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Abstract

The interference management technique that treats interference as noise (TIN) is optimal when

the interference is sufficiently low. Scheduling algorithms based on the TIN optimality condition have

recently been proposed, e.g., for application to device-to-device communications. TIN, however, has

never been applied to cellular networks. In this work, we propose a scheduling algorithm for application

to cellular networks that is based on the TIN optimality condition. In the proposed scheduling algorithm,

each base station (BS) first randomly selects a user equipment (UE) in its coverage region, and then

checks the TIN optimality conditions. If the latter conditions are not fulfilled, the BS is turned off.

In order to assess the performance of TIN applied to cellular networks, we introduce an analytical

framework with the aid of stochastic geometry theory. We develop, in particular, tractable expressions

of the signal-to-interference-and-noise ratio (SINR) coverage probability and average rate of cellular

networks. In addition, we carry out asymptotic analysis to find the optimal system parameters that

maximize the SINR coverage probability. By using the optimized system parameters, it is shown that

TIN applied to cellular networks yields significant gains in terms of SINR coverage probability and

average rate. Specifically, the numerical results show that average rate gains of the order of 21% over

conventional scheduling algorithms are obtained.
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I. INTRODUCTION

Interference has always been one of the main limiting factors in cellular networks due to

its indeterministic nature. In order to cope with interference, different solutions have been

proposed. For example, coordinated multipoint (CoMP) [1] and intercell interference coordination

(ICIC) [2] have been considered for the long term evolution-advanced (LTE-A) communications

standards. In CoMP operation, multiple base stations (BSs) cooperate over a backhaul link and

jointly transmit data to the cell-edge user equipments (UEs) in order to mitigate the intercell

interference and hence improve the network throughput [3]. The ICIC blanking of macrocells

has been proposed for application to heterogeneous networks in order to reduce the amount of

interference to the UEs of small cells [4]. Fractional power control (FPC) is considered to be an

essential feature in the uplink (UL) of the LTE and LTE-A communication standards [5], [6].

FPC, however, still generates high levels of interference and limits the UL performance. Another

approach is interference aware fractional power control (IAFPC), which limits the maximum

amount of interference that a UE can generate. If the interference generated is greater than a

maximum threshold, the UE adjusts its transmit power so as to reduce the interference to a given

maximum value [7]. These few examples confirm the relevance that mitigating interference in

cellular networks plays, as well as the research efforts that have been put towards this end. All

these approaches, however, are heuristic in nature and do not rely upon any information theoretic

optimality conditions.

Treating interference as noise (TIN) is a known interference management technique that is

optimal if the strength of the intended link is greater than or equal to the interference strength that

the intended link receives multiplied by the interference strength that the intended link creates

[8]. It is not just the optimality of TIN that makes it attractive to the research community, but

also its low complexity and robustness to channel uncertainty [8]–[11]. Despite its optimality and

simplicity, TIN has never been applied to cellular networks. In the present paper, we investigate

the application of TIN to cellular networks and introduce a tractable analytical framework in order

to optimize its parameters and quantify its achievable performance. To this end, the mathematical

tools of stochastic geometry and Poisson point processes are employed.

A. Related Work

A spectrum sharing mechanism for application in device-to-device (D2D) communications,

which is referred to as ITLinQ, has been proposed in [12]. ITLinQ is based on the TIN optimality
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condition and it has been shown to provide performance gains compared with other heuristic

spectrum sharing algorithms. The authors of [12] provide a distributed version of ITLinQ,

which guarantees some fairness among the links. ITLinQ has further been improved in [13],

where ITLinQ+ has been introduced. By using stochastic geometry, a semi-analytical framework

for analyzing ITLinQ has been introduced in [14]. Therein, some adjustable parameters are

considered, which can be optimized to get high gain over other D2D scheduling algorithms.

An analytical framework to study the performance of UL heterogeneous cellular networks that

employ IAFPC has been proposed in [15]. According to the IAFPC scheme, the UEs that generate

higher interference than a maximum threshold limit their transmit power so that the interference

is below an admissible maximum value. A similar approach that turns off the UEs that generate

more interference than a maximum threshold has been studied in [16]. In both [15] and [16],

stochastic geometry tools have been used for performance analysis and optimization. Gains in

terms of average rate and power consumption have been shown. Another stochastic geometry

based framework that studies the problem of BS cooperation in the downlink for heterogeneous

networks can be found in [17]. The analysis of BS cooperation with retransmissions can be

found in [18]. Simulations based studies that consider interference aware power control can be

found in [19]–[21].

