster and sequential

feedback for different clusters.

The paper is organized as follows. In Section II, the system model is introduced and the

AirComp design problem is formulated. In Section III, the DAB designs are presented for both

the cases of disjoint and overlapping channel clusters. The clustered-channel rank selection

problem is solved in Section IV. The analog channel feedback schemes are proposed in Section

V. Section VI presents the simulation results followed by concluding remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider an IoT system with one AP and a large number of edge devices. Perfect local CSI

is assumed to be available at all devices and channel reciprocity is considered. The system

is designed to perform AirComp of distributed data transmitted by the devices. The system

operations is illustrated in Fig. 2 and described as follows. The devices form G clusters each of

which comprises K members. The k-th device (or channel) in the g-th cluster is identified by

the indices (g, k). Each device, say device (g, k), is provisioned with an array of Nt antennas for

transmitting a L-dimensional pre-processed vector symbol by linear analog modulation, which is

denoted as Xg,k representing f(Zg,k) in Fig. 2, to the AP after precoding. The Nt×L precoding

matrix is represented by Bg,k. For simplicity, we assume Nt = L, namely exactly L antennas

are used to transmit the L-dimensional vector symbol. Equipped with an large-scale array of
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Figure 2: Block diagram of MIMO AirComp over a multi-access channel.

Nr antennas (Nr � Nt), the AP receives the simultaneous signals from all devices. The total

received signal, denoted as Y, is given as

Y =
G∑

g=1

K∑

k=1

Yg,k =
G∑

g=1

K∑

k=1

Hg,kBg,kXg,k + n, (2)

where Yg,k is the received signal from device (g, k), {Hg,k} represent the uplink MIMO channels

and n is the channel-noise vector comprising CN (0, 1) elements. Then the received total signal is

processed by aggregation beamforming, represented by the L×Nr matrix A, to yield the desired

summation
∑

g,k Xg,k, which gives the desired vector-valued function after post-processing (see

Fig. 2). The current work focuses on designing A to minimize the distortion in functional

computation. The distortion is measured by the MSE E[||AY − ∑g,k Xg,k||], which is the

AirComp performance metric throughout the paper.

We adopt the model of clustered MIMO multi-access channels in [11], [12], characterized by

clustered transmitters and rich local scattering. Consequently, for MIMO channels in the same

cluster, there exists receive-antenna correlation but no transmit-antenna correlation. Specifically,

the spatial correlation of the channels in the g-th cluster is represented by the covariance matrix

Ψg of rank denoted as Rg, namely E[Hg,kH
H
g,k] = Ψg for given g and any k. The rank Rg

satisifies the relation L ≤ Rg ≤ Nr. The matrix Ψg is largely determined by angle-of-arrival

(AoA) range ∆θg = [θg, θ
′
g] as well as array parameters (e.g., topology and antenna spacing).
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As the AoA ranges of different clusters may be different, Rg may vary in different clusters.

Decompose the matrix Ψg by singular-value decomposition as UgΛgU
H
g . Then the channel

matrix Hg,k can be written as

Hg,k = UgΛ
1
2
g Wg,k, (3)

where each element of Wg,k is i.i.d. and follows CN (0, 1). The array at the AP is assumed to be

linear. Consider the case that the AoA ranges of different clusters are non-overlapping, which is

referred to as the case of disjoint clusters. Under this assumption, it is shown in [11], [12], as

the array size Nr grows, two channels belonging to different clusters approach being orthogonal

as a result of UH
mUn → 0. On the other hand, when the clusters’ AoA ranges overlap, different

clusters of channels cannot be orthogonalized by using a large-scale receive array, which is

referred to as the case of overlapping clusters. Both cases are considered in the sequel.

B. Problem of Decomposed Aggregation Beamforming

In this subsection, the AirComp problem for WDA is formulated as a joint DAB matrix,

denoising factor, and precoders design problem.

The aggregation beamforming martix is designed under two constraints, namely the constraints

of channel equalization and transmission power, described as follows. To output the desired

summation
∑

g,k Xg,k, the beamforming martix need be jointly designed with the precoders

{Bg,k} to overcome channel distortion. This leads to the constraints of channel equalization:

AHg,kBg,k = ηI, ∀g, k. (4)

where η is a positive scalar, called denoising factor. It should be reiterated that the aggreagtion

beamforming leverages “interference” in aggregation instead of suppressing it like the traditional

ZF beamforming, thus requiring much fewer DoF than the latter. Consequently, the ZF constraints

in (4), indeed for resolving the inter-stream interference, are irrelevant for the beamforming

design. Next, each device has finite transmission power, denoted as Pt. The power of the pre-

processed data symbol Xg,k is given as E
[
‖Xg,k‖2

]
. Without loss of generality, unit symbol

power for all devices is assumed. Then the transmission-power constraints can be written as

tr
(
Bg,kB

H
g,k

)
≤ Pt, ∀g, k. (5)
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The objective of designing the beamforming matrix is to minimize the AirComp distortion.

