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Abstract

Massive multiple-input multiple-output (MIMO) is recognized as a promising technology for the

next generation of wireless networks because of its potential to increase the spectral efficiency. In initial

studies of massive MIMO, the system has been considered to be perfectly synchronized throughout the

entire cells. However, perfect synchronization may be hard to attain in practice. Therefore, we study

a massive MIMO system whose cells are not synchronous to each other, while transmissions in a cell

are still synchronous. We analyze an asynchronous downlink massive MIMO system in terms of the

coverage probability and the ergodic rate by means of the stochastic geometry tool. For comparison, we

also obtain the results for the synchronous systems. In addition, we investigate the effect of the uplink

power control and the number of pilot symbols on the downlink ergodic rate, and we observe that there

is an optimal value for the number of pilot symbols maximizing the downlink ergodic rate of a cell. Our

results also indicate that, compared to the cases with synchronous transmission, the downlink ergodic

rate is more sensitive to the uplink power control in the asynchronous mode.

I. INTRODUCTION

The need for a higher data rate is getting a vital factor in the next generation of wireless

networks. According to [1], a solution for supporting high data rates is to increase the spectral

efficiency through advances in multiple-input multiple-output (MIMO) systems. Marzetta, in

his seminal article [2], introduced massive MIMO as a promising technology that significantly
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increases the spectral efficiency. In [2], a perfectly synchronized massive MIMO system is

considered and it is shown that the synchronous assumption is the worst possible case from

the standpoint of the so-called pilot contamination phenomenon. However, as mentioned in [3],

time-synchronous transmission is hard to attain over a large coverage area. In addition, the worst

case, in terms of the pilot contamination, does not necessarily lead to the lowest ergodic rate,

because the inter-cellular interference is negligible in the limit of an infinite number of antennas

[2], however for a large but finite number of antennas, the inter-cellular interference is also

important. Thus, it is interesting to analyze an asynchronous massive MIMO system.

Asynchrony is addressed in [3], where an uplink massive MIMO system is analyzed. In

[3], it is assumed that transmissions in each cell are synchronous, while pilot and uplink data

transmissions in different cells are asynchronous. The analysis in [3] indicates that the synchrony

or asynchrony has no impact on the uplink transmission performance. In [4]–[6], the downlink

direction of the synchronous massive MIMO systems is analyzed in terms of the achievable rate,

the pilot contamination problem, and efficient precoding designs. The authors in [4] derive the

achievable rate of the system for both maximum ratio combining (MRC) and zero forcing (ZF)

precoders. In addition, [5] analyzes the downlink user capacity under the pilot-contaminated

scenario. Finally, in [6], a new multi-cell minimum mean square error (MMSE) based precoding

method is proposed that mitigates the pilot contamination problem.

Stochastic geometry is a powerful tool to evaluate the performance of large scale networks

[7]–[9]. Here, it is assumed that the base stations are distributed randomly. The authors of

[10] showed that the approach of using randomly distributed base stations is not only more

tractable for system analysis but also as accurate as a grid model. In the literature, stochastic

geometry has been rarely considered for the performance evaluation of synchronous massive

MIMO systems [11]–[15]. In these works, base stations are assumed to be distributed according

to a homogeneous Poisson point process (HPPP) [7]. Particularly, [11] maximizes the uplink

energy efficiency with respect to different system parameters. In [12], stochastic geometery

is used to develop a mathematical framework for computing the coverage probability and the

ergodic rate. In addition to assuming an HPPP for the base stations, [13] models the distribution

of the users with the same pilot sequence except for the desired user by an HPPP outside a

ball centered at the desired base station location, i.e., an exclusion ball. In contrast, [14] and

[15] consider the coverage area of each cell as a circle around each base station, with possible
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overlap among the areas of adjacent cells.

The main contributions of our paper are as follows.

Asynchronous and synchronous downlink massive MIMO modeling and analysis: In

this paper, we analyze a massive MIMO system, whose cells are not synchronous, while the

transmissions in each cell are still synchronous. In order to study an asynchronous downlink

massive MIMO system, we first estimate the channel coefficients and compute the downlink

signal-to-interference-plus-noise ratio (SINR). Then, the coverage probability and the ergodic

rate are derived by using stochastic geometry. Moreover, we analyze massive MIMO systems in

the synchronous mode and compare the results with those achieved in the asynchronous mode.

Our results are presented in the cases with an exclusion ball model as in [13]. We also consider

fractional power control in the uplink transmission to compensate for a fraction of the path loss

and to mitigate the near-far problem from intra-cell interference.

Distribution of distances: We derive the distributions of various distances, which play key

roles in coverage probability and the ergodic rate analyses. In this context, we will acquire

the probability distribution function (PDF) of three types of distances, namely, i) the distance

between a user and its serving base station, ii) the distance between a user and its serving base

station given the distance between the same user and another arbitrary base station, and iii) the

distance between a user and its serving base station given the distance between another user and

its serving base station as well as the distance between these two users.

System design insights: Through simulation evaluations, we validate the analytical results

and derive the downlink ergodic rate of a cell as a function of the uplink power control parameter

and the number of pilot symbols. We observe that there are optimal values for these parameters

maximizing the downlink ergodic rate of the cell.

Our results indicate that using uplink full power control in the asynchronous mode leads to

zero downlink rate. In addition, in most considered cases, we observe higher downlink ergodic

rate in the synchronous case, compared to the cases with asynchronous transmission. Hence, the

synchronous assumption is not necessarily the worst possible scenario, in terms of ergodic rate.

The paper is organized as follows. In Section II, the system model is given. Section III presents

the channel estimation procedure. Section IV analyzes the downlink massive MIMO system using

stochastic geometry and derives closed-form expressions for the coverage probability and the

ergodic rate. Simulation results and discussions are outlined in Section V. Finally, Section VI
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Fig. 1. The system model for K = 2. Each base station has M antennas, while users have one antenna.

concludes the paper.

The following notations are used through the paper. Bold lower-case letters denote vectors,

and bold upper-case letters represent matrices. E{·}, P{·}, f (·), δ (·, ·), and I (·) denote the ex-

pectation, the probability, the PDF, the Kronecker delta, and the indicator functions, respectively.

In addition, the Euclidean norm is represented by ‖·‖, and the absolute value is denoted by |·|.

We use X∗, XT , XH to represent the conjugate, the transpose, and the Hermitian transpose of

X, respectively. IM stands for the M ×M identity matrix. We use C to represent the sets of all

complex-valued numbers. Finally, we use CN (·, ·) to denote a multi-variate circularly-symmetric

complex Gaussian distribution.

II. SYSTEM MODEL

We consider a cellular network, operating under 6 GHz band, with one base station in each

cell. Each base station has an antenna array with M antennas simultaneously scheduling K < M

single-antenna users. Figure 2 shows the system model for K = 2. The channel between each

user and its serving base station is assumed to remain constant during a coherence time interval,

denoted by Tc, which is equivalent to Ntot symbols transmissions. In addition, the channel model

is considered frequency-nonselective.

It is assumed that the system uses time-division duplexing (TDD) for transmission in the uplink

and downlink directions. Thus, it is sufficient to estimate the channel vector in one direction. The
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Fig. 2. The transmission protocol during a coherence time interval.

channel vector is estimated using pilot sequences. In massive MIMO, it is usually assumed that

users send the pilot sequences and the base stations estimate users’ channel vectors. Different

and orthogonal pilot sequences are assigned to users of each cell. The pilot sequence of the k-th

user is denoted by ϕk ∈ CNp×1, each element with magnitude of one. Therefore, we have

ϕH
k ϕl = Npδ(l, k). (1)

Due to the coherence time limitation, Np cannot be large. Hence, we consider the same set of

orthogonal sequences in all cells, i.e., user k of each cell, uses the same pilot sequence. Since

the maximum number of mutually orthogonal sequences of the length Np is equal to Np, we

assume that K = Np.

