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Abstract—The sparse code multiple access (SCMA) which is a
promising candidate for the next generation wireless communica-
tions can support more users using the same resource elements.
On the other hand, faster than Nyquist (FTN) signaling can also
be used to improve the spectral efficiency by transmitting more
data information in the same time period. In this paper, we
consider a combined uplink FTN-SCMA system that the data
symbols corresponding to a user are further packed using FTN
signaling. As a result, a higher spectral efficiency is achieved
at the cost of introducing intentional inter-symbol interference
(ISI). To perform the joint channel estimation and decoding, we
design a low complexity iterative receiver based on the factor
graph framework. In addition, to reduce the signaling overhead
and transmission latency of SCMA system, we further consider
a grant free scheme. Consequently, the active and inactive users
should be distinguished. To address the problem, we extend
the aforementioned receiver and develop a new algorithm that
jointly estimates the channel state, detects the user activity and
performs decoding. In order to further reduce the complexity,
an energy minimization based approximation is employed to
restrict the user state to Gaussian and hybrid message passing
algorithm is performed. Simulation results show the considered
FTN-SCMA system with the proposed receiver design is capable
of transmitting more data bits than conventional SCMA scheme
with negligible performance loss.

Index Terms—Sparse code multiple access, faster-than-Nyquist
signaling, grant free, channel estimation, hybrid message passing,
high spectral efficiency

I. INTRODUCTION

The rapid growth of wireless applications requires to
increase the spectral efficiency since the available band-
width becomes limited. Conventional orthogonal multiple ac-
cess (OMA) schemes such as time division multiple access
(TDMA), code division multiple access (CDMA) and orthog-
onal frequency-division multiple access (OFDMA) assign or-
thogonal resource elements to different users [1]–[4]. Although
OMA avoids multiuser interference, the challenges of large
throughput and massive connections make it inferior for the
next generation wireless communications. By contrast, the
newly developed non-orthogonal multiple access (NOMA) is
capable of increasing the spectral efficiency and addressing the
aforementional problems [5]. Amongst several NOMA tech-
nologies [6]–[10], the sparse code multiple access (SCMA) has
attracted significant attention, due to its capability of achieving
extra shaping gain [11].

SCMA encoder maps the bits to sparse codewords di-
rectly. After multi-dimensional modulation and low density
spreading, the bits streams corresponding to different users

are encoded to generate sparse codewords from predesigned
codebook directly and then multiplexed over several orthogo-
nal resource elements. Several researches considered the signal
design of SCMA at the transmitter side. In [12], the authors
investigated the SCMA codebook design based on systematic
construction methods. To maximize the minimum codeword
distance, a multi-dimensional codebook is designed based
on the constellation rotation and interleaving method [13].
In [14], the capacity based codebook design is proposed to
achieve maximum sum rate. However, more users supporting
by the same number of resource elements result in a rank-
deficient system, which makes the complexity of the optimal
receiver increases exponentially with the number of interfering
users. To tackle this problem, several factor graph (FG)and
message passing algorithm (MPA) based multiuser detectors
were proposed by exploiting the low density codewords of
SCMA. In [15], a low-complexity detection algorithm is
proposed based on discretization and fast Fourier transform
(FFT). A list-sphere-decoding-based algorithm is devised in
[16], but it only considered signal within a hypersphere. The
authors in [17] developed a partial marginalization based
message passing detector for uplink SCMA. In [18], a Monte
Carlo Markov Chain (MCMC) based SCMA decoder was
proposed for large size SCMA codebook. In [19], the authors
proposed a convergence guaranteed message passing algorithm
for MIMO-SCMA systems by convexifying the Bethe free
energy. The authors in [20] proposed a modified MPA receiver
namely max-log MPA that uses messages updating in the log
domain to avoid multiplication operations.

On the other hand, higher spectral efficiency can also be
achieved via transmitting data symbols beyond the Nyquist
rate, that is the faster-than-Nyquist (FTN) signaling. Mazo
proved that with appropriate packing ratio, FTN transmission
is capable of preserving the same bit error rate (BER) per-
formance [21]. This makes it become a promising candidate
for modulation schemes in the future communications appli-
cations. However, due to the nonorthogonality of the shaping
pulse with respect to the symbol interval, long intersymbol
interference (ISI) as well as colored noise at the receiver
side are unavoidable [22]. As a result, a prohibitively high
complexity is associated with performing optimal detection.
To this end, a reduced BCJR detector for FTN signaling in
AWGN channel is developed in [23], which considered only
M states based on a minimum phase model. Nevertheless, the
complexity still increases exponentially with the number of ISI
taps. By taking the advantages of the single carrier frequency-
domain equalization (FDE), the authors in [24] added cyclic
prefix (CP) to tackle the ISI imposed by FTN. However, the
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inherent colored noise was not considered in [24] and the
CP will also degrade the efficiency. [25] proposed a Forney-
style factor graph based detector to handle the colored noise
in FTN transmission over AWGN channels. An extension
to doubly selective channels is considered in [26] and [27],
where Gaussian message passing and variational inference are
employed to detect the symbols, respectively. Nevertheless,
the detection of data symbols for an FTN-SCMA system is
still challenging due to the interferences imposed by non-
orthogonal waveforms and nonorthogonal multiple access.

Note that in the aforementioned receiver design works, the
channel information is assumed to be perfectly known. The
problem of detecting data symbols emerges when the channel
information is unknown in practical applications. Generally,
training sequences can be used to obtain accurate channel
information [28]. Considering that the observations contain
both channel coefficients and data symbols, a joint channel
estimation and detection method can avoid the use of long
training sequences and improve the BER performance [29].
From this perspective, researchers developed several subopti-
mal joint estimation method with low complexity [30]–[32].
Motivated by the iterative structure of receiver, joint channel
estimation and decoding based on MPA becomes more at-
tractive. A virtual zero-padding aided belief propagation (BP)
algorithm was devised in [33] for iterative joint channel esti-
mation, detection and decoding. In [34], a merging belief prop-
agation variational expectation maximization based method
was derived for MIMO-OFDM system. Both algorithms are
designed based on Nyquist signaling. For FTN signaling, in
[35] and [36], a time domain based BP and a frequency domain
based generalized approximate message passing (GAMP) joint
channel estimation and decoding algorithms were proposed.
Nevertheless, existing approaches do not consider the system
that uses both nonorthogonal waveform and nonorthogonal
multiple access.

