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Abstract

In this paper, we firstly derive two approximations of the achievable uplink rate with the per-

fect/imperfect channel state information (CSI) in cell-free massive multi-input multi-output (MIMO)

systems, and all these approximations are not only in the simple, but also converge into the classical

bounds achieved in conventional massive MIMO systems where the base-station (BS) antennas are co-

located. It is worth noting that the obtained two approximations with perfect CSI could be regarded as

the special cases of the obtained two approximations with imperfect CSI when the pilot sequence power

becomes infinite, respectively. Moreover, the theory analysis shows that all obtained approximations with

perfect/imperfect CSI have an asymptotic lower bound α

2
log

2
L thanks to the extra distance diversity

offered by massively distributed antennas, where L is the number of BS antennas and the path-loss

factor α > 2, except for the free space environment. Obviously, these results indicate that the cell-free

massive MIMO system has huge potential of spectral efficiency than the conventional massive MIMO

system with the asymptotically tight bound log
2
L.
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I. INTRODUCTION

To meet the ever-increasing demand for high data rate in future wireless communications,

there is an urgent need to improve the spectral efficiency (SE) [1]. In this regard, massive

multiple-input multiple-output (MIMO) technology has been at the forefront thanks to its high

SE characteristic provided by the massive array [2–6]. Conventional massive MIMO researches

routinely assume all base-station (BS) antennas are placed at a fixed location [7, 8]. Recently,

some cell-free massive MIMO systems (also referred to as distributed massive MIMO systems

and large-scale distributed antenna systems) [9–11], where massive BS antennas are distributed

over a wide area to serve a amount of users, have been obtained a great deal of interest, due

that they reduce the average distance between the user and BS antennas, resulting in additional

features of improving coverage, saving power, offering more spatial resources, etc [12, 13].

Obviously, the statistical characterization of the instantaneous channel correlation matrix is of

vital importance to the SE performance based on the classic work performed by Telatar [14]. For

conventional massive MIMO systems, the centralized BS array is adopted that the large-scale

fading coefficients are assumed to be identical, resulting in the instantaneous channel correlation

matrix follows the Wishart distribution, and corresponding statistical properties and SE analysis

have been well investigated in [5, 15, 16]. However, in a cell-free massive MIMO system, the

served user has different large-scale fading coefficients to all distributed BS antennas, resulting in

its instantaneous channel correlation matrix being modeled as a Gram matrix with each element

having different variance. Recently, a toy example 2× 2 Gram matrix was investigated in [17],

where the probability density function (PDF) was obtained and its joint eigenvalues PDF was

given in integral form. In summary, the SE analysis of cell-free massive MIMO systems has

become exceedingly more challenging and complex.

A. Related Works

On one hand, part of studies are performed with the non-orthogonal linear maximum-ratio

combining/maximum-ratio transmission (MRC/MRT) processing. A portion of the open literature

adopts the structure of that the BS antennas are assigned to different multiple-antenna access

points (APs). The analytical expressions of the achievable uplink/downlink rate were obtained in

[18] with imperfect channel state information (CSI), then, it could be achieved via the applications

of the large dimensional random matrix theory [19] and the worst-case assumption [20]. A
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asymptotic signal-to-interference-plus-noise ratio (SINR) expression was obtained in [21]. Some

bounds of the achievable downlink rate were obtained in [10, 22].

Another deployment strategy is to let all BS antennas being randomly located in a large

area. Considering the downlink with perfect CSI, an exact achievable downlink rate expression

was given in special function form and its asymptotic performance was analyzed with an

upper bound in [23]. Apart from that, two closed-form expressions were proposed for the

achievable uplink/downlink rates with imperfect CSI, and a near-optimal power allocation scheme

was designed to greatly promote the uplink/downlink minimum rate in [9]. A max-min SINR

optimization problem was considered and the power allocation methods in the uplink and

downlink were provided in [24] and [25], respectively. Moreover, the rate performance issue

of downlink multicast was evaluated in [26]. It was implied that using downlink pilots can

effectively improve the system performance [27]. A power control scheme was provided to

reduce the power consumption in [28]. Obviously, the SE analysis based on linear MRC/MRT

processing has been largely and extensively characterized.

On the other hand, some of studies pay attention on the orthogonal linear zero-forcing (ZF)

processing. Considering a multiple-antenna user and distributed multiple-antenna APs with per-

fect CSI, an approximate closed-form expression of the achievable uplink rate was obtained in

the Laguerre polynomial form based on the Gauss-Laguerre quadrature rule in [29]. Moreover, an

asymptotic closed-form achievable uplink rate expression that contains the Legendre function and

Gauss hypergeometric function was provided in [30]. An asymptotic reliable rate was investigated

and a certain form of macro-multiplexing gain with its value interval for any user density was

provided in [31]. Moreover, by smartly utilizing the probability that two users are close to the

same BS antenna is very low to approximate the effective channel gain, a lower bound of the

achievable downlink rate was given in integral form and the corresponding scaling behavior was

analyzed in [23]. With imperfect CSI, by wisely using the Gamma approximation, an upper

bound of the ergodic achievable rate that is made up by Meijer’s G-function was provided in

[10]. An effective SINR expression that is the function of small-scale fading, was given in [25],

and the similar case can be found in [32]. From the above, it becomes apparent that there are

remarkably few results about the insightful analytical expression of the achievable uplink rate

and the analysis about how system parameters affect the SE for both perfect CSI and imperfect

CSI cases.
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B. Our Contributions

Motivated by the previous discussion and benefited from the methodologies in previous works

especially for downlink, in this paper, we mainly focus on the SE analysis of the ZF detector

in cell-free massive MIMO systems with perfect CSI and imperfect CSI cases.

For the perfect CSI case, we study the achievable uplink rate performance and propose two

approximate closed-form expressions of the achievable uplink rate which depend only on the

large-scale fading coefficients and are in a reduced form. In other words, these simple closed-

form approximations make it possible to obtain insights about how system parameters affect

the SE performance. Particularly, it is important to note that the obtained two approximations

can converge into the upper and lower bounds in conventional massive MIMO systems, respec-

tively, when all BS antennas are at the same position. Further, by averaging out the large-scale

fading coefficients, the asymptotic analysis reflects that the obtained two approximations of the

achievable uplink rate have an asymptotic lower bound α
2
log2 L when L → ∞. Here, L is the

number of BS antennas and α denotes the path-loss factor that is often larger than 2, except for

the free space environment. However, for the conventional massive MIMO systems, the upper

and lower bounds have the asymptotically tight bound log2 L. It means that the cell-free massive

MIMO systems have a better rate performance than the conventional massive MIMO systems

since cell-free massive MIMO offers extra distance diversity thanks to the massively distributed

antennas.

For the imperfect CSI case, the similar results can be obtained as of perfect CSI case, but only

with a little bit rate loss. Besides, it is found that the obtained two approximations in imperfect

CSI case converge into the two approximations in perfect CSI case when the pilot sequence

power is large enough. In particular, the main contributions of the paper are outlined as follows.

• We investigate the achievable uplink rate performance for both perfect CSI and imperfect

CSI based on ZF detector of the cell-free massive MIMO through deriving the new, tractable,

and closed-form expressions of approximation of the achievable uplink rate.