There are three transmission phases during a coherence time interval, namely, pilot transmis-

sion (channel estimation), downlink data transmission, and uplink data transmission (see Fig. 2).

In the first phase, the users transmit the pilot sequences. At the end of pilot transmission phase, the

base station estimates the channel vectors of its serving users. Hence, the base station derives the

precoding and combining vectors for downlink and uplink data transmission accordingly. Next,

in the downlink data transmission, the base station sends the users’ downlink data by using the

precoding vector for each user derived using the user channel estimation vector. Finally, in the

last phase, the users transmit their uplink data, and the base station detects the users’ data with

the help of the combining vectors. The number of downlink and uplink symbols during each

coherence block are denoted by Nd and Nu, respectively. Also, we define Z = Nd
Nu

. In the literature,

it is usually assumed that all cells are synchronous [2], [4]–[6], [11]–[13], [15]. We refer to this

case as synchronous mode. In contrast, while we assume synchronous transmission within each

cell, the users in different cells are asynchronous. We refer to this case as asynchronous mode.

In this paper, we analyze both the synchronous and the asynchronous modes.
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A. Signaling and Channel Model

We consider both the small scale fading and the large scale path loss. The large scale path loss

depends on the distance between the transmitter and the receivers, and the small scale fading

is considered as a complex-Gaussian distributed random variable. It is notable that we do not

consider the shadowing effect.

There are three types of channels:

• The channel between a user and a base station: The channel vector between the k-th

user of the j-th cell and the l-th base station is denoted by hljk ∈ CM×1 and modeled by

hljk =
√
βljkgljk, βljk = ωr−αljk , gljk ∼ CN (0, IM) , (2)

where βljk and gljk stand for the large scale path loss and the small scale fading, respectively.

In (2), rljk denotes the distance between the k-th user of the j-th cell and l-th base station,

α > 2 is the path loss exponent, and ω stands for the path loss at a reference distance of 1

km.

Since M is large, according to the law of large numbers, we approximately have [2]

1

M
hHljkhl′tk′ =

1

M

√
βljkβl′tk′g

H
ljkgl′tk′ ≈ βljkδ(l, l

′)δ(j, t)δ(k, k′). (3)

• The channel between two base stations: The channel matrix between the j-th base station

(transmitter) and the l-th base station (receiver) is denoted by Hlj ∈ CM×M . Here, the

channel is modeled as

Hlj =
√
βljGlj, βlj = ωr−αlj , (4)

where rlj is the distance between the l-th base station and the j-th one. We let βlj and Glj

denote the large scale path loss and the small scale fading, respectively.

• The channel between two users: The channel between the k-th user of l-th cell and the

k′-th user of the j-th cell is a scalar which is denoted by hlkjk′ and modeled by

hlkjk′ =
√
βlkjk′glkjk′ , βlkjk′ = ωr−αlkjk′ , glkjk′ ∼ CN (0, 1), (5)

where rlkjk′ is the distance between the two users, and βlkjk′ and glkjk′ denote the large

scale path loss and the small scale fading, respectively.

In the downlink phase, the l-th base station uses a precoding vector, wlk, in order to transmit

data to the k-th user of its cell, where wlk =
u∗llk
‖ullk‖

. ullk is the observation vector of hllk, obtained
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by multiplying the l-th base station received signal in pilot transmission phase by the k-th user’s

pilot sequence. Base stations transmit the downlink users’ data with constant power Pd.

The l-th base station uses the combining vector h
H

llk to detect the uplink data of the k-th user

in its cell, where hllk is the linear minimum mean square error (LMMSE) channel estimation of

hllk. In the uplink data and pilot transmission phases, users transmit their data using fractional

power control, the same as used in the LTE [13], [16], i.e., the k-th user of the l-th cell uses

power Plk = Puβ
−ε
llk , where 0 ≤ ε ≤ 1 is the power control parameter, and Pu is the uplink open

loop transmit power. When ε = 0, there is no power control, and when ε = 1, we have full

power control.

The uplink and downlink signal of the k-th user of the l-th cell are denoted by su
lk and sd

lk,

respectively. We consider E |su
lk|

2 = E
∣∣sd
lk

∣∣2 = 1.

B. Spatial Modeling

Base stations are distributed by HPPP Φb of density λ. Each base station simultaneously

schedules K users. It is assumed that a user connects to the nearest base station. Users of

the same cell are distributed uniformly and independently over their Voronoi area, with the

exclusion of a central disk of radius r0 around their base station. Let’s assume the k-th user

of the l-th cell as the desired user. Then, the k-th users of all cells except for the desired user

are approximately distributed by the exclusion ball model introduced in [10]. According to the

exclusion ball model, such users are distributed by the Poission point process (PPP) Φu
lk of

density λ1 = λI(r > Re), which denotes that the interfering users are distributed by HPPP of

density λ outside a central disk of radius Re around the base station of the desired cell. As in

[13], we consider Re = (πλ)−
1
2 , whereby the average number of excluded users from the HPPP

in the exclusion ball model is equal to 1.

III. CHANNEL ESTIMATION

Channel vector is estimated using pilot signals. First, all users in the same cell simultaneously

transmit their pilot sequences. Then, to estimate hllk, the l-th base station calculates the correla-

tion between the received signal and ϕk, the pilot sequence of the k-th user, by multiplying the

received signal with 1
Np
ϕ∗k, which leads to computing the observation vector, denoted by ullk.
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Finally, the l-th base station obtains LMMSE channel esimation vector, denoted by hllk, based

on ullk, as explained in the following.

In the asynchronous mode, while the l-th cell is in the pilot phase, other cells may be in

one of the three phases. In order to consider these three cases, we define three binary random

variables χpp
ljn, χpu

ljn, and χpd
ljn which can take the values 1 and 0. Consider that users of the l-th

cell are transmitting their n-th symbols of the pilot sequence. Meanwhile, if the j-th cell is in

the pilot phase, χpp
ljn = 1, but if the j-th cell is in the uplink phase, χpu

ljn = 1. Finally, if the j-th

cell is in the downlink phase, we have χpd
ljn = 1. It is straight forward to show that χpp

ljn, χpu
ljn,

and χpd
ljn take the value 1 with probabilities Np

Ntot

Np

Ntot
, Np

Ntot

Nu
Ntot

, and Np

Ntot

Nd
Ntot

, respectively.

We assume that Sl is the set of base stations that are synchronous with the l-th base station.

In the asynchronous mode, we have Sl = {l}, and in the synchronous mode, Sl includes all

cells. In this way, the received signal of the l-th base station in the pilot transmission phase can

be expressed by

Yp
l =

∑
j∈Sl

K∑
k′=1

√
Pjk′hljk′

[
ϕ

(1)
k′ , ..., ϕ

(Np)
k′

]
+
∑
j 6∈Sl

K∑
k′=1

√
PdHljwjk′

[
χpd
ljNp

s
d(1)
jk′ , ..., χ

pd
ljNp

s
d(Np)
jk′

]

+
∑
j 6∈Sl

K∑
k′=1

√
Pjk′hljk′

[
χpp
lj1s

p(1)
jk′ + χpu

lj1s
u(1)
jk′ , ..., χ

pp
ljNp

s
p(Np)
jk′ + χpu

lj1s
u(Np)
jk′

]
+ N, (6)

where N ∈ CM×Np is the noise in the l-th base station (receiver), whose elements are independent

and identically distributed complex Gaussian random variables with zero mean and variance σ2.

