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Abstract—Non-orthogonal multiple access (NOMA) has been
identified as a promising technology for future wireless systems
due to its performance gains in spectral efficiency when compared
to conventional orthogonal schemes (OMA). This gain can be
easily translated to an increasing number of served users, but
imposes a challenge in the system reliability which is of vital
importance for new services and applications of coming cellular
systems. To cope with these issues we propose a NOMA rate
control strategy that makes use only of topological characteristics
of the scenario and the reliability constraint. We attain the neces-
sary conditions so that NOMA overcomes the OMA alternative,
while we discuss the optimum allocation strategies for the 2-user
NOMA setup when operating with equal rate or maximum sum-
rate goals. In such scenario we show that the user with the largest
target error probability times the ratio between the average
receive signal power and the average interference power, should
be scheduled to be decoded first for optimum performance. We
compare numerically the performance of our allocation scheme
with its ideal counterpart requiring full CSI at the BSs and
infinitely long blocklength, and show how the gap increases as
the reliability constraint becomes more stringent. Results also
evidence the benefits of NOMA when the co-interference can be
efficiently canceled, specially when the goal is to maximize the
sum-rate.

Index Terms—NOMA, rate control, power allocation, reliabil-
ity constraints, optimal user ordering.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been widely
recognized as a promising technology for future wireless
systems due to its superior spectral efficiency compared to
conventional orthogonal multiple access (OMA) [1], [2]. Com-
pared to OMA, NOMA can exploit the channel diversity
more efficiently via smart interference management techniques
such as successive interference cancellation (SIC) [3], thus,
achieving the performance enhancements. A unified frame-
work for NOMA is provided in [4] where the authors review
the principles of various NOMA schemes in different domains.
As one of the dominant NOMA schemes, power-domain
NOMA, where different users are allocated different power
levels according to their channel conditions, has become a
strong candidate. These setups are based on the combination of
superposition coding at the transmitter side, by allocating the
same frequency/time/spatial resource to multiple receivers and
multiplexing them on the power domain, and then extracting
the intended signals from the composite data using SIC at these
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receivers [1]. Power domain NOMA has received extensive
research interests and readers can refer to [5] for a com-
prehensive survey on its recent progress towards 5G systems
and beyond. Particularly, the work in [6] studies the tradeoff
between data rate performance and energy consumption by
examining the problem of energy-efficient user scheduling and
power optimization in 5G NOMA heterogeneous networks.
The scenario of NOMA-based cooperative relay network is
explored in [7], while coordinated multipoint transmissions in
downlink NOMA cellular systems are analyzed in [8].

A. Related Works

Many of the existing studies focus on the system perfor-
mance when considering a single NOMA cell/cluster [9]–[15].
The performance of NOMA in a cellular downlink scenario
with randomly deployed users is investigated in [9]. Authors
show that NOMA can achieve superior performance in terms
of ergodic sum rates; however, that depends critically on the
choices of the users’ targeted data rates and allocated power.
In [10], the impact of user pairing on the performance of
two NOMA systems, NOMA with fixed power allocation and
cognitive-radio-inspired NOMA, is characterized. An uplink
power control scheme is proposed in [11] in order to achieve
diverse arrived power in an uplink NOMA system, while
authors analyze its outage performance and the achievable
sum data rate. Interestingly, authors in [12] investigate the
theoretical performance comparison between NOMA and con-
ventional OMA systems from an optimization point of view,
while in the context of machine type communications (MTC)
authors in [13] propose a game theory power control algorithm
that prioritizes first the communication reliability and once
the reliability is satisfied it focuses on the power consump-
tion issues. Also, energy-efficient NOMA design problem for
two downlink receivers that have strict reliability and finite
blocklength (latency) constraints have been considered in [14],
while in [15] the physical-layer transmission latency reduction
enabled by NOMA in short-packet communications has been
highlighted. Finally, the combination of NOMA with the
multiple-input multiple-output (MIMO) technology is explored
in [16] along with the limitations and future research directions
in the area.

Above works do not deal with inter-cell interference, which
is a pervasive problem in most of the existing wireless
networks and could significantly limit the performance of
NOMA deployments. In that sense some recent research works
have considered the performance characterization of large-
scale NOMA systems [17]–[23]. Using stochastic geometry,
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the performance of uplink NOMA in terms of the rate coverage
and average achievable rate is characterized in [17] using
Poisson cluster process and considering both perfect and
imperfect SIC. Additionally, authors in [18] proposes and
evaluate NOMA as a massive-MTC enabler technology in data
aggregation networks, while identifying the power constraints
on the devices sharing the same channel in order to attain a fair
coexistence with purely OMA setups. As a continuation, the
relaying phase, where the aggregatted data is forwarded to the
base station, is considered in [19], and the system performance
is investigated in terms of average number of users that are
simultaneously served. In the context of vehicle-to-everything
(V2X) communications, NOMA has been explored in [20]
where the Base Station (BS) performs semi-persistent schedul-
ing and allocates time-frequency resources in a non-orthogonal
manner, while the vehicles autonomously perform distributed
power control when broadcasting their safety information to
the neighborhood. System coverage and average achievable
rate of the m-th rank user is derived in [21] assuming that the
BSs locations follow a homogeneous Poisson Point Process
(PPP) in downlink NOMA, and authors show that NOMA can
bring considerable performance gain compared to OMA when
SIC error is low. Also, the performance of two-user downlink
NOMA is investigated [22] in a multi-tier cellular network
where the macro cell BSs use the massive MIMO technology
and each small cell adopts user pairing to implement two-user
NOMA transmission. Finally, authors in [23] developed an
analytical framework to derive the meta distribution of the
Signal-to-Interference Ratio (SIR) in large-scale co-channel
uplink and downlink NOMA networks with one NOMA clus-
ter per cell. Notice that such meta distribution tool provides a
more precise characterization of the performance of a typical
transmission link than the standard success probability, since it
is able of characterizing the fraction of users that perform with
a given reliability, whereas the standard success probability
just characterizes the fraction of users that are in coverage.

On the other hand, NOMA works have usually been aimed
at improving the spectral [9]–[12] and energy [14], [22]
efficiency of the system, the coverage probability [17], [21],
[22], and also recently have focused in providing massive
connectivity [18], [19] for future Internet of Things (IoT)
scenarios. Besides the massive access problem, many IoT
use cases with stringent delay and reliability constraints, e.g.,
ultra reliable MTC (uMTC), have been identified for the
coming years and constitute important challenges for emerging
massive wireless networks. In that regard, the works [13]–[15]
analyze reliability and delay metrics but in a single cell setup,
while authors in [20] do evaluate a multi-cell setup but in
a V2X network. By using stochastic geometry tools, authors
in [23] maximize the success probability with and without
latency constraints in uplink and downlink NOMA setups with
perfect SIC. Additionally, optimizing the performance of these
networks has usually relied on power control, sub-channel
allocation and user selection and/or user pairing mechanisms,
while the transmission rate is another degree of freedom
that could be also exploited. In fact, the latter has been
already explored efficiently in ad-hoc [24] and OMA [25],
[26] networks with reliability constraints, where the proposed

rate allocation schemes are based on easy-to-obtain topological
characteristics and on the (Rayleigh) fading statistics1. Notice
that rate allocation mechanisms are promising since their
impact is merely local, in the sense that a node varying its
transmission rate does not influence in the performance of any
other node2, thus, when properly designed they are suitable for
distributed implementations.