The existing works that employ the TIN optimality condition for interference management are

limited to D2D communications [12]–[14], whereas the works that employ interference awareness

methods in cellular networks are based on heuristic criteria [7], [15]–[21]. In the present paper,

we propose a scheduling algorithm based on the TIN optimality condition and develop a tractable

analytical framework for its analysis and optimization by using tools from stochastic geometry.

In the last few years, stochastic geometry has emerged as a power tool for the analysis of

wireless networks due to its analytical tractability yet accuracy. For example, it has been used

for the analysis of cellular networks [22]–[26], cognitive networks [27], millimeter wave cellular

networks [28], [29], ad-hoc networks [30], wireless powered cellular networks [31], [32], and

backscatter communication networks [33].

B. Contributions and Outcomes

Designing a cellular network based on the TIN optimality conditions and developing an

analytical framework for its analysis and optimization is a challenging task. To this end, in

fact, a centralized controller that keeps track of all the channels of the cellular network and
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that identifies the strongest interference received and the strongest interference created on each

link of the cellular network is needed. The complexity of such a centralized scheduler may be

too high for application to large-scale networks. The resulting scheduling algorithm, in addition,

would be intractable from the analytical standpoint and, therefore, difficult to optimize without

using extensive system-level simulations.

To deal with the issues of implementation complexity and analytical intractability, we propose

and study the performance of a simplified two-step version of the (optimal or centralized) TIN-

based scheduling algorithm, which can be implemented in a distributed manner and requires only

the channel state information (CSI) of neighboring BSs. In the first step, each BS randomly selects

a UE in its coverage region, similar to conventional cellular networks that do not employ TIN. In

the second step, only the BSs that fulfill the TIN optimality conditions schedule for transmission

the UE in their coverage region. The rest of the BSs, on the other hand, are turned off. In order to

make the TIN scheduling algorithm suitable for application to cellular networks, we introduce

two design parameters (M and µ) that are optimized in order to control the number of BSs

that are turned off. The optimization of these two parameters is important in order to identify

a suitable trade-off between the potential reduction of interference and the potential loss of

average rate that turning some BSs off entails. In spite of the latter potential loss of average rate,

our analysis shows that the proposed TIN-based scheduling algorithm outperforms conventional

cellular networks in terms of average rate, thanks to its effective interference reduction capability.

The proposed two-step TIN-based scheduling algorithm is simple to implement in cellular

networks. Its analysis and optimization are, however, still challenging. The main reason is the

lack of analytical results for the distribution of the downlink distances within the typical cell of a

Voronoi tessellation [26], [32]. To overcome this limitation, we introduce some approximations

that lead to a tractable analytical framework, which is shown to be suitable for system opti-

mization yet sufficiently accurate. We approximate, in particular, the typical cell of a Voronoi

tessellation with the so-called Crofton cell [32], and the distribution of the distance between a

BS and its most interfered UE with the distribution of the distance between the typical UE and

the BS that creates the highest interference to it. These two approximations result in a lower

bound for the coverage probability of the proposed two-step TIN-based scheduling algorithm.

The unique contributions and outcomes of the present work can be summarized as follows:

• We derive tractable analytical expressions for the SINR coverage probability and average

rate of the proposed two-step (distributed) TIN scheduling protocol. For specific system
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parameters, the analytical formulas are proved to reduce to the SINR coverage probability

and average rate of conventional cellular networks.

• We show that unique values of M and µ that maximize the SINR coverage probability and

average rate exist. In order to compute such optimal M and µ, we carry out asymptotic

analysis of the SINR coverage probability and provide a simple optimization algorithm. By

setting M = 1, more precisely, we identify the optimal value of µ for high and low values

of the SINR decoding threshold.

• We observe that the optimal value of µ decreases as the SINR threshold increases. This

implies that, in order to achieve a high SINR decoding threshold, more BSs need to be

turned off. If, on the other hand, the SINR threshold is small, we show that no BSs need

to be turned off, which implies that optimal performance can be obtained by using the

conventional scheduling algorithm.