Multiplying the received signal with 1
Np
ϕ∗k, we have

ullk =
∑
j∈Sl

√
Pjkhljk +

∑
j 6∈Sl

K∑
k′=1

√
Pjk′hljk′F (l, k, j, k′)

+
∑
j 6∈Sl

K∑
k′=1

√
PdHljwjk′G (l, k, j, k′) + N

ϕ∗k
Np
, (7)

where F (l, k, j, k′) and G (l, k, j, k′) are

F (l, k, j, k′) =
[
χpp
lj1s

p(1)
jk′ , ..., χ

pp
ljNp

s
p(Np)
jk′

] ϕ∗k
Np

+
[
χpu
lj1s

u(1)
jk′ , ..., χ

pu
ljNp

s
u(Np)
jk′

] ϕ∗k
Np
, (8)

G (l, k, j, k′) =
[
χpd
lj1s

d(1)
jk′ , ..., χ

pd
ljNp

s
d(Np)
jk′

] ϕ∗k
Np
. (9)

It is straightforward to show that F (l, k, j, k′) and G (l, k, j, k′) have zero mean and the variances
Np+Nu

N2
tot

and Nd
N2

tot
, respectively. Since ullk depends on other users’ channel estimation, it cannot be
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concluded that ullk has necessarily Gaussian distribution. For instance, if at the time of downlink

transmission of the l-th cell, the j-th cell starts transmitting pilot signals, the precoding vector

of the k′-th user of the j-th cell wjk′ and the channel between the l-th base station and j-th

base station Hlj will be dependent. However, we approximately consider Gaussian distribution

for ullk. In Section V, we show that this is a good approximation. In this way, we have

ullk ∼ CN (0,∆lkIM) , (10)

∆lk =
E ‖ullk‖2

M
=
Plk
M

E ‖hllk‖2 +
∑

j∈Sl\{l}

Pjk
M

E ‖hljk‖2

+
∑
j 6∈Sl

K∑
k′=1

(
Pjk′

M
E ‖hljk′‖2 E |F (l, k, j, k′)|2 +

Pd

M
E ‖Hljwjk′‖2 E |G (l, k, j, k′)|2

)
+
σ2

Np

= Plkβllk +
∑

j∈Sl\{l}

Pjkβljk +
Np +Nu

N2
tot

∑
j 6∈Sl

∑
k′

Pjk′βljk′ + Pd
NpNd

N2
tot

∑
j 6∈Sl

βlj +
σ2

Np
. (11)

Using the observation vectors ullk′ , the LMMSE channel estimation of hljk can be written as

hljk =
∑K

k′=1Ak′ullk′ . The optimal coefficient of the estimator is obtained by applying the

orthogonality principle as

Ak′ =
E
{
hHljkullk′

}
E |ullk′|2

=

√
Pjkβljk

∆lk′

δ (k, k′) j ∈ Sl,

F (l, k′, j, k) j 6∈ Sl.
(12)

Thus, we have

hljk =
√
Pjkβljk


1

∆lk
ullk j ∈ Sl,∑K
k′=1

ullk′
∆lk′

F (l, k′, j, k) j 6∈ Sl.
(13)

Finally, the distribution of hljk is obtained

hljk ∼

CN
(

0, Pjkβ
2
ljk

∆lk
IM

)
j ∈ Sl,

CN
(

0, Np+Nu

N2
tot

∑K
k′=1

Pjkβ
2
ljk

∆lk′
IM

)
j 6∈ Sl.

(14)

Therefore, channel estimation error, defined as h̃ljk = hljk −hljk, has the following distribution

h̃ljk ∼ CN
(

0, βljkIM − E
{
hljkh

H

ljk

})
, (15)

where E
{
hljkh

H

ljk

}
can be obtained through (14) for j ∈ Sl and j 6∈ Sl.
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Fig. 3. Received signals of the desired user in the downlink phase of an asynchronous system. The desired cell is shown with

red color. Green vectors indicate the useful signals and the bule ones show the interfering signals. Also, each link is labeled

with its channel vector.

IV. STOCHASTIC GEOMETRY ANALYSIS

Consider that the l-th cell is transmitting its n-th downlink symbols. Meanwhile, the k-th user

of the l-th cell can be exposed to different types of interfering signals, namely downlink, uplink,

and pilot transmissions of other cells. Figure 3 shows all types of these interfering signals. In

this way, the received signal of the k-th user in the l-th cell is

ylk =
√
Pd

K∑
k′=1

hTllkwlk′s
d
lk′ +

√
Pd

∑
j∈Sl\{l}

K∑
k′=1

hTjlkwjk′s
d
jk′ +

∑
j 6∈Sl

K∑
k′=1

χdd
ljn

√
Pdh

T
jlkwjk′s

d
jk′

+
∑
j 6∈Sl

K∑
k′=1

(
χdp
ljn + χdu

ljn

)√
Pjk′hlkjk′s

d
jk′ + nd, nd ∼ CN

(
0, σ2

)
, (16)

where χdp
ljn, χdu

ljn, and χdd
ljn are binary random variables which can take the values 1 and 0. Consider

that the l-th cell users are receiving their n-th symbols of the downlink data. Meanwhile, if the

j-th cell’s users transmit pilot sequences, χdp
ljn = 1, but if they transmit uplink signals, χdu

ljn = 1.

Finally, if the j-th cell transmits downlink signals, we have χdd
ljn = 1. It is straight forward

to show that χdp
ljn, χdu

ljn, and χdd
ljn take the value 1 with probability Nd

Ntot

Np

Ntot
, Nd
Ntot

Nu
Ntot

, and Nd
Ntot

Nd
Ntot

,

respectively.

It is assumed that the desired user, the k-th user of the l-th cell, knows its related value of

E{hTllkwlk}. Hence, if we consider that the unkown part of the received signal as an uncorrelated

noise, we obtain

SINR =

(
E
{
hTllkwlk

})2

Itot
, (17)
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where

Itot = var
{
hTllkwlk

}
+
∑
k′ 6=k

E
∣∣hTllkwlk′

∣∣2 +
∑

j∈Sl\{l}

∑
k′

E
∣∣hTjlkwjk′

∣∣2
+

∑
j 6∈Sl

∑
k′

χdd
ljnE

∣∣hTjlkwjk′
∣∣2 +

∑
j 6∈Sl

∑
k′

Pjk′

Pd

(
χdp
ljn + χdu

ljn

)
E |hlkjk′ |2 +

σ2

Pd
. (18)

By some calculations, the inverse of the signal-to-interference-plus-noise ratio 1, i.e., SINR−1,

is obtained as

SINR−1 = γ1 + γ2 + γ3, (19)

γ1 =
VM − 1

C2
M

+
Np

C2
M

+
σ2rαllk
PdωC2

M

+
σ2r

α(1−ε)
llk

PuC2
Mω

1−ε +
σ4r

α(2−ε)
llk

NpPuPdC2
Mω

2−ε +
r
α(1−ε)
llk

C2
M

(
Np +

σ2

Pdω
rαllk

)
× ∑

j∈Sl\{l}

rαεjjkr
−α
ljk +

Np +Nu

N2
tot

∑
j 6∈Sl

∑
k′

rαεjjk′r−αljk′ +
PdNpNd

Puω−εN2
tot

∑
j 6∈Sl

r−αlj

 , (20)