B. Contributions and Organization

To the best of our knowledge, a multi-cell downlink NOMA
scenario where User Equipments (UEs) operate with reliability
constraints and imperfect SIC has not been explored yet, thus,
in this work we aim at filling that gap. Our main contributions
are

• We propose a NOMA rate allocation scheme to be per-
formed by BSs in order to meet the reliability constraints
of their associated UEs. The advantage of this scheme is
that no instantaneous Channel State Information (CSI) is
required at the transmission side, while it only relies on
easy-to-get information such as the average receive power
from the desired signal and from the interfering BSs at
the target UE, and the reliability constraint. Notice that
this scheme is closely related to the one we first proposed
in [25] and extended in [26], but there we just analyze
an OMA network with multiple antennas at the receiver,
while operating in a non-orthogonal fashion raises many
other practical concerns;

• We characterize analytically the distribution of the allo-
cated SIR threshold, thus, the distribution of the allocated
rate, in Poisson Networks;

• We attain the necessary conditions so that NOMA over-
comes the OMA alternative, while we discuss the opti-
mum allocation strategies for the 2-UEs NOMA setup
when operating with equal rate or maximum sum-rate
goals. Specifically, we find the optimum rate and power
allocation profile and show that the UE with the largest
value of target error probability times the ratio between
the average receive power from the desired signal and
the average interference power, should be scheduled to
be decoded first for optimum performance;

• We compare numerically the performance of our alloca-
tion scheme with its ideal counterpart requiring full CSI at
the BSs and infinitely long blocklength, and show how the
gap increases as the reliability constraint becomes more
stringent. Results also evince the benefits of NOMA when
the co-interference can be efficiently canceled, specially
when the goal is to maximize the sum-rate.

Next, Section II establishes the system model and assump-
tions. In Section III we present the rate allocation scheme,
and characterize the distribution of the adopted SIR threshold
in large-scale networks. Section IV discusses the optimum
power allocation strategy in the 2-UEs NOMA setup, while

1Specifically, [24] focuses on an interference-limited Poisson bipolar net-
work, while in [25], [26] we did similar but for cellular networks with multiple
antennas at the receiver side.

2In case of NOMA, it would affect the nodes associated to the same NOMA
cluster, but this is still local and easy to handle.
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Fig. 1. Illustration of the system model for M = 2.

Section VI presents the numerical results. Finally, Section VII
concludes the paper.

Notation: E[ · ] and E[ · |A] denote expectation and ex-
pectation conditioned on event A, respectively, while Pr(B)
and Pr(B|A) are the probability of event B, and Pr(B)
conditioned on A, respectively. fX(x) and FX(x) are the
Probability Density Function (PDF) and Cumulative Distribu-
tion Function (CDF) of random variable (RV) X , respectively.
X ∼ Exp(1) is an exponential distributed RV with unit mean,
e.g., fX(x) = exp(−x) and FX(x) = 1 − exp(−x); while
fri(x) = 2πλx exp(−πλx2) denotes the PDF of the nearest
neighbor distance in a two-dimensional PPP with density λ,
which is given in [27]. dmf(x)/dxm is the m-th derivative
of function f(x) with respect to x, while min(x, y) is the
minimum between the values of x and y. Finally, LX(s)
denotes the Laplace transform of RV X , while L−1{·}(x)
is the inverse Laplace transform operation.

II. SYSTEM MODEL

Consider a multi-cell downlink cellular network where BSs
are spatially distributed according to a 2-D homogeneous PPP
Φ with density λ. We assume each UE is associated with the
closest BS, namely the UEs in the Voronoi cell of a BS are
associated with it, resulting in coverage areas as shown in
Fig. 1. UEs are placed such that the distance between UEi

and its associated BS, is ri. We also consider an interference-
limited wireless system given a dense deployment of small
cells and hence the impact of noise is neglected throughout the
paper3. All BSs transmit at the power PT . We adopt a channel
model that comprises standard path-loss with exponent α and
Rayleigh fading.

A NOMA group, M, consists of M UEs, UEi, i =
1, 2, ...,M , and notice that an illustration of the system model
for M = 2 is shown in Fig. 1. Each UEi tries to decode
the interfering NOMA signals destined to UEm, m ≤ i, and
then remove the interfering NOMA signals from the received
signal, in a successive manner. Assume the transmission power
of signal for UEi is Pi with

∑
i∈M Pi = PT . Our system

model is similar to [21], although, we do not establish the

3However, the impact of the noise could easily be incorporated without
substantial changes.

decoding order based on the channel gains normalized by
the interference since such approach requires full knowledge
not only of the channel coefficients and path-loss but also of
the interference experienced each time at each UE, which is
very difficult to obtain. Instead, the BS allocates the transmit
power such that P1 ≥ ... ≥ PM for guaranteeing the desired
decoding order4 and some criteria for feasibility and optimum
performance are provided in Section IV. Finally, CSI is only
required at the UEs and not at transmitter side.

A. Signal Model
We denote the signal intended to UEi as xi where

E[|xi|2] = 1. According to NOMA principle [2], the trans-
mitted signal at BS is coded as the composite signal from all
the UEs sharing the orthogonal resource,

x =
M∑
i=1

√
Pixi. (1)

Thus, in an interference limited system the received signal at
UEi can be represented as

yi =
√
hir

−α
i x+ Ii, (2)

where hi ∼ Exp(1) is the power channel gain coefficient, and

Ii =
∑

j∈Φ\{b0}

gjr
−α
j,i PT (3)

is the inter-cell interference, which is the sum of the power
received from all BSs excluding the serving BS denoted as b0.
In (3), gj ∼ Exp(1) and rj,i are the Rayleigh fading power
coefficient of interfering channel, and transmission distance
from interfering BS j to UEi, respectively.

B. SIR after SIC
Instead of the real SIR at the receiving antenna of a UE,

we are more interested in the SIR after SIC which is directly
related to the performance of each particular UE. Notice that
UE1 does not need to perform interference cancellation and
directly treats xj , j ≥ 2, as interference since it comes the
first in the decoding order. On the other hand, UE2 first
decodes x1 and removes it from the received composite signal
y2, based on which UE2 can further decode x2. Thus, UEm

first decodes signals xj , j < m, and remove them from the
received composite signal ym, based on which UEm can
further decode xm. Assuming successful decoding but with
error propagation [28] given by the parameter µ ∈ [0, 1]
measuring the imperfection of SIC, the NOMA SIR of the
i−th signal at UEi can be expressed as

SIRi =
hir

−α
i Pi

hir
−α
i

[
µ

i−1∑
j=1

Pj +
M∑

j=i+1

Pj

]
+ Ii

. (4)

Notice that
i−1∑
j=1

Pj = 0 and
M∑

j=i+1

Pj = 0 for i = 1 and i = M ,

respectively.

4For instance, if two UEs, named UEA and UEB , are served such that
the BS allocates PB > PA, then UEB and UEA signals are decoded in
that order at the UEs since for each of them the signal associated with UEB

arrives always with greater power. Thus, UEB = UE1 and UEA = UE2.



1536-1276 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2936188, IEEE
Transactions on Wireless Communications

4

III. DISTRIBUTED RATE CONTROL UNDER RELIABILITY
CONSTRAINT

We are interested in finding the SIR threshold for each link
i ∈ M, γi, such that the conditional link success probability,
P(SIRi > γi|Φ) [24], is equal to 1− ϵi, then, the transmitter
decides on its rate as Ri = log2(1 + γi). Allocating the
rate in such way guarantees that all the UEs meet their
reliability requirements since P(SIRi > γi|Φ) is defined for
each network realization. Notice that for practical feasibility
the allocation should rely on information easy to obtain at the
BS; for instance, allocating the rate based on the path-loss
experienced by each of the interfering signals is not suitable.

Lemma 1. For a given realization of Φ, the maximum SIR
threshold γi that guarantees the required reliability for the
i−th link is

γi =
φ∗
iPi

PT + φ∗
i

(
µ

i−1∑
j=1

Pj +
M∑

j=i+1

Pj

) , (5)

where φ∗
i is the unique real positive solution of∏

j∈Φ\{b0}

(1 + φir
α
i r

−α
j,i ) =

1

1− ϵi
. (6)

Proof. See Appendix A.

