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Reconsidering Design of Multi-Antenna NOMA
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Abstract— We provide in this paper a comprehensive solu-
tion to the design, performance analysis, and optimization of
a multi-antenna non-orthogonal multiple access (NOMA) sys-
tem for multiuser downlink communications under a general
limited channel state information (CSI) feedback framework
for frequency division duplex mode. We design a general
framework including user clustering, joint power and bits
allocation, CSI quantization and feedback, signal superposition
coding, transmit beamforming, and successive interference
cancellation at receivers. Then, we conduct a mathematically
strict performance analysis of the considered system, and
obtain a closed-form lower bound on the ergodic rate of each
user in terms of transmit power, CSI quantization accuracy and
channel conditions. For exploiting the potentials of multiple-
antenna techniques in NOMA systems, we jointly optimize
two key parameters, i.e., transmit power and the number
of feedback bits allocated to each user, and propose low-
complexity closed-form solutions. Moreover, through asymp-
totic analysis, we reveal the interactions between the main
system parameters and their impacts on the joint power and
feedback bits allocation result, and hence show some guidelines
on the system design. Finally, numerical results validate the
correctness of our theoretical analysis and demonstrate the
advantages of the proposed algorithms over the most related
state of the art.

Index Terms— Non-orthogonal multiple access, multiple-
antenna techniques, limited feedback, random vector quan-
tization, performance analysis

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has recently
attracted considerable attentions as a promising technique in

the fifth generation (5G) mobile networks due to its potential

in achieving high spectral efficiency [1, 2]. By combining
superposition coding at the transmitters with successive

interference cancellation (SIC) at the receivers, all the users

in a NOMA system are able to decode their desired signal
even though they share the same frequency, time and space

resources. The spectral efficiency improvement of NOMA

technique over orthogonal multiple access (OMA) has been
well investigated for single-antenna systems [3–8]. The

spatial multiplexing property of multi-antenna systems can

be naturally combined with power-domain NOMA to further
enhance the spectral efficiency [9–21]. NOMA was also

regarded as a spectrum sharing technique in [22].
It was noted in [9] that all existing works on multi-antenna

NOMA systems can be classified into two categories: 1)
there is a cluster of multiple users supported by each channel
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spatial dimension (or by a beamforming (BF) vector) in
average that perform NOMA independently with the other

clusters [9–15], and 2) there is only one user supported

by each channel spatial dimension in average1 [16, 17]. For
the first category, [2] proposed a BF-based NOMA scheme,

where a user clustering and power allocation algorithm was

proposed to reduce the inter-cluster and intra-cluster interfer-
ence. [9] proposed a NOMA scheme with joint the power

allocation and BF vectors design to maximize the system

utility subjected to the probabilistic constraints. Following
the same line of [2], [11] proposed a new design of precod-

ing and detection matrices for more general multi-antenna
NOMA system with multi-antenna users. [12] purposed a

NOMA user grouping and clustering method based on a

long-term feedback for large-scale multi-antenna systems
along with user scheduling based on a short-term feedback.

A theoretical framework of the novel concept termed quasi-

degradation first introduced in [13] was fully studied in [14],
where a closed-form hybrid-NOMA precoding algorithm

was obtained for two-user MISO-NOMA systems. [15]

designed linear precoders for cooperative signal suppositions
at multiple base stations (BSs) in multi-cell multi-antenna

NOMA systems to maximize the total throughput. Obvi-

ously, the second category does not fully explore the spatial
multiplexing capability of multi-antenna systems.

The quality of CSI available at transmitter (CSIT) and

receiver of a multi-antenna system plays an important role

and determines the performance of any multiple-antenna
technique. In practice, the CSI acquisition methods can

be mainly classified into the following two kinds. In time

duplex division (TDD) systems, by employing the channel
reciprocity of downlink and uplink channels, the transmitter

can obtain the downlink CSI through channel estimation

during the uplink training. While in frequency division
duplex (FDD) systems, the downlink CSI is usually first

estimated and quantized using a pre-determined codebook at
each receiver, and then conveyed to transmitter via feedback

channel. Specifically, the NOMA schemes in [9, 16, 17] were

designed based on the kind of CSI acquisition in TDD mode,
whilst the NOMA schemes in [18–20] were designed based

on the kind of CSI acquisition in FDD mode. Particularly,

the work in [21] had tried to employ a unified channel model
to embrace both TDD and FDD modes. For both practical

TDD and FDD modes, there will be residual inter-cluster

and intra-cluster interference caused by the imperfect CSIT.

To the best of our knowledge, there have been very limited
previous works on the transmit-receive design, performance

analysis and optimization for the multi-antenna NOMA

systems with quantized CSIT through limited feedback,

1The transmission of this category is the same as that in OMA systems
with SIC receiver employed by some users.
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with the very few exceptions in [18–21]. Specifically, the

outage performance of NOMA was investigated in [18]

for each group decomposed from a massive-antenna system
with one-bit feedback. [19] investigated the traditional zero-

forcing BF (ZFBF) and random BF technologies for the

downlink NOMA systems. A joint user selection and power
allocation scheme was proposed to reduce the multiuser

(MU) interference and improve the sum-rate performance

based on both quantized channel vector and perfect SINR
feedback. The performance was evaluated and analyzed

through simulations. Also employing ZFBF, [20] proposed a

dynamic user scheduling and clustering strategy and consid-
ered the net throughout as metric based on an approximated

closed-form analytical outage probability for the delay-
intolerant systems. Based on ZFBF, [21] tried to propose

a similar multi-antenna NOMA scheme to that in [20] with

a unified imperfect CSIT model applicable to both FDD and
TDD systems. The authors in [21] had also tried to jointly

optimize the transmit power and feedback bits of each users.

However, [21] did not use the well recognized practical CSI
model for FDD systems as in [19, 20, 23, 24]. One can see

the model used by [21] actually assumed some terms in

the practical CSI model that should vary at the same speed
of channel fading to be constant2, which is impractical for

FDD systems. As we will show with the analysis, the ergodic

rate performance with this model effectively underestimates
the actual performance. Another minor weak point with the

analytical performance result of [21] is it can not apply for
some special power allocation scenarios.

Moreover, we find it an essentially very hard problem to
obtain the exact analytical performance of any multi-antenna

NOMA scheme based on the linear ZFBF at the transmitter

for general system settings (e.g. [20, 21]). The analytical
performance of both schemes in [20, 21] were actually

obtained by ignoring the statistical dependence between the

useful signal term and the interference terms in each user’s
received signal. However, it is very difficult to analyze the

effect of the aforementioned ignorance of the statistical
dependence on the resulting analytical performance. For

the optimization of feedback bits allocation, assuming the

numbers of the feedback bits of all users were equal, [20]
optimized the feedback by maximizing the net throughput

of the system. In contrast to maximizing the ergodic sum

rate (ESR) of system, [21] proposed an intuitive method that
aimed to minimize the average sum power of inter-cluster

interference.

In this paper, we provide a comprehensive study on

the performance of multi-antenna NOMA and the joint
power and feedback bits allocation optimization under the

considered system. We reveal several important differences

with respect to the solutions designed previously for multi-
antenna NOMA downlink communication systems operating

in FDD mode with limited CSI feedback, as well as provide

practical implementation and engineering guidelines. Our
main contributions are summarized as follows:

• Motivated by the limitations with the previous works,

2Specifically, the CSI model in [21] replaced the time-varying terms
sin2 θn,k and cos2 θn,k of the channel model in [19, 20, 23, 24] (see (1)

in this paper) by the constant terms 2
−

Bn,k
M−1 and 1−2

−
Bn,k
M−1 respectively.

we reconsider the design of the multi-antenna NOMA

systems in FDD mode including user clustering, joint

optimization of power and feedback bits allocation,
limited CSI feedback, transmit BF and SIC at receivers.

In this paper, we propose a low-complexity dynamic

user clustering based on the large-scale fading of each
user only, which can reduce the complexity of power

allocation optimization and at the same time takes into

consideration the user fairness.
• For a given power and feedback bits allocation, we

provide a mathematically strict statistical analysis on

the ergodic rate of each user taking into consideration
the statistical dependence between the useful signal

term and the interference terms in each user’s received
signal, which has never been done before. Our anal-

ysis based on the well recognized limited feedback

framework results in a closed-form lower bound on the
ergodic rate of each user without assuming any extreme

for system parameters, a result that, to the best of the

authors knowledge, has not been previously presented
in the literatures.

• For a given power allocation result to all users, we ob-

tain a closed-form expression for the optimal feedback
bits allocation (without integer constraint) to minimize

an upper bound on the ESR loss due to quantized CSI

feedback. Then, we devise a low-complexity dynamic
programming algorithm to find the optimal practical

bits allocation solution.
• For the transmit power allocation, we first follow the

intuitive power allocation scheme in [21] to employ

equal power allocation among the users within each
cluster. Then, we observe that the ergodic rate of the

users other than the nearest user (to the BS) in each

cluster is relatively much smaller than that of the near-
est user, and the ESR of these users within each cluster

is also very limited compared with that of the nearest

user. Thus, we seek for the solution by maximizing
the ESR of the nearest users of all clusters, which is

generally a non-convex optimization problem. Then,

based on the closed-form solution of the feedback bits
allocation obtained above, we propose a closed-form

sub-optimal solution to the power allocation among the

different clusters. Finally, a low-complexity scheme of
joint optimization of the transmit power and feedback

bits allocation is obtained.
• Through asymptotic analysis of the joint power and

feedback bits allocation solution, we observe several

key insights. Specially, for the scenario with high
CSI quantization accuracy (or equivalently large total

bandwidth of feedback channels B) and finite total

transmit power P , our power allocation solution tends
to be the well known water-filling type solution for

the system with perfect CSIT. For the scenario in the

high power region with finite B, our power allocation
solution tends to be equal power allocation among all

users. Moreover, in the high power region with large

enough B, the optimal feedback bits allocated to the
nearest user in each cluster is scaled approximately

linearly increasing as log2(P ), whilst the corresponding
one for the user other than the nearest user is scaled
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linearly approximately decreasing as log2(P ). For the

scenario with finite B and large enough P , the number

of feedback bits allocated to the user other than the
nearest user in each cluster reduces to zero, whilst the

one corresponding to the nearest user of each cluster

approximately converges to a finite number that can be
given in closed-form without integer constraint.

Notations: C and N denote the sets of complex numbers
and natural numbers respectively. EX{·} represents expec-

tation with respect to random variable X . ‖ · ‖ denotes the

L2-norm of a vector, | · | denotes the absolute value of a
scalar.

