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Abstract—In a cloud radio access network (C-RAN), dis-
tributed remote radio heads (RRHs) are coordinated by baseband
units (BBUs) in the cloud. The centralization of signal process-
ing provides flexibility for coordinated multi-point transmission
(CoMP) of RRHs to cooperatively serve user equipments (UEs).
We target enhancing UEs’ capacity performance, by jointly
optimizing the selection of RRHs for serving UEs, i.e., CoMP
selection, and resource allocation. We analyze the computational
complexity of the problem. Next, we prove that under fixed CoMP
selection, the optimal resource allocation amounts to solving a
so-called iterated function. Towards user-centric network opti-
mization, we propose an algorithm for the joint optimization
problem, aiming at scaling up the capacity maximally for any
target UE group of interest. The proposed algorithm enables
network-level performance evaluation for quality of experience.

Index Terms—Cloud radio access network; user-centric net-
work; resource allocation; CoMP

I. INTRODUCTION

A. Background

C
LOUD radio access network (C-RAN) enables virtualiza-

tion of functionalities of base stations by centrally man-

aging a “cloud” that is responsible for signal processing and

coordination of geographically distributed remote radio heads

(RRHs) [2]. The baseband units (BBUs) that are separately

located in base stations under the traditional cellular network

architecture, are centrally deployed in BBU pools in the

cloud in the C-RAN architecture. The centralization of signal

processing enables coordination among RRHs. This facilitates

the implementation of coordinated multipoint transmission

(CoMP) for improving spectrum efficiency [3]. The quality

of service (QoS) may thus be enhanced by squeezing more

out of the spectrum [2], [3].

For the upcoming 5G, the concept of user-centric opera-

tion [4]–[7] has been drawing attention recently. The paradigm

of user-centric C-RAN targets enhancing the quality of experi-

ence (QoE), which looks outward from the end-user. Whether

or not the performance benefits from utilizing more resource

is up to the type of service in use. For example, video

and audio streaming, email and file transfers, or VoIP, all

have different levels of sensitivities to network QoS metrics

(e.g. throughput, delay, or packet loss) that are influenced by

resource allocation. Compared to allocating network resource

purely subject to the QoS fairness [6], [8], [9], from the user-

centric viewpoint, it is more rationale to allocate resource
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based on user groups of different service types. In this context,

optimizing the capacity for a specific target group of UEs

becomes relevant.

Resource allocation in user-centric C-RAN faces more chal-

lenges compared to the traditional long-term evolution (LTE)

cellular networks. First, as CoMP is assumed to be put in use

by default under the C-RAN architecture, the network becomes

more connected, resulting in more complex coupling relations

between the network elements. The network performance is

also affected by selecting the serving RRHs for user equip-

ments (UEs), i.e., CoMP selection. Given this background, the

paper targets jointly optimizing CoMP selection and resource

allocation in order to increase the capacity for any target group

of users in C-RAN.

B. Related Work

1) RRH selection and resource allocation: A number of

studies have focused on optimizing CoMP or resource allo-

cation in C-RANs. In [10], the authors studied CoMP-based

interference mitigation in heterogeneous C-RANs. In [11],

the authors investigated the joint transmission (JT) CoMP

performance in C-RANs with large CoMP cluster size. The

authors of [12] investigated resource allocation of CoMP trans-

mission in C-RANs, and proposed a fairness-based scheme for

enhancing the network coverage. In [13], the authors studied

the joint cell-selection and resource allocation problem, in C-

RANs without CoMP. In [14], a resource allocation problem

was studied for C-RANs with a framework of small cells

underlaying a macro cell. The study in [15] formulated an

RRH selection optimization problem for power saving in C-

RANs as a mixed integer linear programming model taking

into account bandwidth allocation. A local search algorithm

was proposed to solve the problem. In [16], the authors

jointly optimized RRH selection and power allocation to

minimize the total transmit power of the RRHs. The file

caching status in RRHs is part of the setup. The problem was

formulated in a non-convex form and solved by a Lagrange

dual method. The authors of [17] investigated the weighted

sum rate problem by jointly optimizing RRH selection and

power allocation. By applying a Lagrange dual method, the

authors derived an optimal solution to a special case where

the number of sub-carrier is infinite. In [18], the authors

studied the energy-aware utility maximization problem by

jointly optimizing beamforming, BBU scheduling and RRH

selection. The problem was decomposed and solved separately,

yielding a heuristic solution. The authors of [19] formulated
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an energy minimization problem with joint optimization of

resource allocation and RRH selection. A greedy strategy was

employed for RRH activation and pairing active RRHs to UEs.

Under fixed RRH-UE association, the corresponding resource

allocation was computed. The authors of [20] employed a

statistical model for characterizing the traffic load of RRHs

in C-RAN. The load incurred by UEs is directly related to the

number of allocated resource blocks (RBs). A heuristic dy-

namic RRH assignment algorithm was proposed. The authors

in [21]–[23] investigated the influence of RRH selection on the

network resource usage efficiency and energy savings, while

the dynamics and coupling between the resource consumption

levels of RRHs are not taken into account.

2) QoS/QoE optimization in C-RAN: In [24], an abstract

model of QoS-aware service-providing framework was pro-

posed based on queueing theory. The model admits optimal

solution obtained by convex optimization with respect to the

service rate. In [5], the authors investigated joint precoding and

RRH selection subject to QoS requirement of users. The joint

optimization problem was decoupled into two stages (resulting

in suboptimality), respectively for RRH selection and power

minimization. The authors of [25] considered the single user

case. A QoS-driven power- and rate-adaption scheme aiming

at maximizing the user capacity was proposed. The authors

showed the convexity of the formulation and solved it to the

optimum with a Lagrange dual method. Reference [26] studied

the problem of jointly optimizing RRH sleep control and trans-

mission power over optical-fiber cables that connect RRHs

to the cloud. The proposed network operation is based on a

heuristic strategy aiming at minimizing the power consumption

with guarantee of QoE. The QoE is defined to be the packet

loss probability. In [27], the authors proposed a beamforming

scheme to coordinate RRHs for improving QoE. The QoE is

defined to be the weighted sum of sigmoidal QoS functions of

users. The problem is to maximize the QoE subject to power

constraints. A heuristic algorithm was proposed.

3) Resource allocation with load-coupling: A related line

of research is the characterization of resource allocation in

orthogonal-frequency-division multiple access (OFDMA) net-

works. A model that characterizes the coupling relationship

of allocated resource among network entities is becoming

adopted [1], [28]–[33]. By this model, a connection between

network load and user bits demand in QoS/QoE satisfaction

is established.

C. Motivation

One way of evaluating the performance with respect to

QoS/QoE is to measure how much of the user demand can be

scaled up before the network resource becomes exhausted. For

fairness-based QoS enhancement, the problem was studied by

computing the maximum demand scaling factor for all users

[1], [32], [33], which is fundamentally based on computing the

eigenvalue as well as the eigenvector for a non-linear system.

References [1], [32], [33] employ a restricted setup of ours.

Their solution approaches do not apply for our generalized

scenario, as the resulting problem does not map to computing

the eigenvalue and eigenvector anymore. Whether or not the

maximum capacity with respect to QoE-aware demand scaling

can be effectively and efficiently computed remains open.

Besides, under the C-RAN architecture, the interplay between

network resource allocation and RRH cooperation needs to

be captured. To the best of our knowledge, how to optimally

perform user-centric demand scaling has not been addressed

yet.

D. Contribution

The main contributions of this paper are summarized as

follows. We propose a new framework for computing the

maximum demand scaling factor for any given group of users

in C-RAN. Our framework is a significant extension of the one

used in [1], [32], [33]. Furthermore, based on this framework,

we study the joint optimization problem of time-frequency re-

source allocation and CoMP selection, in terms of user-centric

demand scaling. We address the tractability of this problem.

To deal with the complexity, we propose an algorithm that

alternates between CoMP selection and resource allocation.

Specifically, we prove that, with fixed CoMP selection, the

optimal resource allocation amounts to solving a so-called

iterated function. Furthermore, we provide a partial optimality

condition for improving CoMP selection and prove that it is

naturally combined with our resource allocation method. The

condition and the method are incorporated together to form

our joint optimization algorithm. We remark that the solution

method for demand scaling in [1], [32], [33] can only address

a special case of ours. We further proved that, under fixed

CoMP selection, our proposed method solves the resource

allocation to global optimality. Finally, we show numerically

how the joint optimization scheme can be used to scale up user

demands for user-centric capacity enhancement. The obtained

results reveal how CoMP improves the user capacity and how

the user group size and the number of CoMP users affect the

performance. To the best of our knowledge, this is the first

paper that addresses user-centric demand scaling with load-

coupling and CoMP.