Remark 1. If M = 1 we have that γ1 = φ∗
1, thus, φ∗

i

represents the SIR threshold that would be required for UEi

if it was operating alone in the channel, hence φ∗
i ≥ γi holds

always. Additionally,

dγi
dφ∗

i

=
PiPT(

PT + φ∗
i

(
µ

i−1∑
j=1

Pj +
M∑

j=i+1

Pj

))2 > 0, (7)

therefore, γi is an increasing function of φ∗
i .

For practical values of ϵi we next propose a very tight and
simple approximation for φ∗

i that is suitable when computing
(5) for rate allocation.

Theorem 1. φ∗
i approximates accurately to

φ∗
i ≈ r−α

i∑
j∈Φ\{b0} r

−α
j,i

ϵi (8)

when ϵi ≤ 10−1.

Proof. See Appendix B.

Notice that our results are not restrictive to the adopted
path-loss model. In fact, r−α

i /
∑

j∈Φ\{b0}
r−α
j,i can be expressed

in a generalized way as the quotient between the average
receive power from the desired signal and from the interfering
BSs at the given location, and in that aspect lies the main
advantage of using (8). Fig. 2a corroborates the accuracy
of (8), which is independent of the specific deployment and
path-loss exponent. As expected, the less strict the reliability
constraint, the larger φ∗

i , hence the larger γi.
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Fig. 2. (a) φ∗
i as a function of ϵi, for high density, rj,i = 40 + 10j,

medium density, rj,i = 40+20j and low density, rj,i = 40+30j, example
deployments (top). We set ri = 30m. (b) Fγi (θ) for OMA scheme (Pi = PT

and γi = φ∗
i ) (bottom). Since Fγi (θ) does not depend on λ we choose an

arbitrary value of λ = 10−4/m2 (100/km2) for obtaining the Monte Carlo
results.

A. Distribution of the SIR threshold

Herein we find the distribution of the SIR threshold allo-
cated to each UE for satisfying its reliability constraint. The
distribution is taken with respect to the PPP spatial randomness
and the results are useful for characterizing the links’ rate
performance in general large-scale networks.

Theorem 2. The distribution of the SIR threshold allocated to
every UEi for satisfying its reliability constraint ϵi according
to (5) and (8), is given by

Fγi(θ) = 1− L−1

{
1

s 1F1(−δ, 1− δ,−s)

}(
zi(θ)

)
, (9)

zi(θ)>1

5
zi(θ)≤1

1− sinc(δ)zi(θ)
δ, (10)

in downlink NOMA networks with PPP distributed BSs. In (9)
and (10) we use δ = 2/α and

zi(θ) =

Pi

θ
− µ

i−1∑
j=1

Pj −
M∑

j=i+1

Pj

 ϵi
PT

. (11)

Proof. See Appendix C.

Notice that for zi(θ) > 1 there is no closed-form ana-
lytical expression for Fγi

(θ) since it is required computing



1536-1276 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2936188, IEEE
Transactions on Wireless Communications

5

the Laplace inversion of a nasty function which includes an
hypergeometric term, thus, numerical methods are required
(see [29] for algorithmic implementations of numeric Laplace
inversion). Still, (9) is of enormous importance since Monte
Carlo simulation of these scenarios are particularly time con-
suming. Another important observation is that Fγi

(θ) does
not depend on the network density λ which matches previous
results as in [30, Section III] for Poisson cellular networks
without rate control and reliability restrictions.

Fig. 2b corroborates (9) and (10) since the numerical
evaluation of (9) and the Monte Carlo results match, while
(10) matches when θ ≥ ϵi and works as a lower bound in the
complementary region. For a fixed reliability constraint it is
shown that as the path-loss exponent increases, the curves shift
to the right and greater data rates are feasible. This is because
we are considering an interference-limited setup and notice
that the interference is affected more than the receive power of
the desired signal itself since interfering signals endure larger
distances. While for fixed path-loss exponent the allocated data
rates decrease as the reliability constraints become more strict
and in such case the gap between curves with different values
of ϵi matches their quotient according to (8). For instance, the
gap between the curves with ϵi = 10−1 and ϵi = 10−2 in
Fig. 2b is 10dB which matches 10−1/10−2.

IV. POWER ALLOCATION AND FEASIBILITY

Herein, we derive and analyze the main conditions that are
necessary for the model previously described to be feasible,
while we discuss the optimum power allocation strategy for
two transmission rate allocation problems: equal-rate (Subsec-
tion IV-A) and maximum sum-rate (Subsection IV-B). Notice
that the transmission rate, R, differs conceptually from the
achievable rate, which is a more relevant performance metric
since accounts also for the unsuccessful attempts; however, in
practical scenarios where ϵi ≤ 10−1 both metrics approximate
well. This and the fact that dealing with the transmission rate
is analytically easier are the main reasons why we selected it
as the performance metric.

For analytical tractability we focus on the M = 2 setup, but
notice that even when some existing results show that NOMA
with more devices may provide a better performance gain
[21], this may not be practical. The reason is that considering
processing complexity for SIC receivers, especially when SIC
error propagation is considered, 2-users NOMA is actually
more practical in reality [31], [32]. Finally, let’s set P1 = βPT ,
P2 = (1 − β)PT , where β ∈ [1/2, 1] since by NOMA
definition and SIC operation: P1 ≥ P2. Therefore, parameter
β completely determines the power allocation profile.

A. Equal-rate allocation

Herein we consider the scenario in which both UEs are
scheduled with the same transmission rate R = log2(1+γ1) =
log2(1 + γ2). Therefore, maximum fairness is attained which
is practically advantageous when UEs require transmissions
with very similar QoS constraints, e.g., similar ϵi and data
rates, although our results hold independently of this. For this

case and according to Remark 1: γ1 = γ2 < min(φ∗
1, φ

∗
2). We

now present the following result.

Theorem 3. The power allocation profile

β =
φ∗
1 + φ∗

2 + 2φ∗
1φ

∗
2

2(1− µ)φ∗
1φ

∗
2

+

−
√

(φ∗
1 + φ∗

2)
2 + 4φ∗

1φ
∗
2(φ

∗
1 + µφ∗

2 + µφ∗
1φ

∗
2)

2(1− µ)φ∗
1φ

∗
2

(12)

guarantees the same performance in terms of transmission rate
for both UEs.

Proof. See Appendix D.
The reachable SIR threshold can be easily calculated by

substituting (12) into any of γ1 or γ2 expressions, which yields

γ1 = γ2 = − φ∗
1 + φ∗

2

2(φ∗
1 + µφ∗

2(1 + φ∗
1))

+

+

√
(φ∗

1 + φ∗
2)

2 + 4φ∗
1φ

∗
2(φ

∗
1 + µ(1 + φ∗

1)φ
∗
2)

2(φ∗
1 + µφ∗

2(1 + φ∗
1))

. (13)

Corollary 1. For equal-rate allocation, the optimum decoding
order for the UEs is φ∗

2 ≥ φ∗
1.

Proof. See Appendix E.

Let’s say UEA and UEB are about to be served, then,
Corollary 1’s result states how they should be ordered at the
BS for optimum performance. This is, one should calculate
φ∗ for each UE according to (8) and then if φ∗

A > φ∗
B →

UE1 = UEB , UE2 = UEA, otherwise if φ∗
A < φ∗

B →
UE1 = UEA, UE2 = UEB .

