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Abstract— Data compression (DC) has the potential to sig-
nificantly improve the computation offloading performance in
hierarchical fog-cloud systems. However, it remains unknown
how to optimally determine the compression ratio jointly with
the computation offloading decisions and the resource allocation.
This optimization problem is studied in this paper where we
aim to minimize the maximum weighted energy and service
delay cost (WEDC) of all users. First, we consider a scenario
where DC is performed only at the mobile users. We prove
that the optimal offloading decisions have a threshold structure.
Moreover, a novel three-step approach employing convexification
techniques is developed to optimize the compression ratios and
the resource allocation. Then, we address the more general
design where DC is performed at both the mobile users and
the fog server. We propose three algorithms to overcome the
strong coupling between the offloading decisions and the resource
allocation. Numerical results show that the proposed optimal
algorithm for DC at only the mobile users can reduce the WEDC
by up to 65% compared to computation offloading strategies that
do not leverage DC or use sub-optimal optimization approaches.
The proposed algorithms with additional DC at the fog server
lead to a further reduction of the WEDC.

Index Terms— Fog computing, resource allocation, computa-
tion offloading, hierarchical fog/cloud, data compression, energy
saving, latency, mixed integer non-linear programming.

I. INTRODUCTION

CURRENTLY, mobile edge/cloud computing
(MEC/MCC) technologies are considered as promising

solutions for enhancing the mobile usability and prolonging
the mobile battery life by offloading computation heavy
applications to a remote fog/cloud server [1]–[3]. In an MCC
system, enormous computing resources are available in the
core network, but the limited backhaul capacity can induce
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significant delay for the underlying applications. In contrast,
an MEC system, with computing resources deployed at the
network edge in close proximity to the mobile devices,
can enable computation offloading and meet demanding
application requirements [4].

Hierarchical fog-cloud computing systems which leverage
the advantages of both MCC and MEC can further enhance
the system performance [5]–[9] where fog servers deployed
at the network edge can operate collaboratively with the more
powerful cloud servers to execute computation-intensive user
applications. Specifically, when the users’ applications require
high computing power or low latency, their computation tasks
can be offloaded and processed at the fog and/or remote
cloud servers. However, the upsurge of mobile data and the
constrained radio spectrum may result in significant delays in
transferring offloaded data between the mobile users and the
fog/cloud servers, which ultimately degrades the quality of
service (QoS) [10]. To overcome this challenge, advanced data
compression (DC) techniques can be leveraged to reduce the
amount of incurred data (i.e., the input data of a user’s applica-
tion) [11], [12]. However, DC entails additional computations
needed for the execution of the corresponding compression and
decompression algorithms [13]. Therefore, an efficient joint
design of DC, offloading decisions, and resource allocation is
needed to take full advantage of DC while meeting all QoS
requirements and other system constraints.

A. Related Works

Computation offloading design for MCC/MCE systems has
been studied extensively in the literature, see recent surveys
[14], [15] and the references therein. Most existing works
consider two main performance metrics for their designs,
namely energy-efficiency [16]–[19] and delay-efficiency
[20]–[23]. Focusing on energy-efficiency, the authors of [16]
develop partial offloading frameworks for multiuser MEC
systems employing time division multiple access (TDMA) and
frequency-division multiple access (FDMA). In [17], wireless
power transfer is integrated into the computation offloading
design. Moreover, different binary offloading frameworks are
developed in [18], [19] where various branch-and-bound and
heuristic algorithms are proposed to tackle the resulting mixed
integer optimization problems.
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Considering computation offloading from the delay-
efficiency point of view, an iterative heuristic algorithm to
optimize the binary offloading decisions for minimization of
the overall computation and transmission delay in a hierarchi-
cal fog-cloud system is proposed in [20]. The authors in [21]
formulate the computation offloading and resource allocation
problem as a student-project-allocation game with the objec-
tive to maximize the ratio between the average offloaded data
rate and the offloading cost at the users. In [22], the authors
study a binary computation offloading problem for maximiza-
tion of the weighted sum computation rate. Then, they propose
a coordinate descent based algorithm in which the offloading
decision and time-sharing variables are iteratively updated
until convergence. Considering partial computation offloading,
the authors in [23] propose a framework for minimization of
the weighted-sum latency of the mobile users via collaborative
cloud and fog computing assuming a TDMA based resource
sharing strategy.

Some recently proposed schemes for computation offload-
ing consider both energy and delay efficiency aspects
[7], [9], [24]. In particular, the work in [7] proposes a radio
and computing resource allocation framework where the com-
putational loads of the fog and cloud servers are determined
and the trade-off between power consumption and service
delay is investigated. Additionally, the authors of [24] jointly
optimize the transmit power and offloading probability for
minimization of the average weighted energy, delay, and pay-
ment cost. In [9], the authors study fair computation offloading
design minimizing the maximum weighted cost of delay and
energy consumption among all users in a hierarchical fog-
cloud system. In this work, a two-stage algorithm is proposed
where the offloading decisions are determined in the first
stage using a semidefinite relaxation and probability rounding
based method while the radio and computing resource allo-
cation is determined in the second stage. However, references
[7], [9], [16]–[22], [24] have not exploited DC for computation
offloading.

There are few existing works that explore DC for compu-
tation offloading. Specifically, the authors of [10] propose an
analytical framework to evaluate the outage performance of
a hierarchical fog-cloud system. Moreover, the work in [13]
considers DC for computation offloading for systems with a
single server but assumes a fixed compression ratio (i.e., this
parameter is not optimized). In general, the compression ratio
should be optimized jointly with the computation offloading
decisions and the resource allocation to achieve optimal system
performance. However, the computational load incurred by
compression/decompression is a non-linear function of the
compression ratio, which makes this joint optimization prob-
lem very challenging.

B. Contributions and Organization of the Paper

To the best of our knowledge, the joint design of DC,
computation offloading, and resource allocation for hierar-
chical fog-cloud systems has not been considered in the
existing literature. The main contributions of this paper can
be summarized as follows:

• We propose a non-linear computation model which
can be fitted to accurately capture the computational
load incurred by DC and decompression. In particular,
the compression and decompression computational load
as well as the quality of data recovery are modeled as
functions of the compression ratio.

• For DC at only the mobile users, we formulate the
fair joint design of the compression ratio, computation
offloading, and resource allocation as a mixed-integer
non-linear programming (MINLP) optimization problem.
This problem formulation takes into account practical
constraints on the maximum transmit power, wireless
access bandwidth, backhaul capacity, and computing
resources. We propose an optimal algorithm, referred to
as Joint DC, Computation offloading, and Resource Allo-
cation (JCORA) algorithm, which solves this challenging
problem optimally. To develop this algorithm, we first
prove that users incurring higher weighted energy and ser-
vice delay cost (WEDC) when executing their application
locally should have higher priority for offloading. Based
on this result, the bisection search method is employed
to optimally classify users into two user sets, namely the
set of offloading users, and the set of remaining users,
and JCORA globally optimizes the decision variables for
both user sets.

• We then study a more general design where DC is per-
formed at both the mobile users and the fog server (with
different compression ratios) before the compressed data
are transmitted over the wireless link and the backhaul
link to the fog server and the cloud server, respec-
tively. This enhanced design can lead to a significant
performance gain when both the wireless access and the
backhaul networks are congested. Three different solu-
tion approaches are proposed to solve this more general
problem. In the first approach, we extend the design prin-
ciple of the JCORA algorithm by employing the piece-
wise linear approximation (PLA) method to tackle the
coupling of the optimization variables. In the remaining
approaches, we utilize the Lagrangian method and solve
the dual optimization problem. Specifically, in the sec-
ond approach, referred to as One-dimensional λ-Search
based Two-Stage (OSTS) algorithm, a one-dimensional
search is employed to determine the optimal value of
the Lagrangian multiplier, while in the third approach,
referred to as Iterative λ-Update based Two-Stage (IUTS)
algorithm, a low-complexity iterative sub-gradient projec-
tion technique is adopted to tackle the problem.

• Extensive numerical results are presented to evaluate
the performance gains of the proposed designs in
comparison with conventional strategies that do not
employ DC. Moreover, our results confirm the excellent
performance achievable by joint optimization of DC,
computation offloading decisions, and resource allocation
in a hierarchical fog-cloud system.

The remainder of this paper is organized as follows.
Section II presents the system model, the computation and
transmission energy models, and the problem formulation.
Section III develops the proposed optimal algorithm for
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Fig. 1. DC and computation offloading in hierarchical fog-cloud systems.

the case when DC is performed only at the mobile users.
Section IV provides the enhanced problem with DC also at
the fog server and three methods for solving it. Section V
evaluates the performance of the proposed algorithms. Finally,
Section VI concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a hierarchical fog-cloud system consisting
of K single-antenna mobile users, one cloud server, and
one fog server co-located with a base station (BS) equipped
with a large number of antennas. In this system, the BS
communicates with the users through wireless links while a
(wired) backhaul link is deployed between the BS co-located
with the fog server and the cloud server as in Fig. 1. For
convenience, we denote the set of users as K. We assume
that each user k needs to execute an application requiring ck

CPU cycles within an interval of T max
k seconds, where ck,0

CPU cycles must be executed locally at the mobile device and
the remaining offloadable ck,1 CPU cycles can be processed
locally or offloaded and processed at the fog/cloud server for
energy saving and delay improvement. Sequential process-
ing of the unoffloadable and offloadable computing tasks is
assumed in this paper. Let bin

k be the number of bits repre-
senting the corresponding incurred data (i.e., programming
states, input text/image/video) of the possibly-offloaded ck,1

CPU cycles. To overcome the wireless transmission bottleneck
caused by the capacity-limited wireless links between the users
and the BS, DC is employed at the users for reducing the
amount of data transferred to the fog server.

In particular, once ck,1 CPU cycles are offloaded, user k
first compresses the corresponding bin

k bits down to bout,u
k

bits before sending them to the remote fog server. The ratio
between bin

k and bout,u
k is called the compression ratio and is

denoted as ωu
k = bin

k /bout,u
k . Depending on the available fog

computing resources, the offloaded computation task can be
directly processed at the fog server or be further offloaded to
the cloud server. The amount of data required to represent the
computation outcome sent back to the users is usually much
smaller than that incurred by offloading the task. Therefore,
similar to [9], [16], [24], we do not consider the downlink
transmission of the computation results in this paper.1

1The design in this paper can be extended to also include the downlink
transmission of feedback data as in [25].