• We further show that TIN-based scheduling algorithms with optimized parameters signif-

icantly improve the SINR coverage probability and average rate. For example, the exact

implementation (through simulation without any approximation) of the two-step TIN-based

scheduling improves the SINR coverage probability by 67% and the mathematically tractable

implementation (lower bound) of the two-step TIN-based scheduling improves the SINR

coverage probability by 36%, if the SINR decoding threshold is set to 10 dB. In addition,

the corresponding increase of the average rate is 21% and 11%, respectively, despite the

fact that some BSs are turned off, compared to the classical scheduling algorithm.

The rest of the present paper is organized as follows. In Section II, we introduce the network

model and the TIN-based scheduling algorithm. In Section III, we provide a tractable analytical

framework of the SINR coverage probability and average rate. In Section IV, we carry out

asymptotic analysis in order to find the optimal system parameters that optimize the SINR

coverage probability. In Section V, simulation and numerical results are presented. Finally,

Section VI concludes the paper and summarizes some ideas for future research.

II. SYSTEM MODEL

A. Network Model

We consider a single-tier downlink cellular network in which the locations of BSs and UEs

are modeled as points of two bi-dimensional and mutually independent homogeneous Poisson

point processes (PPPs). We denote by Φb and Φu the PPPs, and by λb and λu the densities
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of BSs and UEs, respectively. The density of UEs is assumed to be much greater than the

density of BSs. Thus, all the BSs are active and have UEs to serve in every resource block

(carrier frequency, time slot, etc.), if no scheduling for interference management is applied. We

assume full frequency reuse, i.e., all the BSs share the same transmission bandwidth. Each UE

is associated with the nearest BS. Accordingly, the coverage regions of the BSs constitute a

Poisson-Voronoi tessellation in the plane. The BSs and UEs have a single antenna. The standard

unbounded path-loss model with path-loss exponent α > 2 is considered. The fast-fading is

assumed to follow a Rayleigh distribution. More general system models may be analyzed. In the

present work, however, we consider the so-called standard modeling assumptions [32], in order

to focus our attention on the impact and potential benefits of TIN.

B. Treating Interference as Noise

Treating interference as noise is a scheduling algorithm that has attracted major interest for

practical and theoretical reasons. From the implementation point of view, TIN is attractive due

to its simplicity and adaptability to channel uncertainties. From the theoretical standpoint, it is

a promising solution due to its optimality under certain conditions [8].

The TIN optimality conditions, more precisely, can be stated as follows: In a wireless network

with n transmitter and receiver pairs, if the strength of the intended link (from an intended BS

to an intended UE) is greater than or equal to the product of the strengths of the strongest

interference that the intended BS creates and of the strongest interference that the intended UE

receives, then TIN achieves the whole capacity region to within a constant gap of log 3n [8]. In

mathematical terms, the TIN optimality conditions can be formulated as follows:

SNRi > max
j 6=i

INRij max
k 6=i

INRki ∀i = 1, ..., n, (1)

where SNRi and INRij denote the signal-to-noise ratio (SNR) of link i and the interference-to-

noise ratio (INR) of source j at destination i, respectively. It is worth mentioning, in particular,

that the SNRs and INRs in (1) depend on both the path-loss and the fast fading.

C. TIN-Based Scheduling Algorithm

The scheduling algorithm based on the TIN optimality conditions in (1) may be difficult

to realize in large-scale cellular networks, since a centralized controller that is aware of the
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(instantaneous) channel state information of all the links available in the networks is necessary.

In the present paper, this approach is referred to as centralized TIN scheduling.

To overcome this issue, we propose a two-step distributed scheduling algorithm inspired by

(1), which, in addition, does not necessitate the instantaneous channel state information of the

links. This approach is referred to as two-step or distributed TIN scheduling. In the first step, for

each available resource block, each BS randomly selects a UE that lies in its coverage region. In

the second step, the BSs that do not fulfill the following (simplified) TIN optimality conditions:

MSNR
µ

i > max
j 6=i

INRij max
k 6=i

INRki ∀i = 1, ..., n, (2)

are turned off, where SNRi and INRij have the same meaning as in (1) except that they are

averaged with respect to the fast fading in order to dispense the scheduler from requiring the

instantaneous channel state information of the links. Equation (2), as opposed to (1), is applied by

each BS independently of the other BSs, which makes it suitable for a distributed implementation

and requires only the average channel state information of neighboring BSs. In (2), in addition,

we have introduced two design parameters, M and µ, for system optimization, which allow us

to control the number of BSs that are turned off, and, thus, are instrumental for interference

management. In particular, M is a positive real number greater than or equal to one (M ≥ 1),

and µ is a positive real number greater than or equal to one and less than or equal to two

(1 ≤ µ ≤ 2).