II. SYSTEM AND SIGNAL MODELS

We consider downlink communications in a single-cell

cellular network operating in FDD mode for delay-tolerant
traffics, where the coding block of each user’s information

can be sufficiently long to cover multiple channel coherent

time periods such that the ergodic rate can be used as the
performance metric. This scenario has been widely con-

sidered in the literature of NOMA [3, 7, 11, 21, 22]. There

is a BS equipped with M antennas and a large number
of users with single-antenna each. The BS simultaneously

broadcasts information to multiple scheduled users by BF

at each channel use. Power-domain NOMA technique is
concurrently employed to further improve the spectral ef-

ficiency, where all NK scheduled users are grouped into

N (N ≥ 1) clusters with K (K ≥ 2) users within each
cluster being simultaneously supported by NOMA3 [2]. Our

user clustering method will be introduced in the following.

We denote the M -dimensional channel vector from the BS
to the k-th user in the n-th cluster (denoted as user (n, k)

afterward) as d
−α

2

n,k hn,k, where hn,k ∈ C1×M and dn,k are
respectively the fast-fading channel and the distance from

the BS to user (n, k). We focus on the MU communications

on a target time-frequency resource block (RB). Thus, all
channels are assumed to undergo block flat-fading with a

path-loss governed by the exponential coefficient α.

A. Channel and Feedback Models

Since we consider the system in FDD mode, to focus

on the effect of limited feedback, we follow many previous

works (e.g. [18–20]) to assume each user can perfectly es-
timate the downlink CSI, and then feeds back the quantized

CSI to the BS through an error-free but limited-rate feedback
channel. The total bandwidth of the feedback channels of all

users is constrained to be B bits.

As [21], the CSI obtained by user (n, k) is quantized using

a codebook Cn,k, which consists of 2Bn,k codewords. Here

Bn,k is the number of feedback bits allocated to user (n, k).
Since the optimal CSI quantization strategy is unknown in

general and is out of the scope of this work, we employ the

same random quantization codebooks as those in [23, 24].
The rule for user (n, k) to quantize the channel direction

3For the convenience of presentation, we have assumed the number of
users of each cluster to be equal to K . It is easy to see, with very simple
generalization, our NOMA framework can simultaneously support arbitrary
number of users (with some constraint by M ), and can be applicable to
the scenarios with different number of users in each cluster.

information (CDI) (i.e., h̃n,k =
hn,k

||hn,k||
) is given by ĥn,k =

arg max
c∈Cn,k

∣
∣
∣h̃n,kc

H
∣
∣
∣. Then, h̃n,k can be decomposed as [23]

h̃n,k = cos θn,kĥn,k + sin θn,kẽn,k, (1)

where θn,k = ∠(h̃n,k, ĥn,k) and ẽn,k is the normalized
quantization error vector that is isotropically distributed

in the nullspace of ĥn,k. Note that, due to very limited

bandwidth of feedback channels, only the index of quantized
CDI in the codebook of each user is fed back. For the

transmitter to obtain the large-scale fading (or d−α
n,k), each

user measures “reference signal receiving power” through
downlink cell-specific reference signals (for long term evo-

lution (LTE) systems) or CSI-reference signals (for LTE-
advanced systems) [25] and then feeds back mean received

signal power to the transmitter. Since the required frequency

to feed back this information is much lower than that of fast
fading (i.e., quantized CDI), we ignore its cost and follow

many previous related papers to assume path loss of each

user is known by the transmitter.

B. User Clustering

Most of the existing user clustering methods for multi-

antenna NOMA systems are according to fast-fading chan-
nels. For instance, the semi-orthogonal user clustering

schemes based on CDI were proposed in [19]. However, this

kind of methods carries out exhaustive search resulting in
high implementation complexity, and additionally requires

feedback of accurate enough channel quality information
(e.g., channel gain or SINR) for user clustering and deter-

mining the order of SIC within each cluster, which costs

much more bandwidth of feedback channels for them to
work correctly. In addition, user clustering also depends

on the power allocation to each user in general, which

makes the kind of the methods based on instantaneous CSI
even more complicated. In spite of all existing methods,

considering delay-tolerant traffics and only very limited

CSIT of each user4, we propose a low-complexity clustering
strategy based on the large-scale fading of each user only.

Considering the user fairness, our scheme first randomly

selects NK users each time, and then forms N user clusters
with K users within each following the criteria that

d−α
n,i

σ2
n,i

≤
d−α
m,i

σ2
m,i

for 1 ≤ m < n ≤ N, ∀1 ≤ i ≤ K; (2)

d−α
n,i

σ2
n,i

≤
d−α
n,j

σ2
n,j

for 1 ≤ j ≤ i ≤ K, ∀1 ≤ n ≤ N, (3)

where σ2
n,k is the variance of the additive white Gaussian

noise (AWGN) at user (n, k). It will be shown in Section
IV-B after Remark 8 that, the criteria working with our pro-

posed joint power and feedback bits allocations maximize

the system ESR.

4Recall that only quantized CDI and the large-scale fading (path-loss)
are available at the transmitter. Thus, user clustering method based on full
CSIT of fast-fading channel at the transmitter is impossible.
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C. Zero-Forcing Beamforming and Successive Interference

Cancellation

To mitigate MU interference, we employ the widely
used simple linear ZFBF at the BS [19–21, 23, 24], where

the BF vector wn of cluster n satisfies ĥm,kwn = 0
∀m 6= n and ∀k. Following the method in [21], for
cluster n we construct a complementary matrix H̄n =[

ĥH
1,1, . . . , ĥ

H
1,K , . . . , ĥH

n−1,K , ĥH
n+1,1, . . . , ĥ

H
N−1,K , ĥH

N,1,

. . . , ĥH
N,K

]H

∈ C(N−1)K×M . Let the singular-value decom-

position (SVD) of H̄n be H̄n = ŪnΣ̄n[V̄
(1)
n , V̄

(0)
n ], where

the columns of matrix V̄
(0)
n ∈ CM×(M−r̄n) are the right-

singular vectors corresponding to the zero singular-values.

Here r̄n , rank(H̄n) = (N − 1)K with probability 1 when
the channel vector of each user is continuously distributed.

Then, wn can be obtained as wn = V̄
(0)
n pn [21], where pn

is uniformly distributed on the surface of the (M − r̄n)-
dimensional unit sphere. It is easy to see the constraint

M > (N − 1)K needs to be satisfied for ZFBF to work

properly. Then, with the decomposition of channel in (1),
the received signal at user (n, k) can be written as

yn,k = d
−α

2

n,k hn,k

N∑

i=1

wisi + nn,k

= d
−α

2

n,k ||hn,k|| sin θn,k

N∑

i=1,i6=n

ẽn,kwisi

+ d
−α

2

n,k hn,kwnsn + nn,k,

where si =
∑K

j=1

√
Pi,jsi,j is the superposition coded

signals for all users in cluster i with si,j and Pi,j being

the signal of user (i, j) and the corresponding power, and
nn,k being the AWGN. In general, Pi,j should be properly

allocated to enable successful SIC and ensure certain level of
ESR performance of each user and also the fairness among

the users within a cluster.

Although ZFBF can cancel partial interference, there
still exists inter-cluster and intra-cluster interference due

to limited CSI feedback. According to the principle of

NOMA, the users other than user (n,K) in each cluster
conduct SIC to recover the information. Recall that it is

assumed the coding block of the considered systems can

be sufficiently long. Thus, according to information theory,
if the transmission rate of user (n, k) does not exceed the

ergodic rate of user (n, k) supported by the multiuser fading

channels, the decoding error with SIC at user (n, k) can be
arbitrarily small as the coding block length of each user

goes large. Moreover, for the same reason as noted in [20,

21], when the power is properly allocated among the signals
of the users within each cluster, user (n, k) can always

successfully decode the user (n, j)’s signal for ∀j > k with
the user ordering given by (3), if user (n, k) can decode its

own signal5. As a result, before decoding its own signal,

user (n, k) can cancel the interference from user (n, j) for
j > k in the received signal. Thus, we can assume perfect

SIC can be performed at each user as [20, 21]. Then, after

5It is easy to see that our proposed method in Subsection IV-B that allo-
cates equal power to the users within each cluster satisfies this requirement.

SIC, the SINR at user (n, k) for k = 1 and k > 1 are given

respectively by (4) and (5) at the top of next page. The SIC

may not be perfect in practice due to limited capability of
users. However, the study of the impact of imperfect SIC is

out of the scope of this paper and will be considered in the

future work.

Remark 1: We note that linear ZFBF is widely recog-

nized as a low-complexity processing. The main computa-

tion complexity of ZFBF lies in the SVD of matrix H̄n for
n = 1, 2, · · · , N , which requires the total number of floating

point operations per second (FLOPS) of 32N
[

M(N −

1)2K2 + 2(N − 1)3K3
]

[26]. Acquiring knowledge of

complete CSI or even partial fast fading at transmitter

increases system complexity. Since the path loss of each
user remains constant for a relatively long time, our user

clustering and ordering method only updates at much lower
frequency than the update of BF vectors which is carried out

with the period of channel coherent time. Thus, our method

is of low-complexity.

The power allocation and feedback bits allocation have sig-
nificant impact on the performance of the NOMA systems.

Before optimizing the power and feedback bits allocation,
we first analyze the ergodic rate of the considered system.

III. PERFORMANCE ANALYSIS

In this section, we focus on obtaining the analytical
ergodic rate of each user given power and bits allocation

and without assuming any extreme for system parameters.

All fast-fading channels are assumed to follow circularly
symmetric complex Gaussian distribution with zero mean

and unit variance, i.e., Rayleigh fading. We note that, since

the user ordering given by (2) and (3) does not depend on
the fast fading, the distribution of each fast-fading term of

different scheduled users is the same. The ergodic rate of
user (n, k) is given by Rn,k = E[log2(1 + γn,k)] with γn,k
given by (4) or (5) at the top of next page. First, we note

that, due to the statistical dependence between useful signal
term and interference terms at each user, it is very difficult

if not impossible to obtain the exact analytical result of

Rn,k. Thus, we will turn to obtaining an analytical result
as accurate as possible. Specifically, we can obtain a lower

bound of Rn,k in the following theorem.