Remark 1: Running an application requires executing
several unoffloadable sub-tasks that handle user interac-
tion or access local I/O devices and cannot be executed
remotely and other offloable sub-tasks that can be executed
locally or remotely based on the employed offloading strategy
[24], [26]. Practically, the workload corresponding to each
sub-task of a specific application has to be pre-determined
and remains unchanged according to the pre-programmed
source code. Hence, the total workload of the offloadable
components is typically fixed and cannot be optimized. In
this work, we assume a binary offloading decision for all
offloadable sub-tasks of each user. This corresponds to the
practical scenario where all offloadable sub-tasks are strongly
related such that they cannot be executed at different locations.

1) Data Compression Model: DC can be achieved by
eliminating only statistical redundancy (i.e., lossless compres-
sion) or by also removing unnecessary information (i.e., lossy
compression). To realize it, compression and decompression
algorithms must be executed at the data source and destination,
respectively, which induces additional computational load.
To the best of our knowledge, in the literature, there is no
theoretical model for the computational workload incurred
by DC. Hence, we adopt a practical data-fitting approach to
model the compression computational load, decompression
computational load, and compression quality as non-linear
functions of the compression ratio as follows:

cx,u
k = γu

k,0

[
γx,u

k,1(ω
u
k)γx,u

k,2 +γx,u
k,3

]
, for ωu

k∈[ωu,min
k,1 , ωu,max

k,1 ], (1)

qqu,u
k = γqu,u

k,3 −[γqu,u
k,1 (ωu

k)γqu,u
k,2
]
, for ωu

k∈[ωu,min
k,1 , ωu,max

k,1 ], (2)

where ‘x’ = ‘co’ and ‘de’ stands for compression and decom-
pression, respectively, [ωu,min

k,1 , ωu,max
k,1 ] represents the possible

range of ωu
k and depends on the compression algorithm

employed at user k, cco,u
k and cde,u

k denote the additional
CPU cycles at source and destination needed for compres-
sion and decompression, respectively2; qqu,u

k represents the
perceived QoS (i.e., this parameter, which is only considered
for lossy compression, measures the deviation between the
true data and the decompressed data); γu

k,0 is the maximum

number of CPU cycles; γ
co/de/qu,u
k,i , i = 1, 2, 3, are constant

parameters where γ
co/de/qu,u
k,1 , γ

co/de/qu,u
k,3 ≥0. The values of the

γ
co/de/qu,u
k,i , i=1, 2, 3, employed in this paper are determined

based on experimental data collected by running the compres-
sion algorithms GZIP, BZ2, and JPEG in Python 3.0.3

2Note that when the compression and decompression algorithms are exe-
cuted at a fixed CPU clock speed, the computational load in CPU cycles is
linearly proportional to the execution time.

3For validation, we collected three experimental data sets for three algo-
rithms (GZIP, BZ2, or JPEG) by running each algorithm in Python 3.0 via a
Linux terminal using Ubuntu 18.04.1 LTS on a computer equipped with CPU
chipset Intel(R) core(TM) i7-4790 and 12 GB RAM. To keep the CPU clock
speed almost constant, we turned off all other applications when executing the
compression and decompression algorithms by using the ‘cpupower tool’ in
Linux. In each realization for each algorithm, we measured the execution
time of running that algorithm with different compression ratios. Then,
the experimental data sets are compiled from the average execution time
for each compression ratio value over 1000 realizations of running each
algorithm. This allowed us to estimate the normalized execution time, which
is proportional to the normalized computational load.
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Fig. 2. Compression quality and normalized execution time.

The accuracy of the proposed model is validated in Fig. 2
which illustrates the relation between the normalized
compression/decompression execution time and the compres-
sion ratio using the lossless algorithms GZIP and BZ2 for
the benchmark text files “alice.txt” and “asyoulik.txt” from
Canterbury Corpus [27], and the lossy algorithm ‘JPEG’ for
images “clyde-river.jpg” and “frog.jpg” from the Canadian
Museum of Nature [28], obtained by simulating and fitting the
proposed model. Here, the normalized execution time is the
ratio of the actual execution time and the maximum execution
time over all values of the compression ratio. The figure shows
that the curves obtained through fitting using the proposed
model match the simulation results well.

Remark 2: A detailed comparison of the accuracy of the
proposed compression computational load model and that of
existing models is provided in Appendix G of our technical
report [29].

2) Computing and Offloading Model: We now introduce
the binary offloading decision variables su

k, sf
k, and sc

k for
the computation task of user k, where su

k = 1, sf
k = 1, and

sc
k = 1 denote the scenarios where the application is executed

at the mobile device, the fog server, and the cloud server,
respectively; and these variables are zero otherwise. Moreover,
we assume that the ck,1 CPU cycles can be executed at exactly
one location, which implies su

k + sf
k + sc

k = 1. Then, the total
computational load of user k at the mobile device, denoted
as cu

k, and at the fog server, denoted as cf
k, are given as,

respectively,

cu
k=ck,0+su

kck,1+(1 − su
k)cco,u

k and cf
k=sf

k

(
ck,1+cde,u

k

)
. (3)

As the fog and cloud servers are generally connected to the
power grid while the capacity of a mobile battery is limited,
we will focus on the energy consumption of the users [9]. The
local computation energy consumed by user k and the local
computation time can be expressed, respectively, as ξu

1,k =
αkfu

k
2 cu

k and tu1,k = cu
k/fu

k , where fu
k is the CPU clock speed

of user k and αk denotes the energy coefficient specified by
the CPU model [30]. Let f f

k denote the CPU clock speed used
at the fog server to process ck,1. Then, the computing time at
the fog server is given by tf1,k = cf

k/f f
k. We assume that the

computation task of each user is executed at the cloud server
with a fixed delay of T c seconds.4

3) Communication Model: In order to send the incurred
data during the offloading process, we assume that zero-
forcing beamforming is applied at the BS and the average
uplink rate from user k to the BS (fog server) is expressed
as rk = ρk log2(1+pkβk,0), where pk is the uplink trans-
mit power per Hz of user k, ρk denotes the transmission
bandwidth, and βk,0 = M0βk/σbs. Here, βk represents the
large-scale fading coefficient, σbs is the noise power den-
sity (watts per Hz), and M0 is the multiple-input multiple-
output (MIMO) beamforming gain [32]. It is assumed that
the number of antennas is sufficiently large so that M0 is
identical for all users. Then, the uplink transmission time and
energy of user k can be computed, respectively, as tu2,k =
(1 − su

k)bout,u
k /rk and ξu

2,k = ρk(pk + pk,0)tu2,k, where pk,0

denotes the circuit power consumption per Hz. For the data
transmission between the fog server and the cloud server,
a backhaul link with capacity Dmax bps (bits per second) is
assumed. Let dk denote the backhaul rate allocated to user k.
Then, the transmission time from the fog server to the cloud
server is tf2,k = sc

kbout,u
k /dk.

B. Problem Formulation

Assume the users have to pay for their usage of the radio and
computing resources at the fog/cloud servers. Then, the service
cost of user k can be modeled as Θk = (1 − su

k)(wBWρk +
wCck,1), where wBW is the price per 1 Hz of bandwidth for
wireless data transmission, and wC is the price paid to execute
one CPU cycle at the fog/cloud servers. Assuming that a pre-
determined contract agreement specifies a maximum service
cost Θmax

k then Θk ≤ Θmax
k . This constraint can be rewritten

equivalently as (1− su
k)ρk ≤ ρmax

k = Θmax
k −wCck,1

wBW . Besides the
constrained service cost, two important metrics for each user
are the service latency and the consumed energy. Specifically,
the total delay for completing the computation task of user k
includes the computation delay of the mobile device, the aver-
age transmission delay of the mobile device, the computation
delay of the fog server, the average transmission delay of
the fog server over the backhaul link, and the computa-
tion delay of the cloud server. Therefore, the total delay is

4The delay time for the cloud server consists of two components: the
execution time and the CPU set-up time. Due to the huge computing resources
at the cloud server, the execution time is generally much smaller than the CPU
set-up time [31], which is identical for all users.
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given by

Tk = tu1,k + tu2,k + tf1,k + tf2,k + sc
kT c

=
ck,0+su

kck,1+(1−su
k)cco,u

k

fu
k

+
(1−su

k)bin
k

ωu
kρk log2(1+pkβk,0)

+
sf

k

(
ck,1 + cde,u

k

)
f f

k

+
sc

kbin
k

ωu
kdk

+ sc
kT c. (4)

Since we assume massive MIMO transmission with zero-
forcing beamforming, multiple mobile users can transmit their
data to the fog server at the same time over the same frequency
band. Unlike [23], we do not adopt the TDMA transmission
protocol where the users are scheduled and have to wait
for their turns to transmit their data in the uplink. For the
considered massive MIMO system, time-based scheduling is
not required since all users can transmit concurrently.

Furthermore, the overall energy consumed at user k for
processing its task comprises the energy for local computation
and for data transmission in the offloading case. Hence,
the energy consumption of user k is given by

ξk = ξu
1,k + ξu

2,k = αkfu
k
2(ck,0+su

kck,1+(1−su
k)cco,u

k )

+
(pk+pk,0)(1−su

k)bin
k

ωu
k log2(1+pkβk,0)

. (5)

Practically, all users want to save energy and enjoy low
application execution latency. Hence, we adopt the WEDC as
the objective function of each user k as follows:

Ξk = wT
k Tk + wE

kξk,

where wT
k and wE

k represent the weights corresponding to
the service latency and consumed energy, respectively. These
weights can be pre-determined by the users to reflect their
priorities or interests. The proposed design aims to minimize
the WEDC function for each user while maintaining fairness
among all users. Towards this end, we consider the following
min-max optimization problem:

(P1) min
Ω1

max
k

Ξk

s.t (C1) : fu
k ≤ Fmax

k , ∀k, (C6) : 0≤ρkpk≤Pmax
k , ∀k,

(C2) :
∑

k
f f

k≤F f,max, (C7) : 0≤ρk≤ρmax
k , ∀k,

(C3) : su
k, sf

k, sc
k∈{0, 1}, ∀k, (C8) :

∑
k
dk≤Dmax,

(C4) : su
k+sf

k+sc
k=1, ∀k, (C9) : Tk ≤ T max

k , ∀k,

(C5) : ωu,min
k ≤ωu

k≤ωu,max
k , ∀k,

where Ω1 = ∪k∈KΩ1,k, Ω1,k = {su
k, sf

k, sc
k, ωu

k, fu
k , f f

k, pk,
ρk, dk}; Fmax

k is the maximum CPU clock speed of user
k, F f,max is the maximum CPU clock speed of the fog
server, Pmax

k is the maximum transmit power of user k,
[ωu,min

k , ωu,max
k ] denotes the feasible range of the compression

ratio ωu
k which can guarantee the required QoS of the recov-

ered data. In particular, for lossless DC where the perceived
QoS qqu,u

k = 1 for all ωu
k, this feasible range is determined as

ωu,min
k = ωu,min

k,1 and ωu,max
k = ωu,max

k,1 . For lossy DC where

the perceived QoS is required to be greater than qqu,u,min
k ,

this range is determined as ωu,min
k = ωu,min

k,1 and ωu,max
k =

min
{

ωu,max
k,1 ,

(
(γqu,u

k,3 −qqu,u,min
k )/γqu,u

k,1

)1/γqu,u
k,2
}

. In this prob-

lem, (C1) and (C2) represent the constraints on the computing
resources at the users and at the fog server, respectively,
while the offloading decision constraints are characterized by
(C3) and (C4). The constraints on the compression ratio are
captured by (C5), while (C6) and (C7) impose constraints
on the maximum user transmit power and the bandwidth,
respectively. Finally, (C8) and (C9) are the constraints due
to the limited backhaul capacity5 and delay, respectively.

