
ar
X

iv
:1

90
8.

06
59

5v
1 

 [
cs

.I
T

] 
 1

9 
A

ug
 2

01
9

1

Modeling, Analysis, and Optimization of Caching

in Multi-Antenna Small-Cell Networks
Xianzhe Xu and Meixia Tao

Abstract—In traditional cache-enabled small-cell networks
(SCNs), a user can suffer strong interference due to content-
centric base station association. This may degenerate the ad-
vantage of collaborative content caching among multiple small
base stations (SBSs), including probabilistic caching and coded
caching. In this work, we tackle this issue by deploying multiple
antennas at each SBS for interference management. Two types
of beamforming are considered. One is matched-filter (MF) to
strengthen the effective channel gain of the desired signal, and the
other is zero-forcing (ZF) to cancel interference within a selected
SBS cooperation group. We apply these two beamforming tech-
niques in both probabilistic caching and coded caching, and con-
duct performance analysis using stochastic geometry. We obtain
exact and approximate compact integral expressions of system
performances measured by average fractional offloaded traffic
(AFOT) and average ergodic spectral efficiency (AESE). Based
on these expressions, we then optimize the caching parameters for
AFOT or AESE maximization. For probabilistic caching, optimal
caching solutions are obtained. For coded caching, an efficient
greedy-based algorithm is proposed. Numerical results show
that multiple antennas can boost the advantage of probabilistic
caching and coded caching over the traditional most popular
caching with the proper use of beamforming.

Index Terms—Zero-forcing beamforming, matched-filter
beamforming, probabilistic caching, coded caching, small-cell
networks, optimization, stochastic geometry.

I. INTRODUCTION

In recent decades, mobile data traffic has experienced an

explosive growth due to the rapid development of smart

devices. Caching popular files in small base stations (SBSs)

during off-peak time is a promising way to alleviate the peak-

time congestion and avoid repetitive backhaul transmissions

in wireless networks [2]–[8]. Many recent works have studied

cache-enabled wireless networks with various caching strate-

gies and performance metrics. These cache strategies can be

broadly divided into two categories, uncoded caching and

coded caching. In uncoded caching, a file is cached either

entirely or not at all without partitioning in each cache-

enabled SBS. Uncoded caching further includes deterministic

caching [9]–[11] and probabilistic caching [12]–[19]. One typ-

ical deterministic cache strategy is the most popular caching

(MPC), where each SBS only caches the most popular files

until its cache size is full [9], [10]. Compared with MPC,

probabilistic caching with optimized probabilities can achieve

higher cache hit probability and higher successful transmission

probability [12], [13]. In coded caching, each file is first

X. Xu and M. Tao are with the Department of Electronic Engi-
neering, Shanghai Jiao Tong University, Shanghai, China (Emails: au-
gust.xxz@sjtu.edu.cn; mxtao@sjtu.edu.cn). Part of this work was presented
in IEEE Globecom 2017 [1]. This work is supported by the National Natural
Science Foundation of China under grant 61571299 and the Shanghai Key
Laboratory Funding under grant STCSM18DZ2270700.

partitioned into multiple segments, these segments after coding

are then cached in different SBSs [20]–[25]. In particular, the

maximum distance separable (MDS) code is utilized in [20],

[21] and random linear network coding (RLNC) is applied in

[22]. The work [24] shows that coded caching outperforms

probabilistic caching and MPC over a wide range of system

parameters, but they all converge together when the content

popularity is highly skewed or the decoding threshold at each

user receiver is high. The aim of this work is to investigate

the role of multiple antennas for interference management in

cache-enabled small-cell networks (SCNs) for further exploit-

ing the advantage of collaborative caching.

Several works have studied the caching design in multi-

antenna wireless networks. The works [26], [27] focus on

the physical-layer optimization of base station clustering and

beamforming in cache-enabled multi-antenna networks, while

their caching strategies are given and not optimized. In [28],

[29], the authors investigate the fundamental limits of caching

in MIMO interference networks and MIMO broadcast channel

from information theory perspective. Therein, only small-

scale fading is considered and thus the obtained MIMO gain

cannot be directly extended to SCNs where distance-dependent

large-scale fading is present. Using stochastic geometry, the

authors in [30] optimize the caching probabilities in cache-

enabled heterogeneous networks for maximizing the success

probability and the area spectral efficiency, respectively, with

zero-forcing (ZF) beamforming. However, in [30] only macro

base stations (MBSs) that store all files have multiple antennas

while each cache helper is still equipped with a single antenna.

As a result, when the typical user is associated with the MBS

tier, it is always served by the nearest MBS since all files

are cached at MBSs and hence no cache-induced interference

management gain is exploited. To our best knowledge, a

comprehensive treatment of caching analysis and optimization

in multi-antenna SCNs that allows each user to be served

by any multiple nearby multi-antenna SBSs with specific

beamforming structures is not available in the literature.

Note that to facilitate the optimization of cache strategies,

one needs to obtain the coverage probability expressions. The

works [31]–[33] analyze the performance of multi-antenna

networks by using stochastic geometry. The authors in [31]

analyze the coverage probability of the receiver connecting to

a transmitter with fixed distance in ad hoc networks when ZF

beamforming is utilized. The works [32], [33] also obtain the

coverage probability of the typical user when it is served by the

nearest SBS with random distance in ZF beamforming case.

Then they approximate and simplify the expressions due to the

high complexity, which is a common issue in multi-antenna

networks by using stochastic geometry. Comparing with these

http://arxiv.org/abs/1908.06595v1
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existing works, we analyze the coverage probability of the

typical user when it can be served by its multiple nearby SBSs

in both ZF and matched-filter (MF) beamforming cases. The

approximation and simplification in our work are much more

challenging since each user can be served by multiple nearby

SBSs and the joint distribution of their distances is much more

complicated. Moreover, the interference of MF comes from all

SBSs except the serving one, which is more complicated than

the ZF case.

In this paper, we consider caching analysis and optimization

in multi-antenna SCNs by taking two specific beamforming

techniques into account. One is ZF where the multiple an-

tennas in each SBS are used to cancel interference within

a selected SBS cooperation group. The other is MF where

the multiple antennas in each SBS are used to strengthen

the effective channel gain of desired signals without SBS

coordination. Utilizing tools from stochastic geometry, we

analyze the performance of a typical user for both probabilistic

caching and coded caching. Due to the high complexity of the

analytical expressions, we approximate and simplify the results

and obtain good approximations with much simpler structures

and lower computational complexity. Based on the obtained

analytical or approximate results, we then optimize the caching

parameters. Our prior conference paper [1] considered the

analysis and optimization for probabilistic caching with perfect

channel state information (CSI) only. The main contributions

and results of this journal version are summarized as follows.

•We propose a user-centric SBS clustering and transmission

framework where each user can only communicate with a

certain number of nearby SBS. Specifically, in the probabilistic

caching model, each user is associated with the nearest SBS

within its cluster that has cached its requested file. The serving

SBS adopts either ZF beamforming for intra-cluster inter-

ference cancellation if transmission coordination is allowed

or MF beamforming otherwise. In the coded caching model,

each user collects sufficient number of coded segments of its

requested file from multiple SBSs within its cluster. These

multiple serving SBSs can transmit sequentially in an orthog-

onal manner using ZF beamforming (O-ZF) if transmission

coordination is allowed. Otherwise, they transmit concurrently

in a non-orthogonal manner using MF beamforming (NO-MF)

in conjunction with successive interference cancellation (SIC)

at each user receiver.

•We obtain tractable expressions of the coverage probabili-

ties for all the considered caching and beamforming schemes.

Due to the high computational complexity, we approximate

and simplify the analytical expressions and derive a set of more

compact forms for the (approximate) coverage probability

bounds. Based on these expressions, we derive approximate

and compact integral expressions for the average fractional

offloaded traffic (AFOT) and the average ergodic spectral

efficiency (AESE). We extend our analysis to the imperfect

CSI case and obtain the corresponding expressions similarly.

• In the probabilistic caching model, we formulate two opti-

mization problems for the caching probabilities towards AFOT

and AESE maximization, respectively. We show that these

optimization problems are convex and also obtain the optimal

solutions. In the coded caching model, we formulate a unified

cache placement problem as a multiple-choice knapsack prob-

lem (MCKP) for AFOT and AESE maximization, respectively.

By analyzing and exploiting the properties of the problem, we

propose a greedy-based low-complexity algorithm to solve this

NP-hard problem, which is shown to perform almost the same

as the optimal exhaustive search algorithm.

• Numerical results reveal that both probabilistic caching

and coded caching can enjoy a higher performance gain from

multiple antennas than MPC by allowing the collaborative

caching among SBSs. Numerical results also show that ZF

beamforming performs better than MF when the number of

antennas in each SBS is larger than the cluster size. When

the number of antennas in each SBS is the same as the cluster

size, MF outperforms ZF in most cases. Moreover, MF is more

robust than ZF when SBSs obtain quantized CSI via limited

feedback.