The joint design with precoders at devices can be formulated as an the following optimization

problem under the constraints in (4) and (5):

min
A,{Bg,k},η

E

[∥∥∥∥
1

η
AY −

G∑
g=1

K∑
k=1

Xg,k

∥∥∥∥
2
]
, (6)

(P1) s.t. AHg,kBg,k = ηI, ∀g, k, (6a)

tr
(
Bg,kB

H
g,k

)
≤ Pt, ∀g, k. (6b)

III. DECOMPOSED AGGREGATION BEAMFORMING

In this section, Problem (P1) is first reduced to an equivalent problem focusing on DAB

design. By deriving approximate solution of the non-convex problem, the DAB matrices are

designed for both the cases of disjoint and overlapping clusters.

A. An Equivalent DAB Design Problem

Problem (P1) is simplified to a DAB matrix design problem as follows.

First, by substituting (6a), the objective function of Problem (P1) can be rewritten as

E



∥∥∥∥∥

1

η
A
( G∑

g=1

K∑

k=1

Hg,kBg,kXg,k + n
)
−

G∑

g=1

K∑

k=1

Xg,k

∥∥∥∥∥

2

 ,

=
1

η2
E
[
‖An‖2

]
,

=
1

η2
N0tr

(
AAH

)
,

(7)

where N0 is the noise power. One can observe from (7) that the computation error due to channel

noise n, given by the objective, decreases as η grows, giving its name denoising factor.

Next, we derive the optimal η and {Bg,k} in terms of A based on the constraints (6a) and

(6b). Based on the channel equalization constraints in (6a), the optimal precoders {B∗g,k} can be

solved as

B∗g,k = η(AHg,k)
H(AHg,kH

H
g,kA

H)−1, ∀g, k. (8)

By substituting B∗g,k in (8) into the transmission-power constraints in (6b), we have

η2tr
(
(AHg,kH

H
g,kA

H)−1
)
≤ Pt,∀g, k. (9)
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Equivalently,

η ≤
√

Pt

tr
(
(AHg,kHH

g,kA
H)−1

) , ∀g, k. (10)

Since the objective function in (7) decreases with increasing η, the optimal denoising factor η∗,

constrained by (10), is given as

η∗ = max η = min
g,k

√
Pt

tr
(
(AHg,kHH

g,kA
H)−1

) . (11)

By substituting η∗ in (11) into (8), we can get the optimal precoders, {B∗g,k}. The results are

summarized as follows.

Lemma 1 (Optimal denoising factor and precoding). Given an aggregation beamforming, A the

optimal conditional denoising factor and precoders are

• Optimal denoising factor :

η∗ = min
g,k

√
Pt

tr
(
(AHg,kHH

g,kA
H)−1

) ,

• Optimal precoders :

B∗g,k = η∗(AHg,k)
H(AHg,kH

H
g,kA

H)−1,∀g, k.

(12)

Remark 1 (Weakest link dominant performance). As mentioned, the AirComp error is propor-

tional to
1

η∗2
and thus it is desirable to enhance the denoising factor η∗. One can observe from

(12), the η∗ is limited by the weakest link. To be specific, a weak link is characterized by small

channel gains, the largest misalignment between the channel matrix and DAB A, or both. Note

that the alignment between a channel, say Hg,k, and A can be measured by a sub-space distance

[4]. It follows that the weakest link corresponds to max
g,k

tr
(
(AHg,kH

H
g,kA

H)−1
)

in (12).

Last, by substituting the optimal design in (12) into (7), the unconstrained DAB design

problem, equivalent to (P1), is derived as

(P2) min
A∈CL×Nr

max
g,k

tr
(
AAH

)
tr
(
(AHg,kH

H
g,kA

H)−1
)
. (13)

The problem is non-convex. The classic solution approach is semi-definite relaxation (SDR),

which is, however, too complex in the current context of massive MIMO due to its iterative

algorithms and the dimensionality, Nr → ∞. A more efficient approach as we pursue is to

exploit high-dimensionality but low rank characteristics of clustered channels to design efficient

DAB matrices in closed form. The details are presented in the following sub-sections.
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B. DAB Design for Disjoint Clusters

Consider the case of disjoint clusters where the AoA ranges of any two clusters are disjoint.

With large-scale receive arrays (Nr → ∞), it is well known that the column spaces of the

covariance matrices of any two differnet cluster channels are orthogonal: UH
g Ug′ = 0,∀g 6= g

′ .

Exploiting this property, we first prove that the optimal DAB has a summation form, where

each term depends on only one cluster. Furthermore, each summation term is decomposed into

a product form cascading an inner and an outer per-cluster beamforming, where the former

reduces signal-space dimension and the latter performs AirComp in the reduced-dimensional

signal-space.

Given the said orthogonality between cluster channels, the received signals from different

clusters of devices can be decoupled without inter-cluster interference. This fact allows us to

derive the structure of the optimal DAB as shown below.

Proposition 1 (Decomposed DAB structure). In the case of disjoint clusters, the optimal DAB

matrix solves Problem (P2) has the following decomposed structure,

A∗ =
G∑

g=1

CH
g UH

g , (14)

where the size of Cg is Rg × L.

Proof: See Appendix A.