Theorem 1: Rn,k ∀n, k can be lower-bounded as Rn,k ≥
RLB1

n,k with RLB1
n,k given by

RLB1
n,1 = Θn,k(αn,1Pn,1, S

(3)
n,1(M − 1)−1δn,1)

− log2(e) exp

(

M − 1

S
(3)
n,1δn,1

)
M−1∑

q=1

Eq

(

M − 1

S
(3)
n,1δn,1

)

, (6)

RLB1
n,k = Θn,k

(

S
(1)
n,k, S

(3)
n,k(M − 1)−1δn,k

)

−Θn,k

(

S
(2)
n,k, S

(3)
n,k(M − 1)−1δn,k

)

, for k > 1, (7)

where S
(1)
n,k =

d−α
n,k

σ2
n,k

∑k
j=1 Pn,j , S

(2)
n,k =

d−α
n,k

σ2
n,k

∑k−1
j=1 Pn,j ,

S
(3)
n,k =

d−α
n,k

σ2
n,k

∑N
i=1,i6=n

∑K
j=1 Pi,j , δn,k = 2−

Bn,k
M−1 , and

Eq(x) =
∫∞

1
e−xt

tq dt is generalized exponential integral.
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γn,1 =
d−α
n,1|hn,1wn|2Pn,1

d−α
n,1 sin

2 θn,1||hn,1||
2

N∑

i=1,i6=n

|ẽn,1wi|
2

K∑

l=1

Pi,l

︸ ︷︷ ︸

Inter-cluster interference

+σ2
n,1

, (4)

γn,k =
d−α
n,k|hn,kwn|

2Pn,k

d−α
n,k|hn,kwn|

2
k−1∑

j=1

Pn,j

︸ ︷︷ ︸

Intra-cluster interference

+ d−α
n,k sin

2 θn,k||hn,k||
2

N∑

i=1,i6=n

|ẽn,kwi|
2

K∑

l=1

Pi,l

︸ ︷︷ ︸

Inter-cluster interference

+σ2
n,k

. (5)

Θn,k(a, b) is given by

Θn,k(a, b) = log2(e)

[

(−1)M (M − 1)

bM−1
I1(a)

+
M−1∑

p=1

M−p
∑

q=1

(−1)p+q+1(M − 1)

(q − 1)!bp
I2(a, b, p, q) + (8)

M−1∑

p=1

M−p
∑

q=2

q−2
∑

s=0

(−1)p+s−1(q − s− 2)!(M − 1)

(q − 1)!bp
I3(a, b, p, s)

]

with I1(a), I2(a, b, p, q) and I3(a, b, p, s) given respectively

as

I1(a) =

M−2∑

t=0

(
M − 2

t

)
(−1)t

at+1
Ψ̃

(

−M − 1− t,
1

a

)

,

I2(a, b, p, q) =

M−2∑

r=0

p−1+r
∑

t=0

(
M − 2

r

)(
p− 1 + r

t

)

×
(−1)p−1−tbp−1+r−t

ar+1
Ψ

(

q − 4− t,
1

a+ b
,
1

b

)

,

I3(a, b, p, s) =

M−2∑

t=0

(
M − 2

t

)
(−1)tap−1

bs−1(p+ t)

× 2F1

(

s− 1, p+ t; p+ t+ 1;−
a

b

)

,

where 2F1(a, b; c; z) is a Gauss-hypergeometric function
[27, 9.14.2] and Ψ(n, u, v) is given by

Ψ(n, u, v) ,






∑n
k=0

(−1)kn![vn−kevEi(−v)−un−keuEi(−u)]
(n−k)!

−
∑n−1

k=0
(−1)kn!(vn−k−un−k)

(n−k)(n−k)! − (−1)nn! ln
(
v
u

)
, n > 0

evEi(−v)− euEi(−u)− ln
(
v
u

)
, n = 0

Ei(−v)Ei(v)− Ei(−u)Ei(u) +
E2

i (−u)−E2
i (−v)

2

+ 1
2

∑∞
m=0

∑2m
l=0

2(vle−v−ule−u)
(2m+1)2 l! , n = −1

∑−n−1
k=1

(−n−k−1)!
(−n−1)!

[
un+keuEi(−u)− vn+kevEi(−v)

]

+Ei(−v)Ei(v)−Ei(−u)Ei(u)
(−n−1)! +

∑−n−1
k=1

(−n−k−1)!(vn+k−un+k)
(−n−1)!(n+k) +

E2
i (−u)−E2

i (−v)
2(−n−1)! +

1
(−n−1)!

∑∞
m=0

∑2m
l=0

2(vle−v−ule−u)
(2m+1)2 l! , n ≤ −2.

(9)

Ei(x) = −
∫∞

−x
e−t

t dt is the exponential integral. For n < 0

with v → +∞, Ψ(n, u, v) becomes

Ψ̃(n, u) , Ψ(n, u, v)
∣
∣
v→+∞

=
euEi(−u)

(−n− 1)!

−n−1∑

k=1

(−n− k − 1)!un+k −
Ei(−u)Ei(u)

(−n− 1)!

−
−n−1∑

k=1

(−n− k − 1)! un+k

(−n− 1)!(n+ k)
+

E2
i (−u)

2(−n− 1)!

−
1

(−n− 1)!

∞∑

m=0

2m∑

l=0

2ule−u

(2m+ 1)2 l!
. (10)

Proof: See Appendix A.

Remark 2: As it was also observed by the authors in

[20], the exact analytical performance of the multi-antenna
NOMA systems based on linear ZFBF with limited CSI

feeback model here is very difficult to obtain. We believe the

actual analytical result (if it could be obtained) is at least as
the same complicated as the bound obtained in Theorem 1,

if not more complicated. Thus, it is natural that any accurate

analytical lower or upper bound should be very complicated.
In spite of this, the theoretical result obtained in Theorem

1 is able to avoid the time-consuming computer simulations

in evaluating the system performance.

Remark 3: It can be observed from (27) in Appendix A,

the channel model with limited feedback used in [21] in

fact equivalently further employs Jensen’s inequality on the
random term sin2 θn,k in (27), thus results in lower ergodic

rate performance than that of any practical system. This

point will also be verified by the numerical result of Fig.
2 in Section V.

IV. JOINT OPTIMIZATION OF FEEDBACK BITS AND

POWER ALLOCATION

The signal strength can be enhanced and the MU inter-

ference can be reduced by increasing the accuracy of CSI
quantization. The transmit power allocation to each user

also has a great impact on the ergodic rate performance.

Moreover, it is obvious that the feedback bits allocation and
the power allocation interact with each other. Therefore, it is

essential to consider the joint optimization of the feedback

bits and power allocation among the MUs for performance
enhancement with the constraints on the total transmit power

and the sum bandwidth of feedback channels of all users.
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A. Feedback Design Given Power Allocation Among All

Users

In this subsection, we first concentrate on optimizing the

ESR by feedback bits allocation among all users given the

power allocation among all users. The power allocation
optimization will be considered in the next subsection. [21]

proposed a indirect method that minimized the average sum

power of inter-cluster interference of all users, which can
not guarantee maximizing the ESR. In contrast to [21],

we consider directly maximizing the ESR of all users or
equivalently minimizing ESR loss caused by CSI quanti-

zation. The ergodic rate loss of user (n, k) due to CSI

quantization is defined as ∆Rn,k , Rideal
n,k − Rn,k, where

Rideal
n,k = E

[

log2

(
1+S

(1)
n,k

|hn,kwn|
2

1+S
(2)
n,k

|hn,kwn|
2

)]

is the ergodic rate

with perfect CSI. Since the actual analytical result of Rn,k

is unknown and the obtained analytical lower bound in

Section III is too sophisticated for further processing, in the

following theorem we first develop an upper bound on the
ergodic rate loss with a relatively simpler form.

Theorem 2: ∆Rn,k ∀n, k can be upper-bounded as

∆Rn,k ≤ ∆RUB1
n,k , where

∆RUB1
n,k = log2

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

2−
Bn,k
M−1 S

(3)
n,k

)

− log2(e)e

1

S
(2)
n,k E1

(

1

S
(2)
n,k

)

. (11)

Here S
(2)
n,k and S

(3)
n,k are the same as defined in Theorem 1.

Proof: See Appendix D.

With Theorem 2, an upper bound on the ESR loss ∆Rsum

can be obtained as

∆Rsum,UB =

N∑

n=1

K∑

k=1

∆RUB1
n,k . (12)

Then, the feedback bits allocation optimization problem

turns into the problem of minimizing ∆Rsum,UB . Moreover,
since the second term of (11) is irrelevant to Bn,k, the

problem can be equivalently formulated as

min
{Bn,k}

N∏

n=1

K∏

k=1

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

2−
Bn,k
M−1 S

(3)
n,k

)

s.t.

N∑

n=1

K∑

k=1

Bn,k ≤ B, (13)

Bn,k ∈ N , ∀n, k.

Without non-negative integer constraint, the solution to (13)

is obtained in the following theorem.

Theorem 3: The solution to the problem (13) without
non-negative integer constraint is given by

B⋆
n,k =

B

NK
+ (M − 1) log2

(

S
(3)
n,k

1 + S
(2)
n,k

)

+
(M − 1)

NK

N∑

p=1

K∑

q=1

log2

(

1 + S
(2)
p,q

S
(3)
p,q

)

. (14)

Proof: See Appendix E.

Remark 4: By employing the arithmetic-geometric mean

Algorithm 1 The Dynamic Programming Algorithm to Find

Practical Feedback Bits Allocation

Input: brd, rv(i), Bre

Output: bint

1: Dp = zeros(NK + 1, Bre + 1);
2: Brc = zeros(NK,NK + 1, Bre + 1);
3: for i = 2 to NK + 1 do

4: for j = 2 to Bre + 1 do

5: if Dp(i − 1, j) > Dp(i − 1, j − 1) + rv(i − 1)
then

6: Brc(:, i, j) = Brc(:, i− 1, j);
7: Dp(i, j) = Dp(i − 1, j);
8: else

9: Brc(:, i, j) = Brc(:, i− 1, j − 1);
10: Brc(i, i, j) = 1;

11: Dp(i, j) = Dp(i − 1, j − 1) + rv(i− 1);

12: return bint = brd +Brc(:, NK + 1, Bre + 1);

inequality, we have

N∏

n=1

K∏

k=1

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

2−
Bn,k
M−1 S

(3)
n,k

)

≤

[

1

NK

N∑

n=1

K∑

k=1

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

×2−
Bn,k
M−1 S

(3)
n,k

)]NK

=

[

1 +
1

NK

(
N∑

n=1

K∑

k=1

S
(2)
n,k + Γ

(
2M − 1

M − 1

)

×
N∑

n=1

K∑

k=1

2−
Bn,k
M−1 S

(3)
n,k

)]NK

.(15)

We notice the term
∑N

n=1

∑K
k=1 2

−
Bn,k
M−1 S

(3)
n,k in the right

hand side (RHS) of (15) is exactly the objective function

of the optimal bits allocation problem formulated in [21,
(24)]. Since the other terms in the RHS of (15) is irrelevant

to {Bn,k}, this illustrates minimizing the objective function

of [21] is equivalent to minimizing an upper bound of the
objective function of our problem. Thus, our algorithm is

superior to that in [21] in general. We will also show the
superiority of our algorithm by the numerical results in

Section V.

For some system parameter settings, (14) may give neg-

ative values (particularly for user (n, k) with k > 1 in each
cluster). In this case, our algorithm temporally allocates 0
bit to these users. Then, the bits allocation algorithm given
by Theorem 3 is performed again for the remaining users.