The rest of the paper is organized as follows. The system

model is introduced in Section II. In Section III and Section

IV, we analyze AFOT and AESE with tools from stochastic

geometry and optimize the caching strategy in probabilistic

caching and coded caching, respectively. We then extend the

analysis and optimization of caching to the imperfect CSI case

in Section V. The numerical results are presented in Section

VI. Finally, we conclude the paper in Section VII.

Notation: This paper uses bold-face lower-case h for vectors

and bold-face uppercase H for matrices. HH is the conjugate

transpose of H and H
† is the left pseudo-inverse of H. Im

implies the m×m identity matrix and 01×m denotes the 1×m
zero vector.

II. SYSTEM MODEL

We consider a cache-enabled multi-antenna SCN, where

each SBS is equipped with L transmit antennas as well as

a local cache, and is located on a two-dimensional plane

according to a homogenous Poisson point process (HPPP),

denoted as Φb = {di ∈ R2, ∀i ∈ N+} with intensity λb.

Each user has a single receive antenna and their locations are

modeled as another independent HPPP with intensity λu. It is

assumed that λu ≫ λb so that the network is fully loaded with

all the SBSs being active at any given time instant. Each user

can only choose its serving SBS or SBSs from a cluster of K
nearest SBSs to limit strong interference, where K ≥ 2. We

refer to the K nearest SBSs of each user as a user-centric SBS

cluster with size K , which is formed by the central controller.

As such, the plane is tesselated into K-th order Voronoi cells

[33]. The K-th order Voronoi cell associated with a set of

K points d1, · · · , dK is the region that all the points in this

region are closer to these K points than to any other point

of Φb, i.e., VK(d1, · · · , dK) = {d ∈ R2| ∩Kk=1 {‖d − dk‖ ≤
‖d− di‖}, di ∈ Φb\{d1, d2, · · · , dK}}.

Without loss of generality, we focus on a typical user,

denoted as u0, located at the origin. The typical user can

connect to any of the SBSs in the K-th order Voronoi cell

that it belongs to, where the set of SBSs is denoted as ΦK =
{d1, d2, · · · , dK}. The distance between u0 and the k-th

nearest SBS dk is denoted as rk, satisfying 0 < r1 ≤ r2 . . . ≤
rK . The channel between u0 and every SBS di ∈ Φb in
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the network consists of both Rayleigh-distributed small-scale

fading, denoted as hi0 ∈ C1×L with hi0 ∼ CN (01×L, IL),

and distance-dependent large-scale fading, denoted as r
−α

2

i ,

with path-loss exponent α > 2 [34].

A. Cache Placement Model

We consider a file library F = {f1, f2, · · · , fN}, where N
is the total number of files. All files are assumed to have the

same normalized size of 1. The popularity of file fn is denoted

as pn, satisfying 0 ≤ pn ≤ 1 and
∑N

n=1 pn = 1. Without loss

of generality, we assume p1 ≥ p2 . . . ≥ pN . Each SBS can

store up to M files with M < N to avoid the trivial case.

Two cache placement models are considered in this paper.

1) Probabilistic Caching: In the probabilistic caching

model, each SBS caches file fn with probability an. Due to

the cache size constraint and probability property, we have

the constraints:
∑N

n=1 an ≤ M and 0 ≤ an ≤ 1 for

n = 1, 2, . . . , N 1. We denote the cache strategy as a 1 ×N
vector a = [a1, a2, . . . , aN ]. With such probabilistic caching

strategy, when the typical user u0 requests for file fn, it will

be associated with the nearest SBS that caches fn in ΦK . If

the transmission fails or none of the SBSs in ΦK has cached

fn, u0 will be served by a macro base station (MBS) that can

download the requested file from the core network at a much

higher cost.

2) Coded Caching: In the coded caching model, each file

fn is split into bn disjoint fragments with size 1
bn

for each,

where bn ∈ K ∪ {∞} with K , {1, 2, . . . ,K}. These

fragments are then encoded into a large number of coded

packets2. Specifically, an MDS (a, b) code is to generate a
encoded packets from b input fragments, such that any subset

of b encoded packets is sufficient to recover the data. There

are some well-known examples of MDS codes, such as Reed

Solomon codes. Following the convention [24], we do not

restrict to any specific coding scheme in this work and only

require that each file fn can be successfully recovered from

any set of bn coded packets. In the placement phase, each

SBS caches one and only one distinct coded packet for each

file fn and the user can recover the original file if it receives

any bn coded packets 3. For the special case when bn = ∞,

the file fn is not cached in any SBS. When bn = 1, the

file fn is cached entirely in each SBS. We denote the cache

strategy as a 1 × N vector b = [b1, b2, . . . , bN ] with cache

size constraint
∑N

n=1
1
bn
≤ M . With such coded caching

strategy, when the typical user u0 requests for file fn, it needs

to collect bn coded packets of fn from the bn nearest SBSs

in the cluster ΦK . These bn SBSs will transmit to u0 either

sequentially in an orthogonal manner or concurrently in a non-

orthogonal manner as detailed in the next subsection. If u0

1These are sufficient and necessary conditions for the existence of a
probabilistic cache placement scheme meeting strictly the cache size constraint
at each SBS. A practical placement approach can be found in [12]

2Note that the coded caching in this work is different from the coded
caching scheme proposed in [35], where the cached contents are carefully
designed to allow serving users via multicast transmissions.

3Similar to [24], the distinction between the coded packets stored in the
SBSs within each K-th order Voronoi cell can be ensured with a graph-
coloring approach if MDS codes are used, or ensured with large probability
if RLNC is used.

fails to collect enough coded packets from the SBSs in ΦK due

to transmission error or bn = ∞, it will acquire the missing

coded packets from a MBS at a much higher cost.

B. Transmission Model

As assumed earlier, we consider a fully loaded system

so that all the SBSs in the network are active at any time.

Throughout this paper, we consider an interference-limited

network where the noise can be neglected and use signal-to-

interference ratio (SIR) for performance analysis. At any time,

the received signal of u0 is given by (ignoring noise):

y0 =
∑

di∈Φb

r
−α

2

i hi0wixi, (1)

where xi denotes the transmit signal from SBS di and

wi ∈ CL×1 denotes the corresponding beamforming vector.

The intended receiver of xi and the design of wi depend on the

requested file fn and its cache parameter an (for probabilistic

caching) or bn (for coded caching).

There are many different types of beamformings, such as

MMSE, which can optimally balance signal boosting and

interference cancellation and maximizes the SIR. We consider

ZF and MF in this work since they are generally more

amenable to analysis than MMSE because of their simple

structures [31]. Besides, ZF and MF have a distinct advantage

in terms of implementation complexity compared to MMSE

[36].

1) Transmission with probabilistic caching: In the prob-

abilistic caching model, we assume that SBS dk ∈ ΦK ,

for k = 1, 2, . . . ,K , is the nearest SBS that has cached

the requested file fn and therefore u0 is associated with dk

during the transmission. We consider two types of transmit

beamforming at each SBS. One is uncoordinated, where each

SBS applies an MF based beamforming independently to

maximize the effective channel gain of its own user. The

beamforming vector wk,mf of SBS dk serving u0 is given by:

wk,mf =
h
H
k0

‖hk0‖
. (2)

Here, we assume that each user estimates the downlink CSI

from its serving SBS and then conveys the CSI back to the SBS

via errorfree feedback links. Since each SBS serves its own

user independently, the interference observed by u0 comes

from all SBSs except dk in the network. Thus, the SIR of

u0 when served by SBS dk with MF beamforming is given

by:

SIRk,mf =
gk,mf · r−α

k
∑

dj∈Φb\{dk} gj,mf · r−α
j

, (3)

where gk,mf = ‖hk0‖2 is the effective channel gain of the

desired signal from dk and follows the Gamma distribution

with shape parameter L and scale parameter 1, denoted as

gk,mf ∼ Γ(L, 1), and gj,mf = |hj0wj,mf|2 is the effective

channel gain of the undesired signal from dj and follows

the exponential distribution with mean 1, denoted as gj,mf ∼
exp(1) [31].

The other type of beamforming is coordinated, where the K
SBSs in each K-th order Voronoi cell apply ZF beamforming

so as to null out the intra-cluster interference. As such, all the
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SBSs in the K-th order Voronoi cell VK(d1, · · · , dK) that the

typical user u0 falls into can simultaneously serve K users

(including u0) located in the same VK(d1, · · · , dK) without

intra-cluster interference [33]. We assume that L ≥ K to en-

sure the feasibility of ZF beamforming. Due to the assumption

that λu ≫ λb, there will always exist K users in the Voronoi

cell with each choosing a distinct SBS to communicate with

during the delivery phase. The beamforming vector of SBS dk

serving u0 is given by [32]:

wk,zf =
(IL −HH

†)hT
k0

‖(IL −HH†)hT
k0‖

, (4)

where H = [hT
k1,h

T
k2, · · · ,hT

k(K−1)] is the channel between

the serving SBS dk of the typical user and the K − 1 users

served by the other K − 1 SBSs within the cluster. Here, we

assume that each user estimates the downlink CSI from the

K nearest SBSs within its cluster by means of orthogonal

pilot symbols and then conveys the CSI back to the SBSs

via errorfree feedback links. By (4), the K − 1 intra-cluster

interference in the cell can be completely nulled when L ≥ K
and the interference observed by u0 only comes from the SBSs

out of the cluster, i.e., Φb\ΦK . Therefore, the SIR of u0 when

served by SBS dk with ZF beamforming is given by:

SIRk,zf =
gk,zf · r−α

k
∑

dj∈Φb\ΦK
gj,zf · r−α

j

, (5)

where gk,zf = |hk0wk,zf|2 is the effective channel gain of the

desired signal and follows gk,zf ∼ Γ(L−K+1, 1), and gj,zf =
|hj0wj,zf|2 is the effective channel gain of the undesired signal

and follows gj,zf ∼ exp(1) [31].