γ2 =
Np

C2
M

(
rαllk + r

α(2−ε)
llk ∆

(1)
lk

) ∑
j∈Sl\{l}

r−αjlk +
Np

C2
M

(
rαllk + r

α(2−ε)
llk ∆

(1)
lk

)∑
j 6∈Sl

χdd
ljnr

−α
jlk

+
M − 1

C2
M

r2α
llk

∑
j∈Sl\{l}

∆lk

∆jk
r−2α
jlk +

M − 1

C2
M

r2α
llk

Np +Nu

N2
tot

∑
j 6∈Sl

χdd
ljn

∑
k′

∆lk

∆jk′
r−2α
jlk , (21)

γ3 =
(
rαllk + r

α(2−ε)
llk ∆

(1)
lk

) Pu

PdωεC2
M

∑
j 6∈Sl

∑
k′

(
χdp
ljn + χdu

ljn

)
rαεjjk′r−αlkjk′ , (22)

where ∆
(1)
lk = P−1

u ωε−1∆lk−x−α(1−ε) (See Appendix I for details). The terms in (20) are caused

by the intra-cellular interference and the noise. The terms in (21) are from pilot contamination,

and the expression (22) is caused by inter-cellular interference in the uplink direcion.

To analyze the system performance, we need to find the PDF of the received SINR. For

this reason, in Subsection IV-A, we first derive the distributions of different terms of distance.

Then, using these distributions, we derive the PDF of the SINR and the coverage probability

(Subsection IV-B) as well as the ergodic rate (Subsection IV-C).

A. Distance Distribution

In this Subsection, we derive the distributions of the distances required for the coverage

probability and the ergodic rate analysis.

1Since, in the process of obtaining the coverage probability, we need the inverse of the SINR, we derive SINR−1 instead of

SINR.
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Theorem 1: The PDF of the distance between a user and its serving base station, i.e., r, is

given by

f (r) = 2πλre−πλ(r
2−r20), r > r0. (23)

Proof: The theorem is proved for r0 = 0 in [10]. See Apendix II for r0 6= 0.

The expression of SINR−1 in (19) has terms such as rαεjjk′r
−α
ljk′ and rαεjjk′r

−α
lkjk′ , which have

parameters correlated with each other. Hence, as will be presented in the following subsection,

we need the PDF of rjjk′ given rljk′ as well as the PDF of rjjk′ given rlkjk′ and rllk, which are

presented in Theorems 2 and 3, respectively.

Theorem 2: The PDF of the distance between a user and its serving base station, r1, condi-

tioned on the distance between this user and another arbitrary base station, r2, is

f (r1|r2) =
2πλr1e

−πλr21

e−πλr
2
0 − e−πλr22

, r0 < r1 < r2. (24)

Proof: See Appendix III.

Theorem 3: The PDF of the distance between a user and its serving base station, rjjk′ ,

conditioned on the distance between another user and the user serving base station, rllk, as well

as the distance between these two users, rlkjk′ , is

P
(
rjjk′ = s

∣∣∣∣rlkjk′ = r, rllk = x

)
=

2πλse−πλs
2

e−πλR
2
1 − e−πλR2

2

, R1 < s < R2, (25)

where R1 = max (r0, x− r) and R2 = x+ r.

Proof: See Appendix IV.

B. Coverage Probability

The coverage probability can be expressed as

P (SINR > T ) =

∫
P (SINR > T |rllk = x) f (x) dx, (26)

where f (·) is given in Theorem 1. Due to the nature of massive MIMO systems, in which SINR

depends on the large scale fading, the coverage probability can not be derived using previously

known stochastic geometry procedures such as [10]. Thus, we need to use approximation schemes

as follows. The conditional coverage probability in (26) can be approximated as

P (SINR > T |rllk = x) = P
(
1 > T (SINR)−1 |rllk = x

) (a)
≈ P

(
g > T (SINRx)

−1)
(b)
≈

N∑
n=1

(−1)n+1

(
N

n

)
E
{
e−ηnTSINR−1

x

}
, (27)
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where SINRx stands for the SINR under the condition of rllk = x. Also, (a) is according to

[17], in which 1 is approximated by a dummy Gamma random variable with unit mean and

the shape parameter of N , such that limN→∞N
NgN−1e−Ng/Γ (N) = δ (g − 1), where δ(·) is

the Dirac delta function, and Γ(·) is the Gamma function defined as Γ(a) =
∫∞

0
e−tta−1 dt. In

Section V, we observe that it does not need to choose a very large N that our analytical results

converge to Monte Carlo results. Finally, (b) is shown in Appendix V.

Due to the complexity of SINR−1
x , we use an approximation of it, denoted by ŜINRx

−1
, which

is obtained by using the following approximations of the terms in (19).

χdd
ljn ≈ E

{
χdd
ljn

}
=
N2

d

N2
tot
, (28)

χdp
ljn + χdu

ljn ≈ E
{
χdp
ljn + χdu

ljn

}
=
Nd (Np +Nu)

N2
tot

, (29)

∆
(1)
lk ≈ Q1 = E

{
∆

(1)
lk |rllk = x

}
, (30)

∆lk

∆jk

≈ 1, (31)

∑
j 6∈Sl

r−αlj ≈ Q2 = E

{∑
j 6∈Sl

r−αlj |rllk = x

}
, (32)

∑
j 6∈Sl

∑
k′

rαεjjk′r
−α
lkjk′ ≈ Q3 = E

{∑
j 6∈Sl

∑
k′

rαεjjk′r
−α
lkjk′ |rllk = x

}
. (33)

Therefore, we have

ŜINR
−1

x = c1(x) + e1(x) + e2(x), (34)

where c1(x), e1(x), and e2(x) are given by

c1(x) =
VM − 1

C2
M

+
Np

C2
M

+
σ2

PdωC2
M

xα +
σ2

PuC2
Mω

1−εx
α(1−ε) +

σ4

NpPuPdC2
Mω

2−εx
α(2−ε)

+
(
xα + xα(2−ε)Q1

) PuNd (Np +Nu)

PdωεC2
MN

2
tot

Q3 +

(
Np +

σ2

Pdω
xα
)
PdNpNdx

α(1−ε)

Puω−εC2
MN

2
tot
Q2, (35)

e1(x) =
Np

C2
M

(
xα + xα(2−ε)Q1

) ∑
j∈Sl\{l}

r−αjlk +
Np

C2
M

(
xα + xα(2−ε)Q1

) N2
d

N2
tot

∑
j 6∈Sl

r−αjlk

+
M − 1

C2
M

x2α
∑

j∈Sl\{l}

r−2α
jlk +

M − 1

C2
M

x2αNpN
2
d (Np +Nu)

N4
tot

∑
j 6∈Sl

r−2α
jlk , (36)
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and

e2(x) =
xα(1−ε)

C2
M

(
Np +

σ2

Pdω
xα
) ∑

j∈Sl\{l}

rαεjjkr
−α
ljk +

Np +Nu

N2
tot

∑
j 6∈Sl

∑
k′

rαεjjk′r
−α
ljk′

 . (37)

In this way, using ŜINR
−1

x in (27), the conditional coverage probability is approximated as

P (SINR > T |rllk = x) ≈
N∑
n=1

(−1)n+1

(
N

n

)
C1 (T, n, x) E1 (T, n, x) E2 (T, n, x) , (38)

where

C1 (T, n, x) = exp (−ηnTc1(x)) , (39)

E1 (T, n, x) = E{rjlk|j 6=l} {exp (−ηnTe1(x))} , (40)

E2 (T, n, x) = E{rjjk′rljk′ |j 6=l} {exp (−ηnTe2(x))} . (41)

Finally, by using (26), (38), and Theorem 1, the coverage probability is obtained from its

conditional form as

P (SINR > T ) ≈
N∑
n=1

(−1)n+1

(
N

n

)
×∫ ∞

r0

e−πλ(x
2−r20)C1 (T, n, x) E1 (T, n, x) E2 (T, n, x) 2πλx dx. (42)

In Appendix VI, C1 (T, n, x), E1 (T, n, x), and E2 (T, n, x) in (42) are obtained for both asyn-

chronous and synchronous modes.