Fig. 3a shows the ratio φ∗
1/φ

∗
2 for maximum transmission

rate as a function of φ∗
1 + φ∗

2. Since φ∗
2 ≥ φ∗

1, the ratio is
always smaller or equal than 1. Notice that as φ∗

1+φ∗
2 increases

and/or µ decreases, it is more desirable scheduling together
for sharing the same spectrum resources those UEs having
contrasting values of φ∗

i . According to Theorem 1, the way
to control this lies on checking the UEs reliability constraints
and the ratio between average signal and interference power.
The more heterogeneous (homogeneous) the product of these
parameters, the more (less) contrasting the values of φ∗

i .
Additionally, according to the figure when SIC always fails
the best performance comes when φ∗

1 = φ∗
2.

A comparison with the OMA counterpart is required, espe-
cially because under OMA setup, both UEs require orthogonal
spectrum resources, either in time or frequency. Although
optimum OMA design usually conduces to different partition
of resources, this is not practically viable since requires
cumbersome multi-user synchronization and scheduling tasks
for partitioning the time, and could be even infeasible when
bandwidth partition is required. Therefore, herein we assume
equal time/frequency partition. Since φ∗

i represents the SIR
threshold required for UEi for satisfying its reliability con-
straint if it is operating alone in the channel, its maximum
allocable transmit rate is 1

2 log2(1 + φ∗
i ), hence it is not

the same for both UEs. The goal in this subsection lies in
achieving equal-rate performance, thus, the rate under the
OMA setup is determined by the worst UE performance as
1
2 log2(1 + min(φ∗

1, φ
∗
2)) = 1

2 log2(1 + φ∗
1). Therefore, both

UEs may be allocated with the same transmission rate, but
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Fig. 3. (a) Optimum ratio φ∗
1/φ

∗
2 as a function of φ∗

1 + φ∗
2 for µ ∈

{0, 0.05, 0.1, 0.2, 0.5, 1} (top); (b) Transmission rate in bps/Hz as a function
of µ, for NOMA and OMA, φ∗

2 = 0.6 and φ∗
1 ∈ {0.4, 0.5} (bottom).

while UE1 performs with ϵ1, UE2 performs with an outage
performance smaller than ϵ2. Hence, we present the following
result.

Corollary 2. For equal-rate allocation and M = 2, NOMA
outperforms OMA when

µ <
(φ∗

2 − φ∗
1)(1 +

√
1 + φ∗

1)

φ∗
1φ

∗
2

√
1 + φ∗

1

. (14)

Proof. For the equal-rate allocation, the NOMA scheme over-
comes the OMA configuration when

log2(1 + γ1) >
1

2
log2(1 + φ∗

1)

γ1 >
√
1 + φ∗

1 − 1. (15)

Now, substituting (13) into (15), and after some algebraic
manipulations we attain the condition given in (14).

Based on (14) notice that NOMA performance probably
overcomes OMA’s if φ∗

1 and φ∗
2 are sufficiently different

values. On the other hand, when φ∗
2 = φ∗

1 OMA will perform
better. Therefore, when scheduling users to work on the same
channel with NOMA they should have sufficiently differ-
ent topological characteristics, e.g., different r−α

i∑
j∈Φ\{b0} r−α

j,i

,

and/or QoS requirements, e.g., different ϵi, as shown in (8).
This is corroborated in Fig. 3b where we can notice that
the gap between both schemes increases when φ∗

2 − φ∗
1 also

increases. Fig. 3b also corroborates Corollary 2 and notice that
when evaluating (14) with φ∗

1 = 0.4, φ2 = 0.6 we obtain that
the required values of µ for which NOMA performs worse
than OMA are µ ≥ 1.53, which are infeasible since µ ≤ 1,
thus, for that setup NOMA will always be the better choice.

B. Maximum Sum-rate allocation

The previous subsection addressed the problem of finding
the power allocation profile and scheduling order such that
both UEs can operate with the same maximum possible rate.
This is equivalent to find max

β
min(γ1, γ2), since increasing γ1

conduces always to decrease γ2 and vice versa. Herein we are
going to focus on finding the allocation strategy for maximum
sum-rate, thus, max

β
R, where

R = R1 +R2 = log2(1 + γ1) + log2(1 + γ2)

= log2

(
(1 + γ1)(1 + γ2)

)
= log2 γ̃, (16)

where γ̃ = (1 + γ1)(1 + γ2), thus, max
β

R = max
β

γ̃.

Notice that solving that problem could be extremely diffi-
cult, if not impossible, due to the tangled dependence of γ̃ on
β, as shown next

γ̃ = (1 + γ1)(1 + γ2)

=
(1 + φ∗

1)(1 + φ2 − βφ∗
2(1− µ))

(1 + (1− β)φ∗
1)(1 + βµφ∗

2)
. (17)

Only for µ = 0 the problem solution comes easy as follows

γ̃|µ=0 = (1 + φ∗
1)
1 + φ∗

2(1− β)

1 + φ∗
1(1− β)

, (18)

dγ̃|µ=0

dβ
= (1 + φ∗

1)
φ∗
1 − φ∗

2

(1 + φ∗
1(1− β))2

, (19)

thus, γ̃|µ=0 is a strictly decreasing (increasing) function for
φ∗
1 < φ∗

2 (φ∗
1 > φ∗

2) and any value of β ∈ [0, 1].

Remark 2. Therefore, if µ = 0 then the optimal performance
for the NOMA setup, in terms of maximum sum-rate, is
obtained by setting

β∗ =

{
1/2, if φ∗

2 ≥ φ∗
1 → γ̃|µ=0 =

(1+φ∗
1)(2+φ∗

2)
2+φ∗

1

1, if φ∗
2 < φ∗

1 → γ̃|µ=0 = 1 + φ∗
1

. (20)

Of course, it is desirable having/setting φ∗
2 > φ∗

1 while using
β = 1/2, otherwise the optimum performance is when β = 1
which matches the OMA setup when only one user is being
served at the time. Also, notice that β∗ = 1/2 conduces to a
greater value of γ̃|µ=0 than when β = 1.

For the general case when µ > 0 we propose using the
following result henceforth.

Proposition 1. With γ̄ = γ1 + γ2, γ̃ approximates to

γ̃ ≈
[
1 +

1

2
γ̄
]2
, (21)

Proof. See Appendix F.

Finally, we provide two approximate results characterizing
the optimum performance of NOMA and the region for which
NOMA outperforms OMA for the general case of µ ≥ 0.
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Theorem 4. The optimal power allocation profile for maxi-
mum sum-rate in the NOMA setup is

β∗ =

{
1/2, if µ <

2(φ∗
2−φ∗

1)+φ∗
1(φ

∗
2−2)

φ∗
1φ

∗
2(1+φ∗

1)

1, otherwise
. (22)

Proof. See Appendix G.

Notice that when β = 1/2 we have

γ̄ =
φ∗
1

2 + φ∗
1

+
φ∗
2

2 + µφ∗
2

., (23)

and for β = 1 → γ̄ = φ∗
1.

As done in the previous subsection for the optimum equal-
rate allocation, herein we show in Fig. 4 the optimum ratio
φ∗
1/φ

∗
2 as a function of φ∗

1 + φ∗
2 for the maximum sum-rate

allocation problem. Again, the trend is that the larger φ∗
1+φ∗

2

and/or smaller µ, the more contrasting should be the values
of φ∗

i for optimum performance. However, in this case the
dependence is much weaker on φ∗

1 + φ∗
2 than for the case

of equal-rate allocation which may facilitate the design and
scheduling tasks in a practical system.

As in the previous subsection, herein we also consider OMA
with equal partition of spectrum resources, either in time or
frequency, thus, the maximum transmission rate for each UEi

signal is 1
2 log2(1 + φ∗

i ). Then, the following result holds.