2) Transmission with coded caching: We assume that file

fn is split into 1 ≤ bn ≤ K fragments for coded caching and

thus u0 is associated with the bn nearest SBSs in ΦK during

the transmission. Similar to the previous case, we consider

both ZF and MF beamforming at each SBS. But the specific

design differs due to that the typical user u0 needs to receive

signals from multiple SBSs rather than just one SBS for

content delivery.

In the NO-MF scheme, the nearest bn SBSs use non-

orthogonal transmission to deliver their cached coded packets

of fn to u0 concurrently at the same resource block. The

user adopts SIC to decode the signals successively in the

descending order of the average received signal strength, or

equivalently, from the nearest to the farthest in the considered

homogeneous SCNs. Specifically, the signal from SBS d1 is

decoded first and, if successful, subtracted from the received

signal, then the algorithm proceeds to the signal from SBS d2,

and so on. Note that when the user decodes the signal from the

k-th nearest SBS dk, the interference comes from the SBSs far-

ther than SBS dk, i.e., Φb\Φk, where Φk = {d1, d2, . . . , dk}.
In addition, the effective channel gains of the signals coming

from SBS dk+1 to SBS dbn all follow the Gamma distribution

with shape parameter L since they are the serving SBSs and

their beamformers are matched to the channel of u0. The rest

interference channel gains from the SBSs farther than dbn

follow exponential distribution with unit mean. Given the MF

beamforming vector wk,mf in (2), the SIR of u0 for decoding

the signal from dk is given by:

SIRk,no-mf =
gk,no-mf · r−α

k
∑

di∈Φdbn
\Φk

gi,no-mf · r−α
i +

∑

dj∈Φb\Φdbn

gj,no-mf · r−α
j

,

(6)

where Φdbn
= {d1, d2, . . . , dbn} is the set of nearest bn SBSs

of u0, gk,no-mf ∼ Γ(L, 1), gi,no-mf ∼ Γ(L, 1) for SBSs di ∈
Φdbn

\Φk and gj,no-mf ∼ exp(1) for SBSs dj ∈ Φb\Φdbn
.

In the O-ZF scheme, the nearest bn SBSs take turns to

deliver their cached coded packets to u0 in an orthogonal

manner. Note that when SBS dk, for 1 ≤ k ≤ bn, is serving

u0, the other K − 1 SBSs in the cluster ΦK are serving

simultaneously other K − 1 users in the same K-th order

Voronoi cell. Same to the probabilistic caching, we adopt the

ZF beamforming in (4). The received SIR of u0 is the same

as (5), for k = 1, 2, . . . , bn.

C. Performance Metrics

In this paper, we adopt two performance metrics to measure

the gain brought by caching in different caching models and

transmission schemes.

1) AFOT: The AFOT, denoted as L(K), measures the

average fraction of successfully offloaded traffic from cache-

enabled SBSs. The traffic offload is said to be successful if the

requested file is cached locally in SBSs and the corresponding

received SIR is above a certain decoding threshold γ. Let

Ln denote the fractional offloaded traffic (FOT) given that

u0 requests file fn. The AFOT is given by:

L(K, γ) =

N∑

n=1

pnLn. (7)

The specific definition of Ln shall be introduced later in Sec-

tion III for probabilistic caching and in Section IV for coded

caching. Note that AFOT characterizes the traffic offloading

capability of the cache-enabled SBSs. Namely, it captures how

likely or at what fraction the typical user can download its

requested file from the cache-enabled SBSs locally at a given

target transmission rate without resorting to the core network.

It depends on the cache policy of each SBS and the target

transmission rate to the typical user.

2) AESE: The AESE, denoted as S(K), measures the

average ergodic spectral efficiency of each cache-enabled SBS

when serving a typical user. Let Sn denote the ergodic spectral

efficiency (ESE) given that u0 requests file fn. The AESE is

given by:

S(K) =

N∑

n=1

pnSn. (8)

The specific definition of Sn shall be introduced later in

Section III for probabilistic caching and Section IV for coded

caching.

From the above definitions, AFOT can be used to measure

the service performance for delay-sensitive content requests,

such as video on-demand, that require a target minimum

transmission rate regardless of network condition; AESE can

be used to measure the service performance for other delay-

insensitive content requests, such as file download, where

maximizing the average download rate is desired. Similar

performance metrics are also both considered in [24], [30].
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III. ANALYSIS AND OPTIMIZATION OF PROBABILISTIC

CACHING

In this section, we analyze AFOT and AESE in the prob-

abilistic caching model. First, we analyze the coverage prob-

ability of the typical user for different transmission schemes.

Then based on the results of the coverage probability, we

derive and analyze FOT and ESE, respectively. Finally, we

optimize the cache vector a by maximizing the AFOT and

AESE, respectively.

A. Coverage Probability

We first analyze the coverage probability of the typical user

u0 when it is served by the k-th nearest SBS. It is defined

as the probability that the received SIR exceeds a given SIR

target γ:

P k
cov(K, γ) = P [SIRk ≥ γ], (9)

where SIRk is given in (3) for MF beamforming or (5) for ZF

beamforming.

1) MF Beamforming:

Lemma 1 (Coverage Probability of MF): The coverage

probability of the typical user served by the k-th nearest SBS

with MF beamforming, for k = 1, 2, . . . ,K , is given by:

P k
cov,mf(K, γ) = Erk

[
L−1∑

i=0

(−γrkα)i
i!

L(i)Ir1
(γrk

α)|rk
]

, (10)

where Ir1 =
∑

dj∈Φb\{dk} gj,mf · r−α
j , LIr1 (s) = E[e−sIr1 ] =

LI1(s) · LI2(s) is the Laplace transform of Ir1, where LI1 (s)
and LI2(s) are given in (58) and (59), respectively, and L(i)Ir1

(s)
is the i-th order derivative of LIr1(s).

Proof: See Appendix A.

The expression (10) takes the expectation over rk. The

probability density function (pdf) of rk is fRk
(rk) =

2(λbπr
2
k)

k

rkΓ(k)
exp

(
−λbπr

2
k

)
[37], where Γ(k) = (k − 1)! is the

Gamma function.

Since the tractable expression of the coverage probability

is complex, we provide more compact forms to bound the

coverage probability in the following theorem.

Theorem 1 (Bound of Coverage Probability with MF):

The coverage probability of the typical user served by the

k-th nearest SBS with MF beamforming, for k = 1, 2, . . . ,K ,

is bounded as:

P k,l
cov,mf(K, γ) ≤ P k

cov,mf(K, γ) ≤ P k,u
cov,mf(K, γ), (11)

with

P k,u
cov,mf(K, γ) =

L∑

l=1

β1 (η, γ, α, l, k)

(
L
l

)
(−1)l+1

(1 + β2 (η, γ, α, l))
k
,

(12)

P k,l
cov,mf(K, γ) =

L∑

l=1

β1(1, γ, α, l, k)

(
L
l

)
(−1)l+1

(1 + β2(1, γ, α, l))k
,

(13)

where

β1(x, γ, α, l, k)=

[

1− 2(xγl)
2
α

α
B

(
2

α
, 1− 2

α
,

1

1 + xγl

)]k−1

,

(14)

β2(x, γ, α, l) = 2
(xγl)

2
α

α
B

′

(
2

α
, 1− 2

α
,

1

1 + xγl

)

, (15)

where η = (L!)−
1
L , B(x, y, z) ,

∫ z

0
ux−1(1 − u)y−1du is

the incomplete Beta function and B
′

(x, y, z) ,
∫ 1

z ux−1(1 −
u)y−1du is the complementary incomplete Beta function.

Proof: See Appendix B.

In the special case with L = 1 (single antenna), the upper

and lower bounds coincide and hence give the exact expression

of the coverage probability. In addition, if α = 4, the exact

coverage probability can be written in a closed form.

Corollary 1: The coverage probability of the typical user u0

served by the k-th nearest SBS in the single-antenna network

with α = 4 is given by:

P k
cov,mf(K, γ) =

(

1−√γarcsin 1√
1+γ

)k−1

(

1 +
√
γarccos 1√

1+γ

)k
. (16)

In the special case, when the user is served by its nearest

SBS, i.e., k = 1, Corollary 1 reduces to the result given in

[34, Theorem 2].