In order to get deeper understanding and insight from (2), we rewrite it with the aid of a more

explicit notation by taking as an example the cellular network realization depicted in Fig. 1. For

any realization of the cellular network under analysis, we select one cell (BS) at random that is

referred to as the typical cell or the typical BS. Among the UEs that lay in its coverage region,

we select one UE at random for every available resource block. We focus our attention on a

randomly chosen resource block and the UE that is scheduled for transmission on it is referred

to as the typical UE. Let X11 denote the downlink distance between the typical UE (UE1 in Fig.

1) and the typical BS (BS1 in Fig. 1), X12 denote the downlink distance between the typical

BS and the most interfered UE (UE2 in Fig. 1) by it, and X21 denote the downlink distance

between the typical UE and the BS (BS2 in Fig. 1) that creates the highest interference to it.

With the aid of this explicit notation, (2) can be re-formulated as follows:

M

(

PX−α
11

N

)µ

≥ PX−α
12

N

PX−α
21

N
, (3)
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Fig. 1: Network model.

where P is the transmit power of the BSs, N is the noise power at the UE, and α is the path-loss

exponent. From (3), it follows that the typical BS necessitates only three average SNRs to check

the TIN optimality conditions, and, thus, a network-level controller is not necessary.

Equivalently, (3) can be written as follows:

X11 ≤ M
1
αµ

(

N

P

)
2−µ
αµ

(X12X21)
1
µ . (4)

During the second step of the proposed TIN-based scheduling algorithm, the typical UE is

scheduled for transmission if X11 fulfills the constraint in (4). Otherwise, the typical BS is

turned off and the UEs that lay in its coverage region are not scheduled for transmission. This

implies that the interference can be potentially reduced at the cost of reducing the average rate

and the fairness among the UEs, since some of them are not scheduled for transmission at a given

time instance. In the present paper, we employ the pair of parameters M and µ to find the good

balance in order to reduce the interference while increasing both the SINR coverage probability

and the average rate. We do not explicitly study, on the other hand, the issue of fairness among

the UEs. This is postponed to future research. It is important to mention, however, that the

fairness among the UEs may not be a critical issue in a well designed system. If in a given

time instance, e.g., a time-slot, the TIN optimality condition in (4) is not fulfilled, it may be

likely fulfilled in another (the next) time instance. The local interference conditions that are
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considered in (4) may, in fact, change at every time instance for two main reasons. i) In each

resource block, the BSs select the UEs at random. Accordingly, the interference perceived by

the typical UE may change every time that a random UE is chosen by the BSs. ii) Mobility and

shadowing, which are not explicitly considered in the present work, may change the interference

perceived by the typical UE as well. The system parameters M and µ, in addition, may be tuned

in order to account for specific fairness requirements. By setting, for example, M to a very large

value, the scheduling criterion in (4) is deactivated and the typical fairness requirements among

the UEs can be guaranteed. In the sequel, it is shown, more precisely, that our system model

reduces to the original cellular network model without TIN-based scheduling by setting M = 1

and µ = 2. Due to space limitations, the analysis and optimization of M and µ in order to find

a good trade-off between average rate and user fairness is postponed to future research.

To better understand the impact of the proposed TIN-based scheduling algorithm on the

downlink distances in (4), we analyze the joint probability density function of the distance

pairs (X11, X21) and (X11, X12). We compare, in particular, a cellular network where TIN is not

applied (i.e., each BS selects a UE at random in its coverage region, which is always scheduled

for transmission) and the same cellular network where the scheduling criterion in (4) is applied.