This algorithm operates in the recurrent manner until the

bits allocation for all remaining users satisfies Bn,k ≥ 0.
Without causing confusion, we still denote the resulting bits

allocation of user (n, k) after the above operation as B⋆
n,k.

Moreover, there is integer constraint on each Bn,k. Thus,
based on the coarse bits allocation results obtained above,

we seek for the practical solution by Algorithm 1.
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First, let bint ∈ NNK×1 consist of the integer bits

allocation to all users, where the i-th element bint(i) is the

number of bits allocated to user (n′, k′) with the relationship
between i and (n′, k′) given by n′ = MOD(i−1, N)+1 and

k′ = ⌈i/N⌉. Here MOD is the modular operation. Similarly,

let brd ∈ NNK×1 denote the bits allocation obtained
as brd(i) = ⌊{B⋆

n′,k′}⌋. In addition, let rv be NK × 1

vector with the i-th element rv(i) = ∆RUB1
n′,k′(brd(i)) −

∆RUB1
n′,k′(brd(i) + 1) denoting the gain of the ergodic rate

from allocating one extra bit to user (n′, k′), where ∆RUB1
n′,k′

is given by (11). Let Bre = B −
∑NK

i=1 brd(i) denote the
number of the remaining bits that need to be re-allocated.

Then, the problem to find the practical optimal solution can
be formulated as

max
bint

[bint − brd]
T
rv (16)

s.t.

NK∑

i=1

[bint(i)− brd(i)] ≤ Bre,

[bint(i)− brd(i)] ∈ {0, 1}.

The problem in (16) is a classical 0/1 Knapsack Problem

[28] and can be solved by the dynamic programming algo-
rithm. The detailed steps of the algorithm is provided in

Algorithm 1. Finally, we obtain the bits allocation result
with integer constraint given by Bint⋆

n,k = bint(i) with

i = N(k − 1) + n.

Remark 5: The overall complexity of the dynamic pro-

gramming algorithm in Algorithm 1 is mainly determined
by the complexity of at each iteration and the number of

iterations required. The computations within each iteration
are just a few scalar additions. Moreover, the time com-

plexity of the dynamic programming algorithm shown in

Algorithm 1 is O(NKBre), and it is easy to see Bre ≤
⌈NK/2⌉. Therefore, the time complexity of the algorithm is

a polynomial of the scale of the system, i.e., the parameters

N,K . Thus, this is a very low-complexity algorithm.

B. Power Allocation

The power allocation in NOMA systems is more complex

than that in OMA systems. For the power allocation within
one user cluster, according to the principle of NOMA, on the

one hand the power allocation usually follows the criterion

that Pn,1 ≤ · · · ≤ Pn,K in order to facilitate SIC and guar-
antee certain level of quality of service (QoS) requirements

of the users6 with poor channel conditions [11]. On the other

hand, in order to maximize the ESR, the power allocation
should follow the criterion that Pn,1 ≥ · · · ≥ Pn,K .

Therefore, [21] proposed equal power allocation within a

cluster to satisfy the above two criterions simultaneously
and to reduce the complexity of the algorithm. We will

follow the same scheme, i.e., Pn,k = Pn/K , where Pn is

the total power allocated to the users in the n-th cluster.
For the power allocation among the clusters, recall that

power allocation and bits allocation actually interact with

each other. Thus, in contrast to the intuitive scheme in

[21] which was based on a given feedback bits allocation

6Specifically, certain level of ESR of each user needs to be achieved by
power allocation in this paper.

(e.g., equal feedback bit allocation among all users in the

numerical result of [21]), we propose to jointly optimize

these two parameters by maximizing the system ESR under
the premise of Pn,k = Pn/K ∀n, k.

For the tractability, we develop in Appendix F another

analytical lower bound of Rn,k ∀n, k as

Rn,k ≥ RLB2
n,k , ∆RLB2

n,k + R̃LB2
n,k (17)

with ∆RLB2
n,k = E

[

log2

(
1+S̄

(1)
n,k

|hn,kwn|
2

1+S̄
(1)
n,k

M−1||hn,k||2

)]

, which is

a negative number independent with bits allocation and no
smaller than the constant − log2(e)C ≈ −0.8327 for any

system parameters7, where C is the Eulers constant [27,

8.367.2]. ∆RLB2
n,k changes very slowly with Pn, thus can be

identified Pn-independent for power allocation. In addition,

R̃LB2
n,k =

log2




1 +

d−α

n,k
Pn

σ2
n,k

K

M
M−1 + S̄

(2)
n,k + Γ

(
2M−1
M−1

)

2−
Bn,k
M−1 S̄

(3)
n,k




 .(18)

Here, S̄
(1)
n,k =

d−α

n,k
kPn

σ2
n,k

K
, S̄

(2)
n,k =

d−α

n,k
(k−1)Pn

σ2
n,k

K
and S̄

(3)
n,k =

d−α
n,k

σ2
n,k

∑N
i=1,i6=n Pi =

d−α
n,k

σ2
n,k

(P − Pn) are obtained by substi-

tuting Pn,k = Pn/K into S
(1)
n,k, S

(2)
n,k and S

(3)
n,k respectively.

Specifically, S̄
(2)
n,k = 0 for k = 1.

We find it still very complicated to take
∑N

n=1

∑K
k=1 R̃

LB2
n,k as the objective function to optimize

power allocation. Thus, we will further simplify

the problem. We can show, with perfect CSIT and
Pn,k = Pn/K , Rn,k for k > 1 can be upper bound as

Rn,k = log2




1 +

d−α
n,k

Pn

σ2
n,k

K
|hn,kwn|2

1 +
(k−1)d−α

n,k
Pn

σ2
n,k

K
|hn,kwn|2






< log2




1 +

d−α
n,k

σ2
n,k

K
|hn,kwn|2

(k−1)d−α
n,k

σ2
n,k

K
|hn,kwn|2




 = log2

(

1 +
1

k − 1

)

,

which, compared to Rn,1, is a very limited amount inde-

pendent with power allocation and decreasing with the user

index. Moreover, the ESR of these users in each cluster is
bounded as

∑K
k=2 Rn,k < log2(K). The corresponding rates

with limited CSI feedback must be even smaller. Thus, to

further consider the ergodic rate of all users within each clus-
ter in optimization can achieve very little benefit of sum rate,

but it take much more computation complexity to search for

a local-optimal solution due to the non-convex property of
the sum ergodic rate. In addition, the equal power allocation

within each cluster already guarantees certain transmission

rate for these users. Therefore, in the following we take the
sum of the terms R̃LB2

n,k in (18) for k = 1 as the objective

function, i.e., R̃LB2
sum (1) ,

∑N
n=1 R̃

LB2
n,1 .

Let Pn = φnP , where the coefficients φn (n =

7∆RLB2
n,k

can be obtained exactly in closed-form. However, since it is

not considered further for power allocation problem, we will not present
the result.
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1, 2, · · · , N ) satisfy
∑N

i=1 φn = 1. Substituting the result

of the bits allocation without integer constraint given by

(14) into the expression of R̃LB2
n,k , after some manipulations

we have

R̃LB2
n,k ({φn}) = log2

(

1 +
d−α
n,kφnP

Kσ2
n,kDn,k

)

, (19)

where Dn,k = M
(M−1) +

d−α
n,k

(k−1)φnP

σ2
n,k

K

+ Γ
(

2M−1
M−1

)

2−
B

NK(M−1)

(

∏N
p=1

∏K
q=1

(
d−α
p,q

σ2
p,q

) 1
NK

)

×

(

1 +
d−α
n,k

(k−1)φnP

σ2
n,k

K

)(
∏N

p=1 (1− φp)
1
N

)

×

(

∏N
p=1

∏K
q=1

(
1
P +

d−α
p,q (q−1)φp

σ2
p,qK

)− 1
NK

)

. Then, our

power allocation problem becomes

min
{φn}

−R̃LB2
sum (1) = −

N∑

n=1

R̃LB2
n,1 ({φn}) (20)

s.t.

N∑

n=1

φn ≤ 1, φn ≥ 0.

It is not difficult to check that the problem in (20) is still a

non-convex optimization problem. Thus, we will seek for a
sub-optimal (local-optimal) solution, which is given by the

following theorem.

Theorem 4: Given N and when transmit power P is large
enough to support the N clusters of NOMA users, a sub-

optimal solution to the problem (20) is given by

φ⋆
n =

1

N
−

K

N

[

M

(M − 1)P
+ Γ

(
2M − 1

M − 1

)
2−

B
NK(M−1)

P

×

( N∏

p=1

K∏

q=1

(
d−α
p,q

σ2
p,q

) 1
NK
)

C⋆

]
N∑

i=1,i6=n

(
σ2
n,1

d−α
n,1

−
σ2
i,1

d−α
i,1

)

,(21)

where C⋆ is the solution of the following equation of

variable C given as

C = (22)

P
1
K

(
N∏

p=1

(
1− φ⋆

p

) 1
N

)
N∏

p=1

K∏

q=2

( 1

P
+

d−α
p,q (q − 1)φ⋆

p

σ2
p,qK

)− 1
NK

with φ⋆
p (p = 1, 2, · · · , N) being a function of C given by

(21). The desired solution of C⋆ can be obtained by solving

the equation of C in (22) with any numerical method.
Moreover, the power allocation satisfies φ⋆

p ≥ φ⋆
2 ≥ · · · ≥

φ⋆
N .

Proof: See Appendix G.

Remark 6: Generally, there are multiple roots with the

equation (22). The desired solution of C⋆ is chosen as

the one makes the resulting φ⋆
n ∈ [0, 1] practical. If there

are more than one roots of C⋆, the desired one can be

determined by checking the obtained R̃LB2
sum (1).

According to the power allocation in Theorem 4, it is easy

to see, given N the total transmit power P needs to be large

enough to support N clusters of NOMA users based on our
framework described above. Otherwise, φ⋆

N will become a

negative number. When P is not large enough to support

N clusters of users, there are two ways to circumvent this

problem: (a) One can reduce the number of clusters by one

and redo the user clustering of the NK users according to
(2) and (3) until φ⋆

N > 0 holds for the number of clusters

N ; or (b) remove the users in cluster N from the time-

frequency RB considered and multiplex these users on some
other time-frequency RB.

C. Asymptotic Results of the Proposed Power and Feedback

Bits Allocation

In order to provide insights for the system design, we now
pursue an asymptotic analysis on our joint optimization of

power and feedback bits allocation that are obtained above.

First, the power allocation in the high power region and
in the high CSI quantization accuracy scenario are given

respectively as follows.
Corollary 1: When B → +∞ with fixed and finite P ,

our solution in Theorem 4 tends to be water-filling type
solution for the system with perfect CSIT. Moreover, when

P → +∞ with fixed and finite B, our power allocation
solution tends to be equal power allocation among all users.