Theorem 5. The NOMA setup with M = 2 outperforms
always OMA in terms of maximum sum-rate when µ = 0,
while almost surely5 when

µ <

√
2(φ∗

1 + 2)2
√
2 + φ∗

1 + φ∗
2

φ∗2
1 (2φ∗

1 + 3) + 2φ∗
2(φ

∗
1 + 2)2

+

− 4φ∗3
1 + 6φ∗2

1 + φ∗2
1 φ∗

2 + 6φ∗
1φ

∗
2 + 8φ∗

2

φ∗
2(φ

∗2
1 (2φ∗

1 + 3) + 2φ∗
2(φ

∗
1 + 2)2)

(24)

with φ∗
2 > φ∗

1.

Proof. See Appendix H.

5For µ > 0 the proof takes advantage of result in Proposition 1 since using
the exact expression of γ̃ is cumbersome. Therefore, (24) is expected to hold
given the accuracy of (21), hence the term almost surely.
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Fig. 5. (a) Transmission rate in bps/Hz (top) and (b) Fairness coefficient
(bottom), as a function of µ, for NOMA and OMA, φ∗
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2 ∈

{0.2, 0.6}.

See Fig. 5a for a comparison between NOMA and OMA
schemes and notice that (24) holds in each case. Also,
and as shown in the figure, we can assure that NOMA
always overcomes OMA when µ → 0, as it was claimed
by Theorem 5. Finally, a comparison in terms of fairness
when allocating the transmission rate is required. While the
power allocation scheme proposed in the previous subsection
allows reaching maximum fairness, this is not longer the case
when the goal is maximizing the sum-rate. As a measure of
fairness let us consider the ratio between the SIR thresholds
of both UEs, since this is analytically easier to handle than
the transmission rate itself. We define the fairness coefficient
of UEi with respect to UEj , with i ̸= j and i, j ∈ {1, 2}, as
κoma
i = φ∗

i /φ
∗
j and κnoma

i = γi/γj , and the closer κi is from
1, the fairer the rate allocation. For optimality we set φ∗

1 ≤ φ∗
2

according to Theorem 5, then, focusing on κ1 we have that
κoma
1 = φ∗

1/φ
∗
2 ≤ 1 and

κnoma
1

(a)
=

1
2φ

∗
1

1+ 1
2φ

∗
1

1
2φ

∗
2

1+ 1
2µφ

∗
2

=
φ∗
1(2 + µφ∗

2)

φ∗
2(2 + φ∗

1)
= κoma

1

2 + µφ∗
2

2 + φ∗
1

, (25)

where (a) comes from setting β = 1/2 in (5) as this was
proved to be the optimum when NOMA provides greater
sum-rate than OMA. Notice that as long as µ < φ∗

1/φ
∗
2,

OMA is fairer as also illustrated in Fig. 5b, however this
is not advantageous when heterogeneous services need to
be provided. In practice, when considering the entire set of
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frequency-time resources, previous results are useful when
making the pairing of those UEs that will be scheduled with
the same spectrum resources.

V. ALGORITHMIC AND PERFORMANCE REMARKS

Section III focused on the optimum allocation of the trans-
mission rates of concurrent downlink NOMA users under
practical reliability constraints and given their preassigned
transmit powers. Meanwhile, Section IV explained how to
find these transmit powers for optimum performance in the
2-user NOMA scenario. Next, we summarize how to integrate
both rate and power allocation schemes for attaining the
optimum performance. This is discussed in Subsection V-A,
while Subsection V-B shows how to calculate the average rate
performance for NOMA and OMA setups as it will be used
for illustrating numerical results in Section VI.

A. Optimum Rate-Power Allocation
By combining the results from Section III and IV, the op-

timum rate-power allocation algorithm for a 2-user downlink
NOMA setup without instantaneous CSI at the BS is given as:

1) Compute φ∗ according to (8) for each UE.
2) Set the UE with the lowest φ∗ as first in the decoding

order, while the other becomes second. This is grounded
on Corollary 1 and Theorem 5 results.

3) Compute P1 = βPT and P2 = (1 − β)PT , where β
is given by (3) and (22) for equal-rate and maximum
sum-rate allocation, respectively.

4) Compute γi, i = 1, 2 according to (5) with M = 2. For
the case of equal-rate allocation it is also possible using
(13), which yields the same result.

5) Set Pi and log2(1 + γi) as transmit power and rate,
respectively, of the signal intended to UEi.

B. Average performance of NOMA and OMA
For each UEi, the distribution of its SIR threshold γi

with respect to the PPP spatial randomness was found in
Subsection III-A for a fixed power allocation profile. When
BSs allocate their transmit power based on the network
deployment, as it is the case of the power control scheme
for 2-user NOMA proposed in Section IV for equal-rate and
maximum sum-rate problems, expressions (9) and (10) in
Subsection III-A do not hold anymore. This is because Pi

is now another random variable in the PPP. In such cases
characterizing the distribution of γi, hence, the distribution
of the allocated rate, seems analytically intractable because of
the tangled dependence of β on φ∗

i according to (12), and
(22) for µ > 0, respectively. Only for the case of perfect
SIC in a system where the goal is maximizing the sum-rate,
such distribution can be obtained since the optimum β is
deterministically 1/2 according to (22), thus, (9) holds and
(11) becomes

zi(θ) =

PT

2θ
− µPT

2

i−1∑
j=1

1− PT

2

2∑
j=i+1

1

 ϵi
PT

=
ϵi
2

(1
θ
+ (1− µ)(i− 1)− 1

)
. (26)
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Fig. 6. Average rate for OMA and NOMA setups operating with equal-rate
and maximum sum-rate configurations and ϵi = 10−2.

For a comparison between OMA and NOMA in terms
of average rate performance, R̄, over the PPP, following
expressions hold

• equal-rate allocation

R̄=

E
[
1
2 log2

(
1+min

(
φ∗
1, φ

∗
2

))∣∣∣Φ]: OMA

E
[
log2

(
1 + γ1

)∣∣∣Φ]: NOMA
, (27)

• maximum sum-rate allocation

R̄=

E
[
1
2 log2

(
1+φ∗

1

)(
1 + φ∗

2

)∣∣∣Φ]: OMA

E
[
log2γ̃

∣∣∣Φ]: NOMA
, (28)

where γ̃ is given in (17).
These expressions are used in Section VI for numerical analy-
sis. Notice also that as a direct consequence of the discussions
in Subsection III-A, the average transmission rate performance
of NOMA and OMA setups does not depend on the network
density when randomizing the network topology through the
PPP. This is corroborated in Fig. 6 where the average is
taken over the network realizations. The values of the system
parameters are those given at the beginning of the next section.

VI. NUMERICAL RESULTS

Herein we compare numerically the performance of NOMA
and OMA setups under the proposed distributed rate control
methodology. We simulate completely random scenarios by
generating 50000 instances (Monte Carlo runs) of a PPP and
a sufficiently large area such that 1000 BSs are placed on
average. Since the average performance of NOMA and OMA
setups do not depend on λ, we are going to use a generic value
of λ = 10−4/m2 (100/km2). Unless stated otherwise, results
are obtained by setting α = 4 and µ = 0.1. We utilize the
optimum values of β given in Section IV-A and Section IV-B
for equal-rate and maximum sum-rate allocations, respectively.

Additionally, the performance when perfect CSI and knowl-
edge of instantaneous levels of interference at the UEs are
fully available at the BS side, is illustrated as benchmark. As
in [21], the decoding order is now established for holding
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TABLE I
AVERAGE TRANSMISSION RATE FOR BENCHMARK OMA AND NOMA SCHEMES.