E. Paper Organization

The paper is organized as follows. Section II gives the

system model. Section III formulates the problem and analyzes

its tractability. Section IV derives our solution method for

problem solving. After discussing the numerical results in

Section V, the paper is concluded in Section VI. The proofs

of all theorems in Section IV are detailed in the Appendix.

Throughout all sections, we use bold fonts to represent vec-

tors/matrices, and capitalized letters in calligraphy to represent

mathematical sets. As for function/mapping definitions, we use

the notation g : var 7→ expr to represent a function/mapping

g(var) with mathematical expression expr of variable var.

We use R++ to refer to all positive real numbers, i.e. R++ =

(0,∞). Similarly, we use R+ to refer to all non-negative real

numbers, i.e. R+ = [0,∞).

II. SYSTEM MODEL

A. Notations

Denote by R = {1, 2, . . . ,m} the set of RRHs in a C-RAN.

Denote by J = {1, 2, . . . , n} the set of UEs. We use matrix
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κ ∈ {0, 1}
m×n

to indicate the association between RRHs

and UEs. The matrix κ is subject to optimization. For the

sake of presentation, let us consider any given κ. For this κ,

we use Rj and Ji as generic notations for the set of RRHs

serving UE j and the set of UEs served by RRH i, respectively.

Specifically, i ∈ Rj and j ∈ Ji if and only if κij = 1. Note

that κ characterizes CoMP selections, i.e., which UE is served

by which RRHs. Single antenna case in C-RAN [34]–[36] is

considered in this paper.

B. CoMP Transmission

Downlink is considered. Denote by pi the transmit power

of RRH i (i ∈ R) on one resource block (RB). Denote by

hij the channel gain between RRH i and UE j. Let x be the

channel input symbol sent to UE j by the RRHs in Rj. Entity

xk denotes the channel input symbol sent by the other RRHs

that are not cooperatively serving UE j. The received channel

output at UE j can be written as

s =
∑

i∈Rj

√
pihijx+

∑

k∈R\Rj

√
pkhkjxk + σj. (1)

We assume that x and xk (k ∈ R\Rj) are independent zero-

mean random variables of unit variance. Parameter σj models

the noise of any user j. The signal-to-interference and noise

ratio (SINR) of UE j is given below, by [37],

γj =
|
∑

i∈Rj

√
p
i
hij|

2

∑
k∈R\Rj

wkj + σ2
j

, (2)

where wkj is the interference received at UE j from RRH k.

For any user, the interference it receives comes from those

RRHs that are not serving the user, and the cooperative RRHs

do not generate interference to the user [37]. We remark that

the gains and noises can be different for users, and our solution

method proposed later enables performance evaluation for

scenarios with different user channel gains and noises.

C. Interference Modeling

We introduce the network-level interference model that is

widely adopted in OFDMA systems, referred to as “load-

coupling” [1], [28]–[33]. The model is shown to capture well

the characterization of interference coupling [28]. Denote by

M the total number of RBs in consideration. Define ρk as

the proportion of allocated RBs of RRH k to serve all of

its UEs. If ρk = 0, it means that there is no time-frequency

resource in use by RRH k. In this case, k does not generate

interference to others and wkj = 0 (j ∈ J\Jk). On the other

hand, if ρk = 1, then all the RBs in RRH k are used for

transmission and RRH k constantly interferes with others, i.e.,

wkj = pk|hkj|
2 (j ∈ J\Jk) [37]. For 0 < ρk < 1, ρk serves

as a scale parameter of interference:

wkj = pk|hkj|
2ρk. (3)

By the definition of ρk, it is referred to as load of the RRH k
and can be intuitively explained as the likelihood that RRH k

interferes with others. The network load vector is represented

as ρ = [ρ1, ρ2, . . . , ρm]. Increasing any load ρk may lead to

the capacity enhancement of UEs in Jk. On the other hand,

as can be seen from (3), the increase of ρk results in higher

interference from k to other UEs J\Jk, which may cause the

load levels of RRHs other than k to increase. Note that a

heavily loaded RRH interferes more severely to others, while

an RRH that is slightly loaded tends not to generate much

interference.

D. User Demand Scaling

Denote by B the bandwidth per RB. The achievable bit rate

for UE j by the transmissions of j’s serving RRHs is denoted

by a function Cj : R
n
+ → R+ of SINR, which in turn is a

function of the network load ρ:

Cj : ρ 7→MB log2(1+ γj(ρ)). (4)

Denote by dj the bits demand of UE j (j ∈ J). Given the

proportion of allocated RBs in RRHs that are not serving UE

j, the expression
dj

Cj(ρ)
gives the proportion of required RBs

for the RRHs serving UE j to satisfy this demand dj. We

remark that Cj(ρ) is non-linear of the proportion of allocated

RBs in the interfering RRHs. Let µj represent the proportion

of RBs allocated to j by j’s serving RRHs. As for all UEs in J,

we let µ = [µ1, µ2, . . . , µn]. Because of CoMP, the RBs used

by all these RRHs for serving j are the same. For allocating

sufficient proportion of RBs to satisfy UE j’s demand, we

have:

µj >
dj

Cj(ρ)
. (5)

By the definition of ρi (i ∈ R), we have

ρi =
∑

j∈Ji

µj. (6)

Denote by ρ̄ the load limit of RRHs. Then we need to keep

ρi 6 ρ̄ (i ∈ R), otherwise the network is overloaded, meaning

that the available resource is not sufficient for delivering the

demands. Combining (4) with (6), for any j ∈ J, we use fj :

R
n
+ 7→ R++ to denote the following function:

fj : µ 7→
dj

Cj(µ)
. (7)

Given d = [d1, d2, . . . , dn], consider for QoE of a specific

UE j, we would like to scale up dj by a demand scaling factor

α (α > 0). The reason of considering the maximization of α is

it tells how much traffic growth the network can accommodate

by optimizing user association, as such it provides information

related to network capacity. With demand scaling, µj needs to

satisfy:

µj > αfj(µ). (8)

Due to the mutual coupling relationship of the elements in

the vector µ, scaling up the demand for UE j may cause the

increase of the interference to others such that the bits demand

of other UEs cannot be satisfied. Therefore, one should also

make sure that the following equation holds:

µ−j > f−j(µ). (9)
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where µ−j and f−j (j ∈ J) represent the vectors without

the jth element. Finally, the resource limits are subject to the

inequalities
∑

j∈Ji
µj 6 ρ̄ (i ∈ R). More generally, one can

scale up the demand for any UE group S (S ⊆ J). One way

to view S is the set of users with elastic traffic. For the other

users in J \ S, their demand has to be satisfied without any

scaling. For the special case of S = J, maximum demand

scaling corresponds to finding out how much traffic growth is

possible before the resource is exhausted.

Note that (8) and (9) form a system of non-linear inequal-

ities in terms of µ and α, which cannot be readily solved.

There is a special case that is however easy. With S = J, one

can write (8) and (9) as µ > αf(µ), i.e., the demand scaling

is on all the UEs. To use the minimum amount of resource to

satisfy the demands, we have 1
α
µ = f(µ). In this case, 1

α
and

µ are exactly the eigenvalue and eigenvector of this non-linear

equations system and can be solved by the concave Perron-

Frobenius Theorem [38]. However, the conclusion does not

hold for the general case S ⊆ J. Indeed, the general case is

fundamentally different, as α is not the scaling parameter in

each dimension of the function f when S ⊂ J.

III. PROBLEM FORMULATION AND COMPLEXITY

ANALYSIS

In this section, we formulate the demand scaling problem

and prove its computational complexity. Recall that Rj and Ji
characterize the CoMP selection and are induced by the matrix

κ. To characterize CoMP selection, we treat Rj (j ∈ J) and

Ji (i ∈ R) as mappings shown below, which map any matrix

κ to the sets of serving RRHs and served UEs, respectively.