2) ZF Beamforming:

Lemma 2 (Coverage Probability of ZF): The coverage

probability of the typical user served by the k-th nearest SBS

with ZF beamforming, for k = 1, 2, . . . ,K , is given by:

P k
cov,zf(K, γ) = Erk,rK

[
L−K∑

i=0

(−γrkα)i
i!

L(i)Ir2
(γrk

α)|rk, rK
]

,

(17)

where Ir2 =
∑

dj∈Φb\ΦK
gj,zf · r−α

j and its Laplace transform

is given in (65).

The proof of lemma 2 is similar to Appendix A, so we

omit it here. Notice that the expectation in (17) is not only

over rk, but also over rK since the inter-cluster interference

comes from the SBSs farther than rK . Thus, we need to know

the joint pdf of rk and rK , which is given by [37], [38]:

fRk,RK
(rk, rK) =

4(λbπ)
K

Γ(K − k)Γ(k)
rkrK(r2k)

k−1

× (r2K − r2k)
K−k−1 exp

(
−λbπr

2
K

)
. (18)

Similarly, the tractable expression of the coverage prob-

ability is complex, we obtain more compact forms of the

approximate coverage probability bounds in the following

theorem.

Theorem 2 (Approximate Bound of Coverage Probability with ZF):

The coverage probability of the typical user served by the

k-th nearest SBS with ZF beamforming, for k = 1, 2, . . . ,K ,

can be approximately bounded as:

P k,l
cov,zf(K, γ) . P k

cov,zf(K, γ) . P k,u
cov,zf(K, γ), (19)

with

P k,u
cov,zf(K, γ) =

L−K+1∑

l=1

(
L−K+1

l

)
(−1)l+1

[

1 + (κγl)
2
α

√
k
KA

(√
K(κγl)−

2
α√

k

)]k
,

(20)

P k,l
cov,zf(K, γ) =

L−K+1∑

l=1

(
L−K+1

l

)
(−1)l+1

[

1 + (γl)
2
α

√
k
KA

(√
K(γl)−

2
α√

k

)]k
,

(21)
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where A(x) =
∫∞
x

1

1+u
α
2
du and κ = (L−K + 1!)−

1
L−K+1 .

Proof: See Appendix C.

The approximate upper and lower bounds coincide when

L = K , and hence give the approximate coverage probability.

Furthermore, when α = 4, the approximate coverage proba-

bility can be written in a closed form.

Corollary 2: The approximate coverage probability of the

typical user served by the k-th nearest SBS in the ZF scheme

with L = K and α = 4 is given by:

P k
cov,zf(K, γ) ≃ 1

[

1 +
√

kγ
K arccot

(
K
kγ

)]k
. (22)

When the user is served by the nearest SBS, i.e., k = 1,

Corollary 2 reduces to the results given in [33, Eqn. (28)].

The above bounds in compact forms can be used as ap-

proximate coverage probability expressions for cache place-

ment optimization at large K and L since the complexity of

computing the exact analytical expressions increases rapidly

as K and L increase. As we shall demonstrate numerically

in Section VI-A, the (approximate) upper bounds (12) and

(20) are tighter than the (approximate) lower bounds (13) and

(21). Nevertheless, we still use the (approximate) lower bounds

in view of mathematical rigorousness since the optimization

objectives, AFOT and AESE, are both increasing with respect

to the coverage probabilities.

B. Fractional Offloaded Traffic

Based on the above analysis of the coverage probability, we

analyze FOT Ln in both MF and ZF schemes. Note that when

u0 requests file fn, it is served by the nearest SBS that caches

fn within the cluster and the transmission is successful if the

received SIR exceeds a given SIR target γ. Hence, the FOT

Ln is given by:

Ln =

K∑

k=1

an(1− an)
k−1P k

cov(K, γ), (23)

where P k
cov(K, γ) can be exact as (10) and (17) or approximate

as (13) and (21) in both MF and ZF beamforming. Substituting

(23) into (7), we then obtain the AFOT of probabilistic

caching.

C. Ergodic Spectral Efficiency

Based on the coverage probability, the ergodic achievable

rate of the typical user served by the k-th nearest SBS is given

by:

Rk(K) = E [log2(1 + SIRk)]

=

∫ ∞

0

P [log2(1 + SIRk) > x] dx

=

∫ ∞

0

P k
cov(K, 2x − 1)dx. (24)

By averaging all possible serving SBS dk ∈ ΦK when u0

requests fn, ESE is given by:

Sn =

K∑

k=1

an(1− an)
k−1Rk(K), (25)

where Rk(K) is given in (24). Substituting (25) into (8), we

then obtain the AESE.

D. Caching Optimization

In this section, we optimize the cache vector a by maximiz-

ing the AFOT or AESE. Note that we can use approximate

coverage probabilities (13) or (21) for cache placement opti-

mization when K and L are large to maximize approximate

AFOT or AESE. The optimization problem can be formulated

as:

P1: max
a

N∑

n=1

pnQn, (26a)

s.t

N∑

n=1

an ≤M, (26b)

0 ≤ an ≤ 1, n = 1, 2, . . . , N, (26c)

where Qn can be either the FOT Ln in (23) or the ESE Sn in

(25) for both MF and ZF schemes. The constraint (26b) can

be rewritten as:
N∑

n=1

an = M, (27)

without loss of optimality since caching more files increases

the performance.

Lemma 3: The problem P1 is convex for both MF and ZF

schemes.

Proof: See Appendix D.

By using KKT condition, the optimal solution of P1 satisfies

the condition as follows.

Theorem 3: The optimal cache probabilities of P1 satisfy

an(µ
∗) = min (1, wn(µ

∗)) , (28)

where µ∗ ≥ 0 is the optimal dual variable to meet the cache

size constraint (27) and wn(µ
∗) is the real and non-negative

root of the equation:

pn

K∑

k=1

[1− wn(µ
∗)]k−2[1− kwn(µ

∗)]P k
cov(K, γ)− µ∗ = 0,

(29)

for AFOT maximization, and the real and non-negative root

of the equation:

pn

K∑

k=1

[1− wn(µ
∗)]k−2[1− kwn(µ

∗)]Rk(K)− µ∗ = 0, (30)

for AESE maximization, respectively.

Proof: See Appendix E.

To obtain the optimal cache vector a, we should find the

optimal dual variable µ∗ by substituting (28) into the cache

size constraint
∑N

n=1 an(µ
∗) = M . From (78) in Appendix E,

it is observed that an(µ) is a decreasing function of µ. Thus,

the sum of an(µ) is also decreasing of µ. Therefore, we can

use the bisection method to find the optimal µ∗.

IV. ANALYSIS AND OPTIMIZATION OF CODED CACHING

In this section, we analyze AFOT and AESE in the coded

caching model. First, we analyze the coverage probability

in different transmission schemes. Then based on the results

of the coverage probability, we derive and analyze FOT and
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ESE, respectively. Finally, we optimize the cache vector b by

maximizing the AFOT and AESE, respectively.

A. Coverage Probability

Similar to (9) for probabilistic caching, the coverage prob-

ability of the typical user when decoding the signal from the

k-th nearest SBS out of the bn serving SBSs in coded caching

is defined as the probability that the corresponding received

SIR of u0 exceeds a given SIR target γ. Specifically, for NO-

MF transmission scheme, the coverage probability is given by:

P k
cov(bn, γ) = P [SIRk ≥ γ], (31)

where SIRk is given in (6) for k = 1, 2, . . . , bn. While for O-

ZF transmission scheme, the coverage probability is the same

as (9) where SIRk is given in (5) for k = 1, 2, . . . , bn.

1) NO-MF transmission:

Lemma 4 (Coverage Probability of NO-MF): The

coverage probability of the typical user at SBS dk out

of the bn serving SBSs with NO-MF transmission, for

k = 1, 2, . . . , bn, is given by:

P k
cov,no-mf(bn, γ) = Erk

[
L−1∑

i=0

(−γrkα)i
i!

L(i)Ir3
(γrk

α)|rk
]

,

(32)

where Ir3=
∑

di∈Φdbn
\Φk

gi,no-mf · r−α
i +

∑

dj∈Φb\Φdbn

gj,no-mf ·
r−α
j and its Laplace transform is:

LIr3 (s) =
(
∫ rbn

rk

1

(1 + sr−α)
L

2r

r2bn − r2k
dr

)bn−k−1

×
exp

(

−2πλb

∫∞
rbn

sr−α

1+sr−α rdr
)

(
1 + sr−α

bn

)L
(33)

for k = 1, 2, . . . , bn − 1 and

LIr3(s) = exp

(

−2πλb

∫ ∞

rbn

sr−α

1 + sr−α
rdr

)

, (34)

for k = bn, respectively.

The proof of Lemma 4 is similar to Appendix A so we

omit it here. Since the tractable expression of the coverage

probability is complex, we provide more compact forms to

bound the coverage probability in the following theorem.