• We observe that not only the imperfect CSI results can approach the perfect CSI results

with high pilot sequence power, but also all approximations can reduce to the exact bounds

in conventional massive MIMO when BS antennas are placed together.

• We analyze the asymptotic performance and note that the obtained approximations have

the asymptotic lower-bound α
2
log2 L for both cases, which outperforms the conventional
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Fig. 1. A cell-free massive MIMO system with a circular area. X-shaped and Y-shaped icons denote a user and a BS antenna,

respectively.

massive MIMO since its rate has the asymptotically tight bound log2 L.

C. Organization and Notation

The rest of the paper is organized as follows. The system model is described in Section II. The

analysis of SE with perfect CSI is presented in Section III. The analysis of SE with imperfect CSI

is presented in Section IV. Section V provides the simulation results to verify the effectiveness

of the obtained results in Section III and Section IV. Finally, conclusion is given in Section VI.

Throughout this paper, lower-case and upper-case boldface letters denote vectors and matrices,

respectively. CM×K denotes the M × K complex space. A† and A−1 denote the Hermitian

transpose and the inverse of the matrix A, respectively. IM denotes an M ×M identity matrix.

0M×K denotes an M × K zero matrix. The EX{·} denotes expectation with respect to the

random variable X . A complex Gaussian random vector x is denoted as x ∼ CN (x̄,Σ), where

the mean vector is x̄ and the covariance matrix is Σ. ‖ · ‖1 and ‖ · ‖2 denote the 1-norm and

2-norm of a vector, respectively. diag (a) denotes a diagonal matrix where the main diagonal

entries are the elements of vector a. Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function. Finally, for

given functions f(L) and g(L), notations Θ(g(L)) = {f(L) : ∃c1, c2, L0 > 0, ∀L ≥ L0, 0 ≤
c1g(L) ≤ f(L) ≤ c1g(L)}, O(g(L)) = {f(L) : ∃c, L0 > 0, ∀L ≥ L0, 0 ≤ f(L) ≤ cg(L)},

and Ω(g(L)) = {f(L) : ∃c, L0 > 0, ∀L ≥ L0, 0 ≤ cg(L) ≤ f(L)} mean that g(L) is an

asymptotically tight bound, an asymptotic upper bound, and an asymptotic lower bound for

f(L), respectively, where the detailed definitions can be found in [33, Ch. 3.1].
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II. SYSTEM MODEL

As shown in Fig. 1, a cell-free massive MIMO system with a circular area has L BS antennas

and K single-antenna users (L ≫ K and K is finite) within uniform distribution [9]. All users

are served by all BS antennas in the same time-frequency resource simultaneously [9, 25, 28].

All BS antennas are linked to an central processing unit (CPU) based on a backhaul network

which is used to perform uploading/downloading network information, i.e., received signal, CSI,

etc. For convenience, we assume that the whole system adopts a time-division duplexing (TDD)

protocol, as well as, the BS and all users are perfectly synchronized in each symbol. Without

loss of generality, the radius of this circular area is 1.

A. Channel Model

Let gk denote the channel vector between the user k and all L BS antennas as

gk =
√

diag (γk)hk ∈ CL×1, (1)

where hk = [h1,k, . . . , hl,k, . . . , hL,k]
T ∼ CN (0L×1, IL) denotes the L × 1 small-scale fading

vector and γk = [γ1,k, . . . , γl,k, . . . , γL,k]
T denotes the L × 1 large-scale fading vector. To be

more specific, the lth entry gl,k of the vector gk is written as

gl,k = hl,kγ
1
2
l,k. (2)

For convenience, we model the large-scale fading coefficient γl,k as

γl,k = d−α
l,k , (3)

where dl,k is the distance between the lth BS antenna and user k, and α denotes the path-loss

factor [4, 13]. As shown in Fig. 1, γk has unequal entries since the user k in the circular area

has different access distances to all L BS antennas. Here, a block-fading model is considered as

in [16], which means that the channels are both constant and frequency flat during a coherence

block. Hence, based on slow-varying characteristic of the large-scale fading, and the large-scale

fading coefficients stay constant for many coherence intervals, which can be obtained by channel

measurement and feedback [13], without loss of generality, we assume that the large-scale fading

information is perfectly available at the BS [9, 28, 34]. At the same time, the assumption is taken

that each user’s channel is independent from other users’ channels.
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B. Uplink Data Transmission

For uplink data transmission, after all K users send uplink data to the BS synchronously, the

received signal vector y ∈ CL×1 at the BS is modeled as

y =
√
ρu

K∑

k=1

gksk + z

=
√
ρuGs+ z, (4)

where sk is the information-bearing signal transmitted by user k, which is the kth entry of vector

s ∈ CK×1 with the conditions Es{s} = 0K×1 and Es{ss†} = IK , ρu is the transmit power,

z ∼ CN (0L×1, IL) denotes the received noise vector at the BS, and G = [g1, . . . , gk, . . . , gK ] ∈
CL×K is the channel matrix between all users and all BS antennas. Moreover, we assume that

z is uncorrelated with any user channel and transmitted symbol.

III. SE ANALYSIS WITH PERFECT CSI

A. General Achievable Uplink Rate

We investigate the case that the BS knows the complete channel gain, i.e., G. The received

signal y in (4) is separated into K streams by multiplying it with the linear detector matrix

A ∈ CL×K which is a function of G. The processed signal is given by

r = A†y ∈ CK×1. (5)

Then, the kth entry rk of r is modeled as

rk =
√
ρua

†
kgksk +

√
ρu

K∑

n 6=k

a
†
kgnsn + a

†
kz, (6)

where ak is the kth column of A. Note that the desire signal of user k is
√
ρua

†
kgksk while the

rest of in (6) can be regarded as the interference signal that these two parts are uncorrelated.

By modeling the interference signal as an Gaussian noise, utilizing the worst case technology in

[20, Theorem 1], adopting the standard linear ZF detector A = G
(
G†G

)−1
, and normalizing

the total system bandwidth into unity, the achievable uplink rate (i.e., SE) of user k, in units of

bit/s/Hz, is given by [16, Eq. (18)]

Rk = EH

{
log2

(
1 +

ρu
‖ak‖22

)}
, (7)

November 6, 2019 DRAFT



8

where

H , [h1, . . . ,hk, . . . ,hK ] ∈ CL×K . (8)

It is important to note that Rk is determined by the users’ large-scale fading coefficients. Hence, to

analyze the average SE performance and study the asymptotic performance of (7), it is necessary

to evaluate the achievable uplink rate by averaging out the large-scale fading. We define the

following rate metric as [23, Eq. (12)] and [35, Eq. (4)]

R̄k = EΥ {Rk} , (9)

where

Υ , [γ1, . . . ,γk, . . . ,γK ] ∈ CL×K . (10)

B. Upper Bound

Theorem 1: An upper bound Rub
k of Rk has an approximate closed-form expression when L

is large, which is given by

Rub
k ≈ R̃ub

k , log2


1 + ρu

∑

l̃∈Lk

γl̃,k


 , (11)

where Lk = L/Ak, L = {l|∀l = 1, . . . , L}, and Ak is defined as

Ak , Unique

({
l⋆n = argmax

l
γl,n

∣∣∣∣∀n 6= k

})
, (12)

and Unique (T ) returns the same values as in set T but with no repetitions.

Proof: See Appendix B.