Rj : κ 7→ {i|κij = 1} (10)

Ji : κ 7→ {j|κij = 1} (11)

The problem is formulated in (12). Solving (12) is equivalent

to solving the maximization of throughput satisfaction ratio

for S subject to the max-min fairness1 [32].

[MaxD] max
α>0,µ>0,κ

α (12a)

s.t. µj > αfj(µ,κ) j ∈ S (12b)

µj > fj(µ,κ) j ∈ J\S (12c)
∑

j∈Ji

µj 6 ρ̄ i ∈ R (12d)

κij ∈ {0, 1} i ∈ R, j ∈ J (12e)

The objective is to maximize the demand scaling factor

α for a given set of UEs S (S ⊆ J), given the base

user demand d (d is in the expression of the function fj).

Remark that the function fj(µ), defined in (7), computes

1We remark that (12b) can be equivalently re-written as α 6

minj∈S µjCj(ρ,κ)/dj. Then (12) can be reformulated as

max
µ>0,κ

min
j∈S

µjCj(ρ,κ)

dj
s.t. (12c)–(12e)

which is exactly the maximization problem for user-specific throughput
satisfaction ratio. The demand dj is satisfiable if and only if this ratio is
greater than or equal to one.

the minimum required proportion of resource for satisfying

the demand dj of UE j, and µj is the resource allocated to

UE j. Therefore constraints (12c) ensure that sufficient time-

frequency resources are allocated for satisfying the demands

dj (j ∈ J\S). The UEs in S can be regarded as being

throughput-oriented such that delivering more demands leads

to higher satisfaction, as imposed by constraints (12b). Hence,

the objective is maximizing the demand scaling factor α for S.

Constraint (12d) imposes the maximum RRH load limit. The

variable matrix κ controls the CoMP selection.

Solving (12) yields an a network-level evaluation for user

group data rate enhancement [28]–[33], with the channel

coefficients and noises corresponding to approximate averages

upon the time scale of interest of load coupling. This type

of modeling is commonly used for studies and analysis at

a macroscopic level, and in fact variations of gains and

noises have little impact on the accuracy of the load coupling

model [28]. In addition, we remark that the demand scaling

factor is the satisfaction ratio of the user demands in S. That

is, given base demands dj (j ∈ J) and the RRH resource limit

ρ̄, the solution α∗ obtained by solving MaxD is indeed the

maximum satisfiable ratio of dj (j ∈ S) within the resource

limit. Namely, if dj (j ∈ S) are satisfiable, then we have

α∗ > 1. Otherwise α∗ < 1 holds and α∗ is the satisfiable

proportion of the demands dj (j ∈ S).

We remark that, the method of scaling the demand for

J, which is a special case of MaxD, does not generalize to

priority-aware resource optimization.

Theorem 1 below shows the NP-hardness of MaxD. The

basic idea behind the proof is to show that there is one scenario

that is at least as hard as 3-SAT.

Theorem 1. MaxD is NP-hard.

Proof. We prove the theorem by a polynomial-time reduc-

tion from the 3-satisfiability (3-SAT) problem that is NP-

complete. Consider a 3-SAT problem with N1 Boolean vari-

ables b1, b2, . . . , bN1
, and N2 clauses. A Boolean variable

or its negation is referred to as a literal, e.g. b̂i is the

negation of bi. A clause is composed by a disjunction of

exactly three distinct literals, e.g., (b1 ∨ b2 ∨ b̂3). The 3-

SAT problem amounts to determining whether or not there

exists an assignment of true/false to the variables, such that

all clauses are satisfied.

The corresponding feasibility problem of MaxD is that

whether or not there exists any (α,µ,κ) such that con-

straints (12a)–(12e) are satisfied. To make the reduc-

tion, we construct a specific network scenario as fol-

lows. Suppose we have N1 + N2 + 1 UEs in to-

tal, denoted by v0, v1, v2, . . . , vN1+N2
, respectively. Also,

we have in total 2N1 + N2 + 1 RRHs, denoted by

a1, â1, a2, â2, . . . , aN1
, âN1

, and a0, aN1+1, . . . , aN1+N2
.

The RRHs a1, â1, a2, â2, . . . , aN1
, âN1

are the counter parts

to the 2N1 variables and their negations. And the RRHs

aN1+1, . . . , aN1+N2
are corresponding to the N2 clauses.

For each vi (1 6 i 6 N1), we set {ai, âi} as its candidate

RRHs. For v0 and each vj (N1 < j 6 N1 + N2), we

have exactly one candidate RRHs. Therefore, their serving

RRHs are fixed, i.e., Rv0
= {a0} and Rvj

= {aj}. Let



5

pa0
= 3N1 + 1. For 1 6 i 6 N1, let pai

= pâi
= 3.0.

For N1 < j 6 N1 + N2, let paj
= 3.0. For UE v0,

|ha0,v0
|2 = |hai,v0

|2 = |hâi,v0
| = 1.0 (1 6 i 6 N1). For any

UE vi (1 6 i 6 N1), |hai,vi
|2 = |hâi,vi

|2 = 1.0. For any UE

vj (N1 < j 6 N1+N2), |hai,vj
|2 and |hâi,vj

|2 (1 6 i 6 N1)

equal 1
3

if bi and b̂i appears in clause j, respectively. In

addition, |haj,vj
|2 = 1.0 (N1 < j 6 N1 + N2). The gain

values between all other RRH-UE pairs are negligible, treated

as zero. The noise power σ2
j (∀j ∈ J) is 1.0. We normalize the

demands of UEs by B×M, such that dvi
= 2.0 (1 6 i 6 N1)

and dv0
= dvj

= 1.0 (N1 < j 6 N1 + N2). Below we

establish connections between solutions of MaxD and those

of 3-SAT. For MaxD, note that if (1,µ,κ) is not feasible, then

(α,µ,κ) with α > 1 is not either.

First, we note that each UE j (0 6 j 6 N1 + N2 + 1)

should be served by at least one RRH, otherwise Cj equals 0

and constraint (12b) or (12c) would be violated. Thus, a0

is serving v0 and aN1+1, aN1+2, . . . , aN1+N2
are serving

vN1+1, vN1+2, . . . , vN1+N2
, respectively. Second, it can be

verified that vi (1 6 i 6 N1) can only be served by exactly

one RRH in {ai, âi}, i.e, either Rvi
= {ai} or Rvi

= {âi}.

This is because, for 1 6 i 6 N1, the interference wai,v0
(or

wâi,v0
) generated from each ai (or âi) to v0 is 3.0, if exactly

one of {ai, âi} serves vi: We assume ai serves vi, then

wai,v0
= pai

|hai,v0
|2ρai

= 3.0 × 2.0

log2(1+ |
√
3|2)

= 3.0

In this case, one can verify that a0 is fully loaded. In addition,

letting any vi (1 6 i 6 N1) served by both ai and âi results

an interference to v0 being larger than 3.0, i.e.

wai,v0
+wâi,v0

= 6.0 × 2.0

log2(1+ |2
√
3|2)

> 3.0

Then a0 would be overloaded (ρa0
> 1). Besides, for each

clause j (N1 < j 6 N2), the three corresponding RRHs

cannot be all active in serving UEs. Otherwise, the RRH

that is serving the UE corresponding to this clause would be

overloaded. To see this, consider a clause (b1∨b2∨ b̂3) and

its corresponding RRHs a1, a2 and â3. Assume this clause

is associated with some UE j (N1 < j 6 N1 + N2). By the

above discussion, any of a1, a2 and â3 is fully loaded if it is

active. Then, if all of them are active, we have

wa1,vj
= wa2,vj

= wâ3,vj
= 3.0× 1

3
× 1.0 = 1.0

and thus for this UE j (N1 < j 6 N1 +N2) we have

ρaj
=

dvj

log2

(

1+
paj

|haj,vj
|2

wa1,vj
+wa2,vj

+wâ3,vj
+σ2

vj

)

=
1.0

log2

(

1+ 3.0×1.0
3.0×1.0+1.0

) > 1.0

On the other hand, one can verify that if less than three of a1,

a2 and â3 are active for serving UEs, then ρaj
6 1.