Several observations can be made from the optimal DAB structure in (14). Let {Ug} and {Cg}
be referred to as the inner and the outer per-cluster DABs, respectively. Each inner term, Ug, is

matched to one cluster and extracts the signal from the dominant Rg-dimensional eigen-space

of the high-dimensional cluster channel, {Hg,k, k ∈ [1, K]}. This yields a reduced-dimensional

signal-space, where performing AirComp using {Cg} has two advantages. The SNR therein

are high and the sub-space distances between the effective channels
{
UH
g Hg,k, k ∈ [1, K]

}
are

small, leading to AirComp-error reduction. Furthermore, AirComp in a reduced-dimensional

space results in dramatic complexity reduction.

Next, building on the optimal DAB structure on (14), we focus on designing the outer per-

cluster DABs {Cg}. By substituting (14), Problem (P2) can be derived as

(P3) min
{Cg}

max
g,k

G∑

m=1

tr
(
CH
mCm

) L∑

i=1

1

λi
(
CH
g Fg,kFH

g,kCg

) , (15)
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where Fg,k = Λ
1
2
g Wg,k is the effective channel after dimension reduction, the function λi (·)

acquires the i-th eigenvalue of a matrix, and the eigenvalues are arranged in a decreasing order,

i.e., λ1 (·) ≥ λ2 (·) ≥ ... ≥ λL (·).

Problem (P3) reduces high-dimensional design in Problem (P2) to the design of reduced-

dimensional DAB matrices {Cg}. Problem (P3) is non-convex. As its solution is intractable, we

derive an approximate solution in closed form to obtain an efficient design of {Cg}. The approx-

imation consists of two steps. The first is to replace the objective function in Problem (P3) by an

upper bound based on the following inequalities, λi
(
CH
g Fg,kF

H
g,kCg

)
≥ λmin

(
CH
g Fg,kF

H
g,kCg

)
,∀i.

The bounds are tight when the eigenvalues of the matrix
(
CH
g Fg,kF

H
g,kCg

)
are similar. It follows

that Problem (P3) can be approximated as

(P4) min
{Cg}

max
g,k

G∑

m=1

tr
(
CH
mCm

)
λ−1min

(
CH
g Fg,kF

H
g,kCg

)
L, (16)

However, Problem (P4) is still non-convex. To overcome the difficulty, the second approximation

step adopts a general approach in beamforming literatures (see e.g., [34]–[36]), that constrain the

beamforming matrices {Cg} to be unitary. This is reasonable as it is the sub-space spanned by

Cg that has a dominant effect on the AirComp performance. With the constraint (CH
g Cg = I),

Problem (P4) can be further approximated as

(P5)
min
{Cg}

max
g,k

λ−1min

(
CH
g Fg,kF

H
g,kCg

)
,

s.t. CH
g Cg = I, ∀g.

(17)

In Problem (P5), it can be shown that the design of Cg depends on solely the g-th cluster channel

matrices {Fg,k, 1 ≤ k ≤ K} and is independent of other clusters (g′ 6= g). Therefore, the inner

beamforming design can be decoupled, as shown in the following lemma.

Lemma 2 (Outer per-cluster DAB). The joint design of {Cg} in Problem P5 can be decoupled

to solve Cg in the following problem for all g.

(P6)
min
Cg

max
k

λ−1min

(
CH
g Fg,kF

H
g,kCg

)
,

s.t. CH
g Cg = I.

(18)

Problem (P6) has the same form as the problem (P5) in [4]. Following the approach in [4],

C∗g, that solves Problem (P6), can be obtained as the weighted sub-space centroid of the column
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spaces of {Fg,k}, which is the L-dimensional principal eigen-space of the following matrix,

S(a)
g =

K∑

k=1

λmin

(
FH
g,kFg,k

)
UFg,k

UH
Fg,k

, (19)

where UFg,k
is the column space of Fg,k. In other words, the solution is C∗g =

[
U

S
(a)
g

]
1:L

, where[
U

S
(a)
g

]
1:L

denotes the L-dimensional principal eigen-space of S
(a)
g .

By combining the results in Lemma 1 and 2, the DAB matrix design for the AirComp in

disjoint-cluster case is given as

(Optimal DAB) A∗ =
G∑

g=1

C∗Hg UH
g , (20)

where C∗g =
[
U

S
(a)
g

]
1:L

and S
(a)
g is defined in (19), respectively.

C. DAB Design for Overlapping Clusters

In this subsection, DAB is designed for the case of overlapping clusters. Unlike the preceding

case of disjoint clusters, it is impossible to decouple the received signals from different clusters

due to their overlapping [11]. Then, the optimal DAB form in (20) derived for the former not

longer for the current case. Nevertheless, inspired by the result, we propose that the DAB design

should have the decomposed form: A = A(o)A(i), where the inner DAB A(i) is a Rs×Nr matrix

with

Rs = min (R1, ..., Rg, ..., RG) , (21)

and the outer DAB A(o) is a L×Rs matrix. In other words, A(i) is responsible for the dimension

reduction of the signal space. Nevertheless, the operation of AirComp is distributed over outer

and inner beamformers instead of relying only on the former as in the preceding case. For

tractability, following the same reason as for designing Cg in Problem (P4), we constrain both

AH
(o) and AH

(i) to be unitary. We show in the sequel that the designs of outer and inner DAB can

be reduced to optimization problems having the identical form.