Scheme Equal-rate Maximum sum-rate

OMA E
[
1
2
log2

(
1 + min(h1r

−α
1 PT /I1, h2r

−α
2 PT /I2)

)∣∣∣Φ]
E
[
1
2
log2(1+h1r

−α
1 PT /I1)(1+h2r

−α
2 PT /I2)

∣∣∣Φ]
NOMA E

[
log2(1+SIR1) with 1/2≤β≤1: SIR1=SIR2

∣∣∣Φ]
E
[
max1/2≤β≤1 log2(1 + SIR1)(1 + SIR2)

∣∣∣Φ]
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Fig. 7. Average rate for OMA and NOMA setups as a function of (a) α (top),
(b) µ (bottom), for equal-rate allocation and ϵi ∈ {10−1, 10−2}.

h1r
−α
1 /I1 < h2r

−α
2 /I2. Since hi and Ii are deterministic

values in such scenario, the rate can be allocated directly from
(4) for each channel realization as 2SIRi − 1. According to
Shannon, this rate allows operating with an arbitrarily small
error probability as the blocklength goes to infinity [33]6.
Finally, the average allocated transmission rates under the
benchmark NOMA scheme, and also under its OMA coun-
terpart, appear shown in Table I for equal-rate and maximum
sum-rate problems.

A. Equal-rate allocation

Fig. 7 shows the average rate for OMA and NOMA setups
when operating with equal-rate allocation, and as a function
of α (Fig. 7a) and µ (Fig. 7b). Notice that for our CSI-
free schemes the average performance of NOMA overcomes

6The trade-off between the blocklength and the error probability was
analytically investigated in [33] but herein we assume the asymptotic scenario
for which the blocklength is infinity, thus ϵi → 0 if the transmission rate is
set to be 2SIRi − 1 for each channel realization.

always the OMA’s, and the gap increases for smaller SIC
imperfection µ and/or path-loss exponent7 α. Meanwhile,
NOMA under full CSI at the BS is more sensitive to µ,
and for µ > 0.4 its OMA counterpart performs better. These
benchmark schemes provide an upper-bound performance not
only because full CSI is considered at the BS, but also
because only when transmitting over an infinite blocklength
their results hold. Therefore and as expected, it is shown
a large gap between these bounds and the performance of
the OMA and NOMA schemes discussed in this work, and
increases as the reliability constraint becomes more stringent.
For all the schemes the performance improves when the
path-loss exponent increases, which is expected according
to our discussions in Subsection III-A. In a nutshell, since
interfering signals endure larger distances, as α increases their
impact is affected more than the receive power of the desired
signal itself, hence, larger values of SIR are more likely.
Additionally, the performance of OMA does not depend on µ,
thus, it appears as a straight line in Fig. 7b, and remarkably
even in the worst case of µ = 1 NOMA attains a greater
average performance than OMA when operating without CSI
at the BS. Notice that µ = 1 implies only that the interference
coming from UEs that come first in the decoding order cannot
be canceled. Therefore, this affects only the denominator of
(4), and the UE being currently decoded has still chances of
succeeding. Obviously, the OMA setup could be optimized
such that different partitions of time/frequency resources are
allocated to each user, thus improving its performance and
even overcoming NOMA. However, notice that this is ex-
tremely cumbersome since involves synchronization tasks if
the split resource is time, and it could be even unfeasible if
the resource is the frequency bandwidth. Meanwhile, NOMA
only requires to use a different power level for the signal of
each UE.

B. Maximum sum-rate allocation

Fig. 8 shows the average rate for OMA and NOMA setups
when operating with maximum sum-rate allocation, and as a
function of α (Fig. 8a) and µ (Fig. 8b). For this case the
performance of OMA improves faster than the NOMA’s when
α increases, although when reliability constraint becomes
more stringent both ideal CSI-free schemes tend to have the
same improvement rate with respect to α. Notice that it is
required that µ . 0.1 (. 10% of the co-interference is
not canceled) so that NOMA is preferable to OMA. This is

7This behavior can be corroborated by checking that indeed d
dα

(φ∗
2

φ∗
1

)
< 0

in most of the PPP realizations for ϵ1 = ϵ2. Notice that as φ∗
2

φ∗
1

decreases
NOMA loses its advantages over OMA as discussed after Corollary 2.
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illustrated in Fig. 8b, where the gains of NOMA over OMA
are of 39%, 38% and 42% when µ → 0 for the benchmark
and CSI-free schemes with ϵi = 10−1 and ϵi = 10−2,
respectively; while when µ → 1, OMA offers a performance
gain around of 72%, 81% and 71%. Therefore, failing to
efficiently eliminate the co-interference is critical for NOMA,
and can be a challenging issue when implementing it in
practice. Finally and as commented in the Section VI-A,
benchmark schemes provide a loose upper-bound performance
which is impossible to attain for any practical communication
system.

VII. CONCLUSION

In this paper, we proposed a rate allocation scheme for a
downlink NOMA cellular system operating with reliability
constraints. The allocated rate depends on: i) the average
receive power from the desired signal and from the interfering
BSs; and ii) the reliability constraint. This information is
usually easy to get and therein lies the main advantage of
the scheme. Additionally, we characterize analytically the
distribution of the allocated SIR threshold in Poisson cellular
networks in order to meet the link’s reliability constraint. We
derive and analyze the main conditions that are necessary
so that NOMA overcomes the OMA alternative, while we
discuss the optimum allocation strategies, e.g., rate and power
allocation profile and optimum decoding order, for the 2-UEs
NOMA setup with equal-rate and maximum sum-rate goals.

We compare numerically the performance of our allocation
scheme with its ideal counterpart requiring full CSI at the
BSs and infinitely long blocklength, and show how the gap
increases as the reliability constraint becomes more stringent.
Also, results highlight the benefits of NOMA over OMA when
the co-interference can be efficiently canceled, e.g., with an
efficiency of 90%, specially when we aim to maximize the
sum-rate.

APPENDIX A
PROOF OF LEMMA 1

Setting the conditional link success probability to 1−ϵi, we
have

1− ϵi = P

 hir
−α
i Pi

hir
−α
i

[
µ

i−1∑
j=1

Pj +
M∑

j=i+1

Pj

]
+ Ii

> γi

∣∣∣∣∣Φ


= P

hi >
Iir

α
i

Pi

γi
− µ

i−1∑
j=1

Pj −
M∑

j=i+1

Pj

∣∣∣∣∣Φ


(a)
= E

P
hi >

rαi PT

∑
j∈Φ\{b0}

gjr
−α
j,i

Pi

γi
− µ

i−1∑
j=1

Pj −
M∑

j=i+1

Pj


∣∣∣∣∣Φ


(b)
= E

exp
−

rαi PT

∑
j∈Φ\{b0}

gjr
−α
j,i

Pi

γi
− µ

i−1∑
j=1

Pj −
M∑

j=i+1

Pj


∣∣∣∣∣Φ


(c)
= E

 ∏
j∈Φ\{b0}

exp
(
−φir

α
i gjr

−α
j,i

) ∣∣∣Φ


(d)
=

∏
j∈Φ\{b0}

1

1 + φirαi r
−α
j,i

, (29)

where (a) comes from using (3), (b) from using the com-
plementary CDF (CCDF) of hi, while (c) from using the
algebraic transformation exp

(∑n
i=1 ki

)
=
∏n

i=1 exp(ki) and
setting

φi =
PT

Pi

γi
− µ

i−1∑
j=1

Pj −
M∑

j=i+1

Pj

. (30)

Finally, (d) comes from averaging over the fading gj , attaining
(6). By isolating γi in (30) we reach (5). Notice that (6) may
have up to |Φ\{b0}| solutions; however γi > 0 then φ∗

i has
to be also real positive according to (5). Now, the left term of
(5) is monotonically increasing on φi and both left and right
terms share the same domain (0,∞) ∀φi > 0, 0 < ϵi < 1,
hence (5) has only one real positive solution φ∗

i .