It is important to note that the result in Theorem 1 does not depend on the small-scale fading

and is constituted by a series of large-scale fading coefficients, which change less often than

the practical channel. Hence, the formula in Theorem 1 only needs to be calculated when the

large-scale fading coefficients change. Also, the obtained close-form expression enables efficient

evaluation of the achievable uplink rate and providing key insights about how the achievable

uplink rate is affected by the system parameters. Specifically, based on (11) and the special

structure of (12), it is found that, for the approximation of Rk, at most K−1 ≥ |Ak| large-scale

coefficients become useless after the BS processes the received signal vector y in (4) by the

ZF detector. Intuitively, the essence of the user k’s detector ak is to project the signal vector

y onto the null space of the interference space spanned by {gn|∀n 6= k}. Also, since the BS
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antenna l⋆n is the closest one to the user n, the corresponding large-scale fading coefficient is

much larger than γl,n(l 6= l⋆n), hence γl⋆n,n becomes significant and gl⋆n,n is the principal element

of gn, therefore, the l⋆nth component gl⋆n,k of gk is approximately eliminated. In summary, from

both theorem analysis and physics intuition perspectives, the obtained approximation of Rk in

Theorem 1 not only has its rationality, but also this closed-form expression allows us to pursuit

the benefit of the important system design. In spite of the large L assumption in Theorem 1, it

is worth mentioning that this result is still valid with a not-so-large number of antennas and is

larger than the simulated rate in section V. Moreover, motivated by the previous work [9, Remark

5], it is found that the obtained approximation can reduce to the exact upper bound obtained in

conventional massive MIMO systems based on properly utilizing several conditions. The detailed

explanation is as follows. First, when the number of BS antennas L becomes infinite, based on

the special structure of Ak and Lk, the cardinal of the set Ak asymptotically approaches to K−1

and hence |Lk| → L−K + 1. Then, by making the antennas belong to the set Lk at the same

location, i.e., ∀l̃ ∈ Lk, γl̃,k = γk, R̃ub
k finally becomes

R̃ub
k → log2 (1 + ρu (L−K + 1) γk) . (13)

Note that (13) is the exact upper bound of the achievable uplink rate with ZF detector and

perfect CSI in a conventional massive MIMO system given by [36, Theorem 3] if the inter-

cell interference is ignored. In summary, Theorem 1 provides a very generic expression (11) to

approximate the limit system performance.

It is important to note that different large-scale fading generates different (11). However, the

exact expression of averaging out the large-scale fading in R̃ub
k is hard to be obtained since the

distribution of the access distance between the user and BS antenna is complicated as shown

in Lemma 1 of the Appendix A. The following corollary will be used for investigating the

asymptotic performance of the approximation of Rk by averaging out the large-scale fading.

Corollary 1: An upper bound R̄ub
k of R̄k has the following approximation

R̄ub
k , EΥ

{
Rub

k

}
≈ ˜̄Rub

k , EΥ

{
R̃ub

k

}
. (14)

When L → ∞, ˜̄Rub
k = Ω(α

2
log2 L).

Proof: See Appendix C.

It is interesting to note from Corollary 1 that the growth rate of the approximation of achievable

uplink rate R̄k, by averaging out the large-scale fading, is not only the logarithmic function of the
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number of BS antennas L but also the linear function of the path-loss factor α. The underlying

reason behind this phenomenon is that the different access distances from the user to the massive

distributed BS antennas offer extra distance diversity compared with the case when all massive

BS antennas are placed together.

C. Lower Bound

Theorem 2: A lower bound Rlb
k of Rk has an approximate closed-form expression when L is

large, which is given by

Rlb
k ≈ R̃lb

k , log2 (1 + ρuΦk (Ψk − 1)) , (15)

where Φk and Ψk are defined as

Φk ,

∑
l̃∈Lk

γ2
l̃,k

∑
l̃∈Lk

γl̃,k
, (16)

Ψk ,

(
∑
l̃∈Lk

γl̃,k

)2

∑
l̃∈Lk

γ2
l̃,k

, (17)

respectively.

Proof: See Appendix D.

It is important to note that the result in Theorem 2 presents the simple analytical investigation

of the approximation of the achievable uplink rate Rk for the case of each BS antennas is

distributed. It is worth noting that, as L → ∞, by adopting the same assumption for obtaining

(13),
˜̂
Rlb

k becomes

R̃lb
k → log2 (1 + ρu (L−K) γk) . (18)

It is well known that (18) is the exact lower bound of the achievable uplink rate with ZF detector

and perfect CSI in a conventional massive MIMO system given by [16, Proposition 3]. Based on

this fact, Theorem 2 provides an useful formula to assess the achievable uplink rate performance

for the general communication system. Moreover, it is obvious that R̃lb
k is always smaller than

R̃ub
k , which implies the validity of Theorem 2. Next, it is interesting to consider the scaling

behavior of the obtained approximation by averaging out the large-scale fading.
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Corollary 2: An lower bound R̄lb
k of R̄k has the following approximation

R̄lb
k , EΥ

{
Rlb

k

}
≈ ˜̄Rlb

k , EΥ

{
R̃lb

k

}
. (19)

When L → ∞, ˜̄Rlb
k = Ω(α

2
log2 L).

Proof: See Appendix E.

Note that an analogous result has been derived in Corollary 1. To gain more insights, the

conclusions in Corollary 1 and Corollary 2 imply that the obtained two approximations, where

line at either end of the achievable uplink rate with perfect CSI, have the same asymptotic lower

bound α
2
log2 L and the path-loss factor α is always larger than 2 unless in the case of free

space propagation. Interestingly, by placing all antennas at the area centre and averaging out

the large-scale fading, based on (13) and (18), it is found that the achievable uplink rate of ZF

detector with perfect CSI in the conventional massive MIMO system is Θ(log2 L) which means

the growth rate is no further than log2 L. In brief, cell-free massive MIMO systems promise

better achievable uplink rate performance than the conventional massive MIMO systems based

on the conditions of the perfect CSI assumption and ZF detector. In the following section, the

in-depth studies have been made on the achievable uplink rate analysis with imperfect CSI case.

IV. SE ANALYSIS WITH IMPERFECT CSI

A. General Achievable Uplink Rate

In real communication system, a key component is to obtain the CSI between the users and

the BS antennas. In TDD model, all users firstly send uplink pilot sequences to the BS which

knows the exact pilot sequence information. Then, the BS utilizes these pilot sequences and the

statistical information to estimate the channels of all users. For the sake of analyzing the SE

performance in a simplified manner, the typical minimum mean squared error estimation method

[37] and the orthogonal pilot sequences [16] are adopted. The total channel G is estimated as

Ĝ , [ĝ1, . . . , ĝk, . . . , ĝK ] ∈ CL×K , (20)

where ĝk = [ĝ1,k, . . . , ĝl,k, . . . , ĝL,k]
T ∈ CL×1 is the estimated channel vector of gk. Besides, ∀k,

ĝk and the estimate error vector g̃k , gk − ĝk follow

ĝk ∼ CN (0L×1, diag(γ̂1,k, . . . , γ̂l,k, . . . , γ̂L,k)), (21)

g̃k ∼ CN (0L×1, diag(γ̃1,k, . . . , γ̃l,k, . . . , γ̃L,k)), (22)
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and satisfy Ehk
{ĝ†

kg̃k} = 0, where

γ̂l,k ,
ρpγl,k

ρpγl,k + 1
γl,k, (23)