1) Inner beamforming design: Under the criterion of minimizing AirComp error, the inner

DAB should be matched to the Rs-dimensional dominant eigen-space of each cluster channel,

which is obtained as follows.

Denote the Rs-dimensional dominant eigen-space, the Rs-dimensional dominant eigenvalue

matrix, and the corresponding small-scale fading matrix of device (g, k) as Ûg = [Ug]1:Rs
,
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Λ̂g = [Λg]1:Rs,1:Rs
, and Ŵg,k = [Wg,k]1:Rs,:

, respectively. Then, the dominant Rs-dimensional

sub-space of the channel model in (3) is

Ĥg,k = ÛgΛ̂
1
2
g Ŵg,k. (22)

To solve Problem (P2) in this case, we first derive a useful inequality as follows.

Lemma 3. With A = A(o)A(i), the following inequality holds.

tr
(

(AĤg,kĤ
H
g,kA

H)−1
)
≤ λ−1min

(
A(i)ÛgÛ

H
g AH

(i)

) L∑

i=1

λ−1i
(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
. (23)

Proof: See Appendix B.

By substituting (23), Problem (P2) can be approximated as

(P7)
min
A(i)

max
g

α
′

gλ
−1
min

(
A(i)ÛgÛ

H
g AH

(i)

)
,

s.t. A(i)A
H
(i) = I,

(24)

where α′g = maxk
∑L

i=1 λ
−1
i

(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
. The problem has the same form as Problem (P5)

in [4]. Following the approach in [4], AH
(i) is solved as the Rs-dimensional principal eigen-space

of the following matrix,

S(b) =
G∑

g=1

α
′

gÛgÛ
H
g . (25)

That’s to say, the solution is A∗(i) = [US(b) ]
H
1:Rs

, where [US(b) ]1:Rs
is the Rs-dimensional principal

eigen-space of S(b).

2) Outer beamforming design: By substituting A∗(i) = [US(b) ]
H
1:Rs

into Problem (P2), it can

be derived as

(P8)
min
A(o)

max
g,k

tr
((

A(o)Fg,kF
H
g,kA

H
(o)

)−1)
,

s.t. A(o)A
H
(o) = I,

(26)

where Fg,k = A∗(i)ÛgΛ̂
1
2
g Ŵg,k. Using the following inequality,

tr
((

A(o)Fg,kF
H
g,kA

H
(o)

)−1) ≤ Lλ−1min

(
A(o)Fg,kF

H
g,kA

H
(o)

)
, (27)

Problem (P8) can be further approximated to

(P9)
min
A(o)

max
g,k

Lλ−1min

(
A(o)Fg,kF

H
g,kA

H
(o)

)
,

s.t. A(o)A
H
(o) = I.

(28)
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Then AH
(o) can be solved by the same approach with Problem (P6) as the L-dimensional principal

eigen-space of the following matrix,

S(c) =
G∑

g=1

K∑

k=1

λmin

(
FH
g,kFg,k

)
UFg,k

UH
Fg,k

. (29)

That’s to say, the solution is A∗(o) = [US(c) ]
H
1:L, where [US(c) ]1:L is the L-dimensional principal

eigen-space of S(c).

3) Overall DAB design: In summary, the overall DAB design in overlapping-cluster case is

comprised of inner beamformer A∗(i) and outer beamformer A∗(o), which are given as

A∗(i) = [US(b) ]
H
1:Rs

, A∗(o) = [US(c) ]
H
1:L , (30)

where US(b) and US(c) are the Rs-dimensional and L-dimensional principal eigen-space of S(b)

and S(c), and S(b) and S(c) are defined in (25) and (29), respectively.

Remark 2 (DAB design for overlapping clusters). One can observe from (30) that the DAB

design performs two-tier AirComp. To be specific, the inner DAB A(i) performs AirComp over

channel covariance matrices. Subsequentially, in the reduced-dimension signal space created by

the inner DAB, the outer DAB A∗(o) performs AirComp over small scale-fading channels.

IV. CLUSTERED-CHANNEL RANK SELECTION

In the preceding section, DAB is designed with fixed ranks for its components. Adjusting

the ranks according to clustered channel covariance provides another dimension for reducing

AirComp error. Relevant algorithms are presented in this section.

A. Channel-Rank Selection for Disjoint Clusters

Modifying the DAB design in (20) to allow variable ranks for inner components:

A∗ =
G∑

g=1

Ĉ∗Hg ÛH
g , (31)

where ÛH
g selects the rg-dimensional dominant eigen-space of the channel covariance matrix

Ψg, and Ĉ∗g is computed in the same way as C∗g with Ug replaced by Ûg. There exists a tradeoff

in setting the ranks of {Ug}. On one hand, as can be proved, increasing the ranks {rg} receives

more signal energy from the channels and helps reduce AirComp error. On the other hand,

increasing an inner-DAB rank, says rg, increases the dimensionality of the reduced-dimension
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sub-space, where small-scale-fading channels of cluster g are jointly equalized for the purpose of

AirComp, thereby increasing its error. The above tradeoff is leveraged in the sequel to formulate

an optimization problem for channel-rank selection and to derive an algorithmic solution.