In this work, we study a low-complexity joint channel
estimation and decoding algorithm based on factor graph
(FG) and message passing algorithm for an uplink FTN-
SCMA systems. To tackle the colored noise induced by FTN
signaling, we employ the auto regressive (AR) process to
model the noise. Then the joint distribution of data symbols,
channel taps and noise samples can be factorized into several
local functions and represented by a factor graph. Even with
FG, conventional MPA is still impractical for implementation
due to exponential complexity order. To this end, we resort
to the expectation propagation (EP) method that restricts
the message from channel decoder as Gaussian distribution.
Compared to direct approximation via moment matching, EP
method aims to minimize a specified relative entropy related
to the true marginal and the trail distribution [37]. In EP, the
extrinsic information to channel decoder is also considered in
the approximation, which can enhance the BER performance.
However since the modulus of channel coefficient does not
equal to 1, the Gaussian form of messages is unavailable.
To tackle this problem, we commence from the variational
framework and reform a modified factor node, then variational
message passing can be employed. Correspondingly, only
means and variances need to be updated iteratively and the

complexity order of the proposed receiver for FTN-SCMA
systems only scales linearly with the number of users.

Moreover, we consider the grant-free transmission scheme.
It has been shown that even in busy hours, only a small per-
centage of users in wireless networks are active [38]. In current
OMA uplink scenarios, a request-grant procedure is used: the
base station (BS) schedule the uplink transmission after receiv-
ing the request from users [39]. This procedure leads to a large
communication overhead, especially for massive connectivity
with a huge number of devices. Therefore the uplink grant-free
transmission scheme is highly expected to significantly reduce
both communication overhead and transmission latency [11].
In grant-free transmission, the active users directly send sig-
nals to the BS without grants. In order to decode information
bits from users that are connected simultaneously, BS has to
detect user activity based on the received signal. Motivated by
the sparsity of active users, compressive sensing (CS) based
multiuser detection method was proposed in [40]. Considering
channel estimation, a two-stage algorithm which detects user
activity using CS first and then perform channel estimation
and detection was proposed in [41]. An AMP-expectation
maximization (EM) was proposed in [42] and solved the
active user detection and channel estimation problem jointly.
In [43] and [44], the authors used the precision parameter
of channel coefficient variable to describe the user activity
and constructed a factor graph to perform joint detection and
channel estimation. Different from [43] and [44], in this paper,
we use a binary variable to represent active/inactive users.
By formulating the corresponding factor graph, we propose
a modified message passing algorithm to iteratively calculate
the distribution of active users. In addition, to further lower
the receiver complexity, we use EP to approximate the binary
variable by Gaussian. Accordingly, the proposed receiver still
experience low complexity.

In summary, the main contributions of this paper are as
follows.

• We propose to use FTN signaling in the SCMA system
to transmit more data symbols using the same resource
elements. As a result, a higher spectral efficiency is
achieved.

• To tackle the colored noise and ISI induced by FTN
signaling and inter user interference induced by SCMA,
we design a novel receiver based on an AR model
and a message passing algorithm that jointly perform
channel estimation and detection. Since all messages
are represented in Gaussian closed form, the proposed
receiver only has a linear complexity with the number of
users.

• Moreover, considering a grant free system which requires
detection of the active users, we develop a joint user
activity detection, channel estimation and decoding al-
gorithm. With the use of EP approximation of discrete
variables indicating user states, we reconstruct a specific
factor node, which enables us to keep representing all
messages in parametric forms.

Simulation results show that the combined FTN-SCMA system
with the proposed receiver is capable of increasing the data



3

rate while not affecting the BER performance. Also, in grant-
free SCMA system, the proposed algorithm is effective for
distinguishing the active/inactive users.

The remainder of this paper are organized as follows. In
section II, we introduce the model of the considered FTN-
SCMA system. Section III presents the proposed low com-
plexity algorithm for joint channel estimation and decoding.
In Section IV, the grant free transmission is introduced and
the proposed joint user activity detection, channel estimation
and decoding algorithm is described. Simulation results are
provided in Section V. Finally, we draw conclusions in Section
VI.

Notations: We use a boldface letter to denote a vector.
The superscript T and −1 denote the transpose and the
inverse operations, respectively; G(mx, vx) denotes a Gaussian
distribution of variable x with mean mx and variance vx;
BN denotes a N-dimensional binary number space and CN
denotes a N-dimensional complex number space; � denotes
the componentwise product; | · | denotes the modulus of a
complex number or the cardinality of a set; ‖ · ‖2 denotes the
`2 norm; ∝ represents equality up to a constant normalization
factor; x\x denotes all variables in x except x.

II. SYSTEM MODEL

We consider an uplink SCMA system with K users and J
resource elements. In a NOMA system, K > J is assumed
and we set λ = K

J as the normalized user-load. In SCMA
encoding, the coded bit streams of different users are mapped
to J-dimensional SCMA codewords directly, i.e. ϕ : ck ∈
Blog2 M → xkCJ , where M is the size of the predefined
SCMA codebook. For brevity we denote the codeword of user
k at time instant n as xnk = [xnk1, ..., x

n
kJ ]T . Due to the sparse

structure of SCMA codewords, only D < J elements in xnk are
non-zero. Usually we use a matrix F = [f1, ..., fK ] to capture
the sparse structure of SCMA codewords. For the kth user, fk
is a J dimensional vector with binary entries, e.g. fkj = 1 if
and only if the jth resource element is occupied by user k.
Given this definition, the nonzero entries in the jth column of
F represent the users who occupy the jth resource element,
while the nonzero entries in the kth row denote the resource
elements that are used by user k.