Full power control case (ε = 1) in the asynchronous mode: Using uplink power control

in the asynchronous mode can effectively increases the inter-cellular interference in the asyn-

chronous mode. For ε = 1 and finite number of antennas, the inter-cellular interference which

is caused by other cell’s users is the dominant source of interference. Hence, we have

ŜINR
−1

x ≈
(
xα + xα(2−ε)Q1

) Pu

PdωεC2
M

Nd (Np +Nu)

N2
tot

Q3, (43)

and the coverage probability of the asynchronous mode for ε = 1 is

P (SINR > T ) ≈
N∑
n=1

(−1)n+1

(
N

n

)
×∫ ∞

r0

exp

(
−πλ

(
x2 − r2

0

)
− ηnT

(
xα + xα(2−ε)Q1

) PuNd (Np +Nu)

PdωεC2
MN

2
tot

Q3

)
2πλx dx. (44)
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Infinite number of antennas: In (35)-(37), we observe that only the expression in the second

term of (36), which is caused by the pilot contamination problem, grows as the number of

antennas M increases. Hence, when M tends to infinity, the coverage probability expression in

(42) is simplified as

P (SINR > T )
M→∞
≈

N∑
n=1

(−1)n+1

(
N

n

)
×∫ ∞

r0

exp

(
−πλ

(
x2 − r2

0

)
+

∫ ∞
x

(
exp

(
C (T, n, x) r−2α

)
− 1
)

2πλr dr

)
2πλx dx, (45)

where C(x) is defined in (79) and (80) for the asynchronous and synchronous modes, respectively.

No power control case (ε = 0): When there is no uplink power control, the experssion of

E2 (T, n, x) can be expressed by a 1-D integral. Thus, the coverage probability in the asyn-

chronous mode is obtained as

P (SINR > T ) ≈
N∑
n=1

(−1)n+1

(
N

n

)
×∫ ∞

r0

exp

(
−πλ

(
x2 − r2

0

)
− ηnTc1(x) +Np

∫ ∞
πλR2

e

[
exp

(
Dasyn (T, n, x)R−αe r−

α
2

)
− 1
]

dr

+

∫ ∞
πλx2

[
exp

(
Basyn (T, n, x)R−αe t

−α
2 + Casyn (T, n, x)R−2α

e t−α
)
− 1
]

dt

)
2πλx dx, (46)

and in the synchronous mode, we have

P (SINR > T ) ≈
N∑
n=1

(−1)n+1

(
N

n

)
×∫ ∞

r0

exp

(
−πλ

(
x2 − r2

0

)
− ηnTc1(x) +

∫ ∞
πλR2

e

[
exp

(
Dsyn (T, n, x)R−αe t−

α
2

)
− 1
]

dt

+

∫ ∞
πλx2

[
exp

(
Bsyn (T, n, x)R−αe t

−α
2 + Csyn (T, n, x)R−2α

e t−α
)
− 1
]

dt

)
2πλx dx. (47)

C. Downlink Ergodic Rate

Since the coverage probability is a good metric for delay-sensitive applications but ergodic

rate is good for delay-insensitive applications, we analyze the total ergodic rate of a cell. The
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total ergodic rate over all users of a cell is obtained as

R =
NpNd

Ntot
E {log2 (1 + SINR)} (c)

=
NpNd

Ntot

∫
s>0

P (log2 (1 + SINR) > s) ds

(d)
=
NpNd

Ntot

∫
t>0

P (SINR > t)

(t+ 1) ln 2
dt

(e)
≈
NpNd

Ntot

N∑
n=1

(−1)n+1

ln 2

(
N

n

)
×∫ ∞

r0

2πλxe−πλ(x
2−r20)

∫
t>0

C1 (t, n, x) E1 (t, n, x) E2 (t, n, x)

(t+ 1)
dt dx, (48)

where (c) is obtained due to the fact that for a nonnegative random variable S we have E{S} =∫∞
0

P (S > s) ds. In (d), we change the variable as t = 2s− 1 and in (e), the expression in (42)

is replaced. Note that in (48), Np is the number of users in a cell and Nd
Ntot

is the fraction of the

coherence time which is dedicated to the downlink transmission.

V. SIMULATION RESULTS

In this section, the analytical results of Section IV are validated by comparing them with Monte

Carlo simulations. We evaluate the ergodic rate as a function of the number of pilot symbols

and the uplink power control parameter. We consider that the base stations are distributed by

the Poisson point process of the density λ in a square region whose sides have length 4000 m.

Then, we generate users’ points with the Poisson point process of a large density to make sure

that there are Np users in each cell. Users connect to the nearest base station. In addition, users

whose distance from the serving base station are less than r0 are removed. Then, in each cell, Np

users are selected randomly and the reminder of them are removed. In Table I, the considered

system parameters, which are in harmony with [11], [13], [18], are presented.

In Fig. 4, comparisons between the analytical results and Monte Carlo simulations of the

asynchronous mode for different values of the power control parameter, ε, are demonstrated.

The results for the synchronous mode are also shown in Fig. 5. These figures show the coverage

probability as a function of the threshold T . Note that the analytical results of (42) converge to

the Monte Carlo simulations with a small value of the shape parameter of the Gamma random

variable N . For example, in the asynchronous mode, for all values of ε, N in (42) equals 1.

However, in the synchronous mode, we consider N = [2, 3, 4, 8]. As observed, the analytical

results tightly mimic the exact Monte Carlo results for both synchronous and asynchronous

systems and for different parameter settings.
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TABLE I

SIMULATION PARAMETERS

System Parameter Value

Pd 45dBm

Pu 23dBm

σ2
n −200dBm

ω 130dB

α 4

M [64, 128, 10000]

Ntot 40

Np 10

Z 2

Re 500m

r0 50m

Fig. 4. Comparison between Monte Carlo and analytical results for different values of (M ,ε) in the asynchronous mode.

Based on the analytical results, we obtain the optimal power control parameter ε and the

number of pilot symbols, Np, in order to maximize the downlink ergodic rate of a cell. We also

perform comparisons between the system performance in the asynchronous and synchronous

modes.

The number of base station antennas: As seen in Figs. 4 and 5, as the number of base station

antennas, M , increases, the coverage probability curves in the asynchronous and synchronous

modes move to higher values of SINR. Figures 6 and 7 show the coverage probability in both
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Fig. 5. Comparison between Monte Carlo and analytical results for different values of (M ,ε) in the synchronous mode.

the asynchronous and synchronous modes for ε = 0 and ε = 0.5, respectively. In these figures,

results for different values of M are shown. We observe that as M increases, the gap between

the asynchronous and synchronous modes decreases. In Fig. 6, the coverage probability in the

asynchronous and synchronous modes show the same range of SINR for (M, ε) = (104, 0). Note

that for an infinite number of M , the dominant source of interference is the pilot contamination.