Theorem 4 (Bound of Coverage Probability of NO-MF):

The coverage probability of the typical user at SBS dk

out of the bn serving SBSs with NO-MF transmission, for

k = 1, 2, . . . , bn, is bounded as:

P k,l
cov,no-mf(bn, γ) ≤ P k

cov,no-mf(bn, γ) ≤ P k,u
cov,no-mf(bn, γ), (35)

with

P k,u
cov,no-mf(bn, γ)=

L∑

l=1

(
L

l

)

(−1)l+1
Eδ′

k

[
β4(δ

′
k, η, γ, α, l)

(1 + β2(ηδ′αk , γ, α, l))bn

]

,

(36)

P k,l
cov,no-mf(bn, γ)=

L∑

l=1

(
L

l

)

(−1)l+1
Eδ′

k

[
β4(δ

′
k, 1, γ, α, l)

(1 + β2(δ′αk , γ, α, l))bn

]

,

(37)

where

β4(δ
′
k, x, γ, α, l) =

1

(1 + xγlδ′αk )L
×

[∫ 1

1+xγlδ′α
k

1
1+xγl

2(xγl)
2
α

α( 1
δ′2
k

− 1)
× v

2
α
−1+L(1− v)−

2
α
−1dv

]bn−k−1

(38)

for k = 1, 2, . . . , bn − 1, where δ′k = rk
rbn

and its pdf can

be obtained in a similar way to the pdf of δk in (71), and

β4(δ
′
k, x, γ, α, l) = 1 for k = bn, respectively.

The proof of Theorem 4 is similar to Appendix B and

Appendix C, so we omit it here.

2) O-ZF: Since the SIR distribution of the typical user u0

served by the k-th nearest SBS with O-ZF transmission for

coded caching is the same as that for probabilistic caching,

we can conclude that the coverage probability and approximate

coverage probability in O-ZF scheme are given by (17) and

(21), respectively, but for k = 1, 2, . . . , bn.

Similar to the probabilistic caching scenario,we use (approx-

imate) lower bounds as approximate coverage probabilities for

the following analysis and optimization for large L and K .

B. Fractional Offloaded Traffic

In the NO-MF scheme, when u0 requests file fn, the bn
nearest SBSs transmit the cached coded packets of fn with size
1
bn

for each concurrently, and the user decodes these signals

successively using SIC. Since the user adopts SIC to decode

the signals successively, the signal from dk can be decoded

successfully if and only if SIRk ≥ γ and all the signals from

the nearest k − 1 SBSs have been decoded and subtracted

successfully. Thus, the probability that the fraction of 1
bn

traffic

is successfully offloaded from SBS dk is given by.

qk(bn, γ) = P




⋂

i=1,2,...,k

SIRi ≥ γ



 (39a)

≃
k∏

i=1

P i
cov,no-mf(bn, γ), (39b)

where (39b) is obtained by assuming the independence of the

events SIRi ≥ γ, for i = 1, 2, . . . , k, as in [24] and [39].

Note that the numerical results in [24] show that ignoring the

dependency among the events SIRi ≥ γ has negligible impact

on the actual AFOT performance. Therefore, the FOT Ln,no-mf

is given by:

Ln,no-mf =

{
1
bn

∑bn
k=1 qk(bn, γ), bn ∈ K

0, bn =∞ , (40)

In the O-ZF scheme, the bn nearest SBSs transmit the

cached coded packets of fn to u0 sequentially and each coded

packet can be successfully decoded if the received SIR exceeds

a given SIR target γ. Hence, the FOT Ln,o-zf is given by:

Ln,o-zf =

{
1
bn

∑bn
k=1 P

k
cov,zf(K, γ), bn ∈ K

0, bn =∞ . (41)

C. Ergodic Spectral Efficiency

In the NO-MF scheme, since the bn serving SBSs transmit

concurrently to u0 at one time slot and they transmit the same

amount of information, the actual transmission rate of each

SBS is determined by the minimum achievable rate among
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these bn SBSs. Thus, the ESE is given by:

Sn,no-mf = E

[

min
k=1,2,...,bn

log2(1 + SIRk,no-mf)

]

=

∫ ∞

0

P

[

min
k=1,2,...,bn

log2(1 + SIRk,no-mf) > x

]

dx

(a)≃
∫ ∞

0

bn∏

k=1

P [log2 (1 + SIRk,no-mf) > x] dx

=

∫ ∞

0

bn∏

k=1

P k
cov,no-mf(bn, 2

x − 1)dx. (42)

when bn ∈ K, where step (a) follows the assumption that the

events SIRk,no-mf ≥ x, for k = 1, 2, . . . , bn, are independent.

When bn =∞, we have Sn,no-mf = 0.

In the O-ZF scheme, the typical user needs to connect to

the nearest bn SBSs at different time slots. Therefore, the ESE

is defined as the achievable rate averaged over the bn serving

SBSs and is given by:

Sn,o-zf =

{
1
bn

∑bn
k=1 Rk,zf(K), bn ∈ K

0, bn =∞ . (43)

D. Caching Optimization

In the coded caching model, we want to obtain the optimal

cache vector b. Note that we can use approximate coverage

probabilities (21) or (37) for cache placement optimization

when K and L are large to maximize approximate AFOT or

AESE. The optimization problem can be formulated as:

P2: max
b

N∑

n=1

pnQn, (45a)

s.t

N∑

n=1

1

bn
≤M, (45b)

bn ∈ K ∪ {∞} , n = 1, 2, . . . , N, (45c)

where Qn can be either the FOT Ln in (40) and (41) or ESE

Sn in (42) and (43), for both NO-MF and O-ZF schemes. P2

is a MCKP which is known to be NP-hard. In the following,

we present a property of the optimal cache vector b∗, based

on which a greedy-based low-complexity algorithm shall be

proposed.

Note that both the exact and approximate coverage prob-

abilities P k
cov,o-zf(K, γ) are non-increasing functions of k and

P k
cov,no-mf(bn, γ) are non-increasing functions of bn, which can

be proved similar to the ZF and MF schemes in Appendix D.

Hence, Ln and Sn in both NO-MF and O-ZF schemes are

decreasing functions of bn. Thus, for any two different files

fi and fj with i < j, which means pi ≥ pj , we must have

b∗i ≤ b∗j in order to maximize the AFOT or AESE. Therefore,

we have the following theorem.

Theorem 5: For any two files fi and fj with 1 ≤ i < j ≤
N , the optimal cache variables must satisfy that b∗i ≤ b∗j .

Based on Theorem 5, we resort to a greedy-based low-

complexity algorithm to solve P2. We first initialize the file

partition value b0 = 1 and let the initial cache variables b∗n =
b0 for n = 1, 2, . . . ,M and b∗n = ∞ for n = M + 1, . . . , N ,

which means that the M most popular files are cached entirely

in each SBS. Then starting from b0 = 1, we first identify the

last b0 files with b∗n = b0 as well as the first uncached file with

b∗n = ∞, then partition each of these b0 + 1 files into b0 + 1
segments by letting their corresponding b∗n = b0+1. By doing

so, a new file is cached without exceeding the total cache size

in each SBS. We repeatedly find a set of b0+1 files to update

their cache variables until the total profit (AFOT or AESE)

cannot be improved further. We then gradually increase the

file partition value b0 by one and continue the process until b0
reaches the maximum value of K . The details of the algorithm

are given in Algorithm 1. Note that for each file partition value

b0, we need to update the cache variables at most M times.

For each cache variables update, we need to calculate the total

profit and compare it with the previous value, which takes time

O(N). Therefore, the total running time would be O(KMN).

Algorithm 1 A Greedy-based Low-complexity Algorithm

1: Initialize the cache vector b∗ = [1, 1, . . . , 1
︸ ︷︷ ︸

M

,∞, . . . ,∞
︸ ︷︷ ︸

N−M

]

and b0 ← 1;

2: while b0 < K do

3: Change the cache value of the last b0 files whose b∗n =
b0 as well as the first uncached file in b∗ to b0 +1 and

set this new cache vector as b;

4: if The total profit with cache strategy b is larger than

that with b∗ then

5: b∗ ← b;

6: else

7: b0 ← b0 + 1;

8: end if

9: end while

V. EXTENSION TO QUANTIZED CSI

In this section, we analyze the coverage probabilities of the

considered transmission schemes when the CSI is imperfect.

We focus on the analysis of probabilistic caching as the

analysis of coded caching is similar. To model the imperfect

CSI, we consider the case where SBSs obtain quantized

CSI via limited feedback as in [40]. With limited feedback,

the channel direction information (CDI) is fed back using a

quantization codebook of size 2B , where B is the number of

feedback bits for each channel. CDI is utilized to design the

beamforming vectors.

For MF beamforming, the SIR of the typical user u0 served

by k-th nearest SBS with quantized CSI is given by:

ˆSIRk,mf =
ĝk,mf · r−α

k
∑

dj∈Φb\{dk} ĝj,mf · r−α
j

, (46)

where ĝk,mf ∼ Γ(L, ζ) is the effective channel gain of the de-

sired signal, where ζ , 1−2Bβ(2B, L
L−1 ), β(x, y) =

Γ(x)Γ(y)
Γ(x+y)

is the Beta function, and ĝj,mf ∼ exp(1) is the effective

channel gain of the undesired signal from dj [40]. Therefore,

the coverage probability is given by:

P̂ k
cov,mf(K, γ)=Erk

[
L−1∑

i=0

(−γrkα/ζ)i
i!