After SCMA encoding, the SCMA codewords are passed
through a shaping filter q(t) with symbol period T = τT0,
where T0 is the symbol interval of the Nyquist signaling and τ
is the FTN packing factor. The modulated signal corresponding
to user k over the jth resource elements is formulated as

skj(t) =
∑
n

xnkjq(t− nτT0). (1)

In Nyquist signaling, τ = 1 guarantees inter symbol inter-
ference (ISI) free transmission. In FTN signaling, we use
0 < τ < 1 to transmit more data symbols in the same time
period at the cost of introducing intentional ISI. Then the
signal corresponding to user k is transmitted through channel
hk = [hk1, ..., hkJ ]T . The block diagram of the transmitter is
shown in Fig. 1.
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Fig. 1. Transmitter of the considered FTN-SCMA system.
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Fig. 2. Receiver structure of the considered FTN-SCMA system.

Assuming perfect synchronization between users and the
base station, the received signal at the base station can be
expressed as,

y(t) =

K∑
k=1

hk � sj(t) + n(t), (2)

where sj(t) = [s1j(t), ..., sKj(t)]
T is the modulated signals

of all users transmitting over the jth resource and nt is the
additive white Gaussian noise with power spectral density N0.
As shown in Fig. 2, the received signal is filtered by a matched
filter q∗(−t). Without loss of generality, we denote g(t) =
q(t) ∗ q∗(−t). Then the signal is given by

r(t) =

K∑
k=1

hk �
∑
n

xnkjg(t− nτT0) + ω(t). (3)

After sampling at rate 1/τT0, the samples at the nth time slot
is expressed as

rn =

K∑
k=1

hk � s̃nk + ωn, (4)

where the jth entry in s̃nk is given as1

s̃nkj =

L∑
i=−L

gix
n−i
kj , (5)

and gn−i =
∫
q(t−nτT0)q∗(t−iτT0)dt. In (4), ωn denotes the

noise samples for all resource elements at time n, formulating
as ωn =

∫
n(t)q∗(t−nτT0). Since the signal rate is above the

1In theory, the number of ISI taps induced by FTN is infinite. However in
practice, we can choose sufficiently large number of taps, i.e. 2L+ 1 taps.
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Nyquist rate, the autocorrelation function of the noise sample
ωnj ,∀ j is

E[ωnj ω
m
j ] = N0gn−m, (6)

which indicates in FTN system, the noise at the receiver side
is colored. To avoid to increase the receiver complexity by
using the whitening process, in the following section, we will
propose an autoregressive model aided factor graph approach
to overcome the colored noise and perform channel estimation
and decoding.

III. JOINT CHANNEL ESTIMATION AND DECODING
ALGORITHM FOR FTN-SCMA SYSTEMS

A. Approximation of Colored Noise

According to [45], the colored noise can be approximated
by a P -order autoregressive (AR) model as

ωnj =

P∑
p=1

apω
n−p
j + δnj , (7)

where ap denotes the AR process parameter and δnj is the noise
term with zero mean and variance σ2

δ . The values of {ap} are
determined by solving the following Yule-Walker equations
[46].

B. Probabilistic Model and Factor Graph Representation

Assuming that each user transmits a total of N SCMA
codewords and N samples are received at the base station. Our
goal is to determine the a posteriori distribution (marginal) of
the transmitted symbol xnkj based on all observations at the
base station r. Then such marginal is transformed into extrinsic
log likelihood ratio (LLR) and fed to the channel decoder. The
marginal distribution of xnkj is given by

p(xnkj |r) ∝
∫
h,ω,X\xnkj

p(X,h,ω|r), (8)

where X, h and n denote all transmitted symbols, channel
taps and colored noise samples, respectively. Instead of direct
marginalization, here we further factorize the joint distribution
p(X,h,ω|r) and resort to a low-complexity factor graph
approach to solve the problem.

According to the Bayesian theorem, p(X,h,ω|r) is factor-
ized as

p(X,h,ω|r) ∝ p(X)p(h)p(ω)p(r|X,h,ω). (9)

Since the transmitted symbols and channel coefficients are
independent of each other, p(X)p(h) reads

p(X)p(h) =
∏
k,j

[
p(hkj)

∏
n

p(xnkj)

]
, (10)

where p(xnkj) is obtained from the output LLR of the channel
decoder. The prior distribution p(ω) can be factorized based
on the AR model as

p(ω) ∝
∏
j

∏
n

exp(−
ωnj −

∑P
p=1 apω

n−p
j

2σ2
δ

)︸ ︷︷ ︸
ψnj

, (11)
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Fig. 3. Factor graph representation of the jth resource element, where the
shorthand notations pkj = p(hkj). The factor graph is separated into four
parts, i.e. decoding part denoted by 1©, equalization part denoted by 2©,
channel estimation part denoted by 3©, and colored noise part denoted by 4©.

Conditioned on ωnj , the observations rnj at different time n are
independent. As shown in [19], using auxiliary variable can
help to reduce the computation load. Therefore we factorize
p(r|X,h,ω) as

p(r|X,h,ω) ∝ (12)∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̃

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

· δ(s̃nkj −
L∑

i=−L
gix

n−i
kj )︸ ︷︷ ︸

φnkj

.

Based on the factorization (10)-(12), the joint distribution
p(X,h,ω|r) can be represented by a factor graph, as shown
in Fig. 3, on which the message passing algorithm is executed
to determine the unknown variables.