Proof: First, it can be observed from (21) that, when

B → +∞ with fixed and finite P , our solution turns to be

φ⋆
n → 1

N − K
NP

M
(M−1)

∑N
i=1,i6=n

(
σ2
n,1

d−α
n,1

−
σ2
i,1

d−α
i,1

)

, which is

exactly the water-filling type solution for the system with
perfect CSIT. Moreover, when P → +∞ with finite B,

C⋆ →
P

1
K

(
∏N

p=1

(
1− φ⋆

p

) 1
N

)

[(
∏N

p=1 φ
⋆
p

)1− 1
K ∏N

p=1

∏K
q=1

(
(q−1)d−α

p,q

σ2
p,qK

) 1
NK

].(23)

Then, the equal power allocation follows by substituting (23)
into (21).

Theorem 5: As the total transmit power P increases from

the medium power region to high power region, with finite

total bandwidth of feedback channels B and without integer
constraint, the optimal number of feedback bits allocated

to the nearest user (n, 1) in each cluster is scaled ap-

proximately increasingly at rate (M − 1)
(
1− 1

K

)
log2 (P ),

whilst the optimal number of feedback bits allocated to

the other users is scaled approximately decreasingly at rate
(M − 1)

(
1− 1

K

)
log2 (P ). Specifically, as P increases we

have

B⋆
n,1 ≈ B̃⋆

n,1 =
B

NK
+ (M − 1)

(

1−
1

K

)

log2

(
P

NK

)

+(M − 1) log2

(

d−α
n,1

σ2
n,1

)

−
M − 1

NK

N∑

i=1

log2

(

d−α
i,1

σ2
i,1

)

+
M − 1

K

K−1∑

l=1

log2(l), ∀n; (24)

B⋆
n,k ≈ B̃⋆

n,k =
B

NK
−

M − 1

K
log2

(
P

NK

)

−
M − 1

NK

N∑

i=1

log2

(

d−α
i,1

σ2
i,1

)

+
M − 1

K

K−1∑

l=1

log2(l)

−(M − 1) log2(k − 1), for k ≥ 2 and ∀n. (25)
Proof: According to Corollary 1, the power allocation

of our joint optimization method tends to be equal power
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allocation in the high power region. Then, the theorem can

be proved easily by substituting the result of Pn = P/N

into S̄
(2)
n,k, S̄

(3)
n,k and (14) with some manipulations.

Remark 7: We see from this theorem that the feedback

bits allocated to each user by our method varies differently
as P increases, whereas the feedback bits allocation by the

method in [21] remains invariant as P varies. Moreover,

this theorem shows, as P increases from the medium power
region to high power region, the nearest (strongest) user in

each cluster is allocated more feedback bits than the other

users in the cluster, and among these nearest users of all
clusters, the stronger the user is the more feedback bits is

allocated. In contrast, for the users other than the strongest

user in each cluster (i.e., user (n, k) for k ≥ 2), the weaker
the user is the more feedback bits is allocated. These insights

can also be verified by the numerical results in Section V.

Moreover, we have the following result for finite B.

Corollary 2: With finite B and without integer constraint,
as P goes to +∞, the optimal number of feedback bits allo-

cated to the users other than the nearest user in each cluster

reduces to zero, whilst the optimal number of feedback bits
allocated to user (n, 1) of each cluster converges to a finite

number. Specifically, we have B⋆
n,1 ≈ min{B̂⋆

n,1, B̃
⋆
n,1} and

B⋆
n,k ≈ min{0, B̃⋆

n,k} for k ≥ 2, where each B̃⋆
n,k is defined

by (24) or (25) in Theorem 5 and

B̂⋆
n,1 (26)

=
B

N
+ (M − 1) log2

(

d−α
n,1

σ2
n,1

)

−
M − 1

N

N∑

i=1

log2

(

d−α
i,1

σ2
i,1

)

.

Proof: As P → +∞ with finite B, it is obvious that

B⋆
n,k → 0 and B̃⋆

n,k → 0 for k ≥ 2 and ∀n. The result

of B̂⋆
n,1 in (26) is obtained by substituting the expression

of B̃⋆
i,1 in (24) into the constraint

∑N
i=1 B̃

⋆
i,1 = B, which

completes the proof of the corollary.

Remark 8: It is easy to check that {B̃⋆
n,k} satisfies the

constraint on the total bandwidth of feedback channels.

According to (24) and the user clustering criteria in (2)
and (3), it is easy to see when P is large enough, our bits

allocation results in B⋆
1,1 ≥ B⋆

2,1 ≥ · · · ,≥ B⋆
N,1.

In the following, we will show for our joint power
and feedback bits allocation method, the proposed user

clustering (denoted as C) in general is the optimal in terms

of ESR among all possible user clustering methods. First
note that, it is obvious that, if a different user clustering

(denoted as C̃) is obtained from C by exchanging users

(i, p) and (j, q) for i 6= j and p 6= q where (i, p) and

(j, q) follow (2) and (3), the ESR of C̃ will be reduced
compared to that of C. Therefore, we can only focus on the

user clustering obtained from C by fixing the strongest user

in each cluster and exchanging a few pairs of users with
indices (i, k) and (j, k) for i 6= j and k ≥ 2. Then, we first

consider C̃ obtained from C by exchanging any two users

(n, k) and (m, k) with m ≤ n (i.e., user (n, k) and user

(m, k) in C become user (m, k) and user (n, k) respectively

in C̃). According to Theorem 3 and 4, it is easy to see the

power allocated to user (n, k) and (m, k) originally in C

are exchanged and the feedback bits allocated to these two
users are varied. However, the power and bits allocated to

the other users do not change. Thus, the ergodic rate of any

user other than the above two in C̃ is the same as that of

the corresponding user in C.

We denote the ergodic rates of users (m, k) and (n, k)
in C̃ as R̃m,k and R̃n,k respectively, which are obtained by
substituting the power and feedback bits allocation results

(without integer constraint) given by Theorem 3 and 4 into

the expression of SINR in (5). Compared with C, since

in C̃ the stronger user is allocated less power and the
weaker user is allocated with more power (i.e., Pn < Pm),

it is reasonable for one to anticipate the following result

Rm,k +Rn,k > R̃m,k + R̃n,k holds in general. In addition,
the larger the gap of power allocation Pm − Pn ≥ 0 is or

equivalently the larger the distance between the two indices

n − m is, the larger the gap of ESR (Rm,k + Rn,k) −
(R̃m,k + R̃n,k) becomes. Moreover, if C̃ is obtained from C

by exchanging more such user pairs, the rate gap between

two user clusterings C and C̃ will be increased. We find

after some tedious manipulations that, the exact closed-form

results of Ri,k and R̃i,k for i = m,n are necessary for the

comparison between C and C̃ in theory. But unfortunately,

as we have noted in Section III that it is very difficult if not

impossible to obtain the exact closed-form results. Thus, the
ESR comparison between two user clusterings in theory is

intractable. We have to turn to numerical experiments.

For verification, we compare the ESRs of different user
clustering methods with the system parameters given by

M = 6, B = 72 bits, N = 3 and K = 2. The AWGN at

all users are with the equal power, i.e., σ2
n,k = −50 dBm

∀n, k. The distance parameters are given by D1 =
[
25 35
27 37
29 39

]

with the (n, k)-th element denoting dn,k in meters. Fig.

1 shows the ESR gaps between our user clustering the

other methods, where Rsum [(p, q, r)] with p, q, r ∈ {1, 2, 3}
denotes the ESR of C̃, and the users (1, 2), (2, 2), (3, 2) in

C̃ corresponds to the users (p, 2), (q, 2), (r, 2) originally in

C respectively. Specifically, Rsum [(1, 2, 3)] denotes ESR of

our method. As anticipated, it is easy to see from Fig. 1 that
the performance of our method is the optimal. Moreover,

we can observe the following order of the ESR that
{Rsum [(1, 2, 3)]} > {Rsum [(2, 1, 3)] , Rsum [(1, 3, 2)]} >
{Rsum [(3, 1, 2)] , Rsum [(2, 3, 1)]} > {Rsum [(3, 2, 1)]},

which complies with the intuitive analysis above. However,
the relative amounts of ESRs within a ESR set depend on

the actual system parameters in general, and thus are not

comparable. In the following section, we will validate the
obtained analytical results and our proposed scheme by

more numerical results.

V. NUMERICAL RESULTS

For the numerical results, we consider the systems with
two different sets of distance parameters given as D1 of

Fig. 1 and D2 =
[
10 35
12 37
14 39

]

and the different number of Bs.

The other major system parameters are the same as those

of Fig. 1. Specifically, the systems associated with Fig. 2

- Fig. 4 and the systems associated with Fig. 5 - Fig. 6

are with D1 and D2 =
[
10 35
12 37
14 39

]

respectively. The path-loss

exponent α = 4. Moreover, if the total transmit power P
can not support a given number of clusters (i.e., N = 3 at

the beginning of system design), we will follow the way of
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Fig. 1: The ESR losses of some of the other user clustering

methods compared with our user clustering method.
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Fig. 2: Comparisons of the simulation and analytical results of

the ESR v.s. P for our proposed scheme and those in [21].

(a) in the design as we have described after Remark 6. The
ESR curves corresponding to the obtained analytical lower

bound in Theorem 1 will be notified specifically. Otherwise,

the ESR curves are obtained from simulations.

Fig. 2 shows the simulation results of the ESR v.s P for
our proposed joint bits and power allocation method and

the corresponding analytical lower bound given by Theorem

1 with B = 42 bits. For comparisons, we also plot the
simulation and analytical results with the quantized CSI

model in [21]. We can see from the figure, the simulation

results illustrate the fact we have explained in Remark 3,
i.e., the channel model for limited feedback used in [21]

actually underestimates the performance of the system with

the well recognized practical channel model used in many
previous works [19, 20, 23]. However, we can see in the

figure that the analytical ergodic rate result derived in [21] is
right over the corresponding results of the simulations. This

illustrates the analysis method in [21] to ignore the statistical

dependence between the useful signal and MU interference
signals received at each user results in overestimation of the

actual performance. The big gap between analytical and sim-

ulated results demonstrates the impact of the aforementioned
dependent relationships can not be ignored in the analysis

and design of the practical systems. Moreover, as transmit
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Fig. 3: Comparisons of the ESR v.s P for different feedback bits

allocation methods.
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Fig. 4: Comparisons of the number of feedback bits allocated to

each user for different bits allocation methods.

power varies, our obtained analytical lower bound can track

the real values well.

Fig. 3 compares the ESR as a function of P achieved

by our proposed bits allocation method with those of the
equal bits allocation and the bits allocation method proposed

in [21] for the systems with different Bs. All schemes

employ the quantized channel model in this paper and the
equal power allocation among all users. We can see our

bits allocation method performs the best of all. And the

performance gaps between our method and the other two
both increase when B becomes large, which illustrates the

advantage of our method.