Hence there is small difference between the asynchronous and synchronous modes. In Fig. 7, it is

also observed that for lower SINR thresholds, the synchronous system with M = 64 outperforms

the asynchronous system with M = 104, because as ε increases the pilot contamination dominates

the inter-cellular interference for higher values of M .

The number of pilot symbols: In Fig. 8, the downlink ergodic rate of a cell is shown

as a function of Np for different values of power control parameter, ε = [0.2, 0.5, 1], in the

asynchronous and synchronous modes. In both modes, we observe that as Np increases, first,

the ergodic rate of a cell increases and then it decreases. This is intuitive because as the number

of pilot symbols increases the number of users is also increased but, on the other hand, the

interference becomes stronger and also there are less resources for information transmission.

Thus, there is a tradeoff and the maximum rate is achieved with a finite number of pilot symbols.

Uplink power control parameter: In Fig. 9, the downlink ergodic rate of a cell is shown

as a function of the uplink power control parameter for different values of pilot lengths, Np =

[5, 10, 30], in the asynchronous and synchronous modes. As seen, the uplink power control
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Fig. 6. Comparison between the asynchronous and synchronous modes for ε = 0.

Fig. 7. Comparison between the asynchronous and synchronous modes for ε = 0.5.

affects the downlink ergodic rate of a cell in two ways. First, since we consider that pilots

are transmitted in the uplink direction, the uplink power control has impact on the channel

estimation performance. Subsequently, the channel estimation performance affects the precoding

vector in the downlink transmission. Second, in the asynchronous mode, the more is the uplink

power control parameter, the more is the interference power of the users who are transmitting

in the uplink direction on the downlink phase. Because of the inter-cellular interference in the

uplink, the impact of ε is more perceptible in the asynchronous mode. Therefore, in Figs. 8 and

9, we observe that using the full power control, i.e., ε = 1, leads to no downlink rate in the
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Fig. 8. Downlink ergodic rate of a cell versus pilot length Np for different values of the power control parameter, ε = [0.2, 0.5, 1],

in the asynchronous and synchronous modes, M = 64.

Fig. 9. Downlink ergodic rate of a cell versus power control parameter ε for different values of pilot lengths, Np = [5, 10, 30],

in the asynchronous and synchronous modes, M = 64.

asynchronous mode. In contrast, in the synchronous mode, we observe that the uplink power

control has little effect on the downlink rate.

Comparison between the asynchronous and synchronous modes: When we change the

system mode from the synchronous mode to the asynchronous mode, we observe two effects.

First, some cells have uplink interference rather than downlink interference, which can have

higher or less interference than that in the synchronous mode. Second, as also mentioned in [2],

the pilot contamination effect is reduced. In Figs. 8 and 9, we observe that for all considered
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parameter settings, except for [ε,Np] = [0.2, 30], lower rate is achieved in the asynchronous mode,

compared to the synchronous mode. In fact, the reduction of pilot contamination dominates the

addition of inter-cellular interference in the uplink direction at the point [ε,Np] = [0.2, 30].

Hence, depending on the parameter settings, higher rate may be achieved by either synchronous

or asynchronous mode. Accordingly, synchronous assumption is not necessarily the worst case

for the considered setup.

VI. CONCLUSION

In this paper, downlink massive MIMO in the asynchronous and synchronous modes was

analyzed. In the synchrnonous mode, the data transmission in all cells are synchronous. In the

asynchronous mode, however, only the transmissions within each cell are synchronous and the

transmissions in different cells are asynchronous. In the asynchronous mode, there are more

interference sources, i.e., the interference among different base stations and the interference

among different users. We used stochastic geometry tool to obtain analytical results for coverage

probability and the ergodic rate of the downlink massive MIMO system in both modes. We

investigated the system performance for different values of uplink power control parameter and

the number of pilot symbols. In this way, we observed that there is an optimal value for the

number of pilot symbols. We also saw that the asynchronous system is more sensitive to the

uplink power control parameter than is the synchronous mode. We also compared the system

performance in the asynchronous and synchronous modes, and observed that the synchronous

assumption is not necessarily the worst case for the considered setup, and depending on the

parameter settings, higher rates may be achieved by the synchronous or the asynchronous

transmission modes.

APPENDIX I

SINR CALCULATION

We assume that the desired user, i.e., the k-th user of the l-th cell, konws the value of

E
{
hTllkwlk

}
. Hence, the signal power is obtained as follows

S =
(
E
{
hTllkwlk

})2
=

(
E
{
hTllk

u∗llk
‖ullk‖

})2

=

(
E
{
h̃Tllk

u∗llk
‖ullk‖

}
+ E

{
h
T

llk

u∗llk
‖ullk‖

})2

(f)
=

(
E
{√

Plkβllk
∆lk

uTllk
u∗llk
‖ullk‖

})2

=
Plkβ

2
llk

∆lk

(E {θ})2 =
Plkβ

2
llk

∆lk

C2
M , (49)
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where (f) follows from the orthogonality of h̃llk and ullk, as well as replacing LMMSE estimation

of hllk. In addition, in (49), we have θ =
√∑M

m=1 |um|
2 where ∀m = 1, ...,M, um are IID

random variables with distribution CN (0, 1). Finally, according to [18, Sec. IV], we have CM =

E {θ} = Γ(M+0.5)
Γ(M)

.

For the first interference term in (17), we have

var
{
hTllkwlk

}
= E

∣∣hTllkwlk

∣∣2 − (E{hTllkwlk

})2

(g)
= E

∥∥hllk∥∥2
+ E

∣∣∣∣h̃Tllk u∗llk
‖ullk‖

∣∣∣∣2 − Plkβ
2
llk

∆lk

(E {θ})2

=
Plkβ

2
llk

∆lk

E{θ2}+

(
βllk −

Plkβ
2
llk

∆lk

)
− Plkβ

2
llk

∆lk

(E {θ})2 =
Plkβ

2
llk

∆lk

(VM − 1) + βllk, (50)

where (g) is obtained from rewriting hllk as hllk + h̃llk. Additionally, VM denotes the varience

of θ. It is straightforward to show that E{θ2} = M . Hence, we have VM = M − C2
M .

Since the channel vector of the desired cell, hllk, and the observation vectors of the co-cell

users, ∀k′ 6= k ullk′ are uncorrelated, the second term of the interference in (17) is∑
k′ 6=k

E
∣∣hTllkwlk′

∣∣2 = (Np − 1) βllk. (51)

Then, for the third and the forth terms of the interference, we have to obtain E
∣∣hTjlkwjk′

∣∣2,

which is given by

E
∣∣hTjlkwjk′

∣∣2 = E
∣∣∣∣h̃Tjlk u∗jjk′

‖ujjk′‖

∣∣∣∣2 + E
∣∣∣∣hTjlk u∗jjk′

‖ujjk′‖

∣∣∣∣2. (52)

Due to the orthogonality of h̃jlk and wjk′ , as well as the distribution of the channel estimation

error in (15), the first term of (52) is found as

E
∣∣∣h̃Tjlkwjk′

∣∣∣2 = βjlk − Plkβ2
jlk


1

∆jk
j ∈ Sl,∑K

k′′=1
Np+Nu

N2
tot

1
∆jk′′

j 6∈ Sl.
(53)

Additionally, by replacing hjlk from (13), the second term of (52) is found as

E
∣∣∣hTjlkwjk′

∣∣∣2 = Plkβ
2
jlk


M−1
∆jk

δ (k, k′) + 1
∆jk

j ∈ Sl,
Np+Nu

N2
tot

(
M−1
∆jk′

+
K∑

k′′=1

1
∆jk′′

)
j 6∈ Sl.