C. Message Passing Receiver Design

The conventional message passing algorithm (MPA) con-
sists of two kinds of messages. Following the sum product
algorithm, the message from factor vertex f to variable node
x is given by

µf→x(x) ∝
∫
f(x)

∏
x′∈S(f)\{x}

µx′→f (x
′
)dx

′
, (13)

and the message from x to f is defined as

µx→f (x) ∝
∏

f ′∈S(x)\{f}

µf ′→x(x) (14)

where S(f) and S(x) denotes the set of variable vertices
connected to f and the set of factor vertices connected to
x. The belief (marginal) of variable x is then given by
b(x) =

∏
f∈S(x) µf→x(x). Next we consider the derivations

of messages on the factor graph in Fig. 3.
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In the decoding part, the channel decoder and the equalizer
exchange extrinsic information iteratively. Since the decoding
is out of the scope of this paper, we assume optimal BCJR de-
coding [47] is utilized in the channel decoder. After decoding,
the output LLR is

La(cn,m) =
p(cn,m = 0)

p(cn,m = 1)
, (15)

where the subscripts n and m denote the nth coded bit and the
mth constellation point, respectively. Then the LLRs are trans-
formed to the prior distribution of p(xnkj) =

∑M
i=1 piδ(x

n
kj −

χi), where χi is the constellation point in SCMA encoder
and pi is the associated probability. Although the discrete
distribution p(xnkj) can be used as the incoming message in
the MPA receiver, the complexity will increases exponentially
with the number of interfered symbols. Here we resort to
a Kullback-Leibler divergence based method, also known as
expectation propagation (EP) to approximate the incoming
message by a Gaussian distribution. We aim for finding
the Gaussian distribution that minimizes the Kullback-Leibler
divergence, i.e.

bG(xnkj) = arg min
bG

∫
bG(xnkj) ln

bG(xnkj)

b(xnkj)
dxnkj , (16)

where bG belongs to the family of Gaussian distributions and
b(xnkj) is the marginal distribution of the variable xnkj . The
minimization in (16) is equivalent to matching the moments
of b(xnkj). Assuming the outgoing message has mean and
variance me

xnkj
and vexnkj it is easy to obtain the mean and

variance of bG(xnkj) as mxnkj
and vxnkj . Then the Gaussian

approximation of p(xnkj) is determined with the mean and
variance

v0
xnkj

=

(
1

vxnkj
− 1

vexnkj

)−1

, (17)

m0
xnkj

= v0
xnkj

(
mxnkj

vxnkj
−
me
xnkj

vexnkj

)
. (18)

Having m0
xnkj

and v0
xnkj

, we can calculate the message in the
equalization part. Again, we assume the message µs̃nkj→φnk,j =
µfnj →s̃nkj has been obtained as

µs̃nkj→φnk,j = G(ms̃nkj→φ
n
k,j
, vs̃nkj→φnk,j ). (19)

Then the message µφnk,j→xn+l
kj

can be written in Gaussian with

mφnk,j→x
n+l
kj

= ms̃nkj→φ
n
k,j
−

L∑
i=−L,i6=l

gimxn+i
kj →φ

n
k,j
, (20)

vφnk,j→x
n+l
kj

= vs̃nkj→φnk,j +

L∑
i=−L,i6=l

g2
i vxn+i

kj →φ
n
k,j
. (21)

Usually, calculating µxnkj→φnk,j to different factor nodes
φn+l
k,j |Ll=−L following (14) requires to calculate the product

of messages for 2L + 1 times. Motivated by the fact that
µxnkj→φnk,j · µφnk,j→xnkj = bG(xnkj), the objective message

can be calculated at a linear complexity as µxnkj→φnk,j =
bG(xnkj)/µφnk,j→xnkj with

vxnkj→φnk,j =

(
1

vxnkj
− 1

vφnk,j→xnkj

)−1

, (22)

mxnkj→φ
n
k,j

= vxnkj→φnk,j

(
mxnkj

vxnkj
−
mφnk,j→x

n
kj

vφnk,j→xnkj

)
. (23)

After obtaining all messages µφn+l
k,j →x

n
kj
|Ll=−L, the mean and

variance of the extrinsic message to the channel decoder are
given by

vexnkj =

(
L∑

l=−L

1/vφn+l
k,j →x

n
kj

)−1

, (24)

me
xnkj

= vexnkj

(
L∑

l=−L

mφn+l
k,j →x

n
kj

vφn+l
k,j →x

n
kj

)
. (25)

Based on me
xnkj

and vexnkj , the extrinsic LLRs are calculated
and fed to the channel decoder to determine the data bits of
users b̂k.

Next, let us consider the message updating in the colored
noise part. Since the nonorthogonality of FTN signaling does
not affect the first order moment of noise samples, the mean
of noise sample E[ωnj ] = 0 holds and we only focus on
the evolution of its variance. According to (11), the variance
vψnj→ωnj is expressed as

vψnj→ωnj = σ2
δ +

P∑
p=1

(ap)2vωn−pj →ψnj
. (26)

It should be noted that the colored noise represents a causal
system where the sample at time n only depends previous
noise samples. Therefore the message from ωnj to fnj is
identical with µψnj→ωnj , i.e. vωnj tofnj = vψnj→ωnj .

For the channel estimation part, the message µhkj→fnj is
readily determined according to the SPA rules as

µhkj→fnj = p(hkj)
∏
n′ 6=n

µ
fn
′

j →hkj
. (27)

p(hkj) is usually coarsely evaluated by using a sequence of
pilot symbols, which can be modeled as a Gaussian distributed
variable with mean m0

hkj
and variance v0

hkj
. We assume

µ
fn
′

j →hkj
has also been obtained in the Gaussian form as

µ
fn
′

j →hkj
= (m

fn
′

j →hkj
, v
fn
′

j →hkj
). Hence µhkj→fnj has

mean and variance as

mhkj→fnj = vhkj→fnj

m0
hkj

v0
hkj

+
∑
n′ 6=n

m
fn
′

j →hkj

v
fn
′

j →hkj

 (28)

vhkj→fnj =

 1

v0
hkj

+
∑
n′ 6=n

1

v
fn
′

j →hkj

−1

(29)

The belief b(hkj) is obtained by adding the terms with index
n
′

= n into (28) and (29). And the maximum a posteriori
(MAP) estimator can be used to determine the estimate of
channel coefficient by ĥkj = arg maxhkj b(hkj). Since b(hkj)
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is Gaussian distribution, the MAP estimate ĥkj is the mean of
b(hkj)