Fig. 4 shows the number of feedback bits allocated to each

user obtained from our method and that obtained from the

method in [21] with the total feedback channel bandwidth
of B = 60 bits. We can see that, as P increases our method

allocates more bits to the nearest users (to the BS) in each
cluster, and allocates less bits to the farther users. In very

high power region, our method does not allocate feedback

bits for the farther user in each cluster. It is not difficult
to check the results show in this figure are consistent with

our analysis in Subsection IV-C. The results also can be

explained by the qualitative analysis as follows. On the one
hand, increasing the quantization accuracy can enhance the

strength of each user’s transmit signal, and the increasing
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of the near users’s signal strength is more effective in

enhancing the transmission rate than increasing the farther

users’ signal strength. On the other hand, the system is
interference-limited in high power region. Increasing the

quantization accuracy of user (n, k)’s CSI can reduce the

inter-cluster interference to all users (m, k) ∀m 6= n and ∀k,
but only reduces the intra-cluster interference to users (n, j)
for j > k due to SIC. Thus, with equal power allocation

within each cluster, increasing the quantization accuracy of
user (n, k)’s CSI is more effective in reducing the MU

interference than increasing the quantization accuracy of

user (n, j)’s CSI for j > k. In contrast, the bits allocation
by the method of [21] does not change with the increase of

P .

Fig. 5 shows the ESR as a function of P for different total

bandwidths of feedback channels achieved respectively by
our proposed joint optimization method, our bits allocation

method with equal power allocation among all users, and

the equal power and bits allocation method. As can be seen
from the figure, our proposed power allocation converges

to the equal power allocation as P goes large, which is

consistent with our analysis in Corollary 1. However, there
is always a gap between the performance of equal power

and bits allocation and those of the other two.

Fig. 6 compares the ESR as a function of B achieved by

our joint optimization method, our bits allocation method
with equal power allocation and equal power and bits allo-

cation method. As the baseline, we also plot the performance

of the OMA transmission, where, for fair comparisons, the
groups of the nearer users and the farther users share a

fraction of 1/2 time resource using linear ZFBF with equal
power allocation for transmission. As can be seen from the

figure, the performance of our joint bits and power allocation

method is the best of all. The performances of all NOMA
transmission schemes are better than that of OMA scheme

for the system setting considered. Moreover, we can observe

that, the performance gap between our joint optimization
scheme and the equal bits allocation scheme and also the

performance gap between our joint optimization scheme and

the OMA scheme both increase as the accuracy of channel
quantization (B) increases. However, the advantage of our

power allocation method over the equal power allocation

method decreases as the accuracy of channel quantization
increases.

VI. CONCLUSIONS

In this paper, we have investigated the transmit-receive

design, performance analysis, and optimization of downlink

multi-antenna NOMA cellular networks with general limited
feedback in FDD mode. A mathematically strict perfor-

mance analysis of the ergodic rate for the considered system
was conducted for the first time. A closed-form lower bound

on the ergodic rate of each user was obtained in terms of

transmit power, CSI quantization accuracy and channel con-
ditions. Then, we optimized the two key parameters of the

considered system, i.e., transmit power and the number of

feedback bits allocated to each users. Finally, we conducted
asymptotic performance analysis on the optimization results,

and obtained insights on system design guidelines.
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APPENDIX

A. Proof of Theorem 1

According to [23, Lemma 2], we have |ẽn,kwi|
2 ∼

Beta(1,M − 2) and E
[
|ẽn,kwi|2

]
= (M − 1)−1. Then,

by employing Jensen’s inequality we can lower-bound Rn,k

for k ≥ 2 as (29) at the top of next page, where Z ,

|h̃n,kwn|2 ∼ Beta(1,M − 1) [23]. It has been shown

in [24, Lemma 2] that, with cell approximation of vector
quantization the joint distribution of the random variable

(RV) pair (||hn,k||2 sin
2 θn,k, ||hn,k||2 cos2 θn,k) is the same

as that of (I, S), where I = δn,kY and S = X+(1−δn,k)Y
with X ∼ Gamma(1, 1) and Y ∼ Gamma(M − 1, 1) being

two independent RVs. Since X , Y and Z are independent
of each other [23], RLB1

n,k in (29) can be obtained as

RLB1
n,k = E

{

log2

[

1 + S
(1)
n,kZ(X + (1− δn,kY ))

+
(

S
(1)
n,kZ + S

(3)
n,k(M − 1)−1

)

δn,kY
]}

−E

{

log2

[

1 + S
(2)
n,kZ(X + (1− δn,kY ))

+
(

S
(1)
n,kZ + S

(3)
n,k(M − 1)−1

)

δn,kY
]}
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Rn,k ≥ E




log2




1 +

d−α
n,k

σ2
n,k

|hn,kwn|2Pn,k

1 + S
(2)
n,k |hn,kwn|

2
+ S

(3)
n,kE

[

|ẽn,kwi|
2
]

||hn,k||2 sin
2 θn,k









 (27)

= E

[

log2

(

1 + S
(1)
n,k |hn,kwn|

2
+ S

(3)
n,k(M − 1)−1||hn,k||2 sin

2 θn,k

1 + S
(2)
n,k |hn,kwn|

2
+ S

(3)
n,k(M − 1)−1||hn,k||2 sin

2 θn,k

)]

(28)

= E

[

log2

(

1 + S
(1)
n,kZ||hn,k||

2 + S
(3)
n,k(M − 1)−1||hn,k||

2 sin2 θn,k

)]

−E

[

log2

(

1 + S
(2)
n,kZ||hn,k||

2 + S
(3)
n,k(M − 1)−1||hn,k||

2 sin2 θn,k

)]

, RLB1
n,k , (29)

= EZ

[

Υn,k

(

S
(1)
n,kZ, S

(1)
n,kZ + S

(3)
n,k(M − 1)−1δn,k

)]

−EZ

[

Υn,k

(

S
(2)
n,kZ, S

(2)
n,kZ + S

(3)
n,k(M − 1)−1δn,k

)]

, (30)

where Υn,k(µ, ν) , EX,Y [log2 (1 + µX + νY )]. The re-

sult of EZ [Υn,k(aZ, aZ + b)] , Θn,k(a, b) is derived in

Appendix B, where Θn,k(a, b) is given in (8). Then, the
result of RLB1

n,k in (7) follows.

When k = 1, S
(2)
n,k = 0. By replacing S

(2)
n,k in (30) with

0, we can similarly obtain

RLB1
n,1 = E

{

log2

[

1 + αn,1Pn,1ZX

+
(

αn,1Pn,1Z + S
(3)
n,1(M − 1)−1δn,1

)

Y
]}

−E

{

log2

[

1 + S
(3)
n,1(M − 1)−1δn,1Y

]}

= Θn,k(αn,1Pn,1, S
(3)
n,1(M − 1)−1δn,1)

−E

[

log2

(

1 + S
(3)
n,1(M − 1)−1δn,1Y

)]

. (31)

The second term in (31) can be obtained as

E

[

log2

(

1 + S
(3)
n,1(M − 1)−1δn,1Y

)]

=

∫ +∞

0

log2

(

1 + S
(3)
n,1(M − 1)−1δn,1y

) e−yyM−2

(M − 2)!
dy

= log2(e) exp

(

M − 1

S
(3)
n,1δn,1

)
M−1∑

q=1

Eq

(

M − 1

S
(3)
n,1δn,1

)

, (32)

where (32) follows by using (34) in Appendix B. Then,

RLB1
n,k in (6) for k = 1 follows by substituting (32) into

(31).

B. The derivation of EZ [Υn,k(aZ, aZ + b)] , Θn,k(a, b)
for a > 0, b > 0

Using the result in [29], the probability density

function (PDF) of Jµ,ν = µX + νY for µ 6=

ν is given by fJµ,ν
(x) = (−1)M−1µM−2

(ν−µ)M−1 e−
x
µ +

∑M−1
p=1

(−µ)p−1

(M−1−p)!(ν−µ)pνM−1−p x
M−1−pe−

x
ν (x > 0). Thus,

Υn,k(µ, ν) = EX,Y [log2 (1 + µX + νY )]

=

∫ +∞

0

log2(1 + x)fJµ,ν
(x) dx

= log2(e)

[

(−µ)M−1

(ν − µ)M−1
exp

(
1

µ

)

E1

(
1

µ

)

+

M−1∑

p=1

(−µ)p−1ν

(ν − µ)p
exp

(
1

ν

)M−p
∑

q=1

Eq

(
1

ν

)]

, (33)

where (33) follows from the result of [30, (78)]
∫ +∞

0

ln(1 + ax)e−µxxp−1dx

= (p− 1)!e
µ
aµ−p

p
∑

q=1

Eq

(µ

a

)

. (34)

Then, substituting µ = aZ and ν = aZ+ b with a, b > 0 in
to (33), we can obtain

EZ [Υn,k(aZ, aZ + b)]

= log2(e)EZ

[

(−aZ)M−1

bM−1
exp

(
1

aZ

)

E1

(
1

aZ

)

+

M−1∑

p=1

(−aZ)p−1(aZ + b)

bp
exp

(
1

aZ + b

)

×

M−p
∑

q=1

Eq

(
1

aZ + b

)]

. (35)

By using the relationship [27] Eq(x) =
1

q−1 [e
−x − xEq−1(x)] and E1(x) = −Ei(−x) with

induction, Eq(x) can be expressed with Ei(−x) as

Eq(x) = e−x
∑q−2

s=0
(q−s−2)!(−x)s

(q−1)! + (−1)q(x)q−1

(q−1)! Ei(−x).
Then, substituting this result into (35) with the PDF of Z ,
we can obtain

EZ [Υn,k(aZ, aZ + b)]

= log2(e)EZ

[

(−1)M (aZ)M−1

bM−1
exp

(
1

aZ

)

Ei

(

−
1

aZ

)

+

M−1∑

p=1

M−p
∑

q=1

(−1)p+q+1(aZ)p−1

(q − 1)!bp(aZ + b)q−2

× exp

(
1

aZ + b

)

Ei

(

−
1

aZ + b

)

+
M−1∑

p=1

M−p
∑

q=2

q−2
∑

s=0

(−1)p+s−1(q − s− 2)!(aZ)p−1

(q − 1)!bp(aZ + b)s−1

]

, (36)

which is given by (8) with

I1(a) ,

∫ 1

0

(az)M−1(1− z)M−2 exp

(
1

az

)

Ei

(

−
1

az

)

dz,

(37)
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I2(a, b, p, q) ,

∫ 1

0

(az)p−1(1− z)M−2

(az + b)q−2
exp

(
1

az + b

)

×Ei

(

−
1

az + b

)

dz, (38)

I3(a, b, p, s) ,

∫ 1

0

(az)p−1(1− z)M−2

(az + b)s−1
dz. (39)

Then, we derive the results of (37), (38) and (39) as follows.
For the convenience of presentation, we first define an

integral Ψ(n, u, v) =
∫ v

u
xnexEi(−x)dx, whose closed-

form result is given by (9) for different cases. The derivation
is provided in Appendix C. Then, I1(a) can be obtained as

I1(a) =

M−2∑

t=0

(
M − 2

t

)
(−1)t

at

∫ 1

0

(az)M−1+t

× exp

(
1

az

)

Ei

(

−
1

az

)

dz

=

M−2∑

t=0

(
M − 2

t

)
(−1)t

at

∫ 1
a

+∞

x−M+1−texEi(−x) d

(
1

ax

)

(40)

=
M−2∑

t=0

(
M − 2

t

)
(−1)t

at+1
Ψ

(

−M − 1− t,
1

a
, v

) ∣
∣
∣
∣
v→+∞

,

where (40) follows by the change of variables x = 1
az .