L(i)
Îr1

(γrk
α/ζ)|rk

]

, (47)

where Îr1 =
∑

dj∈Φb\{dk} ĝj,mf · r−α
j = Ir1 . From

the Alzers inequality [41], we have [1 − exp(−ηx)]L ≤
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∫ x

0
tL−1 exp(t)

(L−1)! dt ≤ [1 − exp(−x)]L. Therefore, the CDF of

ĝk,mf is bounded as [1 − exp(−ηx/ζ)]L ≤ P [ĝk,mf ≤ x] ≤
[1−exp(−x/ζ)]L. Thus, the coverage probability can be upper

bounded as:

P̂ k
cov,mf(K, γ) ≤

L∑

l=1

(
L

l

)

(−1)l+1
Erk

[

LÎr1 (ηγr
α
k l/ζ)|rk

]

.

(48)

Due to the fact that Îr1 = Ir1 , the coverage probability of

the typical user u0 served by the k-th nearest SBS with MF

beamforming based on quantized CSI is upper bounded as:

P̂ k,u
cov,mf(K, γ)=

L∑

l=1

β1 (η/ζ, γ, α, l, k)

(
L
l

)
(−1)l+1

(1 + β2 (η/ζ, γ, α, l))
k
,

(49)

where the proof is similar to Appendix B. By setting η = 1,

the lower bound is also obtained.

In the ZF case, the SIR of u0 when served by SBS dk with

quantized CSI is given by:

ˆSIRk,zf =
ĝk,zf · r−α

k
∑

di∈ΦK\{dk} ĝi,zf · r−α
i +

∑

dj∈Φb\ΦK
ĝj,zf · r−α

j

,

(50)

where ĝk,zf ∼ Γ(L−K+1, ζ) is the effective channel gain of

the desired signal, ĝi,zf ∼ exp( 1
1−ζ ) is the effective channel

gain of the undesired signal for SBSs di ∈ ΦK\{dk} and

ĝj,zf ∼ exp(1) is the effective channel gain of the undesired

signal for SBSs dj ∈ Φb\ΦK [32]. Similarly, the coverage

probability is given by:

P̂ k
cov,zf(K, γ)=Erk,rK

[
L−K∑

i=0

(−γrkα/ζ)i
i!

L(i)
Îr2

(γrk
α/ζ)|rk, rK

]

,

(51)

where Îr2 =
∑

di∈ΦK\{dk} ĝi,zf ·r−α
i +

∑

dj∈Φb\ΦK
ĝj,zf ·r−α

j .

The interference Îr2 consists of two parts, the interference Î1
from the k − 1 SBSs di ∈ ΦK\{dk} and the interference Î2
from the SBSs farther than dK . The Laplace transform of Î1
is given by:

LÎ1 (s)=
(∫ rk

0

1

1 + (1 − ζ)sr−α

2r

r2k
dr

)k−1
1

1 + (1− ζ)sr−α
K

×
(∫ rK

rk

1

1 + (1− ζ)sr−α

2r

r2K − r2k
dr

)K−k−1

(52)

when k < K . When k = K , we have

LÎ1(s) =
[

1− 2(1− ζ)2/αs2/α

αr2k

×B

(
2

α
, 1− 2

α
,

1

1 + (1 − ζ)sr−α
k

)]K−1

(53)

For the interference Î2, its Laplace transform is LÎ2(s) =

exp
[

−2πλb

∫∞
rK

sr−α

1+sr−α rdr
]

. Thus, the the coverage proba-

bility with ZF beamforming based on quantized CSI is upper

bounded as:

P̂ k,u
cov,zf(K, γ) =

L−K+1∑

l=1

(
L−K + 1

l

)

(−1)l+1

× Erk,rK

[

LÎr2(κγr
α
k l/ζ)|rk, rK

]

. (54)

To simplify the expectation in (54), we introduce a parameter

δk = rk
rK

and we have

Erk,rK

[

LÎr2(κγr
α
k l/ζ)

]

=

[

1− 2τ
2/α
l

α
B

(
2

α
, 1− 2

α
,

1

1 + τl

)]k−1

× Eδk

[[
2τ

2/α
l

α(δ−2
k − 1)

(

B

(
2

α
, 1− 2

α
,

1

1 + τl

)

−

B

(
2

α
, 1− 2

α
,

1

1 + τlδαk

))]K−k−1
(1 + τlδ

α
k )

−1

[1 + β3(κγδαk l/ζ, α)]
K

]

.

(55)

where τl = κγl 1−ζ
ζ when k < K and when k = K , we have

Erk,rK

[

LÎr2(κγr
α
k l/ζ)|rk, rK

]

=

[

1− 2τ
2/α
l

α
B

(
2

α
, 1− 2

α
,

1

1 + τl

)]K−1

× 1

[1 + β3(τl1α, α)]K
.

(56)

The proof is similar to Appendix C. By substituting (55) or

(56) into (54), we obtain the upper bound P̂ k,u
cov,zf(K, γ). By

setting τl = γl 1−ζ
ζ , the lower bound is also obtained.

With these coverage probabilities, we can formulate and

optimize the cache placement problems accordingly. The same

algorithm proposed in the previous section can be applied.

Similar extension for coded caching with quantized CSI holds

and hence is ignored.

VI. NUMERICAL RESULTS

In this section, we first validate the tightness of the ap-

proximate coverage probability. Then, we demonstrate the

performance of probabilistic caching and coded caching by

treating MPC as the benchmark. Finally, we investigate the

effects of imperfect CSI in both ZF and MF. Through these

numerical results, we will reveal the role of different beam-

forming schemes in cache-enabled multi-antenna SCNs.

For presentation convenience, the performances of coded

caching obtained by Algorithm 1 with O-ZF and NO-MF

scheme are denoted as “O-ZF-CC” and “NO-MF-CC”, respec-

tively. The performances of optimal probabilistic caching using

ZF and MF beamforming are denoted as “ZF-OPC” and “MF-

OPC”, respectively. For MPC, the performances of using ZF

and MF beamforming are denoted as “ZF-MPC” and “MF-

MPC”, respectively. 4

The file popularity is assumed to follow the Zipf distri-

bution, i.e., pn = 1/nδ

∑
N
j=1

1/jδ
for file fn with δ being Zipf

skewness parameter. Unless otherwise stated, the other system

parameters are set as follows: path loss exponent α = 4,

number of total files N = 100, cache size M = 10, Zipf

parameter δ = 0.5 and cluster size K = 3.

A. Validation of Analytical Results

Figs. 1∼3 compare the analytical results of coverage prob-

abilities in Lemma 1, 2 and 4 with simulation results for all

4Note that we utilize the exact coverage probabilities to optimize the cache
strategies in the numerical results for small K (K = 3). However, when K is
large (K = 6), which causes the exact coverage probabilities hard to obtain
due to the high computational complexity, we have to utilize the approximate
ones to optimize the cache strategies.
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Fig. 1: Coverage probability in MF.
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Fig. 3: Coverage probability in NO-MF.
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Fig. 4: AFOT for different L in probabilistic caching.

the considered caching and beamforming schemes. We observe

that the simulation and analytical results match well. It is also

seen that the (approximate) lower bounds (13), (21) and (37)

are close to the analytical results. As such, we can use them

to approximate the true coverage probabilities for analysis and

optimization of AFOT and AESE at large K and L.

B. Comparison between MF and ZF for probabilistic caching

1) AFOT: Fig. 4 illustrates the AFOT of OPC and MPC for

different number of antennas. It is seen that OPC outperforms

MPC at low SIR target (γ = −10 dB) since it provides chances

to users connecting to multiple SBSs rather than the nearest

SBS. However, this gain becomes limited at high SIR target

(γ = 10 dB). This is because users have a high probability to

only connect to the nearest SBS when the decoding threshold

is very stringent. Thus, OPC degenerates to MPC at high SIR

target. By increasing the number of antennas L, AFOT for

both ZF and MF are increasing but the gain diminishes as

L grows. Besides, the performance gain of OPC over MPC

becomes larger when L increases, especially at low SIR target.

Comparing two different beamformings, it is observed that

when L = K , MF outperforms ZF slightly for OPC at high

SIR target and MPC when K = 3. This is because when

the number of antennas equals the cluster size, the effective

channel gain of the desired signal with ZF beamforming is

much smaller than that of MF beamforming although the

former suffers less interference. However, when the number

of antennas is larger than the cluster size, SBSs have enough

spatial dimensions to null out the intra-cluster interference and

strengthen the effective channel gain of the desired signals

simultaneously. Therefore, ZF outperforms MF when L > K .

2) AESE: Fig. 5 illustrates the AESE of OPC and MPC

for different number of antennas. It is observed that OPC

outperforms MPC in both MF and ZF while the performance

gap between OPC and MPC when ZF is applied is larger than

that when MF is applied. This is because users suffer strong

interference in MF, which causes that the AESE is mainly

limited by the performance of the nearest SBS. Besides,

the performance gain of OPC over MPC becomes larger by

increasing the number of antennas. As such, we can conclude

that OPC benefits better from multiple antennas than MPC.