The problem of channel-rank selection, namely optimizing the ranks {rg} of inner DAB can

be formulated by substituting the optimal design in (20) into Problem (P6):

(P10)
min
{rg}

max
g,k

λ−1min

(
C∗Hg Fg,kF

H
g,kC

∗
g

)
,

s.t. L ≤ rg ≤ Rg, ∀g.
(32)

where Fg,k = Λ
1
2
g Wg,k is the rg × L effective channel after dimension reduction using inner

DAB. Decompose Fg,k using SVD as Fg,k = UFg,k
ΣFg,k

VH
Fg,k

. Then, the objective function of

Problem (P10) can be bounded as

λ−1min

(
C∗Hg Fg,kF

H
g,kC

∗
g

)
= λ−1min

(
C∗Hg UFg,k

Σ2
Fg,k

UH
Fg,k

C∗g

)
,

≤ λ−1min

(
Σ2

Fg,k

)
λ−1min

(
C∗Hg UFg,k

UH
Fg,k

C∗g

)
,

= λ−1min

(
FH
g,kFg,k

) (
1− d2

P2

(
C∗g,UFg,k

))−1
,

(33)

where d2
P2

(
C∗g,UFg,k

)
is the projection 2-norm sub-space distance between the sub-spaces

spanned by C∗g and UFg,k
[37]. Using the inequality in (33), Problem (P10) can be further

approximated for tractability as

(P11)
min
{rg}

max
g,k

λ−1min

(
FH
g,kFg,k

) (
1− d2

P2

(
C∗g,UFg,k

))−1
,

s.t. L ≤ rg ≤ Rg, ∀g.
(34)

The objective function in Problem (P11) represents a component of AirComp error measured

using MSE. A useful result is obtained as follows.

Lemma 4. Consider the rg ×Nt effective channel Fg,k of device k in cluster g after dimension

reduction. The eigenvalue λmin

(
FH
g,kFg,k

)
is a monotone increasing function of rg.

Proof: See Appendix C.

Remark 3 (Tradeoff in channel-rank selection). The said tradeoff is reflected in the objective

function in Problme (P11). To be specific, as rg grows, λmin

(
FH
g,kFg,k

)
increases according to

Lemma 4, reducing AirComp error. On the other hand, the dimensionality (rg) of the sub-space

of Hg,k after dimension reduction grows. Note that in this sub-space, the outer DAB Ĉ∗g equalizes

the cluster of channels {Fg,k, 1 ≤ k ≤ K} for the purpose of AirComp. As the dimensionality
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grows, the sub-spaces distance, d2
P2

(
C∗g,UFg,k

)
, increases [37], thereby elevating the AirComp

error.

For notation simplicity, define MSEg,k = λ−1min

(
FH
g,kFg,k

) (
1− d2

P2

(
C∗g,UFg,k

))−1 and MSE =

maxg,kMSEg,k. Hence, Problem (P11) can be simplified as

(P12)
min
rg

MSE,

s.t. L ≤ rg ≤ Rg, ∀g.
(35)

In the sequel, Problem (P12) is solved to yield two schemes: homogeneous and heterogeneous

channel-rank selection.

1) Homogeneous rank-selection scheme: To simplify design, apply the constraint of homo-

geneous rank selection: rg = r, ∀g. Then, Problem (P12) can be re-written as

(P13)

min
r

MSE,

s.t. rg = r, ∀g,

L ≤ r ≤ min
g
{Rg}.

(36)

Since r is an integer variable and its range, Nt ≤ r ≤ ming{Rg}, is usually small, the optimal

value of r can be found by one-dimensional search.

2) Heterogenous rank-selection scheme: In this case, inner DAB components {Ug} are al-

lowed to have different ranks. The corresponding Problem (P12) is an integer problem, whose

solution is NP-hard. To address this issue, we propose a sub-optimal design based on the

following procedure.

First, the channel cluster that is the bottleneck of AirComp is identified and the rank of the

corresponding outer DAB component is optimized. Next, the preceding step is repeated till the

algorithm converges. The details of the algorithm are in Algorithm 1.

B. Channel-Rank Selection for Overlapping Clusters

Due to overlapping clusters, it is no longer feasible to match the ranks of individual DAB

components according to those of individual clusters. However, it is possible to optimize the

rank of inner DAB r in the design in (30) over the range L ≤ r ≤ ming Rg, namely performing

homogeneous rank selection similarly as in Problem (P13). The resultant problem of channel-
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Algorithm 1 Heterogeneous rank selection algorithm
1: Initialize rg = Nt,∀g.

2: Loop

3: Find (G0, K0) = arg max
g,k

MSEg,k,

4: Solve the the following problem and find the optimal rank for cluster G0 with fixed

rg,∀g 6= G0.

R̃ = arg min
rG0

max
k

MSEG0,k, s.t. rG0 ≤ RG0 ,

5: Update rG0 = R̃.