Similarly, I2(a, b, p, q) can be obtained by using the change
of variables x = 1

az+b as

I2(a, b, p, q) =

∫ 1
a+b

1
b

(
1

x
− b

)p−1 [

1−
1

a

(
1

x
− b

)]M−2

×xq−2exEi(−x) d

[
1

a

(
1

x
− b

)]

=

M−2∑

r=0

p−1+r
∑

t=0

(
M − 2

r

)(
p− 1 + r

t

)
(−1)p−1−tbp−1+r−t

ar+1

×

∫ 1
b

1
a+b

xq−4−texEi(−x) dx

=

M−2∑

r=0

p−1+r
∑

t=0

(
M − 2

r

)(
p− 1 + r

t

)
(−1)p−1−tbp−1+r−t

ar+1

×Ψ

(

q − 4− t,
1

a+ b
,
1

b

)

.

Finally, I3(a, b, p, s) can be obtained as

I3(a, b, p, s)

=

M−2∑

t=0

(
M − 2

t

)

(−a)−t

∫ 1

0

(az)p−1+t

(az + b)s−1
dz

=

M−2∑

t=0

(
M − 2

t

)

(−1)ta−t−1

∫ a

0

xp−1+t

(x + b)s−1
dx

=

M−2∑

t=0

(
M − 2

t

)
(−1)ta−t−1

bs−1

∫ a

0

xp−1+t

(xb + 1)s−1
dx (41)

=

M−2∑

t=0

(
M − 2

t

)
(−1)ta−t−1

bs−1
·

ap+t

(p+ t)

× 2F1

(

s− 1, p+ t; p+ t+ 1;−
a

b

)

(42)

=

M−2∑

t=0

(
M − 2

t

)
(−1)tap−1

bs−1(p+ t)

× 2F1

(

s− 1, p+ t; p+ t+ 1;−
a

b

)

,

where (41) is obtained from the change of variables x =
az and (42) follows from [27, 3.194.1]

∫ u

0
xµ−1dx
(1+βx)ν =

uµ

µ 2F1(ν, µ; 1 + µ;−βu). Then, the final results can be

obtained by substituting the results of I1(a), I2(a, b, p, q)
and I3(a, b, p, s) into (36).

C. Derivation of Ψ(n, u, v)

First, for n > 0, Ψ(n, u, v) can be obtained by integration
by parts as

Ψ(n, u, v) =

∫ v

u

Ei(−x) d

[

ex
n∑

k=0

(−1)kn!

(n− k)!
xn−k

]

(43)

=

[

Ei(−x)ex
n∑

k=0

(−1)kn!

(n− k)!
xn−k

]v

u

−

∫ v

u

ex
n∑

k=0

(−1)kn!

(n− k)!
xn−k d[Ei(−x)]

=

[

Ei(−x)ex
n∑

k=0

(−1)kn!

(n− k)!
xn−k

]v

u

−
n∑

k=0

(−1)kn!

(n− k)!

∫ v

u

xn−k−1 dx, (44)

which is given in (9) with n > 0, where (43)

follows from the result [27, 2.321.2]
∫
xneaxdx =

eax
(
∑n

k=0
(−1)kn!

ak+1(n−k)!
xn−k

)

and (44) follows from

(Ei(−x))
′
= x−1e−x.

For n = 0, we can similarly obtain

Ψ(0, u, v) =

∫ v

u

Ei(−x)dex = exEi(−x)
∣
∣
∣

v

u
−

∫ v

u

x−1dx

= evEi(−v)− euEi(−u)− ln
( v

u

)

.

For n ≤ −2, Ψ(n, u, v) can be obtained as

Ψ(n, u, v) =

∫ v

u

Ei(−x)d

[

− ex
−n−1∑

k=1

(−n− k − 1)!

(−n− 1)!
xn+k

+
Ei(x)

(−n− 1)!

]

(45)

=

[

Ei(−x)

(

− ex
−n−1∑

k=1

(−n− k − 1)!

(−n− 1)!
xn+k

+
Ei(x)

(−n− 1)!

)]v

u

−

∫ v

u

(

− ex
−n−1∑

k=1

(−n− k − 1)!

(−n− 1)!
xn+k

+
Ei(x)

(−n− 1)!

)

d[Ei(−x)], (46)
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where (45) follows from the result [27, 2.324.2]
∫

eax

xn dx =

−eax
∑n−1

k=1
(n−k−1)!ak−1

(n−1)!xn−k + an−1Ei(ax)
(n−1)! (n > 0) with a = 1.

Moreover,
∫ v

u Ei(x) d[Ei(−x)] can be obtained as
∫ v

u

Ei(x) d[Ei(−x)] =

∫ v

u

(

Ei(−x)

+

∞∑

m=0

2x2m+1

(2m+ 1)(2m+ 1)!

)

d[Ei(−x)] (47)

=
1

2
E2

i (−x)
∣
∣
∣

v

u
+

∞∑

m=0

2

(2m+ 1)(2m+ 1)!

×

(∫ v

0

x2me−x dx−

∫ u

0

x2me−x dx

)

=
1

2

[
E2

i (−v)− E2
i (−u)

]
+

∞∑

m=0

2m∑

l=0

2(ule−u − vle−v)

(2m+ 1)2 l!
,

(48)

where (47) follows from [27, 8.214.3] Ei(x) = Ei(−x) +
∑∞

m=0
2x2m+1

(2m+1)(2m+1)! and (48) follows from [27, 3.351.1].

Then, the expression of Ψ(n, u, v) for n ≤ −2 in (9) can be

obtained by combing (46) and (48). Similarly, for n = −1,
we can obtain

Ψ(−1, u, v) =

∫ v

u

x−1exEi(−x) dx =

∫ v

u

Ei(−x) dEi(x)

= [Ei(−x)Ei(x)]
v
u −

∫ v

u

Ei(x) d[Ei(−x)],(49)

which is given by (9) with n = −1. Here, we employ again
[27, 3.351.1].

For n < −1 with v → +∞, we can obtain

Ψ̃(n, u) = Ψ(n, u, v)
∣
∣
v→+∞

=

∫ ∞

u

xnexEi(−x) dx

=

[

Ei(−x)

(

− ex
−n−1∑

k=1

(−n− k − 1)!

(−n− 1)!
xn+k

+
Ei(x)

(−n− 1)!

)]∞

u

+

[
−n−1∑

k=1

(−n− k − 1)! xn+k

(−n− 1)!(n+ k)

]∞

u

−
1

(−n− 1)!

∫ ∞

u

Ei(x) d[Ei(−x)]. (50)

According to [31, 5.1.19], we have 1
x+1 < exE1(x) ≤

1
x (x > 0). Since E1(x) = −Ei(−x), we have − 1

x <
exEi(−x) ≤ − 1

x+1 (x > 0). Then, it is easy to see

lim
x→+∞

exEi(−x) = 0. In addition, using L’Hospital rule

it is easy to obtain lim
x→+∞

Ei(−x)Ei(x) = 0. Thus, for

n + k < 0, the first term in (50) can be obtained as[

Ei(−x)
(

−ex
∑−n−1

k=1
(−n−k−1)!
(−n−1)! xn+k + Ei(x)

(−n−1)!

)]∞

u
=

Ei(−u)
(

eu
∑−n−1

k=1
(−n−k−1)!
(−n−1)! un+k − Ei(u)

(−n−1)!

)

. The sec-

ond term in (50) is given by

[
∑−n−1

k=1
(−n−k−1)! xn+k

(−n−1)!(n+k)

]∞

u

=

−
∑−n−1

k=1
(−n−k−1)! un+k

(−n−1)!(n+k) . Similar to (48), the third term

in (50) can be obtained as
∫ +∞

u
Ei(x) d[Ei(−x)] =

− 1
2E

2
i (−u) +

∑∞
m=0

∑2m
l=0

2ule−u

(2m+1)2 l! , where we have used

[27, 3.351.2]. Then, the result of Ψ(n, u, v)
∣
∣
v→+∞

in (10)

follows by substituting the above results into (50).

D. Proof of Theorem 2

With the expressions of Rideal
n,k and Rn,k we have

∆Rn,k = E

[

log2

(

1 + S
(1)
n,k |hn,kwn|

2
)]

−E

[

log2

(

1 + S
(2)
n,k |hn,kwn|

2
)]

−E

[

log2

(

1 + S
(1)
n,k |hn,kwn|

2

+
d−α
n,k

σ2
n,k

sin2
θn,k||hn,k||

2
N
∑

i=1,i6=n

|ẽn,kwi|
2

K
∑

l=1

Pi,l

)

]

+ E

[

log2

(

1 + S
(2)
n,k |hn,kwn|

2 +
d−α
n,k

σ2
n,k

sin2
θn,k||hn,k||

2

×

N
∑

i=1,i6=n

|ẽn,kwi|
2

K
∑

l=1

Pi,l

)]

(51)

≤ E

[

log2

(

1 + S
(2)
n,k |hn,kwn|

2 +
d−α
n,k

σ2
n,k

sin2
θn,k||hn,k||

2
(52)

×
N
∑

i=1,i6=n

|ẽn,kwi|
2

K
∑

l=1

Pi,l

)]

−E

[

log2

(

1 + S
(2)
n,k |hn,kwn|

2
])

≤ log2

(

1 + S
(2)
n,k +

M

M − 1
2Bn,kβ

(

2Bn,k ,
M

M − 1

)

S
(3)
n,k

)

− log2(e)e

1

S
(2)
n,k E1

(

1

S
(2)
n,k

)

= log2

(

1 + S
(2)
n,k + Γ

(

2M − 1

M − 1

)

2−
Bn,k
M−1 S

(3)
n,k

)

− log2(e)e

1

S
(2)
n,k E1

(

1

S
(2)
n,k

)

, (53)

where (52) follows by neglecting
d−α
n,k

σ2
n,k

sin2 θn,k||hn,k||2
∑N

i=1,i6=n |ẽn,kwi|
2∑K

l=1 Pi,l in

the third log2 of (51). (53) is obtained by applying
Jensens inequality to the first log2 term of (52). (53)

follows by combing the results E[|hn,kwn|2] = 1,

E[||hn,k||2] = M and E[sin2 θn,k] = 2Bn,kβ
(

2Bn,k , M
M−1

)

with 2Bn,kβ
(

2Bn,k , M
M−1

)

≈ Γ
(

M
M−1

)

2−
Bn,k
M−1 and

xΓ(x) = Γ(x+ 1), which were shown in [23].