APPENDIX B
PROOF OF THEOREM 1

Let’s consider that the number of interfering BSs is finite
and equal to n and we sort in ascending order the interfering
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Fig. 9. φ∗
i as a function of ϵi and according to (33). We set υ =

r−α
i /

n∑
j=1

r−α
j,i .

BSs according to their distance to UEi. Hence, rj,i, j ≥ 1,
denotes the distance from UEi to its j−nearest interfering
BS. Notice that by letting n → ∞ we are also able to model
an infinite network deployment. Now, by using the relation
between the geometric and the arithmetic mean we have that( n∏

j=1

(1 + φir
α
i r

−α
j,i )

) 1
n ≤ 1

n

n∑
j=1

(1 + φir
α
i r

−α
j,i )

n∏
j=1

(1 + φir
α
i r

−α
j,i ) ≤

[
1

n
(n+ φir

α
i

n∑
j=1

r−α
j,i )

]n
n∏

j=1

(1 + φir
α
i r

−α
j,i ) ≤

[
1 +

φir
α
i

n

n∑
j=1

r−α
j,i

]n
. (31)

By using the right term of (31) instead of the left one when
solving (6) for φi yields

φ∗
i ≈ nr−α

i
n∑

j=1

r−α
j,i

[( 1

1− ϵi

) 1
n − 1

]
. (32)

By looking at (6) notice that for small ϵi, e.g., ϵi ≤ 10−1,
1

1−ϵi
becomes closer to 1 and since each of the terms (1 +

φ̂ir
α
i r

−α
j,i ) are strictly greater that 1, we can expect that each

of them approximates heavily to the unity, hence, all of these
terms are very similar between each other. Since geometric
and arithmetic means match when all the operating terms are
equal, we can be sure that for small ϵi, e.g., ϵi ≤ 10−1, the
approximation given in (32) is accurate.

Now we can write φ∗
i as

φ∗
i ≈ r−α

i
n∑

j=1

r−α
j,i

f(n, ϵi), (33)

where f(n, ϵi)=n
(
(1−ϵi)

− 1
n −1

)
is a decreasing function of

n since ∂f(n,ϵi)
∂n = 1

(1−ϵi)n + ln(1−ϵi)
n(1−ϵi)n −1< 0, ∀ϵi : 0< ϵi < 1.

Therefore, its maximum and minimum values are when n = 1
and n → ∞, respectively, for which f(1, ϵi) = ϵi/(1 − ϵi)
and limn→∞ f(n, ϵi) = − ln(1− ϵi). Interestingly, when ϵi ≤
10−1 both results are very close to each other, which leads to

the conclusion that f(n, ϵi) depends very weakly on n in that
region. In fact, following result holds

f(n, ϵi) ≈ f(ϵi) = ϵi (34)

hence φ∗
i can be written as in (8). The accuracy of (34) when

ϵi ≤ 10−1 can be easily appreciated in Fig. 9. Notice that the

value of υ = r−α
i /

n∑
j=1

r−α
j,i only causes a vertical shift of the

curve φ∗
i vs ϵi.

APPENDIX C
PROOF OF THEOREM 2

Using (8) we proceed as follows

Fφ∗
i
(ω) = P

(
r−α
i∑

j∈Φ\{b0}
r−α
j,i

ϵi < ω

)

= P

( ∑
j∈Φ\{b0}

( ri
rj,i

)α
>

ϵi
ω

)

= P

( ∑
x∈Φ\{x:||x||<ri}

( ri
||x||

)α
>

ϵi
ω

)

= 1− FΨ

(
ϵi
ω

)
, (35)

where Ψ =
∑

x∈Φ\{x:||x||<ri}

(
ri

||x||
)α

. Similar to [34, Def. 1]

we define the squared relative distance process (SRDP) of the
point process Φ as Θ =

{
x ∈ Φ\{x : ||x|| < ri} : ||x||2

r2i

}
,

then

Ψ =
∑
x∈Θ

x−1/δ, (36)

with δ = 2/α. Now, the probability generating functional
(PGFL) of the SRDP is given by

GΘ[f ] = E
[ ∏
x∈Θ

f(x)

]
= E

[ ∏
x∈Φ

f
( ||x||2

r2i

)]
(a)
=

∞∫
0

exp
(
−2λπ

∞∫
ri

η(1− f(η2/r2i ))dη
)
fri(ri)dri

(b)
= 2πλ

∞∫
0

ri exp

(
−λπr2i

(
1 +

∞∫
1

(1− f(y))dy
))

dri

(c)
=

1

1+
∫∞
1

(
1−f(y)

)
dy

, (37)

where (a) follows from the PGFL of the PPP, (b) is obtained
by the substitution η2/r2i → y and using the distribution of
the nearest neighbor distance, while (c) follows from solving
the outer integral. Then,

LΨ(s) =
1

1 +
∫∞
1

(
1− exp

(
−sx−1/δ

))
dy

=
1

1F1(−δ, 1− δ,−s)
, (38)
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FΨ(x) = L−1

{
1

s
LΨ(s)

}
(x)

= L−1

{
1

s 1F1(−δ, 1− δ,−s)

}
(x), (39)

while plugging (39) into (35) and then using the variable
transformation given in (30) we attain (9). Notice that although
(9) is general, it is not in closed-form. However, by noticing
that φ∗

i in (8) has the form of the SIR of a typical link in a
Poisson network without fading, but scaled by the reliability
constraint ϵi, we can take advantage of [35, Eq. 6] to write

Fφ∗
i
(ω) = 1− sinc(δ)

(ω
ϵi

)−δ

, for ω ≥ ϵi, (40)

which also works as a lower-bound when ω < ϵi, and
for the special case of α = 4 yields Fφ∗

i
(ω) = 1 −

1/
(
Γ(1.5)

√
πω/ϵi

)
. Finally, using (40) along with the vari-

able transformation given in (30) we attain (10).

APPENDIX D
PROOF OF THEOREM 3

Using (5) and the fact that γ1 = γ2 we have that

φ∗
1β

1 + (1− β)φ∗
1

− φ∗
2(1− β)

1 + βµφ∗
2

= 0

φ∗
1φ

∗
2(1−µ)β2−(φ∗

1+φ∗
2+2φ∗

1φ
∗
2)β+φ∗

2(1+φ∗
1)=0, (41)

and (12) comes easy by solving this quadratic equation for β
while discarding the solution that leads to β > 1. The reader
can check that β in (12) always lies in [0, 1]. However, the
other necessary condition for feasibility is that β ≥ 1/2, thus

φ∗
1 + φ∗

2 + 2φ∗
1φ

∗
2

2(1− µ)φ∗
1φ

∗
2

+

−
√
(φ∗

1 + φ∗
2)

2 + 4φ∗
1φ

∗
2(φ

∗
1 + µφ∗

2 + µφ∗
1φ

∗
2)

2(1− µ)φ∗
1φ

∗
2

≥ 1

2

φ∗
1φ

∗
2−2µφ∗

1φ
∗
2+µ2φ∗

1φ
∗
2−2φ∗

1+2µφ∗
1+2φ∗

2−2µφ∗
2≥0

2φ∗
1(1− µ)

2− 2µ+ φ∗
1 − 2µφ∗

1 + µ2φ∗
1

≤ φ∗
2

2φ∗
1(1− µ)

2(1− µ) + φ∗
1(1− µ)2

≤ φ∗
2

2φ∗
1

2 + φ∗
1(1− µ)

≤ φ∗
2.

(42)

Notice that when µ increases, the required φ∗
2 to ensure similar

rate performance for both UEs, increases. This is, the worse
the SIC performs, the stringent the resource reservation for
UE2. This is also aligned with the fact that β in (12) is a
decreasing function of µ.