γ̃l,k ,
1

ρpγl,k + 1
γl,k, (24)

and ρp denotes the pilot sequence power. Similar as the perfect CSI case, we multiply (4) with

the linear detector Â constituted by Ĝ as follow

r̂ = Â†y. (25)

Then, the kth entry r̂k of r̂ is given by

r̂k =
√
ρuâ

†
kgksk +

√
ρu

K∑

n 6=k

â
†
kgnsn + â

†
kz, (26)

where âk is the kth column of Â. Since the BS estimates G as Ĝ, r̂k is rewritten as

r̂k=
√
ρuâ

†
kĝksk+

√
ρu

K∑

n 6=k

â
†
kĝnsn+

√
ρu

K∑

n=1

â
†
kg̃nsn+â

†
kz. (27)

Then, by utilizing the worst-case technique of Gaussian noise from [20, Theorem 1], , adopting

the standard ZF detector Â = Ĝ
(
Ĝ†Ĝ

)−1

, and normalizing the total system bandwidth into

unity, the achievable uplink rate of the kth user by averaging out the small-scale fading H is

given as

R̂k = EH




log2


1 +

ρu

ρu
L∑
l=1

|âl,k|2
K∑

n=1

γ̃l,n + ‖âk‖22








, (28)

where âl,k is the lth entry of âk. Note that with high ρp, hence γ̃l,n → 0(∀l, n), âk → ak, and

R̂k becomes the perfect CSI case as in (7).1 Moreover, by following the methodology in the

perfect CSI case, the achievable uplink rate of the kth user by averaging out both small-scale

fading and large-scale fading is given by

¯̂
Rk = EΥ

{
R̂k

}
. (29)

1For the sake of characterizing the variation of the achievable uplink rate from the imperfect CSI case to the perfect CSI

case, the channel estimation overhead in the coherence time interval does not take into account as in [16].
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B. Upper Bound

Theorem 3: An upper bound R̂ub
k of R̂k has an approximate closed-form expression when L

is large, which is given by

R̂ub
k ≈ ˜̂Rub

k , log2


1 +

ρu
ρuγ̃min + 1

∑

l̃∈Lk

γ̂l̃,k


 , (30)

where γ̃min is defined as

γ̃min , min
l

K∑

n=1

γ̃l,n. (31)

Proof: Based on the Jensen’s inequality and the definition of (31), (28) is upper bounded by

R̂k ≤ log2

(
1 +

ρu
ρuγ̃min + 1

EH

{
1

‖âk‖22

})
, R̂ub

k , (32)

where the “=” in “≤” is reached when both 1
‖âk‖

2
2

is a constant and
K∑

n=1

γ̃l1,n=
K∑

n=1

γ̃l2,n, ∀l1 6= l2.

The following key issue is to obtain the distribution of 1
‖âk‖

2
2
. By applying the methodology of

the proof of Theorem 1, we can reach the final result after some basic algebraic manipulations.

Note that the approximate expression in Theorem 3 can be easily evaluated since it primarily

involves simple large-scale fading coefficients, uplink data power, and a minimum value which

depends on the variance of the channel estimation error, as well as, the standard logarithmic

function base 2. Moreover, it is obvious that
˜̂
Rub

k is always smaller than the perfect CSI case

R̃ub
k in (11) and satisfies

lim
ρp→∞

˜̂
Rub

k = R̃ub
k . (33)

We note that the conclusion of Theorem 3 gives another universal formula for the approximation

of achievable uplink rate. Moreover, when L → ∞, by utilizing the methodology of obtaining

(13),
˜̂
Rub

k becomes

˜̂
Rub

k → log2


1 +

ρu (L−K + 1)

ρu
K∑

n=1

γn
ρpγn+1

+ 1

× ρpγk
ρpγk + 1

γk


 . (34)

An interesting phenomenon is found that (34) is the exact upper bound of the achievable uplink

rate with ZF detector and imperfect CSI in a conventional massive MIMO system given by the

kth component in [38, Theorem 1] when the out-of-cell interference is ignored. Hence, (34) is

a special case of (30) if all the BS antennas are located at the same position.
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Similar as the perfect CSI case, the following corollary investigates the asymptotic performance

of R̂ub
k by averaging out the large-scale fading.

Corollary 3: An upper bound
¯̂
Rub

k of
¯̂
Rk has the following approximation

¯̂
Rub

k , EΥ

{
R̂ub

k

}
≈ ˜̂̄Rub

k , EΥ

{
˜̂
Rub

k

}
. (35)

When L → ∞,
˜̂̄
Rub

k = Ω(α
2
log2 L).

Proof: The proof is similar as in Corollary 1 and thus omitted.

Together with Corollary 1, Corollary 3 indicates that if the uplink data power ρu, pilot sequence

power ρp, the number of users K, and the path-loss factor α are kept fixed, as well as, the number

of BS antennas L is increased, then, the result of scaling behavior is the same as the perfect

CSI case. In spite of this, it is worth noting that the gap between the two approximations by

averaging out the large-scale fading for the perfect CSI case and imperfect CSI is enlarged when

the pilot sequence power ρp is cut down.

C. Lower Bound

Theorem 4: A lower bound R̂lb
k of R̂k has an approximate closed-form expression when L is

large, which is given by

R̂lb
k ≈ ˜̂

Rlb
k , log2

(
1 +

ρu
ρuγ̃max + 1

Φ̂k

(
Ψ̂k − 1

))
, (36)

where γ̃max, Φ̂k, and Ψ̂k are defined as

γ̃max , max
l

K∑

n=1

γ̃l,n, (37)

Φ̂k ,

∑
l̃∈Lk

γ̂2
l̃,k

∑
l̃∈Lk

γ̂l̃,k
, (38)

Ψ̂k ,

(
∑
l̃∈Lk

γ̂l̃,k

)2

∑
l̃∈Lk

γ̂2
l̃,k

, (39)

respectively.

Proof: Based on the Jensen’s inequality and the definition of (37), (28) is lower bounded by

R̂k ≥ log2

(
1 +

ρu
(ρuγ̃max + 1)EH {‖âk‖22}

)
, R̂lb

k , (40)
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where the “=” in “≥” is reached when both ‖âk‖22 is a constant and
K∑

n=1

γ̃l1,n=
K∑

n=1

γ̃l2,n, ∀l1 6= l2.

The following key issue is to obtain the distribution of ‖âk‖22. By applying the methodology of

the proof of Theorem 2, we can reach the final result after some basic algebraic manipulations.