E. Proof of Theorem 3

It is easy to show that the objective function is logarithm

convex function of variables Bn,ks. Thus, the problem of

(13) is a convex optimization problem. The Lagrangian is
given by

L(Bn,k, λ) = λ

(
N∑

n=1

K∑

k=1

Bn,k −B

)

+

N∏

n=1

K∏

k=1

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

2−
Bn,k
M−1 S

(3)
n,k

)

,

where λ is the is the Lagrange multiplier associated with

total feedback bits constraint. Applying the Karush-Kuhn-
Tucker (KKT) condition, we can get the necessary and

sufficient conditions as



15

Rn,k ≥ E

[

log2

(

1 + S̄
(1)
n,k |hn,kwn|

2
)]

+ E




log2




1 +

S̄
(3)
n,k(M − 1)−1||hn,k||2 sin

2 θn,k

1 + S̄
(1)
n,k

∣
∣
∣h̃n,kwn

∣
∣
∣

2

||hn,k||2











−E

[

log2

(

1 + S̄
(2)
n,k

∣
∣
∣h̃n,kwn

∣
∣
∣

2

||hn,k||
2 + S̄

(3)
n,k(M − 1)−1||hn,k||

2 sin2 θn,k

)]

≥ E

[

log2

(

1 + S̄
(1)
n,k |hn,kwn|

2
)]

+ E

[

log2

(

1 +
S̄
(3)
n,k(M − 1)−1||hn,k||2 sin

2 θn,k

1 + S̄
(1)
n,kM

−1||hn,k||2

)]

−E

[

log2

(

1 + S̄
(2)
n,kM

−1||hn,k||
2 + S̄

(3)
n,k(M − 1)−1||hn,k||

2 sin2 θn,k

)]

(56)

= E

[

log2

(

1 + S̄
(1)
n,k |hn,kwn|

2
)]

− E

[

log2

(

1 + S̄
(1)
n,kM

−1||hn,k||
2
)]

+E




log2




1 +

d−α
n,k

Pn||hn,k||
2

σ2
n,k

KM

1 + S̄
(2)
n,kM

−1||hn,k||2 + S̄
(3)
n,k(M − 1)−1||hn,k||2 sin

2 θn,k









 . (57)

∂L

∂Bn,k

∣
∣
∣
∣
∣
B⋆

n,k
, λ⋆

= −
ln(2)Γ

(
2M−1
M−1

)

S
(3)
n,k2

−
Bn,k
M−1

(M − 1)

×
N∏

i=1

K∏

j=1

(

1 + S
(2)
i,j + Γ

(
2M − 1

M − 1

)

2−
B⋆

i,j
M−1S

(3)
i,j

)

×

(

1 + S
(2)
n,k + Γ

(
2M − 1

M − 1

)

2−
B⋆

n,k
M−1 S

(3)
n,k

)−1

+ λ⋆ = 0,

∀ n, k, (54)

∂L(Bn,k, λ)

∂λ

∣
∣
∣
∣
∣
B⋆

n,k
, λ⋆

=
N∑

n=1

K∑

k=1

B⋆
n,k −B = 0,

if λ⋆ ≥ 0. (55)

From (54) we can obtain the relationship B⋆
p,q = B⋆

n,k −

(M − 1) log2

[
S

(3)
n,k

(1+S(2)
p,q)

S
(3)
p,q(1+S

(2)
n,k

)

]

for ∀p 6= n and ∀q 6= k. Then,

the solution of B⋆
n,k in (14) follows by substituting this

relationship into (55).

F. Derivation of the Lower Bound RLB2
n,k

Based on (28), we have (56) and (57) at the top of this
page, where (56) follows from applying Jensens inequality

to |h̃n,kwn|2 and the result E[|h̃n,kwn|2] = M−1 [23].
Then, by applying E[log2(1 + X)] ≥ log2(1 + 1

E[1/X] ) to

(57), we have

Rn,k ≥ E

[

log2

(

1 + S̄
(1)
n,k |hn,kwn|

2
)]

−E

[

log2

(

1 + S̄
(1)
n,kM

−1||hn,k ||
2
)]

+ log2

(

1 +
d−α
n,kPn

σ2
n,kK

/

E

[

1 + S̄
(2)
n,kM

−1||hn,k||
2 + S̄

(3)
n,k(M − 1)−1 sin2 θn,k||hn,k||

2

M−1||hn,k||2

])

,

which is given by (17) and the final result follows from the

approximation of E[sin2 θn,k] in [23]. For ∆RLB2
n,k in (17),

we have

∆RLB2
n,k − E

[

log2

(

M |h̃n,kwn|
2
)]

= E



log2




1 + S̄

(1)
n,k||hn,k||2|h̃n,kwn|2

(

M + S̄
(1)
n,k||hn,k||2

)

|h̃n,kwn|2









≥ E



log2




1 + S̄

(1)
n,k||hn,k||2M−1

(

M + S̄
(1)
n,k||hn,k||2

)

M−1







 = 0,

which follows from Jensen’s inequality, since

log2

(
1+ζx

(M+ζ)x

)

is a convex function of x.

Define g(Pn) , E

[

log2

(

1 + S̄
(1)
n,k |hn,kwn|

2
)]

−

E

[

log2

(

1 + S̄
(1)
n,kM

−1||hn,k||2
)]

. It is easy to obtain

g
′

(Pn) ,
dg(Pn)
dPn

= E

[(

1 +
d−α
n,k

kPn

σ2
n,k

KM
||hn,k||

2
)−1

]

−

E

[(

1+
d−α
n,k

kPn

σ2
n,k

K
||hn,k||2 |hn,kwn|

2
)−1

]

. Applying Jensens

inequality on the second term, it is easy to show g
′

(Pn) ≤ 0.

Thus, g(Pn) is a decreasing function of Pn with g(0) =
0. Thus, g(Pn) < 0 when Pn > 0. Moreover, since

g
′

(0) = 0 and lim
Pn→∞

g
′

(Pn) = 0, |g(Pn)| is relatively

small when Pn is small and becomes less sensitive to

Pn as Pn goes large. In addition, since |h̃n,kwn|2 ∼

Beta(1,M − 1), we have E

[

log2

(

M |h̃n,kwn|2
) ]

=

log2(M)+(M −1)
∫ 1

0 log2(x)(1−x)M−2dx = log2(M)−

log2(e)
∑M−1

k=1 k−1 [27, 4.253.1, 8.365.3] . It is easy to show

h(M) = log2(M)−log2(e)
∑M−1

k=1 k−1 is a increasing func-

tion of M and limM→∞ h(M) = − log2(e)C ≈ −0.8327
[27, 8.367.2].

G. Proof of Theorem 4

First, denote C , P
1
K

(
∏N

p=1 (1− φp)
1
N

)

×

(

∏N
p=1

∏K
q=2

(
1
P +

d−α
p,q (q−1)φp

σ2
p,qK

)− 1
NK

)

. Then, by sub-

stituting C into (19) we can re-express R̃LB2
n,k ({φn}) as (58)

shown at the top of the next page. In the following, we

identify C as a constant. Then, the problem in (20) becomes
a convex optimization problem. The Lagrangian associated

with the problem in (20) is defined as (59) ∀n, k at the
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R̃LB
sum (1) =

N∑

n=1

log2






1 +

d−α
n,1φnP

σ2
n,1K

M
(M−1) + Γ

(
2M−1
M−1

)

2−
B

NK(M−1)

(
∏N

p=1

∏K
q=1

(
d−α
p,q

σ2
p,q

) 1
NK

)

C







. (58)

Lφ(φn,k, λφ) = −
N∏

n=1






1 +

d−α
n,1φnP

σ2
n,1K

M
(M−1) + Γ

(
2M−1
M−1

)

2−
B

NK(M−1)

(
∏N

p=1

∏K
q=1

(
d−α
p,q

σ2
p,q

) 1
NK

)

C






+λφ

(
N∑

n=1

φn − 1

)

. (59)

∂Lφ(φn, λφ)

∂φn

∣
∣
∣
∣
∣
{φ⋆

n},λ
⋆
φ

= −

d−α
n,1P

σ2
n,1K

M
(M−1) + Γ

(
2M−1
M−1

)(
∏N

p=1

∏K
q=1

(
d−α
p,q

σ2
p,q

) 1
NK

)

2−
B

NK(M−1)C

×
N∏

i=1,i6=n






1 +

d−α
i,1 P

σ2
i,1K

φ⋆
i

M
(M−1) + Γ

(
2M−1
M−1

)(
∏N

p=1

∏K
q=1

(
d−α
p,q

σ2
p,q

) 1
NK

)

2−
B

NK(M−1)C







+ λ⋆
φ = 0, (60)

∂Lφ(φn, λφ)

∂λφ

∣
∣
∣
∣
∣
{φ⋆

n}

=

N∑

n=1

φ⋆
n − 1 = 0. (61)

top of this page, where λφ is the Lagrangian multiplier

associated with the sum power constraint. According to the
KKT conditions for optimality, we can obtain (60) and (61)

at the top of this page.

According to (60), we can obtain the following relation-
ship for ∀i 6= n that,

φ⋆
i = φ⋆

n +K

(

M

(M − 1)P
+ Γ

(
2M − 1

M − 1

)

×

(
N∏

p=1

K∏

q=1

(d−α
p,q

σ2
p,q

) 1
NK

)

2−
B

NK(M−1)

P
C

)(
σ2
n,1

d−α
n,1

−
σ2
i,1

d−α
i,1

)

.

Substituting the above relationship into (61), we can obtain
(21). Substituting φ⋆

n as a function of C given by (21) into

the definition of C above, we can obtain the equation about

the optimal C⋆ given by (22). Moreover, according to (2)

and (3), it is easy to prove
∑N

i=1,i6=m

(
σ2
m,1

d−α
m,1

−
σ2
i,1

d−α
i,1

)

≤

∑N
i=1,i6=n

(
σ2
n,1

d−α
n,1

−
σ2
i,1

d−α
i,1

)

, ∀1 < m < n < N . Then, the

order of the coefficients φis follows.
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