III. OPTIMAL ALGORITHM DESIGN FOR

DC AT ONLY MOBILE USERS

A. Problem Transformation

To gain insight into its non-smooth min-max objective func-
tion, we recast (P1) into the following equivalent problem:

(P2) min
Ω1∪η

η s.t (C0) : Ξk ≤ η, ∀k, (C1) − (C9),

where η is an auxiliary variable. (P2) is a MINLP problem
which is difficult to solve due to the complex fractional and
bilinear form of the transmission time and energy consump-
tion, the logarithmic transmission rate function, and the mix of
binary offloading decision variables and continuous variables.
Conventional approaches usually decompose the problem into
multiple sub-problems which optimize the offloading decision
and the computing and radio resource allocation separately as
in [9], [22] or relax the binary variables as in [18], [19]. These
approaches can obtain only sub-optimal solutions.

To solve the problem optimally, we first study how to
classify the users into two sets, namely, a “locally executing
user set” which is the set of users executing their applications
locally, and an “offloading user set” which is the set of users
offloading their applications for processing at the fog/cloud
server. This classification is important because, in all con-
straints of (P2), the optimization variables corresponding to
the locally executing users are independent from the optimiza-
tion variables of the other users. Hence, the decisions for the
locally executing users can be optimized by decomposing (P2)
into user independent sub-problems which can be solved
separately. The optimal algorithm is developed based on the
bisection search approach where in each search iteration,
we perform: 1) user classification based on the current value
of η using the results in Theorem 1 below; 2) feasibility
verification for sub-problem (PB) of (P2) corresponding to
the offloading user set B; and 3) updates of lower and upper
bounds on η according to the feasibility verification outcome.
The detailed design is presented in the following.

5For practical scenarios, the development of sophisticated models for the
communication delay over a shared backhaul link is a non-trivial task due
to the complicated interactions between the routing algorithm and the other
network functions (e.g. scheduling, buffering) [23]. This issue is outside the
scope of this paper and left for future work. Similar to the existing work
in [23], our current paper studies joint data compression and computation
offloading in a hybrid fog-cloud computing system where we assume that a
fixed backhaul communication capacity is allocated to each user. A fixed
backhaul capacity allocation was also assumed in several recent works
including [23], [33], [34].
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Algorithm 1 Optimal Joint DC, Offloading, and Resource
Allocation (JCORA)

1: Initialize: Compute ηlo
k , ∀k ∈ K as in (8), choose ε, assign

ηmin = 0, ηmax = max
k

(ηlo
k ), and set BOOL = False.

2: while (ηmax − ηmin > ε) & (BOOL = False) do
3: Assign η = (ηmax + ηmin)/2, and then define sets A =

{k|ηlo
k ≤ η} and B = K/A.

4: Check feasibility of (PB) as in Section III-C.
5: if (PB) is feasible then ηmax = η, BOOL = True, else

ηmin = η, BOOL = False, end if
6: end while

B. User Classification

Let A and B be the locally executing and the offloading user
sets, respectively. We further define any pair of sets (A,B)
satisfying B = K\A as a user classification. By defining

Qk,0(fu
k ) = w E

k αk(fu
k)2ck + w T

k ck/fu
k , (6)

and ΩB = ∪k∈BΩ1,k, then for a given classification (A,B),
problem (P2) can be tackled by solving two sub-problems
(PA) and (PB) for the users in sets A and B, respectively, as
follows:

(PA) min
{fu

k}k∈A,η
η s.t (CA0) : Qk,0(fu

k ) ≤ η, ∀k ∈ A,

(CA2) : ck/T max
k ≤ fu

k≤ Fmax
k , ∀k∈A,

(PB) min
ΩB,η

η s.t (C0) : Ξk ≤ η, ∀k ∈ B,

(C1) − (C9), ∀k ∈ B.

Note that the variable set Ω1,k corresponding to user k
in A becomes {fu

k} since we have su
k = 1 and the other

variables can be set equal to zero when user k executes its
application locally. In such a scenario, Ξk can be simplified
to Qk,0(fu

k ). To attain more insight into the user classification,
we now study the relationship between optimization sub-
problems (PA) and (PB) in the following lemma.

Lemma 1: We denote the optimal values of (P2), (PA), and
(PB) as η�, η�

A, and η�
B, respectively. Then, we have6

1) η� ≤ max(η�
A, η�

B) for any classification (A,B).
2) The merged optimal solutions of (PA) and (PB) are the

optimal solution of (P2) if

η� = max(η�
A, η�

B). (7)

3) If B′ ⊂ B, then we have η�
B′ ≤ η�

B.
Considering Lemma 1, instead of solving (P2), we can

equivalently solve the two sub-problems (PA) and (PB).
Moreover, a classification (A,B) is optimal if the condition
in (7) holds. The optimal solution of (PA) can be obtained as
described in Proposition 1 while solving (PB) requires a more
complex approach which will be discussed in Section III-D.

6Due to the space constraint, the proof of Lemma 1 is given in the online
technical report [29].

Fig. 3. Relationship between the (sub)problems when solving (P1) by the
JCORA algorithm.

Proposition 1: The optimal objective value of (PA) can be
expressed as η�

A = maxk∈A ηlo
k , where ηlo

k is defined as

ηlo
k

=

{
Qk,0(f

u,sta
k ), if fu,sta

k ∈ [fu,min
k ,Fmax

k ]
min

(Qk,0(f
u,min
k ),Qk,0(Fmax

k )
)
, otherwise,

(8)

where fu,min
k = ck/T max

k and fu,sta
k = 3

√
wT

k /(2wE
kαk).7

Based on the results in Lemma 1 and Proposition 1, the opti-
mal user classification can be performed as described in the
following theorem.

Theorem 1: If η� is the optimum objective value of problem
(P2), then an optimal classification, (A�,B�), can be deter-
mined as A� = {k|ηlo

k ≤ η�}, and B� = K\A�.
Proof: The proof is given in Appendix A.

C. General Optimal Algorithm Design

The results in Theorem 1 are now employed to develop
an optimal algorithm for solving (P2) by iteratively solving
(PA) and (PB) and updating (A,B) until the optimal (A�,B�)
is obtained. The general optimal algorithm is presented in
Algorithm 1. In this algorithm, we initially calculate ηlo

k for all
users in K as in (8). Then, we employ the bisection search to
find the optimum η� where upper bound ηmax and lower bound
ηmin are iteratively updated until the difference between them
becomes sufficiently small, (PB) is feasible, and the sets A and
B do not change. At convergence, the optimal classification
solution can be obtained by merging the solutions of (PA)
and (PB). The optimal solution of (PA) can be determined
using Proposition 1 and the verification of the feasibility of
(PB) is addressed in the following. The relationship between
the (sub)problems when solving (P1) is illustrated in Fig. 3.

D. Feasibility Verification of (PB)

In order to verify the feasibility of (PB), we consider the
following problem

(PFV,η) min
ΩB

∑
k∈B

f f
k s.t. (C0), (C1), (C3) − (C9).

This problem minimizes the total required computing resource
of the fog server subject to all constraints of (PB) except (C2).
Let G�

B,η be the objective value of problem (PFV,η). Then,
the feasibility of (PB) can be verified by comparing G�

B,η

to the available fog computing resource F f,max. In particular,

7Due to the space constraint, the proof of Proposition 1 is given in the
online technical report [29].
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problem (PB) is feasible if G�
B,η ≤ F f,max. Otherwise, (PB)

is infeasible.
We propose to solve (PFV,η) as follows. First, recall that

there are two possible scenarios for executing the tasks of the
users in set B (referred to as modes): Mode 1 - task execution
at the fog server, i.e., sf

k = 1; Mode 2 - task execution at
the cloud server, i.e., sc

k = 1. In addition, the fog computing
resources are only required by the users in Mode 1 and the
backhaul resources are only used by the users in Mode 2.
Considering these two modes, a three-step solution approach
is proposed to verify the feasibility of sub-problem (PB)
as follows. In Step 1, the minimum required fog computing
resource of every user is determined by assuming that it is in
Mode 1. This step is fulfilled by solving sub-problem (P3)k

for every user k, see Section III-D1. In Step 2, the minimum
required backhaul rate for each user is optimized by assuming
that it is in Mode 2. This step can be accomplished by solving
sub-problem (P4)k for every user k, see Section III-D2.
In Step 3, using the results obtained in the two previous
steps, problem (PFV,η) is equivalently transformed to a mode-
mapping problem, see Section III-D3.

1) Step 1 - Minimum Fog Computing Resources for User
k ∈ B: If the application of user k is executed at the fog
server, the minimum fog computing resource required for this
application, denoted as f f,rq

k , can be optimized based on the
following sub-problem:

(P3)k min
Ω2,k

f f
k s.t. sf

k=1, (C0)k, (C1)k, (C5)k−(C7)k, (C9)k,

where Ω2,k = {ωu
k, fu

k , f f
k, pk, ρk}, (C0)k, (C1)k,

(C5)k − (C7)k, and (C9)k denote the respective constraints of
user k corresponding to (C0), (C1), (C5) − (C7), and (C9).
In sub-problem (P3)k, the WEDC function Ξk consists
of posynomials and other terms involving log(1 +
pkβk,0). We can convert Ξk into a convex function via
logarithmic transformation as follows. When sf

k = 1, all
variables in set Ω2,k must be positive to satisfy constraints
(C0) and (C9); therefore, we can employ the following
variable transformations: ω̃u

k = log(ωu
k), f̃u

k = log(fu
k ), f̃ f

k

= log(f f
k), p̃k = log(pk), and ρ̃k = log(ρk). With these

transformations, the objective function and all constraints of
(P3)k except (C0)k and (C9)k are converted into a linear
form while the total delay and the WEDC in (C9)k and (C0)k

can be rewritten, respectively, as Tk = bin
ke−ω̃u

k−ρ̃k

log
(
1+βk,0ep̃k

) + Qk,1,

and Ξk =
w E

k bin
k

[
ep̃k−ω̃u

k +pk,0e−ω̃u
k

]
log
(
1+βk,0ep̃k

) + w E
k αkQk,2 + w T

k Tk,

where Qk,1 =
(
ck,0+γu

k,0γ
co
k,3

)
e−f̃u

k +γu
k,0γ

co
k,1e
(
−f̃u

k+γco
k,2ω̃u

k

)
+(

ck,1+γu
k,0γ

de
k,3

)
e−f̃ f

k + γu
k,0γ

de
k,1e
(
−f̃ f

k+γde
k,2ω̃u

k

)
and Qk,2 =(

ck,0+γu
k,0γ

co
k,3

)
e2f̃u

k + γu
k,0γ

co
k,1e
(
2f̃u

k+γco
k,2ω̃u

k

)
. The convexity

of (P3)k is formally stated in the following proposition.
Proposition 2: Sub-problem (P3)k is convex with respect to

set Ω̃2,k∪l̃k, where l̃k=ω̃u
k+ρ̃k and Ω̃2,k={ω̃u

k, f̃u
k , f̃ f

k, p̃k, ρ̃k}.
Proof: The proof is given in Appendix B.