Note that the expression in Theorem 4 can be easily evaluated since it involves the pilot

sequence power, uplink data power, and large-scale fading coefficients, as well as, the antenna

index set Lk. Interestingly, from (36), it is shown that the approximation of the achievable uplink

rate with imperfect CSI is similar as the perfect CSI in Theorem 2, while the channel estimate

error is involved that makes a little difference. Moreover, when the pilot sequence power ρp

becomes infinite, based on (23) and (24), by taking the similar methodology of obtaining (33),

γ̃max → 0, Φ̂k → Φk, Ψ̂k → Ψk, and hence

lim
ρp→∞

˜̂
Rlb

k = R̃lb
k . (41)

Moreover, with finite ρp, based on the monotonic property from the proof of Corollary 2 in

Appendix E, after some algebraic manipulation, it can be shown that
˜̂
Rlb

k < R̃lb
k . In other words,

˜̂
Rlb

k is very generic and can be regarded as a considered model to investigate the performance

of achievable uplink rate for the imperfect CSI case and its special case perfect CSI. Moreover,

it is easy to show that
˜̂
Rlb

k <
˜̂
Rub

k , which implies the validity of Theorem 4. Particularly, when

L → ∞, by taking the same assumption for obtaining (13),
˜̂
Rlb

k becomes

˜̂
Rlb

k → log2


1 +

ρu (L−K)

ρu
K∑

n=1

γn
ρpγn+1

+ 1

× ρpγk
ρpγk + 1

γk


 . (42)

It is important to note that (42) is the exact lower bound of the achievable uplink rate with ZF

detector and imperfect CSI in the conventional massive MIMO system given by [16, Proposition

7]. Hence,
˜̂
Rlb

k can be emerged as a promising, tractable, and effective expression to reap both

benefits of the rate analysis of cell-free massive MIMO systems and conventional massive MIMO

systems.

The following corollary presents an analysis for
˜̂
Rlb

k by averaging out the large-scale fading

coefficients.

Corollary 4: An lower bound
¯̂
Rlb

k of
¯̂
Rk has the following approximation

¯̂
Rlb

k , EΥ

{
R̂lb

k

}
≈ ˜̂̄

Rlb
k , EΥ

{
˜̂
Rlb

k

}
. (43)
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When L → ∞,
˜̂̄
Rlb

k = Ω(α
2
log2 L).

Proof: The proof is similar as in Corollary 2 and thus omitted.

Interestingly, the comparison of Corollary 3 and Corollary 4 reveals that the obtained two

approximations of the achievable uplink rate with ZF detector and imperfect CSI, have the same

asymptotic lower bound α
2
log2 L, where the similar results can be found in Corollary 1 and

Corollary 2 for the perfect CSI case. We note that the asymptotic results in Corollary 3 and

Corollary 4 are not affected by the pilot sequence power ρp. It means the degree of the channel

estimation error introduced by the phase of channel estimation does merely change the deviation

between the imperfect CSI case and perfect CSI case, since the channel estimation does not

affect the asymptotic result and only has an adverse impact on the achievable uplink rate. Apart

from that, in conventional massive MIMO systems with imperfect CSI, (34) and (42) show that

the growth rate of achievable uplink rate is just not more than log2 L which is same as the

perfect CSI case. Hence, cell-free massive MIMO systems have the potential of high growth

rate compared with the conventional massive MIMO systems in imperfect CSI.

V. NUMERICAL RESULTS

In this section, the validation of the theoretical analysis and asymptotic conclusion of the

achievable uplink rate in Section III and Section IV is conducted via numerical simulation. The

L BS antennas and K users are uniformly distributed at a circle area with radius one. Moreover,

the impact of the pilot sequence power ρp is considered to investigate the achievable uplink rate

performance. Specifically, by employing the methodology of [13, 16], we choose the path-loss

factor α = 4 and the number of users K = 10. Note that since we assume the noise variance

is 1, ρu (ρp) can be interpreted as the transmit uplink data signal (pilot sequence signal) to

noise ratio and, thus, can be expressed in dB. The simulation results are obtained by randomly

producing 30 realizations of all users’ positions and 30 realizations of antennas positions in this

circular area, respectively. In other words, 30 × 30 = 900 realizations of the large-scale fading

are obtained for numerical simulation. Also, 200 realizations of the small-scale fading channels

are randomly produced for each large-scale fading realization. For convenience, in this cell-free

massive MIMO system, we define the metrics called “Average achievable uplink rate” for the
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Fig. 2. The average achievable uplink rate when ρu = −10dB for cell-free and conventional massive MIMO systems with the

perfect CSI and imperfect CSI (ρp = 0dB).

perfect CSI case and imperfect CSI case, which are given by

R̄ ,
1

K

K∑

k=1

R̄k, (44)

¯̂
R ,

1

K

K∑

k=1

¯̂
Rk, (45)

respectively. Besides, R̄k and
¯̂
Rk have been defined as in (9) and (29), respectively. Moreover,

for further comparison, the conventional massive MIMO system is considered in this section,

where the parameter setting and metric are the same as in the cell-free massive MIMO system,

except for all the BS antennas are placed and fixed at this circular area centre.

Fig. 2 gives the approximations (or bounds) and Monte-Carlo simulated average achievable

uplink rate for cell-free massive MIMO system and conventional massive MIMO system.2 Here,

due to the orthogonal pilot sequences are adopted in Section IV.A that the pilot sequence length

should be larger than or equal to the number of users, for convenience, the uplink data power

ρu is set to −10dB and the pilot sequence power is set to ρp = Kρu = 0dB.

For the perfect CSI case of Fig. 2 (a), with the cell-free massive MIMO system, it is

shown that, compared with the simulated average achievable uplink rate curve, the obtained two

2Note that the obtained approximations in cell-free massive MIMO system and the upper and lower bounds in conventional

massive MIMO system are showed in Fig. 2-4. For convenience, we use the formats “Approximation (Upper Bound)” and

“Approximation (Lower Bound)” in Fig. 2-4.
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approximations (based on (11) with (14), and (15) with (19), respectively) curves are effective

and have the similar growth rate, which only a little gap is exist between the approximation

and simulated rate. In other words, it justifies the effectiveness of Theorem 1 and Theorem

2. The similar results can be found for the conventional massive MIMO system, which the

upper bound and lower bound curves are based on averaging out the large-scale fading in

the results (13) and (18), respectively. Note that the tightness among the upper bound, lower

bound, and simulated rate in the conventional massive MIMO system can be analytically proved

based on the exact bound expressions (13) and (18). It is found that as the number of BS

antennas increases, the gap between these two systems is gradually increased for all obtained

approximations (bounds), and simulated rate, which shows the cell-free massive MIMO system

has a huge development potential for achievable uplink rate improving. Moreover, to explore

and analyze the scaling behavior of the achievable uplink rate, two numerical curves which have

the asymptotic properties Θ
(
α
2
log2 L

)
and Θ (log2 L), respectively, are plotted.3 Compared with

these two numerical curves, it is shown that, for the cell-free massive MIMO system, the two

approximations have an asymptotic lower bound α
2
log2 L as L → ∞ which prove the validity of

Corollary 1 and Corollary 2; for the conventional massive MIMO system, the upper/lower bound

and simulated rate do have an asymptotically tight bound log2 L which satisfies the conclusion of

the discussion after Corollary 2. In brief, the obtained asymptotic theoretical results are accurate

for the rate behavior and can provide key insights to analyze the rate performance.

For the imperfect CSI case of Fig. 2 (b), two approximate curves in cell-free massive MIMO

system are based on (30) with (35), and (36) with (43), respectively, while the upper and lower

bound curves in conventional massive MIMO system are based on averaging out the large-scale

fading in the results (34) and (42), respectively. It is found that the above mentioned observations

in perfect CSI case can also be found in imperfect CSI case, which prove the validity of Theorem

3, Theorem 4, Corollary 3, Corollary 4, and conclusion of the discussion after Corollary 4. Only

the achievable uplink rate loss is introduced into the imperfect CSI case for both two systems.