6: Until convergence.

rank selection for outer DAB can be formulated by substituting the design in (30) into Problem

(P9):

(P14)

min
r
λ−1min

(
A∗(o)Fg,kF

H
g,kA

∗H
(o)

)
,

s.t. rg = r, ∀g,

L ≤ r ≤ min
g
{Rg},

(37)

which can also be solved by one-dimensional search, since the ranks’ range, L ≤ r ≤ ming Rg,

is usually small.

V. ANALOG CHANNEL FEEDBACK

In this section, the principle of AirComp is applied to design efficient scheme for CSI feedback

to enable DAB designed in the preceding sections. Specifically, given channel reciprocity and

reliable feedback channel, the schemes feature low-latency simultaneous analog feedback such

that the desired DAB A∗ can be computed as

A∗ = q

(
G∑

g=1

qg (Yg)

)
= q

(
G∑

g=1

qg

(
K∑

k=1

Hg,kZg,k

))
, (38)

where Yg is the aggregated feedback signals from all devices in cluster g, qg(·) is the cluster-

based post-processing function, and q(·) is the overall post-processing function. The principle was

first applied in [4] to design feedback for AirComp targeting rich-scattering channels. Based on

the same principle, we design feedback schemes for reduced-dimensional AirComp for clustered

MIMO channels.
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In practical systems such as 3GPP LTE, CSI feedback is part of control signalling and

protected against channel fading and noise by high transmission power and coding, creating

reliable feedback channels. Such channels are also assumed in this work, where reliable analog

feedback is ensured by high power and linear analog coding. As a result, noise as well as analog

feedback detection [38] are omitted in the exposition for brevity. In the sequel, we focus on the

design of feedback signals, pre-processing, and post-processing.

A. Analog Feedback for Disjoint Clusters

Based on the design in (20), the objective for feedback is to obtain at the AP the desired DAB

A∗ =
∑G

g=1 C∗Hg UH
g . The matrix Ug is the eigen-space of the channel covariance matrix Ψg,

which can be estimated reliably at both the AP and devices from past transmission [11], [12]. It

follows that the feedback purpose is for the AP to acquire {C∗g}, which depend on small-scale

fading.

Based on the principle in (38), we propose the following “one-shot” analog feedback scheme,

where the notation follows that in Section III-B.

Analog Feedback for Disjoint Clusters

• Individual feedback signals : Zg,k = λmin

(
FH
g,kFg,k

)
VFg,k

Σ−1Fg,k
UH

Fg,k
, ∀g, k,

• Received/aggregated feedback signal : Y =
∑G

g=1
Ug

∑K

k=1
Fg,kZg,k,

• Cluster-based post-processing qg(·) : Yg = UH
g Y,

• Overall post-processing q(·) : A∗ =
∑G

g=1

[
UYg

]H
1:L

UH
g ,

where
[
UYg

]
1:L

is the L-dimensional principal eigen-space of Yg. It is straightforward to verify

that the DAB obtained using the above feedback scheme is the desired one.

Remark 4 (One-shot feedback). The key feature of the above analog feedback scheme is

simultaneous analog transmission (or ”one-shot” feedback). The minimum feedback duration is

a single symbol duration. Therefore, the feedback overhead is low and its latency is independent

of the number of devices.

B. Analog Feedback for Overlapping Clusters

Following the design in Section III-C, the desired DAB in the current case is A∗ = A∗(o)A
∗
(i).

In the preceding case of disjoint clusters, one-shot feedback is feasible due to the fact that
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signals from different clusters are separable at the AP. This does not hold in the current case

while feedback signals from different clusters still need be separated. Consequently, the feedback

scheme requires G slots where feedback in each slot targets one specific cluster of channels.

Consider feedback of the inner DAB A∗(i). One can observe from (25) that the inner DAB A∗(i)

depends on 1) the channel covariance matrices, which are known to both the AP and devices,

and 2) aggregation weights (scalars) {α′g} with one for each cluster. A particular weight, say α′g,

requires computation of the maximum over K scalars transmitted by K devices in cluster g. This

can be realized using the existing AirComp algorithm in [8], referred to as maximum-AirComp

algorithm. As the scalars depend on small-scale fading, their feedback need be periodic and

repeated for every channel coherence time. Next, consider feedback of the outer DAB A∗(o). The

design depends on small-scale fading according to (29). For the reason mentioned earlier, the

outer-DAB feedback requires G slots.

The proposed scheme combining feedback of outer and inner DAB are shown below, where

the notation follows that in Section III-C.

Analog Feedback for Overlapping Clusters

• For g = 1, 2, · · · , G,

• Feedback of α′g using the maximum-AirComp algorithm in [4],

• Individual feedback signals : Z∗g,k = λmin

(
FH
g,kFg,k

)
VFg,k

Σ−1Fg,k
UH

Fg,k
,

• Received/aggregative signal from cluster g : Yg =
∑K

k=1
UgΛ

1
2
g Wg,kZ

∗
g,k,

• Cluster-based post-processing : Ωg = A∗(i)ÛgÛ
H
g Yg,

• End

• Compute S(b) =
∑G

g=1
α
′

gÛgÛ
H
g ,

• Compute the inner DAB as: A∗(i) = [US(b) ]
H
1:Rs

,

• Compute S(c) =
[∑G

g=1
Ωg

]
,

• Compute the overall DAB as: A∗ = [US(c) ]
H
1:L A∗(i),

where [US(b) ]1:Rs
and [US(c) ]1:L are the Rs-dimensional and L-dimensional principal eigen-space

of S(b) and S(c), respectively.