Based on Proposition 2, we can apply the interior point
method to find the optimal solution Ω̃�

2,k = {ω̃u�
k , f̃u�

k ,
f̃ f�

k , p̃�
k, ρ̃�

k} of (P3)k [35]. The original optimal solution

Ω�
2,k = {ωu�

k , fu�
k , f f�

k , p�
k, ρ�

k} can then be obtained from
Ω̃�

2,k. If (P3)k is infeasible, we set sf
k = 0. It is noted that f f�

k

is also the value of f f,rq
k .

2) Step 2 - Minimum Allocated Backhaul Resource for User
k ∈ B: If the application of user k is executed at the
cloud server, the minimum backhaul capacity for transferring
its application to the cloud server, denoted as drq

k , can be
determined by solving the following sub-problem:

(P4)k min
Ω2,k∪dk\f f

k

dk

s.t sc
k=1, (C0)k, (C1)k, (C5)k−(C7)k, (C9)k.

Similar to (P3)k, (P4)k can be converted to a convex
problem via logarithmic transformation; thus, we can find the
optimal point drq

k . If (P4)k is infeasible, we set sc
k = 0.

3) Step 3 - Feasibility Verification: With the obtained values
f f,rq

k and drq
k , problem (PFV,η) can be transformed to

(PFV,η) min
Ω3

GB,η(Ω3) =
∑

k∈B(1 − sc
k)f f,rq

k

s.t (C3, 4, 8) :
∑

k∈B sc
kdrq

k ≤ Dmax, sc
k ∈ {0, 1},

where Ω3 = {sc
k|k ∈ B} for a given η. In fact, (PFV,η) is a “0-

1 knapsack” problem [36], which can be solved optimally and
effectively using the CVX solver. If G�

B,η ≤ F f,max, combining
the set of all solutions of the (P3)k’s, (P4)k’s, and (PFV,η)
yields a feasible solution of (PB) for this value of η. Hence,
(PB) is feasible in such scenario. The feasibility verification
of (PB) is summarized in Algorithm 2.

Algorithm 2 Feasibility Verification of (PB)

1: Solve (P3)k to find f f,rq
k , ∀k ∈ B, as in Section III-D1.

2: Solve (P4)k to find drq
k , ∀k ∈ B, as in Section III-D2.

3: if ∃k such that sf
k +sc

k = 0 then Return (PB) is infeasible
4: else Solve (PFV,η) to find G�

B,η , as in Section III-D3.
5: if G�

B,η < F f,max then Return (PB) is feasible, else
Return (PB) is infeasible end if

6: end if

E. Optimal JCORA Algorithm to Solve (P2)

Based on the results presented in the previous sections,
the solution of (P2) can be found by employing Algorithm 1
and the (PB) feasibility verification presented in Algorithm 2.
The optimality of the obtained solution is formally stated in
the following theorem.

Theorem 2: The integration of Algorithm 2 into Algorithm 1
yields the global optimum of MINLP (P2).

Proof: Algorithm 2 verifies the feasibility of (PB) for
any given value of ηB = η. Therefore, if Algorithm 1
employs Algorithm 2, (P2) is solved optimally. Note that
after convergence, the optimal variables are given by the
optimal solution of (P3)k if sf

k = 1 or (P4)k if sc
k = 1

where the values of the sf
k’s and sc

k’s are the outcomes
of (PFV,η).
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F. Complexity Analysis

We analyze the computational complexity of the JCORA
algorithm (Algorithm 2 is integrated into Algorithm 1)
in terms of the required number of arithmetic operations.
In Algorithm 1, the while-loop for the bisection search of
η requires log2(

ηmax−ηmin

ε ) iterations. To verify the feasibility
of (PB) for a given η, the convex problems (P3)k and
(P4)k can be solved by using the interior point method
with complexity O(m1/2

1 (m1 + m2)m2
2), where m1 is the

number of equality constraints, m2 represents the number
of variables [37], and O denotes the big-O notation. It can
be verified that (P3)k and (P4)k have the same complexity.
On the other hand, the knapsack problem (PFV,η) for |B|
users can be solved by Algorithm 2 in pseudo-polynomial
time with complexity O(ν1|B|), where ν1 is determined by
the coefficients in (PFV,η) [36]. Moreover, (P3)k and (P4)k

can be solved independently for all users k ∈ B; therefore,
the complexity of each bisection search step can be expressed
as |B|O((P3)k)+|B|O((P4)k)+O(PFV,η) = O(ν2|B|), where
ν2 = ν1+2m

1/2
1 (m1+m2)m2

2. Consequently, the overall com-
plexity of the JCORA algorithm is O(log2(

ηmax−ηmin

ε )ν2 K),
i.e., |B| ≤ K .

IV. DC AT BOTH MOBILE USERS AND FOG SERVER

We now consider the more general case where the fog server
also performs DC before transmitting the compressed data over
the backhaul link to the cloud server. This design option can
further enhance the performance for systems with a congested
backhaul link. The backhaul compression ratio is defined as
ωf

k = bin
k /bout,f

k where bout,f
k stands for the number of bits

transmitted over the backhaul link. Note that if bout,f
k = bout,u

k ,
then no DC is employed at the fog server, which corresponds
to the design in Section III. Hence, Mode 2 in Section III-D1
is equivalent to the scenario that the task is executed at the
cloud server without DC at the fog server. However, the fog
server can re-compress the data before transmitting it to the
cloud server for processing, which is referred to as Mode 3
in the following. Denote sm

k as the binary variable indicating
whether or not DC is performed at the fog server for user
k (sm

k = 1 for DC, and sm
k = 0, otherwise). Then, we have

sf
k = 1 if user k is in Mode 1; sc

k = 1 if user k is in Mode 2;
sm

k = 1 if user k is in Mode 3. In this general case, constraints
(C3) and (C4) can be rewritten as (Č3): su

k, sf
k, sc

k, sm
k ∈

{0, 1}, ∀k ∈ K and (Č4): su
k + sf

k + sc
k + sm

k = 1, ∀k ∈ K.
Then, the computational load for compression and the

output data corresponding to Mode 3 can be modeled as cco,f
k =

γf
k,0

[
γco,f

k,1 (ωf
k)γco,f

k,2 + γco,f
k,3

]
and bout,f

k = bin
k /ωf

k, respectively,

where γf
k,0, γ

co,f
k,1 , γco,f

k,3 ∈ R+ are positive numbers. Here,
we have additional constraints for the compression ratio at
the fog server as (Č10): ωf

k ∈ [ωf,min
k , ωf,max

k ], ∀k ∈ K.
Then, the total computational load for user k at the fog
server becomes čf

k = sf
k

(
ck,1 + cde,u

k

)
+ sm

k (cco,f
k + cde,u

k ),
and the computing time at the fog server is ťf1,k = čf

k/f f
k.

Moreover, the transmission time incurred by offloading the
data of user k from the fog server to the cloud server can be
rewritten as ťf2,k =

(
sf

kbout,u
k + sm

k bout,f
k

)
/dk. Then, the total

delay for completing the computation task of user k is given
by Ťk = tu1,k + tu2,k + ťf1,k + ťf2,k + (sc

k + sm
k )T c, and the

WEDC becomes Ξ̌k = wT
k Ťk + wE

kξk. Then, constraint (C9)
is rewritten as (Č9): Ťk ≤ T max

k .
With the additional variables sm

k and ωf
k, ∀k ∈ B,

the extended versions of problems (P1) and (P2) can be stated,
respectively, as

(Pext
1 ) min

Ω1∪k{sm
k ,ωf

k}
max

k
Ξ̌k

s.t (C1), (C2), (C5)−(C8),(Č3),(Č4), (Č9),(Č10).
(Pext

2 ) min
Ω1∪k{sm

k ,ωf
k}∪η

η s.t (Č0) : Ξ̌k≤η,

(C1), (C2), (C5)−(C8), (Č3), (Č4), (Č9), (Č10).

The main challenge for solving the extended problem in
comparison to the original one comes from the users in
Mode 3. These users require both fog computing and backhaul
resources. To solve the extended problem, we employ the
general solution approach presented in Section III but modify
the feasibility verification for (PB). In particular, Algorithm 1
is used to determine sets A and B for a given η and we update
η using the bisection search method. The results in Theorem 1
are still applicable for the extended problem. In the following,
we propose several techniques for dealing with Mode 3 and
verify the feasibility of user classification for a given η in Step
4 of Algorithm 1.

For a given η, (Pext
B ) is obtained by adding (Č10) to (PB)

and replacing Ξk and Tk by Ξ̌k and Ťk, respectively. To verify
the feasibility of (Pext

B ), a similar three-step solution approach
as for (PB) is employed. In Steps 1 and 2, f f,rq

k and drq
k which

correspond to the users in Mode 1 and 2 are optimized by
solving (P3)k and (P4)k as in Sections III-D1 and III-D2,
respectively. In Step 3, we first investigate the network
resources required by the users in Mode 3, modify problem
(PFV,η) to adapt it to the extended problem, and solve that
problem to verify the feasibility. Three different methods for
this extended problem will be proposed as follows.

In the first approach, we represent f f,rq
k of user k in

Mode 3 as a function of dk by employing a piece-wise
linear approximation (PLA) method. Based on this approxi-
mation, we transform (PFV,η) into a standard mixed-integer
linear programming (MILP) problem, (PPLA

FV,η), which can be
solved effectively by using the CVX solver. In the other
two approaches, we directly deal with the modified problem
(PTSA

FV,η) without approximating f f,rq
k of user k in Mode 3.