Now suppose there is an RRH-UE association that is

feasible. For each Boolean variable bi, we set bi to be true

if âi is serving UE vi. Otherwise, vi must be served by ai

and we set bi to false. Now we evaluate the satisfiability of

each clause. For the sake of presentation, denote this clause by

(b1∨b2∨b̂3) as an example. The clause is satisfied if and only

if at least one of its literals being true. As discussed above, a

feasible solution for the constructed instance of MaxD cannot

have all the three corresponding RRHs a1, a2, and â3 being

in the status of serving UEs. Therefore, at least one of a1,

a2, and â3 should be idle, meaning that the corresponding

one of b1, b2, or b̂3 is set to be true. Therefore, based a

feasible solution of the constructed problem, a feasible solution

of the 3-SAT problem instance can be accordingly constructed.

Conversely, suppose we have a feasible solution for a 3-SAT

instance. Then we choose ai to serve vi if b̂i is true, otherwise

âi is selected instead. Doing so satisfies all the demands for

UEs j (0 6 j 6 N1). Furthermore, the demands of UEs i
(N1 < i 6 N1 + N2) are satisfied as well, since at most

two out of the three RRHs defined for the three literals of

the clause will be serving UE. Thus the RRH-UE association

is feasible for the constructed instance of MaxD. Hence the

conclusion.

Since MaxD is NP-hard, one cannot expect any exact

algorithm with good scalability for solving MaxD optimally,

unless P = NP.

IV. PROBLEM SOLVING

In this section, we derive theoretical foundations for an algo-

rithm solving MaxD. We introduce some basic mathematical

concepts in Section IV-A. In Section IV-B we solve MaxD

to global optimum under fixed CoMP selection, which serves

as a sub-routine for the overall algorithm. In Section IV-C

we give a partial optimality condition for optimizing the

CoMP selection. An algorithm that alternates between CoMP

selection and resource allocation is proposed in Section IV-D.

We further show that considering the case S ⊆ J enables

to optimize per-user rate based on the user’s priority, which

enables gauging the network performance enhancement in a

finer granularity in Section IV-E. The services with elastic

demands could be put into the group S for QoS enhancement,

while keeping the demands of other inelastic services being

strictly satisfied. In Section IV-F, we give a computationally

efficient bounding scheme that yields upper bound for MaxD

under two extra constraints.

A. Basics

The following lemma shows a property of the function f(µ).

The result follows the reference [30, Lemma 6].

Lemma 2. Function f(µ) is a standard interference function

(SIF) [39] for non-negative µ, i.e. the following properties

hold:

1) f(µ ′) > f(µ) if µ ′ > µ.

2) βf(µ) > f(βµ) (β > 1).

The main property of an SIF is that a fixed point, if exists,

is unique and can be computed via fixed-point iterations. To

be more specific, a vector µ satisfying µ = f(µ), if exists, is

unique and can be obtained by the iterations µ(k) = f(µ(k−1))

(k > 1) with any µ(0) ∈ R
n
+.
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B. Computing the Optimum for Given CoMP Selection

In this subsection, we show that solving MaxD with fixed

CoMP selection amounts to solving an iterated function. In

mathematics, an iterated function is a function from some set

to the set itself. Solving an iterated function lies on finding

a fixed point of it. The problem is formulated in (13) below,

in which Rj (j ∈ J) and Ji (i ∈ R) are given. The problem

in (13) is exactly MaxD under fixed CoMP selection κ.

max
α>0,µ>0

α (13a)

s.t. µj > αfj(µ) j ∈ S (13b)

µj > fj(µ) j ∈ J\S (13c)
∑

j∈Ji

µj 6 ρ̄ i ∈ R (13d)

The problem in (13) is a subproblem of MaxD. The motiva-

tion of deriving such a subproblem is based on the conclusion

in Lemma 2 that the function f(µ,κ) under fixed κ is an SIF

in µ. Below we derive a solution method for achieving global

optimum of (13) based on the foundational properties of SIF,

which justifies our decomposition approach. For the sake of

presentation, for any µ, we denote by H a function that gives

the normalized maximum load, i.e.,

H : µ 7→ 1

ρ̄
max
i∈R

∑

j∈Ji

µj. (14)

Before presenting the solution method for (13), we outline

two lemmas for optimality characterization. The two lemmas

enable a reformulation that can be solved by an iterated

function.

Lemma 3. [α∗,µ∗] is optimal to (13) only if H(µ∗) = 1 and

µ∗
j = αfj(µ

∗) for some j ∈ S.

Proof. Suppose [α∗,µ∗] is an optimal solution such that all

inequalities strictly hold in (13b). Then one can increase α∗

to α ′ = α∗ + ǫ. By setting ǫ to be a sufficiently small

positive value, one can obtain a feasible solution [α ′,µ∗]

with objective value α ′, which conflicts the assumption that

[α∗,µ∗] is optimal. Therefore, there exists some j (j ∈ S) such

that µ∗
j = αfj(µ

∗).

Obviously any solution [α∗,µ∗] with H(µ∗) > 1 is

infeasible because at least one of (13d) is violated. Now

suppose H(µ∗) < 1. Then we increase µ∗ to µ ′ = βµ∗

(β = 1 + ǫ, ǫ > 0). With ǫ being sufficiently small, µ ′

satisfies (13d). Due to the scalability of f(µ), we have

f(βµ∗) < βf(µ∗). (15)

Consider (13b) for µ∗, which reads for any j ∈ S

µ∗
j > αfj(µ

∗)⇔ βµ∗
j > αβfj(µ

∗) (16)

Combining (15) with (16) we have

βµ∗
j > αfj(βµ

∗)⇔ µ′
j > αfj(µ

′). (17)

The same process applies for deriving µj > fj(µ
′) for j ∈ J\S.

Therefore, µ ′ is a feasible solution to (13) such that all

inequalities in (13b) and (13c) strictly hold. Under µ ′, one

can increase α∗ to α ′ as earlier in the proof, to obtain a

better objective value, which conflicts with our assumption

that [α∗,µ∗] is optimal.

Thus, at the optimum of MaxD there is at least one UE j

(j ∈ S) such that µ∗
j = α∗fj(µ

∗) with H(µ∗) = 1.

By Lemma 3 we know that a solution is optimal to (13) only

if there exists a fully loaded RRH. Intuitively, if all RRHs in

the C-RAN have unused time-frequency resource, then one

can improve the objective function such that more bits would

be delivered to UEs.

Lemma 4. [α∗,µ∗] is optimal to (13) if (13b) and (13c) all

hold as equality and H(µ∗) = 1.

Proof. Suppose (13b) and (13c) hold for all j ∈ J as equalities

with [α∗,µ∗]. Consider any α ′ (α ′ > α∗). Replacing α∗ by

α ′ in (13b) causes (13b) being violated. Thus µ∗
j (j ∈ S)

must increase to have (26b) remains satisfied. Then f(µ)

would grow due to its monotonicity, resulting in the violations

of (13c). Therefore, to have (13b) and (13c) remain satisfied,

the vector µ must be increased. Denote by µ ′ the newly

obtained resource allocation. Since H(µ∗) = 1, then we must

have H(µ ′) > 1 which violates some constraint in (13d).

Hence the conclusion.

Next we derive a solution method that achieves the global

optimum of (13). We define function Fα as follows.

Fα : µ 7→
[

f1(µ)

π1(α)
,
f2(µ)

π2(α)
, . . . ,

fn(µ)

πn(α)

]

(18)

where

πj(α) =

{
1 j ∈ S

α otherwise
(19)

Note that for any given α > 0, the function Fα is an SIF in

µ. The problem in (13) can be reformulated below.

max
α>1,µ>0

α s.t. αFα(µ) 6 µ, H(µ) = 1. (20)

The recursive equations in Theorem 5 below give the

solution method for solving (20) (and equivalently (13)).

The optimality of this method is guaranteed by Theorem 6.

The proofs of both Theorem 5 and Theorem 6 are in the

Appendix. The symbol “◦” denotes the function composition,

i.e. g1 ◦ g2(var) = g1(g2(var)).

Theorem 5. Denote [α∗,µ∗] = limk→∞[α(k),µ(k)], where

α(k) =
1

H ◦ Fα(k−1)(µ(k−1))
, k > 1 (21)

and

µ(k) =
Fα(k−1)(µ(k−1))

H ◦ Fα(k−1)(µ(k−1))
, k > 1, (22)

with α(0) > 0 and µ(0) ∈ R
n
+. Then H(µ∗) = 1 holds.

Theorem 6. [α∗,µ∗] in Theorem 5 is optimal to (13).