In the following, to study the influence of the path-loss factor on the obtained approximations,

we introduce the relative approximation error (RAE) metric and use it to measure the difference

between the simulated bound and the corresponding approximation. The user k’s RAE metric is

3Note that to avoid confusion, the detailed parameters of these two curves have not been provided since the provided asymptotic

properties are enough. Moreover, we apply this methodology in Fig. 2 (b).

November 6, 2019 DRAFT



19

TABLE I

LIST OF THE AVERAGE PER USER RAE (UPPER BOUND)

Average per user RAE

Case

L
150 200 250 300 350 400 450 500

α=3
Perfect 1.4580% 1.1534% 0.9458% 0.8076% 0.7495% 0.6956% 0.6560% 0.6017%

Imperfect 1.5568% 1.2223% 0.9981% 0.8498% 0.7866% 0.7285% 0.6858% 0.6282%

α=4
Perfect 1.4673% 1.1680% 0.9507% 0.8091% 0.7509% 0.6957% 0.6535% 0.5936%

Imperfect 1.5184% 1.2044% 0.9783% 0.8315% 0.7709% 0.7134% 0.6696% 0.6080%

TABLE II

LIST OF THE AVERAGE PER USER RAE (LOWER BOUND)

Average per user RAE

Case

L
150 200 250 300 350 400 450 500

α=3
Perfect 4.9776% 4.4547% 4.1216% 3.9180% 3.7434% 3.6266% 3.5628% 3.4872%

Imperfect 5.5632% 4.9186% 4.5198% 4.2742% 4.0688% 3.9304% 3.8499% 3.7595%

α=4
Perfect 7.0368% 6.3729% 5.9482% 5.7136% 5.4854% 5.3418% 5.2495% 5.1437%

Imperfect 7.5423% 6.7874% 6.3116% 6.0459% 5.7932% 5.6327% 5.5269% 5.4088%

defined as RAEk , EΥ{|TRUEk −APPRXk|/TRUEk}, where TRUEk denotes any one of the

notations Rub
k , R̂ub

k , Rlb
k , and R̂lb

k . Also, APPRXk denotes any one of the notations R̃ub
k ,
˜̂
Rub

k , R̃lb
k ,

and
˜̂
Rlb

k . The average per user RAE values for both perfect CSI and imperfect CSI cases, as well

as, different L are presented in Table I (Upper Bound) and Table II (Lower Bound), respectively,

where ρu = −10dB, ρp = 0dB, and α = 3, 4. From Table I, we can see that, the approximation

is very accurate based on the average per user RAE performance. Also, the influence of path-loss

factor on the RAE performance is negligible. From Table II, we can see that, the gap between the

simulated lower bound and the corresponding approximation is negligible except the little gap

which exists when α = 4 and L = 150. Also, for different path-loss factor, when the number of

BS antenna increases, the RAE decreases. In summary, our obtained approximations are accurate

and the influence of the path-loss factor on the obtained approximations is negligible.

Fig. 3 presents the cumulative distribution function (CDF) of the average achievable uplink

rate with ρu = 0dB and the cell-free massive MIMO system, as well as, the conventional massive

MIMO system, for perfect CSI case and imperfect CSI case (ρp = 10dB), under the setting of
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Fig. 3. The CDF of the average achievable uplink rate when L = 300 and ρu = 0dB for cell-free and conventional massive

MIMO systems with the perfect CSI and imperfect CSI (ρp = 10dB).

the number of BS antennas is equal to 300. Moreover, the obtained approximations in cell-free

massive MIMO and the bounds in conventional massive MIMO are offered for comparison.

Specifically, for the perfect CSI case of Fig. 3 (a), with the cell-free massive MIMO system,

the approximate curves line at the either end of the exact simulated achievable uplink rate

curve for the whole rate region, and one approximation is tight to the simulation result, which

imply that the obtained analytical results in the perfect CSI case are valid for the whole CDF

region. Moreover, compared with the conventional massive MIMO system, the approximate and

simulation results in cell-free massive MIMO system show huge advantage in regard of the rate

metric. For the imperfect CSI case of Fig. 3 (b), again, the above mentioned observations in

perfect CSI case can be deduced that obtained analytical results in the imperfect CSI case are

very effective and only achievable uplink rate loss is inevitable due to the channel estimation

error.

Fig. 4 investigates the impact of the pilot sequence power ρp on the average achievable uplink

rate performance. In this figure, the uplink data power is set to -10dB and the number of BS

antennas is set to 300. For the cell-free massive MIMO system, it shows that the approximations

are effective regardless of the value of ρp compared with simulation values for both perfect

CSI and imperfect CSI cases. The obtained approximations has the similar growth rate with

the exact simulated rate in imperfect CSI case. Moreover, when ρp → ∞, the approximations

and simulated rate for imperfect CSI case approach to different constant values, which match
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the approximations and simulated rate for perfect CSI case, respectively. In other words, these

results showcase the conclusions of (33) and (41) that the performance of imperfect CSI case

is always less than the perfect CSI case. The above mentioned results can be found in the

conventional massive MIMO system in this figure. Moreover, from this figure, for different ρp,

the performance of cell-free massive MIMO system is far better than the conventional massive

MIMO system.

VI. CONCLUSION

In this paper, we presented a seminal study for investigating the achievable uplink rate

performance of cell-free massive MIMO systems employing ZF detectors. For the perfect CSI

case, two novel approximate expressions of the achievable uplink rate were deduced. Moreover,

these approximations can converge into the exact bounds in the conventional massive MIMO

systems when all BS antennas are co-located. Particularly, it was found that, with large number

of BS antennas L, the approximations by averaging out the large-scale fading had the asymptotic

lower bound α
2
log2 L, whilst for the upper and lower bounds in conventional massive MIMO

systems, it had the asymptotically tight bound log2 L. In other words, these asymptotic results

showed the potential of cell-free massive MIMO systems since the path-loss factor α > 2, except

for the free space environment. For the imperfect CSI case, the above mentioned conclusions in

perfect CSI case were true of the imperfect CSI case but with a little bit rate loss. In addition,

the approximations in imperfect CSI case converge into the approximations in perfect CSI case

when the pilot sequence power ρp became infinite.
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APPENDIX A

SEVERAL USEFUL RESULTS

Lemma 1 ([12, Eqs. (57-59)], [23, Eqs. (43-46)], and [39, Eq. (3.1)]): Consider a circular

area with unit radius, user k and L − K + 1 (L > K − 1) antennas are uniformly distributed

within this area. ρk denotes the distance between user k and the circular area centre. The PDF

of ρk is given by

fρk (x) , 2x, 0 ≤ x ≤ 1. (46)

Let d
(l)
k (l = 1, . . . , L−K +1) is the lth minimum access distance from user k to the L−K +1

antennas, which its conditional PDF given ρk is

f
d
(l)
k

|ρk
(y|x), (L−K+1)!