Continuing with the proof, φ∗
1 and φ∗

2 are independent since
each of them only depends on the distances from the UEs
to the transmitting and interfering BSs, path-loss exponent
and reliability constraints of the UEs (See (6)). Let the UEs
with decoding order 1 and 2, be denoted as A and B,
respectively, thus, φ∗

1 = φ∗
A and φ∗

2 = φ∗
B . If this assignment

already satisfies (42), e.g., φ∗
B ≥ 2φ∗

A

2+φ∗
A(1−µ) , then, the power

allocation profile given in (12) is feasible and both UEs can

attain the same rate performance. In the opposite case we have
that

φ∗
B <

2φ∗
A

2 + φ∗
A(1− µ)

φ∗
A >

2φ∗
B

2− φ∗
B(1− µ)

≥ 2φ∗
B

2 + φ∗
B(1− µ)

. (43)

Therefore, if we scheduled the UEs such that φ∗
1 = φ∗

B and
φ∗
2 = φ∗

A we can also ensure the same rate performance for
both UEs.

APPENDIX E
PROOF OF COROLLARY 1

By setting S = φ∗
1 + φ∗

2 and P = φ∗
1φ

∗
2, which are fixed-

value terms and independent of the decoding order, we can
write (13) as

γ1 =

√
S2 + 4Pk − S

2k
, (44)

where k = φ∗
1 + µφ∗

2 + µP . Now we have that

dγ1
dk

=
S
√
S2 + 4Pk − (S2 + 2PK)

2k2
√
S2 + 4Pk

< 0, (45)

which is negative since

4P 2k2 > 0

4P 2k2 + S4 + 4PS2k > S4 + 4PS2k

(S2 + 2Pk)2 > S2(S2 + 4Pk)

S2 + 2Pk > S
√
S2 + 4Pk, (46)

therefore, γ1 is a decreasing function of k and gets the greater
value for the smaller k, which occurs when we choose φ∗

2 ≥
φ∗
1. Also, notice that with such scheduling the operation is

guaranteed since (42) is satisfied
(
φ∗
2 ≥ φ∗

1 ≥ 2φ∗
1

2+φ∗
1(1−µ)

)
.

APPENDIX F
PROOF OF COROLLARY 1

We proceed as follows

γ̃ = (1 + γ1)(1 + γ2)
(a)

.
[
(1 + γ1) + (1 + γ2)

2

]2
=
[
1 +

γ1 + γ2
2

]2
, (47)

where (a) comes from using the inequality between arithmetic
and geometric means. By using (47) as an approximation and
setting γ̄ = γ1 + γ2 we attain (21).

Now let’s present some insights on the accuracy of (21).
The relative error function

ξ(%) = 100×

[
1 + 1

2 γ̄
]2

− γ̃

γ̃

= 25×
[1 + γ1
1 + γ2

+
1 + γ2
1 + γ1

]
− 50, (48)

measures the error when adopting the approximation given in
(21), and it is plotted in Fig. 10. As expected, the approxi-
mation given in (21) is more accurate when γ1 ≈ γ2 and/or
γ1, γ2 ≪ 1. The latter condition is typical of scenarios where
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Fig. 10. Relative error function, ξ(%), as a function of γ1 with γ2 ∈
{10−2, 10−1, 1}.

devices are with low transmission rates because of the short
length of their packets and/or stringent reliability constraints,
e.g., MTC setups. In those scenarios max

β
γ̃ ≈ max

β
γ̄.

APPENDIX G
PROOF OF THEOREM 4

We have that

γ̄ = γ1 + γ2,

dγ̄

dβ
=

dγ1
dβ

+
dγ2
dβ

=
φ∗
1(1 + φ∗

1)

(1 + φ∗
1(1− β))2

− φ∗
2(1 + µφ∗

2)

(1 + µβφ∗
2)

2
, (49)

d2γ̄

dβ2
=

d2γ1
dβ2

+
d2γ2
dβ2

=
2φ∗2

1 (1 + φ∗
1)

(1 + (1− β)φ∗
1)

3
+

2µφ∗2
2 (1 + µφ∗

2)

(1 + µβφ∗
2)

3
. (50)

Since d2γ̄
dβ2 > 0 ∀β, then γ̄ is convex on β and a global

minimum exists. That means that the maximum lies on the
interval extremes, β∗ = 1/2 or β∗ = 1. Thus,

max
β

γ̄ = max
(
γ̄|

β=
1
2
, γ̄|β=1

)
= max

( 1
2φ

∗
1

1 + 1
2φ

∗
1

+
1
2φ

∗
2

1 + 1
2µφ

∗
2

, φ∗
1

)
= max

(
φ∗
1

2 + φ∗
1

+
φ∗
2

2 + µφ∗
2

, φ∗
1

)
. (51)

Then,

φ∗
1

2 + φ∗
1

+
φ∗
2

2 + µφ∗
2

≷
β∗=1/2

β∗=1

φ∗
1

2(φ∗
2 − φ∗

1) + φ∗
1(φ

∗
2 − 2)

φ∗
1φ

∗
2(1 + φ∗

1)
≷

β∗=1/2

β∗=1

µ, (52)

which implies (22).

APPENDIX H
PROOF OF THEOREM 5

For the maximum sum-rate setup, the NOMA scheme
overcomes the OMA configuration when

log2 γ̃ >
1

2
log2(1 + φ∗

1) +
1

2
log2(1 + φ∗

2)

= log2

√
(1 + φ∗

1)(1 + φ∗
2)

γ̃ >
√
(1 + φ∗

1)(1 + φ∗
2). (53)

We know that φ∗
2 ≥ φ∗

1, and first we are going to work on that
to proof the statement of the theorem for µ = 0. We proceed
as follows

φ∗
2 ≥ φ∗

1 | × φ∗
1, (φ∗

1>0)

φ∗
1φ

∗
2 ≥ φ∗2

1

(4+2φ∗
2+4φ∗

1+φ∗
1φ

∗
2)+φ∗

1φ
∗
2≥(4+2φ∗

2+4φ∗
1+φ∗

1φ
∗
2)+φ∗2

1

2(1 + φ∗
1)(2 + φ∗

2) ≥ (2 + φ∗
1 + φ∗

2)(2 + φ∗
1)

(1 + φ∗
1)(2 + φ∗

2)

2 + φ∗
1

≥ 2 + φ∗
1 + φ∗

2

2

(1 + φ∗
1)(2 + φ∗

2)

2 + φ∗
1

≥ (1+φ∗
1) + (1+φ∗

2)

2
. (54)

Notice that the left term matches the expression for γ̃|µ=0

given in (20) for β = 1/2 and using the inequality between the
arithmetic and geometric means we have that (1+φ∗

1)+(1+φ∗
2)

2 ≥√
(1+φ∗

1)(1+φ∗
2), thus,

γ̃|µ=0 ≥
√

(1+φ∗
1)(1+φ∗

2), (55)

where the right term matches the performance of the OMA
setup. Therefore, for µ = 0 the NOMA scheme is the best
choice.

For µ > 0 we perform some simplifications to gain in
mathematical tractability. We can establish that the NOMA
scheme will overcome almost surely the OMA configuration
if [

1 +
1

2
γ̄
]2

> 1 +
φ∗
1 + φ∗

2

2[
1 +

1
2φ

∗
1

2 + φ1
+

1
2φ

∗
2

2 + µφ∗
2

]2
> 1 +

φ∗
1 + φ∗

2

2
, (56)

where the first line comes from using (21) and using the
inequality relating the arithmetic and geometric means for the
right term (

√
(1 + φ∗

1)(1 + φ∗
2), which is the achievable rate

with OMA, is greater than or equal to 1 +
φ∗

1+φ∗
2

2 ), and the
second line comes from using (23). Now, solving (56) as a
function of µ we attain (24).
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