Theorem 5 and Theorem 6 guarantee that for an arbitrary

set of UEs S in the network, one can iteratively compute the

maximum demand scaling factor α∗ for S. As a special case,

when πj(α) = 1 for all j ∈ J, solving the problem in (20)
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is to find the eigenvalue µ and the eigenvector 1/α of the

equation system f(µ) = (1/α)µ such that H(µ) = 1. The

iterative solution method in Theorem 5 serves as a subroutine

for solving MaxD, shown in Section IV-D later.

C. CoMP Selection Optimization

We show a lemma for optimizing the CoMP selection. The

detailed proof of the lemma is based on [40, Theorem 3]. The

following notations are introduced. We consider two matrices

κ and κ′ with the following relationship: Each column in κ

has at least one non-zero element (meaning that every UE is

associated to at least one RRH); There exists exactly one RRH-

UE pair (i, j) such that κij = 0 and κ ′
ij = 1, respectively; For

any other pair (r, q), κ ′
rq = κrq. Note that the only difference

between the two associations κ and κ′ is that κ′ includes the

CoMP link from RRH i to UE j while κ does not. Denote

by µ∗ and µ ′∗ the corresponding optimal resource allocations

obtained respectively by κ and κ′ (i.e. µ∗ = Fα(µ
∗,κ) and

µ ′∗ = Fα(µ
′∗,κ′)). For the sake of presentation, given some

α (α > 0), we represent ρi as a function of the resource

allocation µ and the RRH-UE association κ:

ρi : [µ,κ] 7→
∑

j∈Ji(κ)

Fα,j(µ,κ). (23)

Consider two sequences µ(0),µ(1), . . . ,µ(∞) and

ρ(0),ρ(1), . . . ,ρ(∞), where µ(k) = f(ρ(k−1),κ′),

ρ(k) = ρ(µ(k−1),κ) for k > 1, with µ(0) = µ∗ and

ρ(0) = ρ(µ(0),κ). The convergence of the two sequences is

guaranteed as the function Fα with fixed α is an SIF in both

µ and ρ [40]. We provide the following lemma.

Lemma 7. ρ(µ ′∗,κ′) 6 ρ(µ∗,κ) if for any k > 1 we have

ρi(µ
(k),κ′) 6 ρ

(k)
i .

Lemma 7 serves as a sufficient condition for RRH load

improvement by CoMP. Specifically, in order to check whether

adding a CoMP link between RRH i and UE j would re-

duce the load levels of RRHs, we iteratively construct the

two sequences µ(0),µ(1), . . . ,µ(∞) and ρ(0),ρ(1), . . . ,ρ(∞).

Once there exists k > 1 such that ρi(µ
(k),κ′) 6 ρ

(k)
i , we

conclude that the bits demand by all UEs can be satisfied with

lower time-frequency resource consumption (i.e. the load of

RRH) under the association κ′ than κ. In Section IV-D below,

we show that the condition in Lemma 7 can be incorporated

with the solution method in Theorem 5, to form our joint

optimization algorithm.

D. Algorithm

The theoretical properties derived in Section IV-B and

Section IV-C enable an algorithm for MaxD. To be more

specific, given any RRH-UE association κ, one can obtain the

corresponding maximum scaling factor α∗ together with µ∗

iteratively by (21) and (22) in Theorem 5. At the convergence,

H(µ∗) = 1 holds by Theorem 5. Taking one step further, if we

fix α∗ and consider all the candidate RRHs for each UE, using

Lemma 7 (in Section IV-C) enables us to determine whether

a new association κ′ that includes some newly added CoMP

link would lead to load improvement. If yes, the corresponding

resource allocation µ ′ under κ′ must have H(µ ′) < 1. Then

by Lemma 3, the current solution [α∗,µ ′] is not optimal.

Once the load is improved, applying (21) and (22) under

κ′ again guarantees an overall improvement. We remark that

Algorithm 1 works in an online manner in terms of the

candidate RRH-UE pairs. To be specific, in each iteration of

the outer loop, once a new CoMP link is added, the demand

scaling factor α is guaranteed to be increased by the end of

this iteration, based on the discussion above. This process is

detailed in Algorithm 1.

Algorithm 1: Joint Demand Scaling and CoMP Selec-

tion

Input: κ(0), S, ǫ > 0, ρ̄
Output: κ∗,µ∗, α∗

1 α(0) ← 1; (Or other positive number)

2 µ(0) ← 0; (Or other non-negative vector)

3 repeat

4 for i← 1 to m, j← 1 to n, with κ
(c)
ij = 0 do

5 k← 1;

6 repeat

7 κ(c) ← κ(c−1);

8 κ′ ← κ(c);

9 κ ′
ij ← 1;

10 ρ(k) ← ρ(µ(k−1),κ(c));

11 µ(k) ← Fα(ρ
(k),κ′);

12 if ρi(µ
(k),κ′) 6 ρ

(k)
i then

13 κ(c) ← κ′;

14 k← k+ 1;

15 until ‖µ(k) − µ(k−1)‖ < ǫ;

16 h← 1;

17 repeat

18 α(h) ← 1
H◦F

α(h−1) (µ
(h−1),κ(c))

;

19 µ(h) ← F
α(h−1)(µ

(h−1),κ(c))

H◦F
α(h−1) (µ

(h−1),κ(c))
;

20 h← h+ 1;

21 until ‖[α(h),µ(h)] − [α(h−1),µ(h−1)]‖ < ǫ;

22 α← α(h);

23 µ← µ(h);

24 c← c+ 1;

25 until κ(c) = κ(c−1);

26 κ∗ ← κ(c); µ∗ ← µ; α∗ ← α;

The input of Algorithm 1 consists of an initial RRH-UE

association κ(0), a set S (S ⊆ J) of UEs for demand scaling,

and a positive value ǫ that is the tolerance of convergence.

For the output, Algorithm 1 gives the optimized RRH-UE

association κ∗, the corresponding optimal resource allocation

µ∗, and the demand scaling factor α∗. The algorithm goes

through all the candidate RRH-UE pairs for CoMP. For each

candidate RRH-UE pair, the algorithm applies the partial

optimality condition in Lemma 7. Specifically, if the condition

in Line 12 is satisfied for any RRH-UE pair (i, j), then

adding a CoMP link (i, j) improves the load levels. When

the loop in Lines 6–15 ends, the newly optimized association
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κ(c) is obtained. The computational method in Theorem 5 is

implemented in Lines 16–21, by which we obtain the optimal

demand scaling for the set S and the corresponding resource

allocation to satisfy the scaled demands under κ(c).

The complexity of Algorithm 1 is analyzed as follows. For

simplicity, we assume the operations on vectors are atomic

and can be done in O(1). By [41] (along with our proof for

Theorem 5), the iterations in Lines 6–15 and Lines 17–21

have linear convergence such that the complexity of the two

loops (i.e. the required number of iterations) with tolerance ǫ
is O(log 1

ǫ
) [42, Page 37]. Besides, the outer for-loop runs

in O(mn), and is executed with a maximum of m × n
times2. Hence the total complexity is O(m2n2 log 1

ǫ
). We

remark that our algorithm is scalable from the computational

theory perspective, since it is polynomial in the number of

RRHs and UEs. The tolerance parameter ǫ can be selected

in an on-demand manner: the smaller the value of ǫ, the

higher the accuracy of the algorithm, meanwhile requiring

more iterations. Numerically, the impact of the tolerance

parameter ǫ on the algorithm convergence is discussed later

in Section V-E.

E. Priority-aware Per-user Rate Optimization

We show in this subsection how Algorithm 1 applies to

optimizing per-user rate by taking into account priority. For

the sake of presentation, we impose K to be an ordered set

consisting of candidate UEs for rate enhancement. The UEs in

K are arranged in descending order according to their priority.

Without loss of generality, suppose K = {1, 2, . . . K}. For each

UE k in K, we assign a budget ∆k for resource allocation.

That is, ∆k is the affordable increase of the maximum RRH

load level for enhancing the rate of UE k. Denote by ρ̄0 the

maximum RRH load level initially.

The optimization procedure is as follows. We first run

Algorithm 1 with ρ̄ = ρ̄0 + ∆1 and S = {1}. At convergence,

the maximum load of RRHs equals ∆1, and the rate of UE

1 after optimization is α∗d1. We then replace the original

base demand d1 by α∗d1 for UE 1, and run Algorithm 1 with

ρ̄ = ρ̄0+∆1+∆2 and S = {2} for UE 2, and so on. The process

repeats until we reach UE K. At the end, the delivered demand

of all UEs in K would be enhanced, with the maximum RRH

load being ρ̄ = ρ0 +
∑

k∈K ∆k.