In the above, we have derived closed form Gaussian mes-
sages in four parts of the factor graph. However, they are based
on the fact that the messages from fnj to its connected variable
vertices are Gaussian distributions. In what follows, we will
calculate the messages related to vertex fnj . Following (13),
the message µfnj →s̃nkj is expressed as

µfnj →s̃nkj ∝
∫
δ(rnj −

K∑
k=1

[hkj s̃
n
kj ]− ωnj )µωnj→fnj

∏
k

µhkj→fnj∏
k′ 6=k

µs̃n
k
′
j
→fnj dhkjdωnj ds̃n

k′ j

∝
∫

exp

(
−
|rnj −

∑K
k=1[hkj s̃

n
kj ]|2

vωnj→fnj

)∏
k

µhkj→fnj∏
k′ 6=k

µs̃n
k
′
j
→fnj dhkjds̃nk′ j

∝
∫

exp

(
−
|rnj −

∑K
k=1[mhkj→fnj s̃

n
kj ]|2

vωnj→fnj +
∑k
k=1 |s̃nkj |2vhkj→fnj

)
∏
k′ 6=k

µs̃n
k
′
j
→fnj ds̃n

k′ j
. (30)

From (30), we can see when calculating message µfnj →s̃nkj ,
the variable s̃nkj appears in both numerator and denominator
of the exponential term, which makes the conventional MPA
unavailable. Here we resort to the variational message passing
(VMP) method in [48] where the message from factor vertex
f to variable vertex x is formulated as

µf→x(x) ∝ exp

∫ ln f(x)
∏

x′∈S(f)\{x}

µx′→f (x
′
)dx

′

 . (31)

Consequently, the message (30) can be obtained in the Gaus-
sian form with mean

mfnj →s̃nkj =
(rnj −

∑K
k′=1,k 6=kmh

k
′
j
→fnj ms̃n

k
′
j
→fnj )mhkj→fnj

|mhkj→fnj |2 + vhkj→fnj
,

(32)

and variance

vfnj →s̃nkj =
vωnj→fnj

|mhkj→fnj |2 + vhkj→fnj
. (33)

The message µfnj →hkj can be calculated by VMP likewise,
whose mean and variance are

mfnj →hkj =
(rnj −

∑K
k′=1,k 6=kmh

k
′
j
→fnj ms̃n

k
′
j
→fnj )ms̃nkj→f

n
j

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

,

(34)

vfnj →hkj =
vωnj→fnj

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

. (35)

D. Algorithm Summary

Using appropriate approximations, all messages on the
factor graph are represented in parametric forms, which re-
duce the computational complexity of the conventional MPA

Algorithm 1 Joint Channel Estimation and Decoding Algo-
rithm for FTN-SCMA System

1: Initialization:
2: At the first turbo iteration, initialize all undetermined

messages as Gaussian distribution with zero mean and unit
variance;

3: Using pilot sequence to coarsely estimate the mean m0
hkj

and variance v0
hkj

of channel coefficient.
4: for iter=1:Niter do
5: Compute the means and variances of messages in

equalization part according to (20)-(23);
6: Compute the message from factor vertex fnj to variable

vertices xnkj and hkj according to (32)-(35);
7: Compute the variance vψnj→ωnj according to (26);
8: Compute the message from hkj to factor vertex fnj via

(28) and (29);
9: Compute the mean and variance of message to channel

decoder according to (24) and (25);
10: Convert the outgoing messages to LLR and feed them

to the channel decoder;
11: Perform BCJR decoding;
12: Convert the extrinsic LLRs to Gaussian messages using

(17) and (18);
13: end for
14: Determine the estimate of channel coefficient by MAP

estimator.

receiver significantly. Compared to existing advanced MPA
receiver, the computational complexity associated with the in-
troduction of auxiliary variable and modified message updating
rules only increases linearly with the number of users and
resource elements. The details of the proposed receiver for
joint channel estimation and decoding in FTN-SCMA system
are presented in Table. I.

IV. USER ACTIVITY DETECTION IN GRANT-FREE
FTN-SCMA SYSTEMS

In a grant-free system, the users do not need grant before
sending signals to the base station. In existing works, a
precision parameter is used as a hyper-prior to capture the
channel sparsity. However, this causes more short loops in
the factor graph and increases the receiver complexity. In this
section, we will propose an algorithm for FTN-SCMA systems
that determines the user activity directly while performing
channel estimation and decoding.

Let us use a binary variable ξk = {0, 1} to denote the user
activity, i.e. ξk = 1 indicates that user k is active and vice
versa. Then the nth sample at the jth resource element is
expressed by

rnj =

K∑
k=1

hkjξks̃
n
kj + ωnj . (36)

The prior distribution of ξk is a Bernoulli distribution given
by

p0(ξk) = pξk1 (1− p1)1−ξk , (37)
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where p1 is the prior knowledge of user activity based on
existing data.

A. Probability based Active User Detection Algorithm

To determine the activity of user k, we need to calculate
its probability of being active γk based on the received
samples. To this end, we modify the factor graph structure
4 by including ξk. Since only the function f is affected, we
illustrate the corresponding parts of the factor graph, as shown
in Fig. 4. Here we use an auxiliary variable ξkj on the edge
connected to vertices hkj .2 Then it is possible to formulate
the message passing algorithm to calculate the probability of
ξkj = 1, namely γkj .

Based on Fig. 4, the message from fnj to hkj is obtained
with mean mfnj →hkj and variance vfnj →hkj according to (34)
and (35). Hence we have the intrinsic message for ξkjhkj with
mean and variance

−→mξkjhkj = −→v ξkjhkj
∑
n

mfnj →hkj

vfnj →hkj
(38)

−→v ξkjhkj =

(∑
n

1

vfnj →hkj

)−1

. (39)

The distribution of ξkj is obtained by integrating hkj over the
joint distribution, formulated as

p(ξkj) ∝
∫

exp

(
−

(ξkjhkj −−→mξkjhkj )
2

−→v ξkjhkj

)
· exp

(
−

(hkj −m0
hkj

)2

v0
hkj

)
dhkj

∝ exp

(
−

(ξkjm
0
hkj
−−→mξkjhkj )

2

ξ2
kjv

0
hkj

+−→v ξkjhkj

)
. (40)

Then the probability γkj is updated as

γkj =
p(ξkj = 1)

p(ξkj = 0) + p(ξkj = 1)

=
1

1 +
p(ξkj=0)
p(ξkj=1)

. (41)

2Alternatively, we can put the variable ξ on the edge connecting s̃nkj and fnj
or the edge connecting hkj and fnj . However, these two means will increase
N times number of variables.