For different beamforming types, Fig. 5 shows that ZF

outperforms MF when L > K . The reasons are similar to

the AFOT case.

C. Comparison between MF and ZF for coded caching

Since Algorithm 1 is a greedy algorithm, we first validate

its effectiveness. For illustration purpose, we only consider the
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AFOT maximization problem for validation. Fig. 6 shows that

the results obtained by Algorithm 1 are almost identical to the

optimal solution obtained by exhaustive search. Therefore, we

can utilize Algorithm 1 to obtain the coded caching solution.

1) AFOT: Fig. 7 illustrates the AFOT of CC and MPC

for different antenna number. At low SIR target (γ = −10
dB), CC has a great performance gain over MPC since it

can make a better utilization of collaborative caching among

multiple SBSs. However, at high SIR target (γ = 10 dB), CC

outperforms MPC slightly with ZF and it even performs the

same as MPC with MF. This is because users have a large

probability to only connect to the nearest SBS when the de-

coding threshold is very stringent, and hence the performance

of MPC is close to that of CC. Besides, AFOT for both O-ZF

and NO-MF increase as L grows, but the gain is diminishing.

Moreover, the performance gap between CC and MPC also

becomes larger by increasing L, which means CC can enjoy

a higher performance gain from multiple antennas than MPC.

Fig. 7 shows that NO-MF outperforms O-ZF at low SIR

target. This is because in NO-MF, the effective channel gain

of the desired signal is larger than O-ZF and the strong

interference from closer SBSs is canceled simultaneously via

SIC-based receiver. When the SIR target is high, users have

a large probability to only be served by the nearest SBS.

Therefore, O-ZF performs better than NO-MF when L > K ,

which is similar to the probabilistic caching case.

2) AESE: Fig. 8 illustrates the AESE of CC and MPC

for different number of antennas. It is observed that when

MF beamforming is applied, CC performs almost the same

as MPC for all L’s. This is because the AESE is limited

by the minimum delivery rate of the serving SBSs in the

concurrent transmission, and thus users prefer only connecting

to the nearest SBS. When ZF beamforming is applied, on

the other hand, CC outperforms MPC since it can make a

better utilization of multiple SBSs. Moreover, ZF outperforms

MF in coded caching. As such, in contrast to the previous

finding in [24] where CC performs nearly to MPC in terms

of AESE in the single-antenna system, we find that CC

outperforms considerably MPC in the multi-antenna case if

proper beamforming is chosen.

D. Impact of Imperfect CSI

Fig. 9 and Fig. 10 show that imperfect CSI degrades the

performance of caching in both ZF and MF. Comparing ZF

and MF, it is observed MF is more robust than ZF with

imperfect CSI since each SBS needs to know more CSI to do

the coordination when ZF is applied. Besides, the performance

comparison between ZF and MF for differen L with imperfect

CSI is similar to the perfect CSI case. Moreover, when the

number of feedback bits B increases, the performance of

imperfect CSI gets closer to that of perfect CSI case.

VII. CONCLUSION

In this work, we analyze and optimize the probabilistic

caching and coded caching in cache-enabled multi-antenna

SCNs. We propose a user-centric SBS clustering and trans-

mission framework, which allows each user to connect with

the K nearest SBSs within its cluster. We obtain approximate

and compact integral expressions of AFOT and AESE, respec-

tively, with MF and ZF beamforming. Then we formulate the

cache placement problem to find the optimal cache solutions.

The probabilistic cache placement problem is shown to be

convex and optimal solutions are obtained. The coded cache

placement problem is a MCKP and we solve it with a greedy-

based low-complexity algorithm efficiently. We also extend the

analysis and optimization above to the imperfect case. Numeri-

cal results show that multiple antennas can boost the advantage

of probabilistic caching and coded caching over the traditional

most popular caching with the proper use of beamforming.

Numerical results also demonstrate the performance difference

between MF and ZF under different number of antennas in

both perfect and imperfect CSI cases.

Appendix A: Proof of Lemma 1

The coverage probability P k
cov,mf(K, γ) can be written as:

P k
cov,mf(K, γ) = Erk,Ir1 [P [gk,mf ≥ γrαk Ir1] |rk, Ir1]

(a)
= Erk,Ir1

[
L−1∑

i=0

(γrαk Ir1)
i

i!
e−γrαk Ir1 |rk, Ir1

]

(b)
= Erk

[
L−1∑

i=0

(−γrkα)i
i!

L(i)Ir1
(γrk

α)|rk
]

, (57)
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where (a) follows from the series expansion of the CCDF

F (x;m, θ) for Gamma distribution Γ(m, θ) when θ is a

positive integer, i.e., F (x;m, θ) =
∑m−1

i=0
1
i! (

x
θ )

ie−
x
θ ; and (b)

follows from the derivative property of the Laplace transform:

E[X ie−sX ] = (−1)iL(i)X (s).

The interference Ir1 consists of two parts, the interference

I1 from the k− 1 SBSs closer to u0 than the serving SBS dk

and the interference I2 from the SBSs farther than dk. The

Laplace transform of I1 is given by:

LI1(s) = EΦb,gj,mf




∏

dj∈Φb

⋂
B(0,rk)\{dk}

exp
(
−sgj,mf · r−α

j

)





(a)
= EΦb




∏

dj∈Φb

⋂
B(0,rk)\{dk}

1

1 + sr−α
j





(b)
=

(∫ rk

0

1

1 + sr−α

2r

r2k
dr

)k−1

, (58)

where (a) follows from i.i.d. exponential distribution with

unit mean of gj,mf and it is also independent with the HPPP

Φb. Step (b) follows from that the locations of K − 1 SBSs

are independently and uniformly distributed in the circle area

B(0, rk) , {x ∈ R2|‖x‖ ≤ rk}. The Laplace transform of I2

is given by:

LI2(s) = EΦb




∏

dj∈Φb\B(0,rk)

1

1 + sr−α
j





= exp

(

−2πλb

∫ ∞

rk

sr−α

1 + sr−α
rdr

)

, (59)

where the last step follows from the probability generating

functional (PGFL) of the HPPP. Thus, Lemma 1 is proved.

Appendix B: Proof of Theorem 1

From the Alzer’s Inequality [41], [42], the the coverage

probability is upper bounded as:

P k
cov,mf(K, γ) = Erk,Ir1 [P [gk,mf ≥ γrαk Ir1] |rk, Ir1]

≤
L∑

l=1

(
L

l

)

(−1)l+1
Erk,Ir1

[

e−ηγrαk Ir1l|rk, Ir1
]

=

L∑

l=1

(
L

l

)

(−1)l+1
Erk [LIr1 (ηγrαk l)|rk] . (60)

To simplify (60), we first rewrite the Laplace transform of the

interference Ir1 as:

LIr1 (s) =
(∫ rk

0

1

1 + sr−α

2r

r2k
dr

)k−1
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× exp

(

−2πλb

∫ ∞

rk

sr−α

1 + sr−α
rdr

)

=

[

1− 2s2/α

αr2k
B

(
2

α
, 1− 2

α
,

1

1 + sr−α
k

)]k−1

× exp

[

−2πλb
s

2
α

α
B

′

(
2

α
, 1− 2

α
,

1

1 + sr−α
k

)]

,

(61)

where the last step follows by first replacing s−
1
α r with u, then

replacing 1
1+u−α with v. Therefore, the Laplace transform in

(60) can be written as:

LIr1(ηγrαk l) = β1(η, γ, α, l, k) exp
(
−πλbr

2
kβ2 (η, γ, α, l)

)
,

(62)

where β1(η, γ, α, l, k) and β2(η, γ, α, l) are defined for no-

tation simplicity, given by (14) and (15), respectively, with

x = η. Next we need to calculate the expectation of

LIr1 (ηγrαk l) over rk from (60). It is observed that only the

inter-cluster interference is related to rk. Therefore, evaluating

the expectation of exp(−πλbr
2
kβ2(η, γ, α, l)) is enough, which

is given by:

Erk

[
exp

(
−πλbr

2
kβ2(η, γ, α, l)

)]

=

∫ ∞

0

exp(−πλbr
2
kβ2(η, γ, α, l))

2(λbπr
2
k)

k

rkΓ(k)
exp(−λbπr

2
k)drk

(a)
=

∫ ∞

0

[
z

1 + β2(η, γ, α, l)

]k−1

× e−z

Γ(k) (1 + β2(η, γ, α, l))
dz

(b)
=

[
1

1 + β2(η, γ, α, l)

]k

, (63)

where step (a) follows from the change of variable z =
πλbr

2
k(1+β2(η, γ, α, l)) and step (b) follows from the Gamma

distribution property that
∫∞
0

tke−λtdt = k!
λk+1 .

By substituting (63) into (60), we obtain the upper bound

of the coverage probability (12). The lower bound (13) can

be similarly proved by letting η = 1 in the above derivations.

This theorem is thus proved.