F. Upper Bound for MaxD under Two Extra Constraints

We derive an upper bound for MaxD under two extra

constraints on CoMP selection. Denote by J+i the RRH i’s

candidate set of served UEs, i.e., the set of UEs that may

potentially be served by RRH i. The first constraint is as

follows.

Candidate UE constraints: κij = 0 if j /∈ J+i , i ∈ I. (24)

We impose that for each UE, there is a dominant RRH (e.g.

the one with the strongest signal or with the shortest distance

to the UE etc.) that serves the UE all the time. We call this

dominant RRH the home RRH. Denote by J−i the set of UEs

2Because there are at most m×n links that can be added.

of which the home RRH is i. The second constraint is below.

Candidate RRH constraints: κij = 1 if j ∈ J−i , i ∈ I. (25)

Define a matrix κ̌, where for any RRH i (i ∈ R) entry

κ̌ij = 1 if j ∈ J+i . Consider the optimization problem below.

max
α>0,µ>0

α (26a)

s.t. µj > αfj(µ, κ̌) j ∈ S (26b)

µj > fj(µ, κ̌) j ∈ J\S (26c)
∑

j∈J−
i

µj 6 ρ̄ i ∈ R (26d)

Theorem 8. Solving (26) yields an upper bound of α for

MaxD with constraints (24) and (25).

Proof. The proof is based on [30, Lemma 12]. The derivation

below is under under constraints (24) and (25). By [30,

Lemma 12], we conclude that for any CoMP selection κ , we

always have fj(µ,κ) > fj(µ, κ̌) for any µ > 0. In addition,∑
j∈J−

i
µj 6

∑
j∈Ji

µj holds for any µ > 0 and any κ (note

that Ji is related to κ). Therefore, (26) is indeed a relaxation

of MaxD (with (24) and (25)), such that solving the former

always yields a better (or at least no worse) objective function

value than the latter at optimum. Hence the conclusion.

We remark that the upper bound is derived for MaxD

under the two extra constraints (24) and (25), though not

proved theoretically to be an exact upper bound of the original

problem MaxD. On the other hand, with the two constraints,

solving (26) for obtaining the bound is quite straightforward

and computationally efficient.

We also remark that, for any specific UE j, letting S = {j}

and solving the corresponding formulation (26) yield the upper

bound of the satisfiable demand of UE j. In addition, denote

by dS the demands of S before scaling. Then |S| is an upper

bound for the number of users with demands being no less

than α∗dS, under the worst channel conditions of S.

V. SIMULATION

The C-RAN under consideration consists of one hexagonal

region, within which multiple UEs and RRHs are randomly

deployed. The RRHs are coordinated by the cloud and coop-

erate with each other for CoMP transmission. Initially, no UE

is in CoMP, and each UE is served by the RRH with the best

signal power. The network layout is illustrated in Figure 1.

Parameter settings are given in Table I. The user demands

setting is configured for doing performance benchmarking for

the cases with high RRH loads. In our simulation, the user

demand subject to scaling is initially uniform. We use the

non-CoMP case as the baseline. In the non-CoMP case, each

UE is served with its single RRH that is the home RRH. The

user demand is set such that for the baseline, with α = 1.0,

there is at least one RRH i (i ∈ R) reaching the load limit
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(ρi = ρ̄). This demand3 is normalized by M×B. For clarity,

we let J(CoMP) denote the set of CoMP UEs in the solution

obtained from Algorithm 1. The performance is studied by

using four metrics for evaluation, defined below, referred to

as Metric 1), Metric 2), Metric 3), and Metric 4), respectively.

Table I
SIMULATION PARAMETERS.

Parameter Value

Hexagon radius {500,100} m
Carrier frequency 2 GHz
Total bandwidth 20 MHz
Number of UEs (|J|) {100,570}
Number of RRHs (|R|) {10,57}
Path loss COST-231-HATA
Shadowing (Log-normal) 3 dB standard deviation
Fading Rayleigh flat fading
Noise power spectral density −173 dBm/Hz
RB bandwidth 180 KHz
Transmit power on one RB 400 mW
User demand distribution Uniform

Convergence tolerance (ǫ) 10−4

Demand scaling proportion (|S|/|J|) {10,20,40,60,80, 100} (%)

1) Improvement of α: The metric is the objective function

of MaxD. It reflects the capacity improvement of S (i.e.

the user-centric performance).

2) |J((CoMP))|: This metric is the number of UEs involved

in CoMP. It is used to relate the amount of CoMP to the

capacity improvement.

3) Increase (abbreviated as “inc”) of delivered demand:

The metric is the amount of relative increase of the total

delivered demand. It reflects the capacity improvement

of J, (i.e., the network-wise performance).

4) |J(CoMP) ∩ S|: This metric is the number of CoMP

UEs inside S. The metric is used for examining how

CoMP for UEs inside S affects the demand scaling

performance. One can also infer the number of CoMP

UEs outside S by this metric together with Metric 2).

In the remaining parts of the section, we show the four

metrics as functions of the number of UEs in S (i.e., |S|), and

the RRH load limit ρ̄. Since our proposed algorithm employs

a user-centric strategy for demand scaling, as for comparison,

we refer to the strategy of scaling up demand for all UEs as

a fairness-based strategy.

A. Performance with Respect to |S| (with ρ̄ = 1.0)

By observing Figure 2, as expected for Metric 1), one can

achieve more improvement of α by CoMP when the size of S

is smaller. The reason is very understandable: With the same

amount of resource, enhancing the performance for a small

group of UEs is generally easier than for a larger group. CoMP

achieves considerable improvement of α, ranging from 13%

to 28%.

3The method of obtaining this user demand is as follows. For any initialized
dj (j ∈ J), applying Theorem 5 directly yields the corresponding demand
scaling factor α, which leads to that at least one RRH i (i ∈ R) reaching
the load limit. Our expected user demand equals the initial demand multiplied
by this α.

The user-centric performance benefits from CoMP through

both direct and indirect effects. For explanation, we use

Figure 1 as an illustration. Figure 1 shows some snapshots of

our experiments, where the UEs and the RRHs are illustrated

by dots and rectangles, respectively. The non-CoMP UEs in

S are marked red. The CoMP UEs in S are marked green.

The CoMP UEs in J\S are marked blue. The other UEs are

in light gray. Basically, there are two ways for enhancing the

capacity performance of S: Using CoMP for UEs in S or UEs

in J\S. That the former generates benefits is apparent, since the

spectrum efficiency would be increased for S, which is a direct

effect of using CoMP. As for the latter, since CoMP raises

the RRH resource efficiency for serving UEs, using CoMP

for J\S costs less resource than the non-CoMP case. As a

result, there would be more available resource for scaling up

the demand of UEs in S. Furthermore, the reduction of an RRH

load results in lower interference to the other RRHs, leading to

an indirect effect for performance enhancement. On the other

hand, we remark that not every UE benefits from being served

by CoMP. In Figure 1, those UEs in light gray do not fulfill

Lemma 7 in CoMP selection. Experimentally, forcing them

to use CoMP leads to virtually no capacity improvement or

even worse performance, due to that those UEs may only have

one RRH being in good channel condition to them. Such UEs

would not benefit from CoMP.