Algorithm 2 User Activity Detection Algorithm I
1: Run Algorithm 1;
2: Calculate the intrinsic message to hkj according to (38)

and (39);
3: Determine the probability γkj by (41);
4: Calculate γk according to (42) and decide ξk;
5: Approximate the message µhkj→fnj to Gaussian and con-

tinue running algorithm 1.

After getting the probability ξkj = 1, it is readily to obtain
the probability γk as

γk =

∏
j γkjp1∏

j γkjp1 +
∏
j(1− γkj)(1− p1)

. (42)

To determine the value of ξk, we set a threshold β according
to empirical evidence. Then we say that user k is active if
γk ≥ β and vice versa.

The extrinsic message from hkj to fnj is still obtained
by µhkj→fnj = µpkj→hkj

∏
n′ 6=n µfn

′
j →hkj

. Specifically when
calculating µpkj→hkj , we combine ξkj and hkj as a new
variable,

µpkj→hkj ∝

γkje−
(hkj−m

0
hkj

)2

v0
hkj + (1− γkj)e

−
[m0
hkj

]2

v0
hkj

 .

(43)

Obviously, µpkj→hkj is a Gaussian mixture distribution
(GMD) and µhkj→fnj is aslo a GMD. In conjunction with
the message passing receiver in Section III, we approximate
µhkj→fnj to Gaussian and determine its mean and variance as

mhkj→fnj = Eµhkj→fnj [hkj ] (44)

vhkj→fnj = Eµhkj→fnj [h2
kj ]−m2

hkj→fnj . (45)

In Algorithm 2, the user activity detection based on the
message passing algorithm is described. To sum up, we can
see that the algorithm can be readily extended from the
proposed algorithm in Section III and we only need to do
small modification on the factor graph. However, since ξkj has
to be calculated separately, the receiver complexity increases.
Also, the derivation of messages is not straightforward from
the perspective of probabilistic factorization. In the following
subsection, we will propose another active user detection
method with reduced complexity .

B. Message Passing based Active User Detection Algorithm

To achieve a concise form of message passing receiver in
the factor graph framework, we add ξk as a new variable
vertex on the factor graph. According to (36), we use a dirac
Delta function δ(s̄nkj − ξks̃nkj) to represent the multiplication
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n
kj).

relationship of s̄nkj = ξks̃
n
kj . Accordingly, the joint likelihood

function (12) is revised as

p(r|X,h,ω, ξ) ∝
∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̄

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

(46)

· δ(s̄nkj − ξks̃nkj) · δ(s̃nkj −
L∑

i=−L
gix

n−i
kj )︸ ︷︷ ︸

φnkj

,

and the factor graph is modified as shown in Fig. 5. Since ξk is
a binary variable, which follows a discrete distribution. Then in
message updating, when the messages from different product
verteices to ξk are Gaussian, the message µξk→×nkj follows
a Gaussian mixture distribution, which makes it unavailable
to derive Gaussian messages. To tackle this problem, we
approximate the message from ξk to the product vertex ×nkj
by Gaussian via expectation propagation.

Following SPA rules, the belief of ξk is b(ξk) =
µξk→pξk p(ξk). Assuming µξk→pξk is Gaussian with mean
mξk→pξk and variance vξk→pξk , the mean and variance of
b(ξk) is

mξk =
p1 exp(−

1−2mξk→pξk
vξk→pξk

)

p1

[
exp(−

1−2mξk→pξk
vξk→pξk

)− 1

]
+ 1

, (47)

vξk = mξk −m2
ξk
. (48)

An obvious observation is that in (47) the absolute value of
the exponential term dominates the value of mξk , and vξk
becomes smaller when ξk approaches 0 or 1. That is to say
after running several iterations, the belief of ξk becomes more
‘concentrated’. Having mξk and vξk , we can easily determine

the Gaussian approximation of message µξk→×nkj as

µξk→×nkj ∼ G

(
mξkvξk −m×nkj→ξkv×nkj→ξk

vξk − v×nkj→ξk
,
vξkv×nkj→ξk

vξk − v×nkj→ξk

)
.

(49)

For the product vertex, as we have µξk→×nkj and
µs̃nkj→×nkj = µφnkj→s̃nkj , the mean and variance of message
µs̄nkj→fnj are given as

ms̄nkj→f
n
j

= mξk→×nkjmφnkj→s̃
n
kj

(50)

ms̄nkj→f
n
j

= vξk→×nkjm
2
φnkj→s̃

n
kj

+ (m2
ξk→×nkj

+ vξk→×nkj )vφnkj→s̃nkj
(51)

The detailed derivations for (50) and (51) are given in Ap-
pendix A. The message µs̄nkj→×nkj , conversely, is the same as
the message calculated in (32) and (33). Next we calculate the
messages from ×nkj to s̃nkj and ξk. Again, a similar problem
as in Section III occurs: even µs̃nkj→×nkj is Gaussian, it is
not possible to formulate Gaussian form messages for ξk. To
overcome this challenge, we commence from the Kullback-
Leibler divergence [49]. By grouping the message µms̄n

kj
→×nkj

and the constraint as a new soft node, the joint distribution
p(ms̃nkj

, ξk) is formulated as

p(ms̃nkj
, ξk) ∝ exp

(
−

(ms̄nkj→×
n
kj
− ξks̃nkj)2

vs̄nkj→×nkj

)
µξk→×nkjµs̃nkj→×nkj .