Appendix C: Proof of Theorem 2

Similar to the proof of Theorem 1, the coverage probability

in ZF can be upper bounded by:

P k
cov,zf(K, γ) ≤

L−K+1∑

l=1

(
L−K + 1

l

)

(−1)l+1

× Erk,rK [LIr2 (κγrαk l)|rk, rK ]. (64)

By substituting rK for rk in (59), we obtain the Laplace

transform of inter-cluster interference, which is given by:

LIr2(s) = exp

[

−2πλb

∫ ∞

rK

sr−α

1 + sr−α
rdr

]

. (65)

By introducing a parameter δk = rk
rK

, the Laplace transform

in (64) can be written as:

LIr2 (κγrαk l) = exp

(

−2πλb

∫ ∞

rK

r−ακγrαk l

1 + r−ακγrαk l
rdr

)

= exp

(

−2πλb

∫ ∞

rK

r

1 + ( r
rK

)α(κγδαk l)
−1

dr

)

= exp

(

−πλbr
2
K(κγδαk l)

2
α

∫ ∞

(κγδα
k
l)−

2
α

1

1 + v
α
2

dv

)

,

(66)

where the last step follows from the change of variable v =
[

r
rK

(
1

κγδα
k
l

) 1
α

]2

. For notation simplicity, we let

β3(κγδ
α
k l, α) = (κγδαk l)

2
α

∫ ∞

(κγδα
k
l)−

2
α

1

1 + v
α
2

dv. (67)

From (66), it is observed that we need to calculate the

expectation over δk and rK , rather than rk and rK as in (64).

Thus, we first calculate the expectation of (66) over rK .

ErK [LIr2 (κγ(δkrK)αl) |δk, rK ]

=

∫ ∞

0

exp(−πλbr
2
Kβ3(κγδ

α
k l, α))×

2(λbπr
2
K)K

rKΓ(K)

× exp(−λbπr
2
K)drK

=
1

[1 + β3(κγδαk l, α)]
K
, (68)

where the last step follows from the change of variables similar

to (63). Therefore, P k,u
cov,zf(K, γ) is given by:

P k,u
cov,zf(K, γ) = Eδk

[
L−K+1∑

l=1

(
L−K+1

l

)
(−1)l+1

[1 + β3(κγδαk l, α)]
K

]

. (69)

To obtain the expectation above over δk, we first need to

know the pdf of δk. Utilizing the joint pdf of rk and rK given

in (18), the CDF of δk is given by:

P [δk ≤ x] = P [rk ≤ xrK ]

=

∫ ∞

0

∫ xrK

0

fRk,RK
(rk, rK)drkdrK

=

∫ ∞

0

∫ xrK

0

4rkr
2(k−1)
k rK

Γ(K − k)Γ(k)
(λbπ)

K

× (r2K − r2k)
K−k−1 exp(−λbπr

2
K)drkdrK

= 1−
k−1∑

i=0

(K − 1)!x2(k−1−i)(1− x2)K−k+i

(K − k + i)!(k − 1− i)!
,

(70)

where 0 ≤ x ≤ 1. Then, the pdf of δk can be obtained as:

fδk(x) =
dP [δk ≤ x]

dx

=

k−1∑

i=0

(K − 1)!
[
(K − 1)x2 − (k − i− 1)

]

(K − k + i)!(k − 1− i)!

× 2x2(k−1−i)−1(1− x2)K−k+i−1

=
2(K − 1)!

(k − 1)!(K − k − 1)!
x2k−1(1− x2)K−k−1. (71)

Recall (67), we approximate the integral in it as a constant

value according to randomness of δk. By utilizing partial

integration, we can calculate that E(δ2k) =
k
K . Therefore, we

approximate the integral in (67) as a constant value according

to randomness of δk similar to [33, Eqn. (28)] as:

E

[
∫ ∞

δ−2

k
(κγl)−

2
α

1

1 + v
α
2

dv

]

= E

[

A
(

(κγl)−
2
α

δ2k

)]
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≃
√

E(δ2k)A
(

(κγl)−
2
α

√

E(δ2k)

)

=

√

k

K
A
(√

K(κγl)−
2
α√

k

)

.

(72)

Thus, we can approximate β3(κγδ
α
k l, α) as β3(κγδ

α
k l, α) ≃

δ2k(κγl)
2
α

√
k
KA

(√
K(κγl)−

2
α√

k

)

. Therefore, we have

Eδk

[(
1

1 + β3(κγδαk l, α)

)K
]

=

∫ 1

0

[
1

1 + β3(κγxαl, α)

]K

fδk(x)dx

≃
∫ 1

0

fδk(x)
[

1 + (κγl)
2
α

√
k
KA

(√
K(κγl)−

2
α√

k

)

x2

]K
dx

=
1

[

1 + (κγl)
2
α

√
k
KA

(√
K(κγl)−

2
α√

k

)]k
. (73)

Substituting (73) into (69), we obtain the approximate upper

bound of the coverage probability (20). The approximate lower

bound (21) can be similarly proved by letting κ = 1 in the

above derivations. This theorem is thus proved.

Appendix D: Proof of Lemma 3

To prove the convexity of P1, we first prove that the

coverage probabilities in both MF and ZF schemes are non-

increasing functions of k. For the exact coverage probabilities,

this property holds obviously. For the lower bound (13) for

MF, we have

P k,l
cov,mf(K, γ)− P k+1,l

cov,mf (K, γ)

= Erk,Ir1

[

1− (1− e−γrαk Ir1)L
]

− Erk+1,Ir3

[

1− (1− e−γrαk+1Ir3 )L
]

= Erk,Ir1,rk+1,Ir3

[

(1− e−γrαk+1Ir3)L − (1− e−γrαk Ir1)L
]

≥ 0, (74)

where the last step follows from that rk+1 ≥ rk and Ir3 =
∑

j∈Φb\{dk} gj,mf·r−α
j ≥ Ir1 =

∑

j∈Φb\{dk+1} gj,mf·r−α
j since

all gj,mf are i.i.d. random variables. Therefore, we conclude

that the approximate probability in MF scheme is a non-

increasing function of k. For the ZF scheme, the proof is

similar to the MF scheme.

Since the coverage probabilities in both MF and ZF schemes

are non-increasing functions of k, the second order derivative

of the objective function (23) respect to an can be expressed

as:

∂2
∑N

n=1 pnL(an)

∂a2n

=

N∑

n=1

pn

K∑

k=1

(k − 1)(1− an)
k−3(kan − 2)P k

cov(K, γ)

=

N∑

n=1

pn

[

− 2P 2
cov(K) + 2(3an − 2)P 3

cov(K, γ)

+

K∑

k=4

(k − 1)(1− an)
k−3(kan − 2)P k

cov(K, γ)

]

≤
N∑

n=1

pn

[

− 2P 3
cov(K) + 2(3an − 2)P 3

cov(K, γ)

+
K∑

k=4

(k − 1)(1− an)
k−3(kan − 2)P k

cov(K, γ)

]

=
N∑

n=1

pn

[

6(an − 1)P 3
cov(K, γ) + 3(1− an)(4an − 2)P 4

cov(K, γ)

+

K∑

k=5

(k − 1)(1− an)
k−3(kan − 2)P k

cov(K, γ)

]

...

≤
N∑

n=1

pn
[
K(K − 1)(1 − an)

K−3(an − 1)PK
cov(K, γ)

]

≤ 0, (75)

where the previous steps come from the property that

P k
cov(K, γ) is non-increasing of k and the last step follows

from that 0 ≤ an ≤ 1. Since objective of P1 is to maximize a

concave function and all constraints are linear, P1 is a convex

problem in terms of AFOT maximization.

Since Rk(K) is also a non-increasing function of k, the

objective function AESE can be proved to be concave similar

to AFOT above. Therefore, the proof is completed.

Appendix E: Proof of Theorem 3

For AFOT maximization, the Lagrangian function of P1 can

be written as:

L(a1, a2, · · · , aN , µ) =

N∑

n=1

pn

K∑

k=1

an(1− an)
k−1P k

cov(K, γ)

+ µ

(

M −
N∑

n=1

an

)

, (76)

where µ is the Lagrangian multiplier associated with the con-

straint (27). By letting the partial derivative of the Lagrangian

function to be 0, we have

pn

K∑

k=1

(1− an)
k−2(1− kan)P

k
cov(K, γ) = µ (77)

It is easy to find that the left hand of (77) is a decreasing

function of an since the objective function is concave. Notice

that we have the constraint 0 ≤ an ≤ 1. Thus, when an = 1, µ
has the minimum value: pn

[
P 1

cov(K, γ)− P 2
cov(K, γ)

]
. While

for an = 0, it has the maximum value: pn
∑K

k=1 P
k
cov(K, γ).

Therefore, the cache solution an(µ) is given by:

an(µ) =







1, µ ≤ pn
[
P 1

cov(K, γ)− P 2
cov(K, γ)

]

wn(µ), otherwise

0, µ ≥ pn
∑K

k=1 P
k
cov(K, γ)

,

(78)

which is equivalent to (28) by substituting µ∗ for µ in (78).

Hence, the proof is completed.

For AESE maximization, the proof is similar and hence is

omitted here.
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