The number of UEs participating in CoMP has a strong

influence on Metric 1). This is analyzed based on three

observations as follows. As the first observation, the trends

of Metric 1) and Metric 2) are very similar. Both metrics

are influenced by the size of S. For the second observation,

by Metric 2), when the size of S is smaller, more UEs tend

to be involved in CoMP, which is the reason why Metric 1)

gets better when |S| becomes smaller. The third observation

explains why more UEs would be involved in CoMP when |S|

becomes smaller. Note that though |J(CoMP)| increases with the

decrease of |S|, |J(CoMP) ∩ S| however decreases with |S| (see

Metric 2) and Metric 4)). It means that, with the decrease of |S|,

more UEs outside S and fewer UEs inside S would participate

in CoMP. The former increases faster than the reduction of

the latter. Recall that using CoMP for S and J\S leads to

direct and indirect effects of benefits. We conclude that the

two effects affect the performance of S to different extents

with respect to the group size of S. The reason is that, if we

scale up demands for many UEs, due to the resulted intensive

traffic, directly using CoMP to raise the spectrum efficiency

for S is the most effective way for improving the performance

of α. One can see by Metric 4) that the number of CoMP

UEs in S increases with |S|. Though the network still gains

from the indirect effect of CoMP, the benefit is much more

limited compared to the direct effect. On the other hand, when

only a small proportion of UEs requires demand scaling (i.e.

small |S|), the gain from the direct effect is limited by the

number of UEs in S. In this case, it is more beneficial to

focus on the other UEs (i.e. J\S) of which the number is

much higher than |S|. As a consequence, the indirect effect of

CoMP becomes dominating, i.e., reducing the RRH load with

CoMP in order to alleviate the interference to S for increasing

α. Algorithm 1 indeed seeks for a resource configuration that
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(a) |S| = 20 (b) |S| = 40 (c) |S| = 60 (d) |S| = 80

Figure 1. This figure shows some snapshots of the optimized CoMP selections. The UEs and the RRHs are illustrated by dots and rectangles, respectively.
The number of UEs in S are 20, 40, 60, and 80, respectively. The non-CoMP UEs in S are marked red. The CoMP UEs in S are marked green. The CoMP
UEs in J\S are marked blue. The other UEs are in brown. Note that the locations of RRHs are randomly generated within the hexagonal region in all our
simulations. The figure is obtained from one simulation and is representative for all the simulation results.
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Figure 2. This figure shows the four metrics in function of |S|. The non-
CoMP case is used as baseline for Metrics 1) and 3).

maximumly leverages the two effects in order to achieve the

highest improvement by CoMP. This is coherent with the

snapshots in Figure 1. Visually, the ratio between CoMP UEs

inside S over those outside S varies apparently with respect to

|S|.

In Figure 2, the user-centric capacity performance (i.e. Met-

ric 1)) is different from the network-wise capacity performance

(i.e. Metric 3)). Employing a user-centric strategy may help

to deliver considerably more bits to those UEs to be scaled,

compared to scaling up the demand for all UEs. If the group

size is small, from the network’s point of view, the capacity

improvement is not as much as being achieved by scaling the

demand for all UEs. Next, we observe that Metric 3) has a
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Figure 3. This figure shows the four metrics in function of ρ̄. The non-CoMP
case is baseline for Metrics 1) and 3). The legend applies to all subfigures.

strong correlation with Metric 4). The more UEs in S are

served by CoMP, the more the bits can be delivered network-

wisely. As one can see that though |S∩J(CoMP)| increases with

respect to S, |J(CoMP)| − |S ∩ J(CoMP)| decreases (see this by

combining Metric 4) with Metric 2)), meaning that the indirect

effect of CoMP degenerates with |S| because the UEs outside

S becomes fewer.

As a conclusion, user-centric demand scaling benefits from

CoMP directly as well as indirectly. Namely, serving UEs

inside S and outside S with CoMP both contribute.
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B. Performance with Respect to ρ̄

In Figure 3, we show Metrics 1)–4) as function of ρ̄. As

expected, the larger ρ̄ is, the higher improvement can be

achieved via CoMP. By both Metric 1) and Metric 3), when

there is better availability of resource, the impact of the size

of S on the achievable performance is higher. By Metric 3),

one can see that the increase of total delivered demand is

almost linear in |S| (when ρ̄ is 0.6 or higher). Due to the

limitation of resource availability when ρ̄ = 0.4, there may not

be enough resource in RRHs for CoMP cooperations, even if

we target scaling up demand for as many UEs as there are. As

a consequence, the total delivered demand may not increase

even if CoMP is enabled. One can see from Metric 2) that

the number of UEs in CoMP is lower when ρ̄ = 0.4 than the

cases with ρ̄ > 0.6. Specifically, the number of UEs in S that

participate in CoMP is significantly lower when ρ̄ = 0.4, as

shown by Metric 4). As another observation, one can see that

Metric 3) and Metric 4) have the same trend under all settings

of ρ̄. It indicates that the direct effect of CoMP for UEs in S

has a high correlation to the total delivered bits demand.

By combining Metric 2) with Metric 4), one can see that

when |S| is small (e.g. |S| = 20), though |J(CoMP)| increases

quickly with ρ̄, |J(CoMP) ∩ S| does slowly. It means that the

number of CoMP UEs outside S increases quickly with the

increase of the available resource. Hence, when there is more

resource, it is more flexible for RRHs to cooperate in CoMP

to serve J\S for RRH load reduction. As a consequence, the

optimization leads to more UEs outside S to be involved in

CoMP.

In conclusion, the availability of resource has an influence

on the number of CoMP UEs. When |S| becomes smaller, the

UEs in S benefit more from increasing ρ̄ and more UEs outside

S should be served by CoMP.

C. Performance with Respect to Resource Consumption

We show the relationship between user demand scal-

ing/satisfaction and time-frequency resource allocation in Fig-

ure 4. Namely, we evaluate how much RRH load (i.e. amount

of resource) is required to achieve more demand delivery by

optimizing CoMP selection. Our test scenarios have 19 cells.

The radius of each cell is 100 m. Each cell is deployed with

30 UEs and 3 RRHs. The other settings follow Table I.

Figure 4 compares the load levels of non-CoMP and CoMP,

in order to show how much load is needed for achieving

a 10%–15% increase of demand delivery by Algorithm 4.

By observation, there is very slight difference in the total

RRH load levels between non-CoMP and CoMP, though the

latter delivers significantly more demand than the former.

In addition, we found that optimizing the CoMP selection

indeed reduces the average RRH load consumption for the

highly-loaded RRHs. Therefore, we conclude that the time-

frequency resource efficiency can be considerably improved

by optimizing CoMP selection.

D. CoMP Selection Comparison

In this subsection, we compare our proposed CoMP selec-

tion mechanism with another one that is proposed for user-

centric scenarios [43]. We tailor the CoMP selection method
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Figure 4. This figures shows the time-frequency resource consumption (i.e.
RRH load) for delivering user demands. Though not shown by the figure, we
remark that, with non-CoMP being the baseline, CoMP leads to 10%–15%
percentage of improvement on α for all the data in this figure.

in [43] to be applicable in our model. We use the formula

below as the utility of each UE for CoMP selection, which is

designed for elastic application scenarios as considered by the

authors.

uj(Cj) =
ln(Cj + 1)

ln(dj + 1)
(27)

In (27), recall that Cj and dj represent the achievable bits rate

and the bits demand of UE j, respectively. Therefore we have

0 6 uj 6 1. Suppose κ is the current RRH-UE association,

and κ′ the a new association that differs with κ only in one

RRH-UE pair (i, j) by κij = 0 and κ ′
ij = 1. By keeping the

cell loads ρ fixed, we define the utility increase by adding

the CoMP link (i, j) as ∆uij = uj(Cj(κ
′)) − uj(Cj(κ)).

The utility-based CoMP selection rule is: κij = 1 if and

only if ∆uij > 0 (i ∈ I, j ∈ J). Once a new CoMP link

is added, Theorem 5 is used to obtain the optimum of the

remaining resource allocation problem. Therefore, the resource

allocation is performed in the same manner for both our CoMP

selection method and the utility-based one. The difference is

that our method considers the interference influence caused by

the dynamic change of RRH loads.

The comparison is shown in Figure 5. We can see that

our proposed method outperforms the utility-based CoMP

selection mechanism. In general, the improvement of α by

our proposed CoMP seleciton is 1.5 times more than the

utility-based CoMP selection. We remark that, compared to

the utility-based CoMP selection, our proposed method takes

into account the dynamic change of the cell load when a new

CoMP link is added (see Section IV-C). Hence our proposed

method outperforms the utility-based one, if cell load coupling

is taken into account.

E. Convergence

We show by Figure 6 the convergence of the proposed

method in (21) and (22), with |S| = 10, 40, 70, 100. Initially

we have α(0) = 1 and µ(0) = 0. Numerically, one can see

that both α and µ converge fast. By Figure 6, under the same

convergence tolerance parameter, the larger |S|, the faster the
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convergence. Moreover, larger |S| requires fewer algorithmic

iterations, as it becomes fast for RRHs to reach the resource

limit (i.e. the condition H(ρ) = 1). As for our convergence

tolerance setting ǫ = 10−4, the method converges within 25

iterations for all cases. We remark that when |S| = 100, the

iterations in Theorem 5 are actually computing the eigenvalue

and eigenvector of a concave function and converge faster than

the other cases. In general, Theorem 5 serves as an efficient

sub-routine for Algorithm 1.