(52)

According to the variational inference framework, we consider
to use b(ξk)b(s̃nkj) to approximate (52). The Kullback Leibler
divergence is given by

KLD(ξk, s̃
n
kj) =

∫
b(ξk)b(s̃nkj) ln

b(ξk)b(s̃nkj)

p(s̃nkj , ξk)
dξkds̃nkj

=−
∫
b(ξk)

[∫
ln p(s̃nkj , ξk)b(s̃nkj)ds̃nkj

]
dξk

+

∫
b(ξk) ln b(ξk)dξk + C, (53)

where C denotes a constant. To minimize the KLD, it is easy
yo see

b(ξk) = exp

(∫
ln p(s̃nkj , ξk)b(s̃nkj)

)
. (54)

Substituting (52) into (54) yields

b(ξk)

µξk→×nkj
∝ exp

(
−ξ2

k

m2
s̃nkj

+ vs̃nkj

vs̄nkj→×nkj
+ 2ξk

ms̄nkj→×
n
kj
ms̃nkj

vs̄nkj→×nkj

)
,

(55)

where vs̃nkj = (v−1
s̃nkj→×

n
kj

+ v−1
×nkj→s̃

n
kj

)−1 and ms̃nkj
=

vs̃nkj (ms̃nkj→×
n
kj
v−1
s̃nkj→×

n
kj

+ m×nkj→s̃nkjv
−1
×nkj→s̃

n
kj

). Therefore
the message µ×nkj→ξk is determined to be Gaussian with mean
and variance

m×nkj→ξk =
ms̄nkj→×

n
kj
ms̃nkj

m2
s̃nkj

+ vs̃nkj
(56)

v×nkj→ξk =
vs̄nkj→×nkj
m2
s̃nkj

+ vs̃nkj
. (57)



9

Algorithm 3 User Activity Detection Algorithm II
1: Run Algorithm 1;
2: Approximate the message from ξk to the product vertex

to Gaussian by EP according to (47) and (49);
3: Calculate the mean ms̄nkj→f

n
j

and variance vs̄nkj→fnj using
(50) and (51);

4: Determine the messages from the product vertex to ξk and
s̃nkj using (56)-(58);

5: Calculate the message µξk→pξk and estimate ξk using
(47);

6: Continue running Algorithm 1.

Similarly, we have the Gaussian message µ×kjn→s̃nkj as

µ×kjn→s̃nkj ∝ G

(
mξk→×nkjmξk

m2
ξk

+ vξk
,
vξk→×nkj
m2
ξk

+ vξk

)
, (58)

where mξk and vξk are the mean and variance of b(ξk). Having
µ×nkj→ξk in the Gaussian form, the mean and variance of
Gaussian message µξk→pξk can be calculated by straightfor-
ward manipulations. The value of ξk is given by the MAP
estimate of b(ξk), which is shown in (47). We also set a
threshold β and compare it with mξk to decide whether user k
is active or inactive. The details of the proposed user activity
detection algorithm is summarized in Algorithm. 3.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm via simulations. We consider a SCMA system with
J = 4 resource elements that supports K = 6 users. The
codebook is defined according to [14] with size M = 4 and
an indicator matrix F as

F =


1 1 0 0 1 0
1 1 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (59)

Each user transmits a sequence of data bits, which is coded
using a rate-5/7 low density parity code (LDPC) and then
mapped to a sequence of SCMA codewords. We set the
number of transmitted symbols corresponding to each user as
N = 2048. The transmitted symbols pass through root raised
cosine shaping filters with roll-off factor α = 0.5 and packing
factor τ = 0.8.3 The number of interfered symbols is assumed
to be L = 10 on both sides. The channel is set to be Rayleigh
fading whose impulse response is generated according to the
Jake’s model. The coarse estimate of channel coefficients is
obtained by using 5 pilots symbols. The maximum number
of iterations between the detector and the channel decoder is
Niter = 10. All results are averaged from 1000 independent
Monte Carlo trials.

In Fig. 6, we compare the proposed algorithm with the
MPA-Gauss, and MMSE-MPA methods in terms of bit error
ratio (BER). As reference, the performance of conventional
MPA receiver under the maximum a posteriori criterion

3We assume the same shaping filter is employed for different resource
elements at the transmitter side.

6 6.5 7 7.5 8

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

The Proposed Algorithm

MMSE-MPA

Conventional MPA

MPA-Gauss

Orthogonal System

Fig. 6. BER performance of different algorithms for FTN-SCMA system.

is illustrated. The ’MPA-Gauss’ method refers to directly
approximating the prior distribution of p(xnkj) by Gaussian
distribution. The ’MMSE-MPA’ method is a combination of
MMSE equalizer and SCMA decoder. It is observed that the
proposed algorithm outperforms all the other three algorithms
and has almost the same performance as the conventional
MPA receiver. MMSE-MPA method suffers from significant
performance loss due to error propagation. Moreover, using
MMSE equalizer imposes a cubic order of complexity, which
is prohibitively high in practical applications. Compared to
MPA-Gauss, the proposed algorithm achieves performance
gain since EP further uses the extrinsic information fed to
the channel decoder. Also, the performance based on an
OMA system using Nyquist signaling is plotted. We see
the performance loss of the proposed algorithm is as small
as 0.2 dB. Meanwhile, 50% more users are supported and
25% higher data rate is achieved. That is to say, using the
same resources, a total of more than 87.5% information can
be transmitted via the considered FTN-SCMA system with
negligible performance loss.

Fig. 7 depicts the BER versus Eb/N0 of the proposed
algorithm parameterized by different packing factor τ , where
τ = 1 corresponds to the Nyquist signaling case. It is seen
that the proposed iterative receiver for FTN-SCMA system
is capable of achieving similar performance to the Nyquist
signaling case when τ ≥ 0.8. Moreover, as the packing ratio
becomes smaller, severer interference is introduced and the
performance gap between the FTN signaling and Nyquist
signaling becomes larger. Since the actual number of ISI
taps induced by FTN is infinite, the number of interfered
symbols L used model (5) may be not enough to describe
the ISI induced by FTN and causes performance loss. In
Fig. 8, we illustrate the BER curves with various values of
L while the packing ratio τ is fixed as 0.7. It is observed
when L increases to 20, the performance gap between FTN
and Nyquist signaling schemes becomes negligible, which
means using a smaller packing ratio is still possible at the cost
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of more complex receiver. This implies we can compromise
between the transmission rate and the receiver complexity.
Nevertheless, there is a lower bound for the packing factor
due to the Mazo limit.