To cope with this challenging MINLP problem, we first reduce
the optimization variable set by exploiting some useful rela-
tions among the variables. Then, two algorithms are proposed
to solve the resulting problem for the remaining variables.
One algorithm is based on a one-dimensional search for the
Lagrangian multiplier, see Section IV-B1, while the other
algorithm iteratively updates the Lagrangian multiplier, see
Section IV-B2. The relationship between the (sub)problems
when solving (Pext

1 ) is illustrated in Fig. 4.

A. Piece-wise Linear Approximation Based Algorithm (PLA)

After determining the minimum computing and back-
haul resources, f f,rq

k and drq
k , required in Modes 1 and 2,
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Fig. 4. Relationship between the (sub)problems when solving (Pext
1 ).

respectively, one can set dk ∈ (0, drq
k ) for the users in Mode 3.

We now study the relationship between f f
k and dk in Mode 3

where user k demands both fog computing resources for re-
compression and backhaul capacity resources. Towards this
end, we determine the required fog computing resources for a
given dk ∈ (0, drq

k ) by solving the following problem:

(Pdk
) min

Ω2,k∪{ωf
k}

f f
k

s.t sm
k =1,(Č0)k,(C1)k,(C5)k−(C7)k,(Č9)k,(Č10)k.

Let F f,rq
k,η (dk) be the optimal solution of this problem,

which can be obtained by employing the logarithmic
transformations described in Section III-D1. However, finding
a closed-form expression for F f,rq

k,η (dk) is not tractable.
Hence, we propose to employ the “Piece-wise Linear
Approximation” (PLA) method to divide the original domain
into multiple small segments such that F f,rq

k,η (dk) can be
approximated by a linear function in each segment. Suppose
that the interval [εd, d

rq
k −εd] is divided into L segments of

equal size, where εd is a very small number compared to
drq

k , e.g, εd = 1. Specifically, the lth segment corresponds
to interval [dk,l, dk,l+1], where dk,l=(drq

k −εd)l/L is a point
such that F f,rq

k,η (dk,l) and the value of the approximated
function at this point are equal. Then, we can approximate
F f,rq

k,η (dk) as F̂ f,rq
k,η

(
Vk, Uk

)
=
∑L−1

l=0 (vk,lAk,l+uk,lBk,l) ,

where Ak,l =
(
F f,rq

k,η (dk,l+1) −F f,rq
k,η (dk,l)

)
/(dk,l+1 − dk,l),

Bk,l = F f,rq
k,η (dk,l) − Ak,ldk,l, Vk={vk,l, l = 0, 1, . . . , L − 1},

Uk={uk,l, l = 0, 1, . . . , L − 1}, and continuous variable vk,l

and binary variable uk,l satisfy the following constraints:

sm
k =

L−1∑
l=0

uk,l ≤ 1, ∀k∈B, (9)

uk,ldk,l ≤ vk,l≤uk,l+1dk,l+1, ∀k∈B, l=0, 1, . . . , L−1. (10)

Then, the allocated backhaul resources due to user k in
Mode 3 are rewritten as sm

k dk=
∑L−1

l=0 vk,l. Therefore, prob-
lem (PFV,η), which is used to determine the minimum total
required fog computing resources for all users, is modified in
this extended case as follows:

(PPLA
FV,η) min

Ω̌3

ĜPLA
B,η

(
Ω̌3

)
=
∑

k∈B

(
sf

kf f,rq
k + F̂ f,rq

k,η (Vk, Uk)
)

s.t. (Č3)PLA : sf
k, sc

k, uk,l ∈ {0, 1}, ∀k, l;

(Č4)PLA : sf
k + sc

k +
∑L−1

l=0
uk,l = 1;

(Č8a)PLA : uk,ldk,l≤vk,l≤uk,l+1dk,l+1, ∀k, l;

(Č8b)PLA :
∑

k∈B

(∑L−1

l=0
vk,l+sc

kd
rq
k

)
≤Dmax,

where Ω̌3 = ∪k∈B
(
sf

k ∪ sc
k ∪ Uk ∪ Vk

)
and constraints

(Č3)PLA, (Č4)PLA, and (Č8a)PLA−(Č8b)PLA are the trans-
formed constraints of original constraints (Č3), (Č4), and
(C8), respectively. This transformed problem is an MILP
problem, which can be solved effectively by using the CVX
solver. The PLA based algorithm for verifying the feasibility of
(Pext

B ) is summarized in Algorithm 3, which can be integrated
into Algorithm 1 to solve (Pext

2 ). It is noted that if the value
of F f,rq

k,η (dk,l) is unbounded for a given dk,l, this infeasible
point is removed when applying the PLA based algorithm.

Algorithm 3 PLA-based Feasibility Verification for (Pext
B )

1: Initialize: L, η
2: Compute f f,rq

k and drq
k for all k ∈ B as in Step 1 and 2 of

Algorithm 2.
3: Define dk,l = (drq

k − εd)l/L, ∀k ∈ B, l = 0 : L.
4: Compute F f,rq

k,η (dk,l). If F f,rq
k,η (dk,l) is unbounded then

Remove point dk,l end if.
5: Compute Ak,l, Bk,l, and then solve (PPLA

FV,η) to get optimal
value ĜPLA�

B,η of (PPLA
FV,η).

6: if ĜPLA�
B,η ≤ F f,max then Return (Pext

B ) is feasible, else
Return (Pext

B ) is infeasible end if

B. Two-stage Solution Approach (TSA)

In this section, two two-stage algorithms are developed
by exploiting the fact that the decompression computational
load (and therefore, the associated energy consumption) is
almost independent from the compression ratio as can be seen
in Fig. 2. This implies that for a given η, the optimal values
fu

k , ωu
k, pk, and ρk for mobile user k are similar for both

sf
k = 1 and sc

k = 1. Hence, in the first stage, after solving
(P3)k and (P4)k, ∀k ∈ B, introduced in Section III, we can set
these variables to the corresponding optimal solution of (P3)k,
denoted as fu�

k,1, ωu�
k,1, p�

k,1, and ρ�
k,1. In the second stage,

we find the remaining variables pertaining to the fog server
Ω4 = ∪k∈B{sf

k, sc
k, sm

k , dk, f f
k, ωf

k} by solving the following
problem8:

(PTSA
FV,η) min

Ω4
ĜTSA
B,η (Ω4) =

∑
k∈B

(
sm

k f f
k + sf

kf f,rq
k

)

s.t. (Č0&9) : sm
k

(bout,f
k

dk
+

(cco,f
k +cde,u

k )
f f

k

)
≤νk,0,

(Č8):
∑
k∈B

(sm
k dk+sc

kdrq
k )≤Dmax,

(Č3), (Č4), (Č10),

where νk,0 = min{(η − Ξk,1)/wT
k , T max

k − Tk,1} +
(ck,1+cde

k )/f f,rq
k −T c, and Ξk,1 and Tk,1 are the optimal values

of Ξk and Tk in (P3)k, respectively; (Č0&9) is determined by
the time delay constraint as Ťk ≤ min(T max

k , (η−wE
kξk)/wT

k )
which is equivalent to constraints (Č0) and (Č9). This con-
straint captures the fact that an application should be offloaded

8We note that by reducing the number of optimization variables in (PTSA
FV,η),

the complexity of the resulting algorithms for feasibility verification of (Pext
B )

is lower than that of the PLA based algorithm.
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to the cloud server if the resulting WEDC is smaller than that
achieved when the application is executed at the fog server
and the delay constraint (Č9) is not violated. Because (PTSA

FV,η)
is a difficult MINLP problem, we tackle it by reducing the
set of variables based on the results in the following three
propositions. In particular, Propositions 3–5 are introduced
to respectively rewrite variables f f

k, ωf
k, and dk, for all k

as functions of the remaining variables. Subsequently, two
algorithms are proposed to solve for the remaining variables,
one based on a one-dimensional search of the Lagrangian
multiplier, and the other one based on an iterative update of
the Lagrangian multiplier.

Proposition 3: For any value of dk’s satisfying
(Č8), the optimal solution of f f

k in (PTSA
FV,η) can be

determined as f f�
k =sm

k
(cco,f

k +cde,u
k )

νk,0−bout,f
k /dk

=sm
k H0

(
ωf

k, dk

)
, where

H0

(
ωf

k, dk

)
=

ωf
kdk

[
γ̃co,f

k,1(ωf
k)

γ
co,f
k,2+γ̃co,f

k,3

]
νk,0ωf

kdk−bin
k

, γ̃co,f
k,1 = γf

k,0γ
co,f
k,1 , and

γ̃co,f
k,3 = γf

k,0γ
co,f
k,3 +cde,u

k .

Proof: When sm
k =1, the left-hand side of (Č1&9) is

inversely proportional to f f
k; thus, f f

k is minimized if users
spend the maximum possible resources.

Proposition 4: When sm
k = 1 and dk ≥ d̄k,1, the optimal

value of ωf
k, denoted as ωf�

k , is given as follows:

ωf�
k

=

⎧⎨
⎩

ωmax,f
k , if γco,f

k,2 ≤0 ∪ {γco,f
k,2 ≥0, d̄k,1<dk≤d̄k,2},

inv
(H1

(
dk

))
, ifγco,f

k,2 ≥ 0, d̄k,2<dk≤d̄k,3,

ωf,min
k , ifγco,f

k,2 ≥ 0, dk > d̄k,3,

(11)

where d̄k,1 = bin
k /(νk,0ω

f
k), d̄k,2 = H1

(
ωmax,f

k

)
,

d̄k,3 = H1

(
ωf,min

k

)
, and inv

(H1

(
dk

))
is the value of

ωf
k for which H1

(
ωf

k

)
is equal to dk, and H1

(
ωf

k

)
�

γ̃co,f
k,1bin

k(γco,f
k,2+1)

(
ωf

k

)γ
co,f
k,2+γ̃co,f

k,3bin
k

γ̃co,f
k,1νk,0γco,f

k,2

(
ωf

k

)γ
co,f
k,2+1

.

Proof: The proof is given in Appendix C.
Based on the results in Propositions 3 and 4, (PTSA

FV,η) is
equivalent to the following problem:

(PTSAeq
FV,η ) min

Ω̃4

∑
k∈B

[
sm

k H0

(
ωf�

k , dk

)
+ sf

kf f,rq
k

]
s.t (Č3), (Č4), (Č8),

where Ω̃4 = ∪k∈B{sc
k, sf

k, sm
k , dk}.