Remark 5 (Cluster-based feedback). In the case of overlapping clusters, even though the
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feedback is not one-shot and divided into separate feedback for different clusters, the feedback

for devices within the same cluster are simultaneous. Consequently, the total feedback overhead

depends on the number of clusters and does not scale with the number of devices.

VI. SIMULATION RESULTS

Consider an IoT network with an AP and G clusters of devices. There are K devices in each

cluster. The AP performs AirComp over the data transmitted by the devices. The simulation

parameters are summarized in Table I.

Table I: Simulation parameters

Parameter Value

Bandwidth, W 10 MHz

Noise power density, N0 −174 dBm/Hz

Path loss between device and AP 145.4 + 37.5 log (0.05(km))

Number of transmit antennas, Nt 5

Receive antenna spacing over wavelength, D 1/3

A. Gains of Channel-Rank Selection

1) Channel-rank selection for disjoint clusters: The homogeneous channel-rank selection of

two disjoint clusters is presented in Fig. 3. In this case, the number of receive arrays is Nr = 48.

The AoA ranges are ∆θ1 = [−49◦,−1◦] and ∆θ2 = [1◦, 49◦], respectively. According to [11],

the number of ranks of both clusters can be calculated as R1 = R2 = 12. In Fig. 3, the optimal

homogeneous rank selection scheme can significantly improve the performance compared with

no rank selection. Besides, Fig. 3(a) shows the MSE decreases with the maximum transmit

power. The reason is that the MSE is inversely proportional to the maximum transmit power.

Fig. 3(b) shows the MSE increases with the number of devices in each cluster. The reason is

that the sub-space distances between the effective channels after dimension reduction, on which

the AirComp performance depends, increases with the number of devices.

The performance of the heterogenous channel-rank selection of three disjoint clusters is shown

in Fig. 4. In this case, the number of receive arrays is Nr = 48. The AoA ranges are ∆θ1 =

[−51◦,−15◦], ∆θ2 = [−14◦, 14◦], and ∆θ3 = [15◦, 41◦], respectively. The corresponding ranks
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Figure 3: Homogeneous channel-rank-selection for disjoint clusters.
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Figure 4: Heterogeneous channel-rank-selection for disjoint clusters.

are R1 = 8, R2 = 8, and R3 = 6, respectively. In Fig. 4, the sub-optimal channel-rank-selection

scheme proposed in Algorithm 1 can improve the performance. Again, the MSE decreases with

the maximum transmit power and increases with the number of devices in each cluster.

2) Rank selection for overlapping clusters: The performance of the channel-rank selection for

overlapping clusters of two overlapping clusters is presented in Fig. 5. In this case, the number

of receive arrays is Nr = 48. The AoA ranges are ∆θ1 = [−45◦, 15◦] and ∆θ2 = [−15◦, 45◦],
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respectively. The ranks of both clusters are R1 = R2 = 15. Fig. 5 shows that the channel-rank

selection in this case can improve the performance.
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Figure 5: Channel-rank-selection for overlapping clusters.

The simulation results above verify that channel-rank selection is needed to achieve the best

performance of AirComp in massive MIMO systems. Besides, increasing the transmit power and

selecting the devices with most correlated small-scale fading can also improve the performance.

B. Gains of Reduced-Dimension Aggregation Beamforming Design

In Fig. 6, we show the gains of the proposed reduced-dimension design. Two clusters of

devices are considered. To investigate the impact of channels’ correlation, the number of receive

arrays is set to Nr = 30. In the figure, “DisDAB”, “OvpDAB”, and “Reference” represents the

beamforming design for disjoint clusters, overlapping clusters, and in [4], respectively.

In Fig. 6 (a), the transmit power is Pt = 24dBm. The AoA ranges of two clusters are

∆θ1 = −δ + [−35◦, 25◦], ∆θ2 = δ + [−30◦, 30◦], respectively, where δ is the AoA ranges

change. As δ increases, the AoA ranges of the two clusters changes from highly overlapping to

nearly disjoint. In this figure, when the AoA ranges of the two clusters are highly overlapping,

the DAB design for overlapping clusters has the best performance. Otherwise, the performance of

the DAB design for disjoint clusters is the best. Besides, in highly overlapping case, the disjoint

DAB design can still has good performance since the two clusters can nearly be regarded as one

cluster.
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Figure 6: Gains of reduced-dimension beamforming design.

In Fig. 6 (b), the AoA ranges are ∆θ1 = [−50◦, 10◦], ∆θ2 = [−15◦, 45◦], respectively. It shows

the the performance of DAB design for disjoint clusters is the best, because AoA ranges of the

two clusters are not highly overlapping.