(l−1)!(L−K+1−l)!
(F (y; x))l−1(1−F (y; x))L−K+1−lf(y; x), 0≤y≤1+x, (47)

where F (y; x) and f(y; x) denote the CDF and PDF of the access distance from user k to any

antenna as

F (y; x) ,





y2, 0 ≤ y ≤ 1− x,

y2

π
arccos x2+y2+1

2xy
+ 1

π
arccos 1+x2−y2

2x
− 2

π
S∆(x, y), 1− x < y ≤ 1 + x,

(48)

and

f(y; x) ,





2y, 0 ≤ y ≤ 1− x,

2y
π
arccos x2+y2+1

2xy
, 1− x < y ≤ 1 + x,

(49)

respectively. Besides, S∆(x, y) is defined as

S∆(x, y) ,

√
x+ y + 1

2

(
x+ y + 1

2
− 1

)(
x+ y + 1

2
− x

)(
x+ y + 1

2
− y

)
. (50)

Lemma 2 ([10, Lemma 2] and [40, Lemma 6 & Proposition 8]): If Xl (l = 1, . . . , L) is an inde-

pendent Gamma distributed random variable with a shape parameter ηl and a scale parameter θl,

i.e., Xl ∼ Γ(ηl, θl), then, the sum random variable X =
L∑
l=1

Xl can be approximated by a Gamma

distributed random variable X̂ ∼ Γ(η̂, θ̂), which η̂ and θ̂ are defined as η̂ ,

(
L∑
l=1

ηlθl

)2

/
L∑
l=1

ηlθ
2
l

and θ̂ ,
L∑
l=1

ηlθ
2
l /

L∑
l=1

ηlθl, respectively.
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Proposition 1: Consider the same conditions as in Lemma 1, for fixed l, as L → ∞, the

expectation of
(
d
(l)
k

)α
has the following asymptotic property4

Ql(L) , E
d
(l)
k

{(
d
(l)
k

)α}
= Θ

(
L−α

2

)
, (51)

where α is the path-loss factor which satisfies α > 2, except for the free space environment.

Proof: Based on the definition of the expectation, we start by writing

Ql(L) =

∫ 1

0

∫ 1+x

0

fρk(x)fd(l)
k

|ρk
(y|x)yαdxdy. (52)

To evaluate the integral (52), by substituting (47) into Ql(L) and defining z , F (y; x), after

some algebraic manipulation, we have

Ql(L) =
(L−K + 1)!

(l − 1)!(L−K + 1− l)!

∫ 1

0

∫ 1

0

fρk(x)z
l−1 (1− z)L−K+1−l

(
F−1(z; x)

)α
dxdz

=
(L−K + 1)!

(l − 1)!(L−K + 1− l)!

∫ 1

0

fρk(x)

( Ql(L;x)︷ ︸︸ ︷∫ 1

0

zl−1 (1− z)L−K+1−l
(
F−1(z; x)

)α
dz

)
dx,

(53)

where F−1(·) denotes the inverse function of F (·).
To analyze the scaling behavior of Ql(L), we firstly investigate the term Ql(L; x). Based on

the structure of F (y; x) in (48), it is known that F (0; x) = 0, F (1 − x; x) = (1 − x)2, and

F (1 + x; x) = 1. Then, for convenience, when y ∈ [0, 1− x], we denote F (y; x) as F1(y; x) ,

y2 ∈ [0, (1−x)2]. Hence, when z ∈ [0, (1−x)2], F−1
1 (z; x) ∈ [0, 1−x]. When y ∈ (1−x, 1+x],

we denote F (y; x) as F2(y; x) ,
y2

π
arccos x2+y2+1

2xy
+ 1

π
arccos 1+x2−y2

2x
− 2

π
S∆(x, y) ∈ ((1−x)2, 1].

Hence, when z ∈ ((1 − x)2, 1], F−1
2 (z; x) ∈ (1 − x, 1 + x]. Next, for the term Ql(L; x), after

much algebraic manipulation, we perform the following sequence of operations as

Ql(L; x) =

∫ 1

0

zl−1 (1− z)L−K+1−l
(
F−1
1 (z; x)

)α
dz

︸ ︷︷ ︸
Ql1(L;x)

+

∫ 1

(1−x)2
zl−1 (1− z)L−K+1−l

((
F−1
2 (z; x)

)α −
(
F−1
1 (z; x)

)α)
dz

︸ ︷︷ ︸
Ql2(L;x)

. (54)

4Note that the specifical case l = 1 has been provided in [13] with brief proof. Here, we provide detailed result for general

case which is very generic.
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In the following, to investigate the relationship between Ql1(L; x) and Ql2(L; x), we firstly

consider the case 0 < x ≤ 1 and z ∈ ((1−x)2, 1]. Consider a circle area with center O and radius

OP = 1, which is shown in Fig. 5. A user is placed at the point A with OA = x (0 < x ≤ 1).

Also, the extension line of OA meets the circle O at the point G, i.e, AG = 1 − x. Then,

since the BS antennas are uniformly distributed, given the user located at the point A, it is

obvious that z = F2(y; x) = SBCDEFG/π, where SBCDEFG is shown in Fig. 5, which is the

intersection area of circle O and the circle with center A and radius AB = AD = y = F−1
2 (z; x).

On one hand, it can be found that the area of circle A, SA, is great than SBCDEFG, clearly,

SA = πy2 = π(F−1
2 (z; x))2 > πF2(y; x) = πz. On the other hand, we can also draw a circle

with the center H (DG = DA + AG = 2HI = 2HD = 2HG = F−1
2 (z; x) + (1− x)). It can be

shown that the circle H meets circle A and circle O only at the points D and G, respectively.

Hence, SBCDEFG = πz ≥ SH = π
(
(F−1

2 (z; x) + (1− x))/2
)2

, where the “=” in ”≥” is reached

when z = 1. Finally, based on above mentioned, we obtain

π

(
F−1
2 (z; x) + (1− x)

2

)2

≤ πz < π
(
F−1
2 (z; x)

)2
, (55)

where the “=” in ”≤” is reached when z = 1. Then (55) yields

1− x < F−1
1 (z; x) < F−1

2 (z; x) ≤ 2F−1
1 (z; x)− (1− x). (56)

Hence, with the aid of (56), when 0 < x ≤ 1, the term Ql2(L; x) is upper bounded by

Ql2(L; x) < (2α − 1)

∫ 1

(1−x)2
zl−1(1−z)L−K+1−l

(
F−1
1 (z; x)

)α
dz

< (2α − 1)Ql1(L; x). (57)

Moreover, when x = 0, Ql2(L; 0) = 0 and Ql1(L; 0) > 0. Hence, it is proved that

Ql2(L; x) = O (Ql1(L; x)) , ∀x ∈ [0, 1]. (58)

Next, based on (48), the integral Ql1(L; x) is now evaluated as

Ql1(L; x) =

∫ 1

0

zl+
α
2
−1 (1− z)L−K+1−l dz

= B
(
l +

α

2
, L−K + 1− (l − 1)

)
, (59)
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where B (x, y) ,
∫ 1

0
tx−1(1 − t)y−1dt is the Beta function. Note that when y is large and x is

fixed, B (x, y) → Γ(x)y−x, hence when L → ∞, we have

Ql1(L; x) →
Γ(l + α

2
)

(L−K + 1− (l − 1))l+
α
2

= Θ
(
L−(l+α

2
)
)
. (60)

Then, based on (58) and (60), we have

Ql(L; x) = Θ
(
L−(l+α

2
)
)
. (61)

Finally, the conclusion (51) is obtained by substituting (61) into (53), unitizing
(L−K+1)!