Proposition 5: The optimal value of dk for (PTSAeq
FV,η ),

denoted as d�
k, is given as follows:

d�
k =

⎧⎪⎪⎨
⎪⎪⎩

0, if sf�
k = 1,

drq
k , if sc�

k = 1,{
dk,λ

∣∣∣(∂H0(ωf�
k ,dk)

∂dk

∣∣
dk=dk,λ

)
+ λ = 0

}
, otherwise,

(12)

where λ is the Lagrange multiplier of constraint (Č8).
Proof: The Lagrangian of problem (PTSAeq

FV,η ) can be

expressed as L(Ω̃4, λ) =
∑

k∈B
[
sm

k H0

(
ωf�

k , dk

)
+ sf

kf f,rq
k

]
+

λ
(∑

k∈B
[
sm

k dk +(1−sf
k−sm

k )drq
k

]−Dmax
)
. When sm�

k = 1,

the necessary conditions for the optimal solution f f�
k , d�

k can
be obtained by setting the derivatives of L with respect to
these variables equal to zero as follows:

∂L
∂dk

= sm
k

(∂H0

(
ωf�

k , dk

)
∂dk

+ λ
)

= 0, (13)

λ

(∑
k∈B

[
sm

k dk+(1−sf
k−sm

k )drq
k

]−Dmax

)
= 0. (14)

Based on (13), it can be verified that d�
k can be expressed

as in (12).
Lemma 2: The gradient ∂H0(ωf�

k , dk)/∂dk is a monotoni-
cally increasing function of dk.

Proof: The proof is given in Appendix D .
As can be verified, if ∂H0(ωf�

k , dk)/∂dk

∣∣
dk=d̄k,1

+ λ > 0,

then d�
k = dk,λ = 0, sf�

k = 1 will be the optimal solution.
When sm�

k = 1, λ must be positive because ∂H0(ωf�
k , dk)/∂dk

is negative for all dk. With the results in Lemma 2, we can
conclude that for a given λ, there exists at most one value
of dk satisfying ∂H0(ωf�

k , dk)/∂dk + λ = 0. This means if
the optimal λ is known, problem (PTSAeq

FV,η ) can be solved
effectively. Therefore, as described in the following, to solve
(PTSAeq

FV,η ), we propose two algorithms: one is based on a
one-dimensional search for λ, and the other one is based on
iterative updating λ.

1) One-Dimensional λ-Search Based Two-Stage Algo-
rithm (OSTS Alg.): For a given λ, suppose that dk,λ satisfies
∂H0(ωf�

k , dk)/∂dk

∣∣
dk=dk,λ

+ λ = 0. By defining fk,λ =
H0

(
ωf�

k , dk

)∣∣
dk=dk,λ

, μk,λ = sm
k , μk,λ = 1 − sc

k, and
μk,λ = sc

k(1 − xk), we can find the optimal solution of
∪k∈B{sc

k, xk, dk} by solving the following problem:

(POSTS
FV,η )λG̃OSTS

B,η (λ) = min∪k∈Bsk,λ

∑
k∈B

[
sm

k,λfk,λ + sf
k,λf f,rq

k

]
s.t. (Č8)λ:

∑
k∈B

sm
k,λdk,λ+(1 − sf

k,λ

−sm
k,λ)drq

k ≤Dmax,

sm
k,λ, sf

k,λ ∈ {0, 1},
where sk,λ={sf

k,λ, sm
k,λ}. The above transformed problem is

an integer linear programming (ILP) problem, which can be
solved effectively by CVX. Let G̃OSTS

B,η (λ) be the optimum
of (POSTS

FV,η )λ, then we can find the optimum of (PTSAeq
FV,η )

as G̃OSTS�
B,η =minλ G̃OSTS

B,η (λ). Moreover, it can be shown that
when we increase λ, all dk,λ will decrease. Therefore, the max-
imum value of λ is λmax satisfying H0(ωf

k, dk,λmax) ≥ f f,rq
k ,

∀k ∈ B and
∑

k∈B dk,λmax ≤ Dmax. Note that we can stop the
search process when there exists a λ such that G̃OSTS

B,η (λ) ≤
F f,max. When the bisection search for η converges, we can
find the optimum λ� = argminλ G̃OSTS

B,η (λ), and the optimal
variables sm�

k = sm
k,λ� , sf�

k = sf
k,λ� , sc�

k = 1 − sm�
k − sf�

k ,
f f�

k = sm
k,λ�fk,λ� + sf

k,λ�f f,rq
k , and d�

k = sm
k,λ�dk,λ� + (1 −

sf
k,λ� − sm

k,λ�)drq
k , ∀k ∈ B. The OSTS algorithm for feasibility

verification of (Pext
B ) is summarized in Algorithm 4.

2) Iterative λ-Update Based Two-Stage Algorithm (IUTS
Alg.): This method can solve (PTSAeq

FV,η ) with very low
complexity via Lagrangian dual updates. Specifically, the
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Algorithm 4 One-dimensional Search Based Feasibility
Verification for (Pext

B )
1: initialize: Δλ, λ = 0, Assign (Pext

B ) is infeasible.
2: Define f f,rq

k and drq
k for all k as in Step 2 and Step 3 of

Algorithm 2.
3: repeat
4: Assign λ = λ+Δλ. Compute dk,λ as in (12) and solve

(POSTS
FV,η )λ to find G̃OSTS

B,η (λ).
5: if G̃OSTS

B,η (λ) ≤ F f,max then Return (Pext
B ) is feasible;

break
6: end if
7: until λ = λmax

dual function of (PTSAeq
FV,η ) can be defined as Go(λ) =

minΩ̃4
L(Ω̃4, λ), and the dual problem can be stated as

max
λ

Go(λ) s.t. λ ≥ 0. (15)

Since the dual problem is always convex, Go(λ) can
be maximized by using the standard sub-gradient method
where the dual variable λ is iteratively updated as follows:

λn=
[
λn−1+δn

( ∑
k∈B

(
sm

k,λn−1
dk,λn−1+sc

k,λn−1
drq

k

)
−Dmax

)]+
,

where n denotes the iteration index, δn represents the step
size, and [a]+ is defined as max(0, a). The sub-gradient
method is guaranteed to converge to the optimal value of λ
for an initial primal point Ω4 if the step size δn is chosen
appropriately, e.g., δn → 0 when n → ∞, which is met by
setting δn = 1/

√
n.

For a given λn, we can determine the primal variable
dk,λn = inv(H2(λn)). For given λn and dk,λn , the primal
problem becomes a linear program in sk,λn , ∀k ∈ B, which
can be solved effectively by using standard linear optimization
techniques. Moreover, the vertices in this problem are the
points where the sm

k,λn
’s, sf

k,λn
’s, and sc

k,λn
’s are either 0

or 1. Thus, solving the relaxed problem will also return
binary values 0 or 1. However, once the sm

k,λn
’s, sf

k,λn
’s,

and sc
k,λn

’s take values of 0 or 1, the decision on the
application execution location (fog or cloud) may be trapped
at a local optimal solution such that the required fog com-
puting resources cannot be updated to improve the solution.
To overcome this critical issue, the gradient projection method
can be adopted to slowly update variables sm

k,λn
’s, sf

k,λn
’s,

and sc
k,λn

’s as s(n+1)
k = �Φk

(
s(n)
k − δ̌∇s(n)

k

)
, where s(n)

k =

[sm
k,λn

, sf
k,λn

, sc
k,λn

], δ̌ is the step size, ∇s(n)
k = [H0(ωf�

k ,
dk,λn) + λndk,λn , λnf f,rq

k , λndrq
k ], and �Φk

(.) is the projec-

tion onto the set Φk =
{
sk|sk≥0, sf

k,λn
+sc

k,λn
+sm

k,λn
≤1
}

.
Finally, it can be verified that this iterative mechanism always
converges [38].

C. Complexity Analysis

The overall complexity of the PLA algorithm for
solving the extended problem (Pext

2 ) is log2(
ηmax−ηmin

ε )(
KO((P3)k) + LKO((P4)k) + O(PPLA

FV,η)
)

, i.e., |B| ≤ K .

Moreover, for given B, (PPLA
FV,η) is an NP-hard problem, solving

it via an optimal exhaustive search entails a complexity of

O(2(L+1)|B|
), which is upper bounded by O(2(L+1)K

).
The proposed two-stage IUTS and OSTS algorithms for

solving the extended problem have an overall complexity
of log2(

ηmax−ηmin

ε )
(
KO((P3)k) + KO((P4)k) + O(PTSA

FV,η)
)

,

i.e., |B| ≤ K . In Section IV-B1, for given B, prob-
lem (POSTS

FV,η )λ can be transformed to a standard knapsack
problem as in [36], while the optimal dk and ωk can
be computed directly for a given value of λ. Therefore,
the complexity of Algorithm 4 to solve (PTSA

FV,η) by the
OSTS method is O(λmax

Δλ
ν3|2B|), where ν3 is determined

by the coefficients in (POSTS
FV,η )λ [36]. For the IUTS algo-

rithm presented in Section IV-B2, we can directly update
λn, dk,λn , μk,i,λn , ∀i, k, n; which means that (PTSA

FV,η) has
a complexity of O(N |B|), where N is the number of iter-
ations. We note that O((P3)k) and O((P4)k) are given
in Section III-F.

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a hierarchical fog-cloud system consisting
of K = 10 users (except for Fig. 9) where the users are
randomly distributed in the cell coverage area with a radius
of 800 m and the BS is located at the cell center. The
simulation parameters provided in Table I are adopted, unless
specified otherwise. Particularly, the path-loss is calculated
as βk(dB) = 128.1 + 37.6 log10(distk), where distk is the
geographical distance between user k and the BS (in km) [39].
We further set the beamforming gain as M0 = 5, the maximum
transmission bandwidth as ρmax

k = 1 MHz, and the noise power
density as σbs = 1.381 × 10−23 × 290 × 100.9 W/Hz [40].
All users are assumed to have the same maximum clock speed
of 2.4 GHz, a maximum transmit power of Pmax

k = 0.22 W,
and the circuit power consumption per Hz is set to pk,0 =
22 nW/Hz. We assume that the number of transmission bits
incurred to support computation offloading bin

k is the same for
all users.