The simulation results above show that our proposed DAB designs can achieve better perfor-

mance than the existing approach.

VII. CONCLUSION

In this paper, we have presented the framework of reduced-dimension MIMO AirComp

for clustered IoT networks. The design exploits the structure of clustered MIMO channel to

reduce AirComp errors and channel-feedback overhead. The key feature of the framework

is the design of decomposed aggregation beamforming, which comprises outer components

performing channel dimension reduction and joint equalization of channel covariances and the

inner components jointly equalize small-scale fading channels components.

The current work opens several directions for further investigation. One direction is algorith-

mic design for MIMO AirComp. In particular, sensor clustering algorithms can be designed

to improve the performance of MIMO AirComp. Another interesting direction is to apply

MIMO AirComp to specific IoT or distributed-learning applications such as high-mobility UAV

networks, federated learning or cloud coordinated vehicular platooning.
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APPENDIX A

PROOF OF LEMMA 1

We first construct an orthonormal basis of the Nr-dimensional space using the column vectors

of {Ug, g ∈ [1, G]}. Then, each column vector of A is presented as a linear combination of the

basis. Finally, the decomposition form of A is proved by combining the column vectors.

For notation simplicity, let RG+1 = (Nr−
∑G

i=1Rg). Define a Nr×RG+1 dimensional unitary

matrix, UG+1, which satisfies UH
g UG+1 = 0 for all g ∈ [1, G]. Then, the column vectors of

{Ug, g ∈ [1, G+ 1]} forms an orthonormal basis of the Nr-dimensional space. Denote the i-th

column vector of Ug and AH as ug,i and ai, respectively. According to the projection theory,

we have

ai =
G+1∑

g=1

Rg∑

j=1

c
(g)
i,j ug,j =

G+1∑

g=1

Ugcg,i, ∀i ∈ [1, L], (39)

where c
(g)
i,j the coefficient and cg,i =

[
cgi,1, c

(g)
i,2 , ..., c

(g)
i,Rg

]T
, respectively. Thereby, AH can be

presented as

AH = [a1, a2, ...aL] =
G+1∑

g=1

Ug [cg,1, cg,2, ..., cg,L] =
G+1∑

g=1

UgCg, (40)

where Cg = [cg,1, cg,2, ..., cg,L].

Besides, with the channel, Hg,k, defined in (3), we have CH
G+1U

H
G+1Hg,k = 0,∀g ∈ [1, G].

That’s to say, the component, CH
G+1U

H
G+1, of A has no contribution solve Problem (P2). Then,

let CH
G+1 = 0 for simplicity. Hence, we have

A =
G∑

g=1

CH
g UH

g . (41)

This completes the proof.

APPENDIX B

PROOF OF LEMMA 3

Denoting Jg,k = AĤg,kĤ
H
g,kA

H and substituting A = A(o)A(i) and (22), we have

Jg,k = A(o)A(i)ÛgΛ̂
1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g ÛH

g AH
(i)A

H
(o), (42)
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whose eigenvalues can be approximated to

λi (Jg,k) ≥ λmin

(
A(o)A(i)ÛgÛ

H
g AH

(i)A
H
(o)

)
λi

(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
,

≥ λmin

(
A(i)ÛgÛ

H
g AH

(i)

)
λmin

(
A(o)A

H
(o)

)
λi

(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
,

= λmin

(
A(i)ÛgÛ

H
g AH

(i)

)
λi

(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
,

(43)

where the last equality above is because A(o)A
H
(o) = I. Besides, tr

(
(AĤg,kĤ

H
g,kA

H)−1
)

=
∑L

i=1 λ
−1
i (Jg,k). By substituting (43), we have

tr
(
(AHg,kH

H
g,kA

H)−1
)
≤ λmin

(
A(i)ÛgÛ

H
g AH

(i)

)∑L

i=1
λ−1i
(
Λ̂

1
2
g Ŵg,kŴ

H
g,kΛ̂

1
2
g

)
. (44)

This completes the proof.

APPENDIX C

PROOF OF LEMMA 4

By substituting Fg,k = Λ
1
2
g Wg,k, we have λmin

(
FH
g,kFg,k

)
= λmin

(
WH

g,kΛgWg,k

)
. Besides,

each element of Wg,k is i.i.d., and follows CN (0, 1). For notation simplicity, let rg = r. Let

Tr = WH
g,k,rΛg,rWg,k,r and Tr+1 = WH

g,k,r+1Λg,r+1Wg,k,r+1, where the size of Wg,k,r and

Wg,k,r+1 are r × Nt and (r + 1) × Nt, and Λg,r and Λg,r+1 are the r and r + 1 dominant

eigenvalue matrix of Λg, respectively. Therefore, we have

Tr+1 = Tr + ∆, (45)

where ∆ is a non-negative matrix. According to Weyl’s inequality in matrix theory [39],

λi (Tr) ≤ λi (Tr+1) . (46)

Therefore, λmin (Tr) ≤ λmin (Tr+1). That’s to say, λmin

(
FH
gkFgk

)
increases with r. This com-

pletes the proof.
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