F. Additional Results with Presence of Fronthaul Capacity

In some scenarios, the capacity of the fronthaul links may

turn out to be the performance bottleneck. Denote by the

fronthaul link capacity limit of RRH i by ci. Considering this

capacity leads to the additional constraint of
∑

j∈Ji∩S αdj 6

ci, i ∈ R.

Algorithm 1 can be easily extended to incorporate fronthaul

capacity, by imposing a condition for Step 9. Namely, adding a

link is considered, only if the capacity limit of the fronthaul of

the RRH in question is not reached yet for the current demand

scaling factor.

In Figure 7, we show the impact of fronthaul capacity on

demand scaling. The maximum fronthaul capacity is set to a

sufficiently large value such that it wouldn’t be a bottleneck of
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Figure 7. The impact of fronthaul capacity on demand scaling.

the system performance. The capacity shown in the x-axis is

normalized with respect to this value. As can be seen, demand

scaling is fronthaul-limited when the capacity is low, as in-

creasing this capacity consistently improves the scaling factor.

However, the curve becomes eventually saturated, meaning

that the bottleneck is now due to radio access instead of the

fronthaul. The results also show out algorithm is useful for

studying which part of the network imposes the performance-

limiting factor.

VI. CONCLUSION

We have proved how CoMP selection and demand scal-

ing can be jointly optimized and demonstrated how CoMP

improves the performance of user capacity in user-centric C-

RAN. We have revealed that the users involved in demand

scaling benefit both directly and indirectly from CoMP, by

increasing the spectrum efficiency, and alleviating the interfer-

ence among RRHs, respectively. Furthermore, the two effects

contribute to the performance to different degrees with respect

to the number of users for demand scaling. Finally, the user-

centric demand scaling method proposed in this paper is not

limited by the C-RAN architecture, and can be applied to other

interference models that fall into the SIF framework.

One extension of the work is to consider beamforming

by deploying multiple antennas at each RRH. This would

bring additional performance gains, in addition to what the

current work has focused on. As long as the strategy of

setting the beamforming vector is given, our analysis remains

applicable as the received signal and interference terms remain

linear. On the other hand, joint optimization of association

and beamforming, with presence of load coupling between

the cells, leads to a new type of optimization problem for our

forthcoming work.

APPENDIX

PROOF OF THEOREM 5

Lemma 9. For any given α > 0, denote µα = limk→∞ µ
(k)
α

where

µ(k+1)
α =

Fα(µ
(k))

H ◦ Fα(µ(k))
. (28)

Then H(µα) = 1 and Fα(µα) = λαµα for unique λα > 0.
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Proof. The lemma follows from Theorem 1 in [38].

Lemma 10. For any given µ > 0, define P : R++ → R++:

P : α 7→ 1

H ◦ Fα(µ)
. (29)

Then P(α) is an SIF.

Proof. Given µ, denote ϕj = fj(µ). Then

P(α) =
1

1
ρ̄

maxi∈R

∑
j∈Ji

ϕj

πj(α)

For any i ∈ R, the term
∑

j∈Ji

ϕj

πj(α)
is convex in α. Thus,

the term maxi∈R

∑
j∈Ji

ϕj

πj(α)
is convex in α, and thus the

function P(α) is concave in α (strictly concave if there is at

least one j such that π(α) = α). The concavity implies the

scalability. In addition, P(α) is monotonic in α. Hence the

conclusion.

Lemma 11. For any µ ∈ R
n
+ and any λ ∈ R++, λ > λα if

λµ > Fα(µ).

Proof. The lemma follows from Theorem 13 in [38] .

Lemma 12. Define T : R++ → R++:

T : α 7→ 1

H ◦ Fα(µα)
(30)

where µα follows the definition in Lemma 9. With S 6= φ,

T(α) is an SIF.

Proof. By Lemma 9, we have Fα(µα) = λαµα. Thus, for

function T , T(α) = 1/H(λαµα) holds. Since H(µα) = 1, we

have

T(α) = 1/H ◦ Fα(µα) = 1/λαH(µα) = 1/λα (31)

We first prove the monotonicity. Suppose α ′ > α. We

use λα′ and µα′ to represent respectively the eigenvalue

and the eigenvector of Fα′ such that Fα′(µ ′) = λα′µα′

and H(µα′) = 1. For vector µα, one can easily verify

that Fα′(µα) 6 Fα(µα). Therefore λαµα > Fα′(µα). By

Lemma 11, λα′ 6 λα. Hence T(α ′) > T(α) and the

monotonicity holds.

We then prove the scalability. Consider for any η > 1 the

function 1
η
Fα(µ), and denote by λ ′ and µ ′ respectively its

eigenvalue and eigenvector, i.e., 1
η
Fα(µ

′) = λ ′µ ′. Denote by

ληα and µηα respectively the eigenvalue and eigenvector of

function Fηα, i.e., Fηα(µηα) = ληαµηα. For vector µηα, one

can verify that the following relation holds.

ληαµηα = Fηα(µηα) >
1

η
Fα(µηα) (32)

Based on Lemma 11, λ ′ 6 ληα holds. Specifically, with S 6=
φ, we have for at least one i ∈ R such that πi(α) = 1. We

conclude λ ′ < ληα due to the monotonicity of Fα(µ) in µ. In

addition, by (28), we have the equation below.

µ ′ = lim
k→∞

1
η
Fα(µ

(k))

H ◦ 1
η
Fkα(µ)

= lim
k→∞

Fα(µ
(k))

H ◦ Fα(µ(k))
= µα (33)

Also, we have

1

η
Fα(µ

′) = λ ′µ ′ ⇔ Fα(µ
′) = ηλ ′µ ′. (34)

Therefore, by Lemma 9, ηλ ′ = λα, i.e. 1/λ ′ = η/λα.

Combined with λ ′ < ληα, we have

T(ηα) =
1

ληα
<

1

λ ′
=

η

λα
= ηT(α). (35)

Hence the conclusion.

We then prove Theorem 5 as follows.

Proof. The proof is straightforward, based on Lemmas 9,

Lemma 10, and Lemma 12. Denote by α
(0)
µ , α

(1)
µ , . . . , αµ the

sequence generated by P(α), with any α
(0)
µ > 0, for any given

µ > 0. By Lemma 10, αµ is unique for µ. Similarly, denote

by µ
(0)
α ,µ

(1)
α , . . . ,µα the sequence generated by (28), with

any µ
(0)
α > 0, for any given α > 0. By Lemma 9, αµ is

unique for α, and at the convergence we have H(µα) = 1.

According to Lemma 12, T(α) is an SIF of α, then the α∗

satisfying α∗ = T(α∗) is unique. By fixing one of α and µ

and compute the sequence for the other alternately, the process

falls into the category of asynchronous fixed point iterations,

of which the convergence is guaranteed [44, Page 434]. At the

convergence, we have some µ∗ > 0 such that

µ∗ =
F∗α(µ

∗)

H ◦ F∗α(µ∗)
, with H(µ∗) = 1. (36)

Hence the conclusion.

PROOF OF THEOREM 6

Proof. The proof is based on the fact that the solution obtained

from Theorem 5 fulfills Lemma 4. First, by Lemma 9, in the

iterations in Theorem 5 we have Fα∗(µ∗) = λα∗µ∗ for a

unique λα∗ > 0 such that H(µ∗) = 1. Also, α∗ = 1/H◦F(µ∗).

Then, by combining these two equalities we get:

α∗ =
1

H(λα∗µ∗)
=

1

λα∗H(µ∗)
. (37)

Since H(µ∗) = 1, we then have:

λα∗ =
1

α∗
. (38)

Hence we obtain the following derivation:

Fα∗(µ∗) =
1

α∗
µ∗ ⇔ α∗Fα∗(µ∗) = µ∗ ⇔

α∗fj(µ)

πj(α∗)
= µ∗

j j ∈ J⇔
{

µj = α∗fj(µ
∗) j ∈ S

µj = fj(µ
∗) j ∈ J\S

(39)

By Lemma 4, i.e., the sufficient condition of optimality, the

theorem hence holds.
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