Moreover, the computation demands of the 10 users
{c1, c2, . . . , c9, c10} are set randomly in the range 1.8 − 2.4
Gcycles while the maximum delay time is to T max

k = 1 second,
the non-offloadable load is ck,0 = 0.1 ck, and the offloadable
load is ck,1 = 0.9 ck for all users. We also set the energy
coefficient as αk = 0.1 × 10−27 and the computing time at
the cloud server as T c = T max

k /5. For the DC algorithm, we set
the parameters according to the top-left sub-figure in Fig. 2
as follows: γco

k,1 = 0.03 × 2.632.28, γco
k,2 = 32.28, γco

k,3 = 0.3,
γde

k,1 = 0.115, γde
k,2 = −0.9179, γde

k,3 = 0.046, ∀k, ωu,min
k =

2.3, and ωu,max
k = 2.9. The energy and delay weights are

chosen so that wE
k + wT

k = 1, ∀k. Simulation results are
obtained by averaging over 100 realizations of the random
locations of the users. Finally, for all figures, we set the raw
data size as bin

k = 4 Mbits (except for Figs. 5, 7 and 9),
wE

k = 2wT
k , ∀k (except for Fig. 8), the maximum fog comput-

ing resource as F f,max = 15 GHz, the maximum backhaul
capacity as Dmax = 20 Mbps (except for Figs. 7 and 8),
and κ = 50 (except for Figs. 5 and 6), where κ captures
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TABLE I

SIMULATION PARAMETER SETTINGS

Fig. 5. Min-max WEDC vs. bin
k .

the relationship between γu
k,0 in (1) and the raw data size as

γu
k,0 = κbin

k [41].
In practice, a fog server can support more powerful DC

algorithms compared to the users. This implies that the com-
pression ratio for the fog server is much larger than that for
the users. Therefore, when the fog server decompresses and
re-compresses data, we set the parameters according to the top-
middle sub-figure in Fig. 2 as follows: γco,f

k,1 = 0.076, γco,f
k,2 =

0.7116, γco,f
k,3 = 0.5794, ωf,min

k = 3.4, and ωf,max
k = 11.2.

The step size is set as δ̌ = 0.1. For the proposed algorithms
presented in Section III and Section IV, numerical results are
shown in Figs. 5–9 and Figs. 10–12, respectively.

B. Results for DC at Only Mobile Users

In Fig. 5, we show the significant benefits of DC for
computation offloading where the min-max WEDC (called
WEDC for brevity) vs. bin

k is plotted for six different schemes:
the ‘Local-execution’ scheme in which all users’ applications
are executed locally; the ‘Alg. in [9] (w/o Comp)’ scheme
in which the benchmark algorithm in [9] is applied with

Fig. 6. Min-max WEDC vs. compression ratio.

Fig. 7. User, fog, and cloud computational load processing.

Fig. 8. Min-max WEDC gain vs. delay weight.

ωu
k = 1, ∀k, and no DC9; the ‘JCORA Alg. w/o Comp’

in which the proposed JCORA algorithm is applied with
ωu

k = 1, ∀k, and no DC (the other variables are optimized
as in the JCORA algorithm); and three other instances of
the proposed JCORA algorithm with DC and three different
values of κ = 50, 100, 200 (κ = γu

k,0/bin
k ). To guarantee a fair

comparison between the ‘Alg. in [9] (w/o Comp)’ scheme and

9As discussed in Section I, this paper provides the first study of joint
DC and computation offloading in hierarchical fog-cloud systems. Therefore,
the recent work [9] on computation offloading in hierarchical fog-cloud
systems, which does not exploit DC, is selected as benchmark for performance
comparison.
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Fig. 9. Min-max WEDC vs. number of users.

Fig. 10. Accuracy of proposed PLA and OSTS algs.

Fig. 11. Min-max WEDC in general design scenario.

our proposed schemes, we also apply MIMO and optimize the
offloading decision and the allocation of the fog computing
resources, transmit power, bandwidth, and local CPU clock
speed for the ‘Alg. in [9] (w/o Comp)’ scheme. In addition, for
the remaining variable dk, we allocate the backhaul capacity
equally to the users that offload their tasks to the cloud server.

As can be observed from Fig. 5, computation offloading
can greatly improve the WEDC when there are sufficient
radio and computing resources to support the offloading
(e.g., the incurred amount of data is not too large). Specif-
ically, computation offloading even without DC can result
in a significant reduction of the WEDC compared to local

Fig. 12. Min-max WEDC vs. γf
k,0/γu

k,0.

execution, especially when the incurred amount of data bin
k is

small such that the constrained radio resources do not limit
performance. Furthermore, even without exploiting DC, our
proposed algorithm (JCORA Alg. w/o Comp) results in a
much better performance than the algorithm proposed in [9].
This is because our proposed design jointly optimizes the
offloading decisions and the computing and radio resource
allocation, while in [9], the offloading decisions are found
nearly independent of the computing and radio resource
allocation. In particular, the semidefinite relaxation technique
employed in [9] may not always guarantee the rank-1 con-
dition for the optimized matrix. Joint optimization of DC,
computation offloading, and resource allocation can lead to a
significant further reduction of the WEDC for a larger range of
bin
k (e.g., when bin

k = 2.4 Mbps, the min-max WEDC is reduced
by up to 65%). However, the energy and time consumed for
(de)compression also affect the achievable min-max WEDC,
and their impact tends to become stronger for larger γu

k,0 and
when the available radio resource is more limited.

In Fig. 6, we investigate the impact of the compres-
sion ratio on the min-max WEDC for the JCOCA scheme
with and without DC for different values of ωu

k = ω, ∀k
(i.e., the compression ratio ωu

k is fixed while the remaining
variables are optimized as in the JCOCA scheme). As can
be seen, there is an optimal ω that achieves the minimum
WEDC. Moreover, the optimal value of ω tends to decrease
for increasing computational load because the optimal com-
pression ratio has to efficiently balance the demand on the
radio and computing resources. In fact, for the right choice of
ω, the “JCORA Alg. w Comp” scheme greatly outperforms the
“JCORA Alg. w/o Comp” scheme. Moreover, this figure shows
that for the optimal ω, 29% reduction in the min-max WEDC
can be achieved compared to the worst choice of ω.

Fig. 7 shows the computational loads processed locally as
well as in the fog and cloud servers when bin

k = 4.8 Mbits
for four different scenarios: 1) F f,max = 15 GHz, Dmax =
20 Mbps; 2) F f,max = 20 GHz, Dmax = 20 Mbps; 3) F f,max =
15 GHz, Dmax = 30 Mbps; and 4) F f,max = 20 GHz, Dmax =
30 Mbps. The results shown in Fig. 7 suggest that more of the
users’ computational load should be offloaded and executed at
the fog and cloud servers if sufficient resources to support
the offloading process are available. Particularly, nearly all
users offload their computation tasks in Scenario 4, while in
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Scenario 1, about half of the users offload their computation
demand.

In Fig. 8, we show the min-max WEDC gain due to DC as
a function of the delay weight wT

k . The min-max WEDC gain
is computed as ηNoComp�−ηComp�

ηComp� × 100 (%) where ηComp� and
ηNoComp� denote the optimal min-max WEDCs with and with-
out DC under the JCORA framework. When energy saving is
the only concern for the mobile devices (wT

k = 0, wE
k = 1),

this figure confirms that JCORA with DC can save more than
170% of energy compared with JCORA without DC even for
the scenario with F f,max = 15 GHz and Dmax = 20 Mbps.
The min-max WEDC gain decreases when we focus more
on latency (i.e., for higher delay weight wT

k ). Moreover, for
wT

k = 1, DC results in a 15% reduction of the execution delay
for F f,max = 15 GHz, Dmax = 20 Mbps, and about 25%
delay reduction for F f,max = 20 GHz, Dmax = 30 Mbps.
In Fig. 9, we show the min-max WEDC vs. the number of
users in the system for bin

k = 2.4 Mbps, ∀k. When there
are more users that may offload their computational loads to
the fog and cloud servers, the available resources that can be
allocated to each user become smaller; therefore, the min-max
WEDC increases. However, the proposed JCORA scheme still
achieves the optimal performance in the multi-user hierarchical
fog-cloud system.

C. Results for DC at Both Mobile Users and Fog Server

To evaluate the system performance when DC is performed
at both the mobile users and the fog server, we consider the
following parameter setting: γf

k,0 = γu
k,0 (except for Fig. 12),

F f,max = 15 GHz, and Dmax = 20 Mbps. In Fig. 10,
we show the required computing resources for the proposed
PLA and OSTS algorithms when solving the extended prob-
lem. In Fig. 10-(a), ‘n-pt PLA’ corresponds to the n-point
PLA method. In the PLA method, when the number of points
used to approximate the actual function is sufficiently large,
the difference between the actual and approximated functions
becomes negligible. As shown in Fig 10-(a), there is only a
small difference in the required fog computing resources when
the number of points increases from 5 to 9. In addition, these
required resources are nearly identical for both the 9-point and
17-point curves. Therefore, we use ‘9-pt PLA’ as a benchmark
method to evaluate the performance of the OSTS and IUTS
algorithms. The middle and right sub-figures illustrate the
accuracy of the OSTS algorithm in solving problem (PTSA

FV,η)
vs. the step size Δλ. Specifically, these figures show that the
value of GOSTS�

B,η becomes stable when Δλ is about 5× 10−3.
Moreover, the value of GOSTS�

B,η achieved with the OSTS
algorithm at Δλ = 5 × 10−3 is almost the same as the
value of ĜPLA�

B,η achieved with ‘17-pt PLA’, which means
that the approximated problem (PTSA

FV,η) can be used to find
a close-to-optimal solution of the extended problem. Besides,
the difference in GOSTS�

B,η for Δλ = 0.1 and Δλ = 0.001 is
less than 2%, which means that a large step size (Δλ = 0.1)
can be used to make the OSTS algorithm converge quickly
while still guaranteeing good system performance.

The benefits of data re-compression at the fog are shown
in Fig. 11 where we plot the min-max WEDC vs. bin

k for

four different schemes: the ‘JCORA Alg. w Comp’ scheme in
which data are compressed only at the users while the three
remaining schemes correspond to the proposed algorithms for
the extended case. In particular, ‘9-pt PLA Alg. w Fog Comp’,
‘OSTS Alg. w Fog Comp’, and ‘IUTS Alg. w Fog Comp’
correspond to the 9-point PLA, OSTS, and IUTS algorithms,
respectively, which perform compression at both the users and
the fog server. For bin

k = 4 Mbits, an additional min-max
WEDC reduction of 35% can be achieved by performing DC at
both the users and the fog server. Moreover, the required radio
resources decrease with decreasing bin

k ; therefore, the gain is
reduced due to the decreasing demand for data transmission.
When bin

k increases, the main bottleneck for computation
offloading are the limited radio resources available to support
data transmissions between the users and the fog server;
therefore, the gain due to data re-compression at the fog server
becomes less significant. This figure also confirms that the
‘9-pt PLA’, ‘OSTS’, and ‘IUTS’ schemes achieve almost the
same min-max WEDC.