We present the BER performance of the proposed algorithm
versus the number of iterations in Fig. 9 to illustrate the
convergence behavior. It can be seen that for different values of
Eb/N0, the proposed algorithm always converges after several
iterations. Moreover, it is noted that for larger Eb/N0, the
proposed algorithm requires more iterations to guarantee the
convergence.

In Fig. 10, the normalized mean squared error (NMSE) of
the estimated channel coefficients versus Eb/N0 is illustrated.
The NMSE is defined as

NMSEh =

∑K
k=1 ‖hk − ĥk‖2∑K

k=1 ‖hk‖2
, (60)
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Fig. 9. BER performance of the proposed algorithm versus the number of
iterations.
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where ĥk is the channel estimate obtained in Section III.
The NMSEs of the least square channel estimation method
using 5 pilot symbols are depicted for comparison. From
Fig. 10, we see that the proposed algorithm is efficient in
channel estimation, which can attain the performance of the LS
algorithm based on all pilot symbols. Compared to the coarse
estimate udinh only 5 pilot symbols, the proposed algorithm
significantly improves the channel estimation performance.
Also, the performance of an advanced joint channel estimation
and decoding algorithm based on expectation maximization
(EM) is presented here. Since EM discards uncertainties of
variables in the iterative process, it suffers from performance
loss.

Next, we evaluate the performance of the proposed two
active user detection algorithms in a grant-free system. In Fig.
11, the BER performance of the proposed algorithm versus
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Eb/N0 is illustrated, where the probability that user is active
is p1 = 0.3. For comparison, we also present the performance
for the proposed algorithm in Section III with known active
users (denoted by ’MPA-Known’), the algorithm that regards
all users as active users (denoted by ’Approx-known’) and the
two-stage CS-MPA algorithm [50] that first uses compressive
sensing for active user detection and then performs MPA
multiuser detector. We can observe that Approx-known suffers
from significant performance degradation. Since the two-stage
method only provides hard decision of active users to the
equalization part, it also experiences considerable performance
loss. Compared to the optimal case that all users’ activities are
known, the proposed algorithms designed under factor graph
framework can achieve nearly optimal performance. Since
the user activity detection algorithm II has lower complexity
than Algorithm I, it is more attractive in practical grant-free
systems.

Fig. 12 depicts the NMSE of channel estimates based on the
joint channel estimation, decoding and active user detection
algorithm parameterized by the occurrence probability of
active users p1. We see that the performance degrades as p1

becomes larger. This can be explained by the fact that a larger
p1 leads to more active users in FTN-SCMA systems and
both inter-user and inter-symbol interferences become severer.
Also, we illustrate the performance of MPA-Known algorithm
with different p1 as a performance bound. It can be observed
when p1 is small, the proposed joint estimation algorithm is
capable of attaining the bound. When p1 increases, although
a small performance gap emerges, the proposed algorithm is
still efficient in channel estimation.

VI. CONCLUSIONS

In this paper, we considered an uplink SCMA system that
utilized FTN signaling to further increase the spectral effi-
ciency. Using AR model, the correlated noise samples are ap-
proximated by an AR process. Then based on the factorization
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Fig. 12. NMSE of channel estimate with different active probability p1.

of the joint posterior distribution, a factor graph based hybrid
message passing receiver was proposed for estimating channel
coefficients and FTN data symbols. Moreover, considering
a grant-free transmission scheme, we extended the factor
graph model and proposed two novel user activity detection
methods. Consequently, the proposed receiver can deal with
joint channel estimation, decoding and active user detection
problem in FTN-SCMA systems. Simulation results showed
that the combined FTN-SCMA system with the proposed
receiver increase the data rate by more than 80% than the
orthogonal communications systems.

APPENDIX A
DERIVATIONS OF (50) AND (51)

For the product vertex ×nkj , the message µs̄nkj→fnj can be
regarded as the distribution of s̄nkj = ξks̃

n
kj with random

variables ξk and s̃nkj following distributions µξk→×nkj and
µs̃nkj→×nkj . Since µξk→×nkj and µs̃nkj→×nkj are both Gaussian
distribution, we can calculate the density of s̄nkj as

f(s̄nkj) =

∫
f(s̃nkj)f(ξk)δ(s̄nkj − s̃nkjξk)ds̃nkjdξk

=

∫
1

|ξk|
f

(
s̄nkj
ξk

)
f(ξk)dξk

∝
∫

1

|ξk|
exp

− (
s̄nkj
ξk
−ms̃nkj→×

n
kj

)2

vs̃nkj→×nkj
−

(ξk −mξk→×nkj )
2

vξk→×nkj

 dξk.

(61)

However, the above integral does not have an analytical
expression. As the goal is to derive a Gaussian message, we in
turn aim for determining the mean and variance of µs̄nkj→fnj
based on incoming messages.

It is well known for two independent random variables x and
y, based on the Mellin Transform [51], the nth-order moment
of xy satisfies

E[(xy)n] = E(xn)E(yn). (62)
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Thus the first two order moments of µs̄nkj→fnj are given as

E[s̄nkj ] = E[s̃nkj ]E[ξk] = mξk→×nkjmφnkj→s̃
n
kj
, (63)

E[(s̄nkj)
2] = E[(s̃nkj)

2]E[ξ2
k] (64)

= (m2
ξk→×nkj

+ vξk→×nkj )(m
2
φnkj→s̃

n
kj

+ vφnkj→s̃nkj ),

and the variance vs̄nkj→fnj = E[(s̄nkj)
2] − E2[s̄nkj ], which are

given as (50) and (51).
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