(l−1)!(L−K+1−l)!
=

Θ
(
Ll
)
, and simplifying.

APPENDIX B

PROOF OF THEOREM 1

Based on the Jensen’s inequality [16], (7) is upper bounded by

Rk ≤ log2

(
1 + ρuEH

{
1

‖ak‖22

})
, Rub

k , (62)

where the “=” in “≤” is reached when 1
‖ak‖

2
2

is a constant. Hence, the key issue is to obtain the

distribution of 1
‖ak‖

2
2
. By utilizing the methodology of [23, Appendix D], when L is large, we

have the following approximation

1

‖ak‖22
≈ ‖gk‖22 −

K∑

n 6=k

|gl⋆n,k|2. (63)

Also, when L ≫ K, we note that the elements of the set {l⋆n|∀n 6= k} are almost reciprocal.

Hence, we can approximate the set {l⋆n|∀n 6= k} as the set Ak, where Ak has been defined as

in (12). In other words, we obtain

K∑

n 6=k

|gl⋆n,k|2 ≈
∑

l̃∈Ak

|gl̃,k|2. (64)

Finally, (11) is obtained by substituting (2), (63), and (64) into (62) and simplifying.
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APPENDIX C

PROOF OF COROLLARY 1

Based on Theorem 1, it is easy to obtain the approximation (14). In the following, the

asymptotic behavior of ˜̄Rub
k is proved.

First, by denoting γ
(l)
k and d

(l)
k as the lth maximum large-scale fading coefficient and the lth

minimum access distance from user k to the antennas belonged to the set Lk, respectively, ˜̄Rub
k

is rewritten and lower bounded by

˜̄Rub
k = EΥ



log2


1 + ρu

|Lk|∑

l=1

γ
(l)
k







> EΥ

{
log2

(
1 + ρuγ

(1)
k

)}
, ˜̄Rub-lb

k . (65)

Then, when L is large, |Lk| → L−K+1 and Lk can be regarded and composed of L−K+1

uniformly distributed BS antennas in the circular area with unit radius [23]. Hence, with the aid

of (3) and the Jensen’s inequality, ˜̄Rub-lb
k is rewritten and lower bounded by

˜̄Rub-lb
k =

∫ 1

0

∫ 1+x

0

fρk(x)fd(1)
k

|ρk
(y|x) log2

(
1 + ρuy

−α
)
dxdy

= E
d
(1)
k



log2


1 +

ρu(
d
(1)
k

)α





 ≥ log2

(
1 +

ρu
Q1(L)

)
, (66)

where the “=” in ”≥” is reached when d
(1)
k is a constant. The expressions of fρk(x) and

f
d
(1)
k

|ρk
(y|x) can be found in (46) and (47), respectively, in the Lemma 1 of Appendix A. Besides,

Q1(L) is the special case of (51) in the Proposition 1 of Appendix A, which has the property

Q1(L) = Θ
(
L−α

2

)
. In other words, Q1(L) has an asymptotically tight bound L−α

2 . Finally, this

asymptotic conclusion is obtained based on the relationship among the Q1(L), (65), and (66).

APPENDIX D

PROOF OF THEOREM 2

Based on the Jensen’s inequality, (7) is lower bounded by

Rk ≥ log2

(
1 +

ρu
EH {‖ak‖22}

)
, Rlb

k , (67)

where the “=” in “≥” is reached when ‖ak‖22 is a constant. Hence, the key issue is to obtain

the distribution of ‖ak‖22. By substituting (63) and (64) into it, ‖ak‖22 is approximated by

‖ak‖22 ≈
1∑

l̃∈Lk

|gl̃,k|2
. (68)
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Based on (2), it is note that ∀l̃ ∈ Lk, |gl̃,k|2 ∼ Γ(1, γl̃,k) where the Gamma distributed random

variable x ∼ Γ(η, θ) has the PDF f(x) = xη−1e
x
θ

θηΓ(η)
, x ≥ 0. Then, via the application of Lemma

2 in Appendix A,
∑
l̃∈Lk

|gl̃,k|2 can be approximated by the Gamma distributed random variable

Λk ∼ Γ(Ψk,Φk), where Ψk and Φk have defined as in (16) and (17), respectively. Hence, based

on the above mentioned results, after some algebraic manipulation, we perform the following

sequence of operations

EH

{
‖ak‖22

}
≈ EΛk

{
1

Λk

}
=

1

Φk (Ψk − 1)
. (69)

Finally, (15) is obtained by substituting (69) into (67) and simplifying.

APPENDIX E

PROOF OF COROLLARY 2

By following the similar methodology of Corollary 1, the asymptotic behavior of ˜̄Rlb
k is

provided based on the subsequent steps.

First, by adopting the similar sorting method of large-scale fading coefficient as in Corollary

1, R̃lb
k is rewritten as

R̃lb
k = F

(
γ
(1)
k , γ

(2)
k , . . . , γ

(|Lk|−1)
k , γ

(|Lk|)
k

)

= log2 (1 + ρuΦ
sort
k (Ψsort

k − 1)) , (70)

where F (x1, x2, . . . , xK−1, xK) , log2(1 + ρu(
K∑
k=1

x2
k/

K∑
k=1

xk)((
K∑
k=1

xk)
2/

K∑
k=1

x2
k − 1)) and

Φsort
k ,

|Lk|∑
l=1

(
γ
(l)
k

)2

|Lk|∑
l=1

γ
(l)
k

, (71)

Ψsort
k ,

(
|Lk|∑
l=1

γ
(l)
k

)2

|Lk|∑
l=1

(
γ
(l)
k

)2 . (72)

Then, ∀t = 1, . . . , |Lk|, after lengthy algebraic manipulations, we have

∂R̃lb
k

∂γ
(t)
k

=

ρu




|Lk|∑
l 6=t

(
γ
(l)
k

)2
+

(
|Lk|∑
l 6=t

γ
(l)
k

)2



(1 + ρuΦ
sort
k (Ψsort

k − 1))

(
|Lk|∑
l=1

γ
(l)
k

)2 log2 e > 0. (73)
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By substituting (70) into ˜̄Rlb
k and unitizing (73), we get

˜̄Rlb
k > EΥ

{
F

(
γ
(2)
k , γ

(2)
k , . . . , 0, 0

)}

= EΥ

{
log2

(
1 + ρuγ

(2)
k

)}
, ˜̄Rlb-lb

k . (74)

Next, utilizing (3) and the methodology of (66), after some manipulations, ˜̄Rlb-lb
k is lower

bounded by

˜̄Rlb-lb
k =

∫ 1

0

∫ 1+x

0

fρk(x)fd(2)
k

|ρk
(y|x) log2

(
1 + ρuy

−α
)
dxdy ≥ log2

(
1 +

ρu
Q2(L)

)
, (75)

where the “=” in ”≥” is reached when d
(2)
k is a constant, f

d
(2)
k

|ρk
(y|x) is the conditional PDF of

d
(2)
k given ρk which is the special case of (47) in the Lemma 1 of Appendix A, and Q2(L) =

Θ
(
L−α

2

)
is the special case of (51) in the Proposition 1 of Appendix A. Finally, the asymptotic

performance of Corollary 2 can be obtained by the above mentioned intermediate steps.
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