In Fig. 12, we plot the min-max WEDC vs. the ratio
between the maximum computational loads (in CPU cycles)
required to compress data at the fog server (γf

k,0) and the user
(γu

k,0) for different values of F f,max and bin
k . The ‘WoExt’ and

‘WExt’ correspond to the JCORA and OSTS algorithms pre-
sented in Sections III and IV, respectively. This figure shows
that DC at the fog server can bring additional performance
benefits, especially in scenarios with limited fog computing
resources (i.e., F f,max = 15 GHz). As the compression ratio
adopted at the fog server could be much larger than that at
the users, a better performance can be obtained by applying
DC at both the users and the fog server when γf

k,0 is not
much larger than γu

k,0. Otherwise, if the cost due to data
re-compression becomes larger, the benefits of adopting
Mode 3 are less significant (i.e., for γf

k,0 = 1.7γu
k,0).

VI. CONCLUSION

In this paper, we have proposed novel and efficient algo-
rithms for joint DC and computation offloading in hierarchi-
cal fog-cloud systems which minimize the weighted energy
and delay cost while maintaining user fairness. Specifically,
we have considered the cases where DC is leveraged at
only the mobile users and at both the mobile users and the
fog server, respectively. Numerical results have confirmed
the significant performance gains of the proposed algorithms
compared to conventional schemes not using DC. Particularly,
the following key observations can be drawn from our numeri-
cal studies: 1) Joint DC and computation offloading can result
in min-max WEDC reductions of up to 65% compared to
optimal computation offloading without DC; 2) the proposed
JCORA scheme can efficiently distribute the computational
load among the mobile users, the fog server, and the cloud
server and exploits the available system resources in an opti-
mal manner; 3) when energy saving is the only concern for the
mobile users, the JCORA scheme can achieve an energy saving
gain of up to a few hundred percent compared to optimal
computation offloading without DC; and 4) an additional min-
max WEDC reduction of up to 35% can be achieved by further
employing DC at the fog server. In future work, we plan to
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extend our designs to multi-task offloading and systems with
multiple fog servers.

APPENDIX A
PROOF OF THEOREM 1

Assume that (A′,B′) is an optimal classification corre-
sponding to the optimum value η�. Due to Statement 2 in
Lemma 1 and Proposition 1, we have the following results:

max(ηA′ , ηB′) = η�, ηA′ = max
k∈A′

ηlo
k . (16)

If there is no user k in B whose ηlo
k is less than or equal to

η�, we can conclude that (A′,B′) ≡ (A�,B�). Then, (A�,B�)
must be an optimal classification.

Conversely, if there exists a user k in B such that ηlo
k ≤ η�,

we will prove that the user classification determined in
Theorem 1 is also an optimal classification. Let C = {k ∈
B′|ηlo

k ≤ η�}. Then, it is easy to see that A� = A′ ∪ C
and B� = B′/C. According to the definition of C, (16), and
the result in Proposition 1, we have ηA� ≤ η�. In addition,
since B� ⊂ B′, because of Statement 3 in Lemma 1, we can
conclude that ηB� ≤ ηB′ ≤ η�. Using these results, we can
conclude that (A�,B�) is an optimal classification.

APPENDIX B
PROOF OF PROPOSITION 2

Functions Qk,1 and Qk,2 are sums of exponential terms with
positive coefficients; therefore, they are convex with respect
to the variables in set Ω̃2,k as proven in [35]. On the other
hand, the first term of the WEDC and the total delay can be

represented via function H(p̃k, yk) = ak,0eak,1 p̃k+ak,2yk

log
(
1+βk,0ep̃k

) , where

yk ∈ {ω̃u
k, ρ̃k, l̃k}, ak,0 > 0, ak,1 = {0, 1}, and βk,0ep̃k > 0

due to the required positive data rate when users decide to
offload their computational load.

Now, we will show that H(p̃k, yk) is a convex function of
p̃k and yk. Firstly, H(p̃k, yk) is convex with respect to yk.
Now, we need to prove that ∂2H(p̃k, yk)/∂p̃2

k ≥ 0 and the
determinant |H(p̃k, yk)| > 0, where H(p̃k, y) is the Hessian
matrix of H(p̃k, yk).

Because we have uk = βk,0ep̃k > 0 and the fact
that log(1 + uk) < uk, ∀uk > 0, it can be verified that

|H(p̃k, y)| = ak,0a2
k,2βk,0[uk− log(1+uk)]e(2ak,1+1)p̃k+2 ak,2y

(1+uk)2 log4(1+uk)
>0.

In addition, we have

∂2H(p̃k, yk)
∂p̃2

k

=

⎧⎪⎪⎨
⎪⎪⎩

uk[2uk − log(1 + uk)]
(1 + uk)2 log3(1 + uk)

, if ak,1 = 0,

ak,0eak,2yep̃kHa(uk)
(1 + uk)2 log3(1 + uk)

, if ak,1 = 1,
(17)

where Ha(uk)=(1 + uk)2 log2(1 + uk) + 2u2
k −

(3uk+2u2
k) log(1 + uk). From (17), it can be verified

that ∂2H(p̃k, yk)/∂p̃2
k > 0, ∀uk > 0 when ak,1 = 0.

For the case with ak,1 = 1, since Ha(uk) is a quadratic
function of log(1 + uk), the discriminant of Ha(uk)
is u2

k

[
2 − (

1 + 2uk

)2]
, which leads to Ha(uk) =

(1+uk)2
∏

j={−1,1}
(
log(1+uk)−uk,j

)
if uk ≤

√
2−1
2 ,

where uk,j = uk(3+2uk)+juk

√
2−(1+2uk)2

2(1+uk)2 , j = {−1, 1}.

Otherwise, Ha(uk) will be positive. Using again log(1 + uk)
< uk, ∀uk > 0, we have uk,{1} − log(1 + uk) ≥ uk,{−1} −
log(1 + uk) ≥ uk,{−1} − uk > 0, ∀uk > 0. This implies
that Ha(uk) > 0, ∀uk > 0, and we can conclude that
∂2H(p̃k, yk)/∂p̃2

k > 0 as shown in (17). As H(p̃k, yk) is a
convex function, Ξk and Tk are also convex. Furthermore,
(C6)k can be easily transformed to a linear constraint as
ρ̃k + p̃k ≤ log(Pmax

k ), while (C1)k, (C5)k, and (C7)k can be
converted to box constraints for f̃u

k , ω̃u
k, and ρ̃k, respectively.

Therefore, (P3)k is a convex optimization problem with
respect to Ω̃2,k ∪ l̃k.

APPENDIX C
PROOF OF PROPOSITION 4

We have the derivative ∂H0

(
ωf

k, dk

)
/∂ωf

k = H3(ωf
k, dk)/

(νk,0ω
f
kdk−bin

k )2, where H3(ωf
k, dk) = dk

[− γ̃co,f
k,1 bin

k (γco,f
k,2 +1)(

ωf
k

)γco,f
k,2 −γ̃co,f

k,3 bin
k + γ̃co,f

k,1 νk,0γ
co,f
k,2 dk

(
ωf

k

)γco,f
k,2+1]

. As H0

(
ωf

k,

dk

)
is positive when sm

k = 1, it implies that νk,0ω
f
k

dk > bin
k . Therefore, we can infer that H3(ωf , dk)≤ −

γ̃co,f
k,1

(
ωf
)γco,f

k,2bin
k dk − γ̃co,f

k,3 bin
k dk<0, ∀ωf , dk if γco,f

k,2 ≤ 0. Hence,

H0

(
ωf

k, dk

)
achieves its minimal value at ωf�

k = ωmax,f
k

when γco,f
k,2 ≤ 0. When γco,f

k,2 > 0, it can be verified
that H3

(
ωf�

k , dk

)
= 0 if and only if dk = H1

(
ωf�

k

)
.

On the other hand, the derivative of H1

(
ωf

k

)
is

∂H1

(
ωf

k

)
∂ωf

k

=

− (γco,f
k,2+1)

γco,f
k,2

bin
k(γ̃co,f

k,1

(
ωf

k

)γ
co,f
k,2+γ̃co,f

k,3))

νk,0

(
ωf

k

)γ
co,f
k,2+2

< 0. So, H1

(
ωf

k

)
is a

monotonically decreasing function with respect to ωf
k. There-

fore, H0

(
ωf

k, dk

)
is minimized if ωf

k = ωf�
k satisfies (11).

APPENDIX D
PROOF OF LEMMA 2

First, it can be verified that
∂H0

(
ωf

k,dk

)
∂dk

=

− bin
kωf

k

[
γ̃co,f

k,1

(
ωf

k

)γ
co,f
k,2+γ̃co,f

k,3

](
νk,0

(
ωf

k

)
dk−bin

k

)2 =H2

(
ωf

k, dk

)
. As ∂H1

(
ωf

k

)
/∂ωf

k <

0 for all ωf
k, ωf�

k will not increase when dk > d̄k,1

increases. When γco,f
k,2 ≤ 0, ωf�

k = ωmax,f
k as proved

in Proposition 4. Therefore, H2

(
ωmax,f

k , dk

)
increases

with respect to dk. When γco,f
k,2 > 0, we will show that

H2

(
ωf�

k,1, dk

)∣∣
dk=dk,1

< H2

(
ωf�

k,2, dk

)∣∣
dk=dk,2

, where d̄k,1 <

dk,1 < dk,2 and ωf�
k,i denotes the optimal value of ωf

k when
dk is equal to dk,i, for i = 1, 2.

Indeed, when ωf
k is fixed, H2

(
ωf

k, dk

)
is an increasing

function of dk. The second derivative of H0

(
ωf

k, dk

)
when substituting dk=H1

(
ωf

k

)
is given as

∂H2

(
ωf

k,dk

)
∂ωf

k

=

− H4

(
ωf

k

)
(
γ̃co,f

k,1

(
ωf

k

)γ
co,f
k,2+γ̃co,f

k,3

)2 , where H4

(
ωf

k

)
= (γ̃co,f

k,1 )2
(
γco,f

k,2

)2
(
ωf

k

)2γco,f
k,2
(
γ̃co,f

k,1

(
γco,f

k,2 +1
)(

ωf
k

)γco,f
k,2 + γ̃co,f

k,3

(
2γco,f

k,2 +1
))

> 0,

for all ωf
k when γco,f

k,2 > 0. Thus, it can be concluded
that H2

(
ωf

k, dk

)
is a decreasing function of ωf

k. Further-
more, the optimal solution ωf�

k monotonically decreases as dk

increases as shown in (11); hence, ωf�
k,1 ≥ ωf�

k,2. Therefore, we
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have H2

(
ωf�

k,1, dk

)∣∣
dk=dk,1

≤ H2

(
ωf�

k,2, dk

)∣∣
dk=dk,1

<

H2

(
ωf�

k,2, dk

)∣∣
dk=dk,2

.
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