(54)

Thus, we obtain

E
∣∣hTjlkwjk′

∣∣2 = βjlk + (M − 1)
Plkβ

2
jlk

∆jk′

δ (k, k′) j ∈ Sl,
Np+Nu

N2
tot

j 6∈ Sl.
(55)
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Finally, by doing some calculations and using the results of (49), (50), (51), and (55), SINR−1

is achieved as in (19).

APPENDIX II

PROOF OF THEOREM 1

First, as we consider a cell with the exclusion of a central disk of radius r0 around its base

station, we need to obtain P (r > R| r > r0). According to the Bayes’ rule, P (r > R|r > r0)

can be expressed as

P (r > R|r > r0) =
P (r > R, r > r0)

P (r > r0)
. (56)

Since the desired user’s serving base station is the nearest base station to the desired user,

P (r > r0) is obtained by the fact that there is no base station in a distance less than r0 to the

desired user. Thus, P (r > r0) = e−πλr
2
0 . By similar arguments, P (r > R, r > r0) can be express

as e−πλ(max{R,r0})2 . Therefore, we have

P (r > R|r > r0) =


e−πλR

2

e−πλr
2
0

r0 < R,

1 r0 > R.
(57)

Finally, by taking derivative from (57), we obtain f (r) as in (23).

APPENDIX III

PROOF OF THEOREM 2

At first, we obtain P (r1 > R| r1 > r0, r2). As the serving base station of a user is the nearest

one to that user, we have r1 < r2 and, consequently,

P (r1 > R| r1 > r0, r2) = P (r1 > R|r0 < r1 < r2) . (58)

Based on the Bayes’ rule, we have

P (r1 > R| r0 < r1 < r2) =
P (r0 < r1 < r2, R < r1)

P (r0 < r1 < r2)
=


1 r0 > R,

P(R<r1<r2)
P(r0<r1<r2)

r0 < R < r2,

0 r2 < R.

(59)

The propability P (r0 < r1 < r2) can be obtained by the fact that there is no base station

within a radius of r0 around the desired user, and also there will be at least one base station
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Fig. 10. The desired user’s situation between its serving base station and another arbitrary base station.

within the area between the two circles of radii r1 and r2 around the desired user (Fig. 10).

Hence, we have

P (r0 < r1 < r2) = e−πλr
2
0

(
1− e−πλ(r22−r20)

)
= e−πλr

2
0 − e−πλr22 . (60)

Also, P (r0 < r1 < r2, R < r1) can be obtained with the same procedure as in (60). Then, we

have

P (r1 > R|r0 < r1 < r2) =


1 r0 > R,

e−πλR
2−e−πλr

2
2

e−πλr
2
0−e−πλr

2
2

r0 < R < r2,

0 r2 < R.

(61)

Finally, by doing some calculations, the final result is given by

f(r1|r2) = P (r1|r1 > r0, r2) =
d (1− P (r1 > R|r1 > r0 r2))

dR

=
2πλr1e

−πλr21

e−πλr
2
0 − e−πλr22

, r0 < r1 < r2. (62)

APPENDIX IV

PROOF OF THEOREM 3

Figure 11 indicates the situation of two users of different cells. According to Fig. 11 and the

triangle inequality, we have

rljk′ < rlkjk′ + rllk, rjlk < rlkjk′ + rjjk′ . (63)

Also, since each user is served by the nearest base station, the following inequalities hold

rjjk′ < rljk′ , rllk < rjlk. (64)
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Fig. 11. The situation of two users of different cells and their serving base stations.

From the inequalities (63) and (64) as well as the fact that the distance between a user and

its serving base station is greater than r0, it is concluded that

max (r0, rllk − rlkjk′) < rjjk′ < rllk + rlkjk′ . (65)

Therefore, we have

P (rjjk′ = s|rlkjk′ = r, rllk = x) = P (rjjk′ = s|max (r0, x− r) < rjjk′ < x+ r)

= P (rjjk′ = s|R1 < rjjk′ < R2) . (66)

The expression P (rjjk′ > s|R1 < rjjk′ < R2) and (58) are similar. Therefore, by following

the same procedure as in (61), we have

P (rjjk′ > s|R1 < rjjk′ < R2) =


1 R1 > s,

e−πλs
2 − e−πλR2

2

e−πλR
2
1 − e−πλR2

2

R1 < s < R2,

0 R2 < s.

(67)

Finally, we obtain

P (rjjk′ = s|rlkjk′ = r, rllk = x) =
d

ds
(1− P (rjjk′ > s|rlkjk′ = r, rllk = x))

=
2πλse−πλs

2

e−πλR
2
1 − e−πλR2

2

, R1 < s < R2. (68)
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APPENDIX V

GAMMA RANDOM VARIABLE CDF APPROXIMATION

Consider that A is a random variable. We can present P (g > A) by taking expectation as

follows.

P (g > A) = 1−
∫

P (g < A|A)P (A) dA = 1− EA {Fg (A)}

(h)
≈

N∑
n=1

(−1)n+1

(
N

n

)
EA
{
e−ηnA

}
, (69)

where Fg (A) is the cumulative distribution function (CDF) of the Gamma random variable, and

η = N (N !)−
1
N . In (h), based on the alzer inequality Fg (A) ≤

(
1− e−ηA

)N in [20, Appendix A]

and [21], a tight CDF approximation for the Gamma random variable, Fg (A) ≈
(
1− e−ηA

)N ,

is used.

APPENDIX VI

COVERAGE PROBABILITY CALCULATION

First, we obtain Q1. In the asynchronous mode, Sl only includes l. Thus, we have

Qasyn
1 =

Np +Nu

N2
tot

NpE{rjjk′′ ,rljk′′ |j∈Φb\{l}}
∣∣rllk=x

{∑
j 6=l

rαεjjk′′r
−α
ljk′′

}
+
PdNpNdQ

asyn
2

Puω−εN2
tot

+
σ2ωε−1

NpPu
, (70)

where E
{∑

j 6∈Sl r
−α
lj

}
is replaced by Qasyn

2 . Similarly, in the synchronous mode, we have

Qsyn
1 = E

{rjjk,rljk|j∈Φb\{l}}
∣∣rllk=x

{∑
j 6=l

rαεjjkr
−α
ljk

}
+

σ2

NpPuω1−ε . (71)

In both modes, we should obtain E
{∑

j 6=l r
αε
jjkr

−α
ljk |rllk = x

}
to find out Q1. Then,

E
{rjjk,rljk|j∈Φb\{l}}

∣∣rllk=x

{∑
j 6=l

rαεjjkr
−α
ljk

}
= EΦu

lk

{∑
j 6=l

Erjjk|rljk
{
rαεjjk
}
r−αljk

}

(i)
= EΦu

lk

{∑
j 6=l

r−αljk

∫ rljk

r0

rαεjjk2πλrjjke
−πλr2jjk

e−πλr
2
0 − e−πλr2ljk

drjjk

}

(j)
= EΦu

lk

{∑
j 6=l

∫ πλr2ljk

πλr20

Rαε
e r
−α
ljk s

αε
2 e−s

e−πλr
2
0 − e−πλr2ljk

ds

}
(k)
= Rαε

e

∫ ∞
Re

∫ πλr2

πλr20

r−αs
αε
2 e−s2πλr

e−πλr
2
0 − e−πλr2

ds dr
(l)
= R−α(1−ε)

e

∫ ∞
πλR2

e

∫ t

πλr20

t
−α
2 s

αε
2 e−s

e−πλr
2
0 − e−t

ds dt,(72)
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where in (i), the distance distribution given in Theorem 2 is used. In (j), we use Re = (πλ)−
1
2

and the variable transform s = πλr2
jjk. (k) comes from the Campbell’s theory and the exclusion

ball model. In (l), the variable changes as t = πλr2.

Besides the expression in (72), obtaining Qasyn
1 involves the calculation of Qasyn

2 . From (32),

in the synchronous mode, Qsyn
2 is zero. In the asynchronous mode, we get

Qasyn
2 = E

{rlj |j∈Φb\{l}}
∣∣rllk=x

{∑
j 6=l

r−αlj

}
≈ E{rlj |j∈Φb\{l}}

{∑
j 6=l

r−αlj

}
(m)
≈

∫ ∞
Re

r1−α2πλ dr
(n)
=

2R−αe

α− 2
, (73)

where in (m), for simplicity, we consider that the interfering base stations are distributed based

on the exclusion ball model. Thus, by using the Campbell’s theory, (m) is found. In addition,

in (n), we assume Re = (πλ)−
1
2 .

Next, it is clear that Qsync
3 = 0 in the synchronous mode. For the asynchronous mode, it is

obtained as

Qasyn
3 = E

{rjjk′ ,rlkjk′ |j∈Φb\{l},k′=1,2,...,K}
∣∣rllk=x

{∑
j 6=l

∑
k′

rαεjjk′r
−α
lkjk′

}

= NpE{rjjk′ ,rlkjk′ |j∈Φb\{l}}
∣∣rllk=x

{∑
j 6=l

rαεjjk′r
−α
lkjk′

}

= NpEΦu
jk′ |rllk=x

{∑
j 6=l

Erjjk′ |rlkjk′ ,rllk=x

{
rαεjjk′

}
r−αlkjk′

}
(p)
= Np

∫ ∞
Re

∫ 2π

0

Erjjk′ |rlkjk′=r1,rllk=x

{
rαεjjk′

}
r−α1 λr dθdr

(q)
= Np

∫ ∞
Re

∫ 2π

0

A (x)

∫ −πλ(x+r1)2

−πλ(max (r0, x−r1))2
s
αε
2 e−s ds r−α1 λr dθ dr, (74)

where A (x) =
(πλ)

αε
2

e−πλ(max (r0, x−r1))2 − e−πλ(x+r1)2
. The expression in (p) is obtained from the

Campbell’s theory and the exclusion ball model, and in (q), we use the distance distribution given

in Theorem 3. Note that, r1 can be expressed based on r, x, and θ as r2
1 = r2 + x2 − 2rx cos θ

by using the law of cosines (Fig. 12). In (74), we deal with a triple integral which does not have

close form expression and should be solved numerically. Therefore, such an expression is very

difficult to be computed. For simplicity, we use the approximation, rlkjk′ ≈ rljk′ , and from (72),
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Fig. 12. The relation between r1 and r can be obtained from the law of cosines.

we obtain

Qasyn
3 = Np (πλ)

α
2

(1−ε)
∫ ∞
πλR2

e

t
−α
2

∫ t

πλr20

s
αε
2

e−s

e−πλr
2
0 − e−t

ds dt. (75)

The next step to find the coverage probability is to obtain E1 (T, n, x) and E2 (T, n, x). In both

modes, E1 (T, n, x) can be expressed as bellow.

E1 (T, n, x) = EΦb\{l}|rllk=x

{
exp

(∑
j 6=l

(
B (T, n, x) r−αjlk + C (T, n, x) r−2α

jlk

))}
(r)
= exp

(∫ ∞
πλx2

[
exp

(
B (T, n, x)R−αe t

−α
2 + C (T, n, x)R−2α

e t−α
)
− 1
]

dt

)
, (76)

where B (T, n, x) and C (T, n, x) are defined in the following equations

Basyn (T, n, x) = −ηnT
Np

C2
M

N2
d

N2
tot

(
xα + xα(2−ε)Qasyn

1

)
, (77)

Bsyn (T, n, x) = −ηnT
Np

C2
M

(
xα + xα(2−ε)Qsyn

1

)
, (78)

Casyn (T, n, x) = −ηnT M − 1

C2
M

NpN
2
d (Np +Nu)

N4
tot

x2α, (79)

Csyn (T, n, x) = −ηnT M − 1

C2
M

x2α. (80)

In the expression (76), (r) is achieved from Campbell’s theory as well as the exclusion ball

model and using the variable transform t = πλr2.
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E asyn
2 (T, n, x) in the asynchronous mode is obtained as

E asyn
2 (T, n, x) = E

{rjjk′ ,rljk′ |j∈Φb\{l},k′=1,...,K}
∣∣rllk=x

{
exp

(
Dasyn (T, n, x)

∑
j 6=l

∑
k′

rαεjjk′r
−α
ljk′

)}

=

(
E
{rjjk′ ,rljk′ |j∈Φb\{l}}

∣∣rllk=x

{∏
j 6=l

exp
(
Dasyn (T, n, x) rαεjjk′r

−α
ljk′

)})Np

=

(
EΦu

jk′ |rllk=x

{∏
j 6=l

Erjjk′ |rljk′ ,rllk=x

{
exp

(
Dasyn (T, n, x) rαεjjk′r

−α
ljk′

)}})Np

(s)
=

(
EΦu

jk′ |rllk=x

{∏
j 6=l

∫ rljk′

r0

2πλre−πλr
2

e−πλr
2
0 − e−πλr

−α
ljk′

exp
(
Dasyn (T, n, x) rαεr−αljk′

)
dr

})Np

(t)
=

(
EΦu

jk′ |rllk=x

{∏
j 6=l

∫ πλr2
ljk′

πλr20

e−s exp
(
Dasyn (T, n, x) (πλ)−

αε
2 s

αε
2 r−αljk′

)
e−πλr

2
0 − e−πλr

−α
ljk′

ds

})Np

(u)
= exp

(∫ ∞
πλR2

e

∫ t

πλr20

Npe
−s
[
exp
(
Dasyn (T, n, x)R

−α(1−ε)
e s

αε
2 t−

α
2

)
− 1
]

e−πλr
2
0 − e−t

ds dt

)
, (81)

where in (s), we use the distance distribution given in Theorem 2. Then, (t) comes from the

variable transform s = πλr2
jjk. In (u), the Campbell’s theory and the exclusion ball model are

used. Also, the variable changes as t = πλr2.

By following the same procedure as in (81) for E asyn
2 , we have

E syn
2 (T, n, x) = E

{rjjk,rljk|j∈Φb\{l}}
∣∣rllk=x

{
exp

(
Dsyn (T, n, x)

∑
j 6=l

rαεjjkr
−α
ljk

)}

= exp

(∫ ∞
πλR2

e

∫ t

πλr20

e−s

e−πλr
2
0 − e−t

[
exp

(
Dsyn (T, n, x)R−α(1−ε)

e s
αε
2 t−

α
2

)
− 1
]

ds dt

)
,(82)

where D (T, n, x) in both modes are defined in the following

Dasyn (T, n, x) = −ηnT
C2
M

Np +Nu

N2
tot

xα(1−ε)
(
Np +

σ2

Pdω
xα
)
, (83)

Dsyn (T, n, x) = −ηnT
C2
M

xα(1−ε)
(
Np +

σ2

Pdω
xα
)
. (84)
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