From Fig. 2a, if TIN is not applied, we evince that X21 is always greater than X11, but the

most interfering BS may be located just outside the coverage region of the typical BS. If TIN

is applied, on the other hand, Fig. 2b shows that, as opposed to Fig. 2a, the most interfering BS

is located further away from the coverage boundary of the typical BS. This confirms that TIN

is capable of reducing the interference at the typical UE. From Fig. 2c, if TIN is not applied,

we evince that X12 may be greater or less than X11. This implies that the most interfered UE

may be located farther or closer than the typical UE. If TIN is applied, on the other hand, Fig.

2d shows that the most interfered UE is located farther than the typical UE. This highlights that

TIN is capable of reducing the interference towards the UEs.

In summary, the TIN-based scheduling algorithm is capable of reducing the interference in

cellular networks by turning off those BSs that create a high level of interference, as well as those

BSs whose tagged UEs receive a high level of interference. The proposed TIN-based scheduling

algorithm, in particular, is different from those reported in [15] and [16], where the rationale is

to compare the signal strengths against a maximum but fixed level of tolerable interference. In

the proposed TIN-based scheduling algorithm, the level of tolerable interference depends on the

signal strengths themselves, which makes TIN robust to channel uncertainty as well. Also, the



10

X
11

X
21

Joint PDF

 

 

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0.5

1

1.5

2

2.5

x 10
−5

(a) Conventional cellular network.

X
11

X
21

Joint PDF

 

 

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
−5

(b) TIN-based cellular network.

X
11

X
12

Joint PDF

 

 

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0

2

4

6

8

10

12

14

16

x 10
−6

(c) Conventional cellular network.

X
11

X
12

Joint PDF

 

 

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−5
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Fig. 2: Top view of the joint probability density functions of (X11, X21) and (X11, X12) in

conventional and TIN-based cellular networks (λb = 5, M = 1, µ = 1.8).

proposed TIN-based scheduling not only accounts for the amount of interference that is received

but also for the amount of interference that is generated.

III. SINR COVERAGE PROBABILITY AND AVERAGE RATE

In this section, we introduce analytical frameworks for computing the SINR coverage proba-

bility and average rate of TIN-based cellular networks. The obtained analytical frameworks are

instrumental to quantify the performance gains offered by TIN, to compare conventional against

TIN-based cellular networks, as well as to optimize the system parameters in order to identify

the correct tradeoff between interference reduction and the required average rate.
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To this end, some enabling results are needed. In particular, the probability that a random

UE satisfies the TIN optimality conditions in (4), and the joint and marginal distributions of the

distances X11, X12, and X21 are needed. However, they are not available in the open technical

literature. To overcome this analytical challenge, we resort to some approximations that are

introduced, motivated, and discussed in the following section for ease of exposition, since they

are applied throughout the rest of the present paper.

A. Approximations for Tractable Analytical Modeling

Three main approximations are used for our analysis, which are detailed as follows.

• In our network model, the distribution of the downlink distances within the typical Poisson-

Voronoi cell are needed. It is known, however, that these distributions are unknown [26],

[32]. A tractable and accurate approximation that is typically employed to overcome this

limitation consists of approximating the typical cell with the Crofton (or zero) cell. The

Crofton cell of a Poisson-Voronoi tessellation is the cell that contains the origin. It is

known that the Crofton cell is larger than the typical cell, but the two cells are equal

in law [34]. Some discussions accompanied by empirical results are available in [35]. To

obtain a tractable yet accurate analytical framework of the SINR coverage probability and

average rate, we conduct the analysis for the Crofton cell instead of for the typical cell.

This approach is motivated by the fact that the marginal and joint distributions of X11 and

X21 are available in closed-form for the Crofton cell of a Poisson-Voroni tessellation [36].

Since it is known that large cells are more likely to contain the origin, the Crofton cell is

larger than the typical cell defined through the Palm measure [37]. This implies that, with

the proposed approximation, the distances X11 and X21 are overestimated.

• In our network model, the distribution of the downlink distance, X12, between the typical

BS and its most interfered UE is needed. To the best of our knowledge, the distribution

of this distance is not available in closed-form. In order to overcome this limitation, we

still rely on the Crofton cell approximation, and, in addition, we propose to approximate

the distribution of X12 with the distribution of X21, i.e., with the distance between the

typical UE and its most interfering BS. This approximation is empirically supported by

comparing Fig. 2b and Fig. 2d, where it is shown that, if TIN is applied, the conditional

probability density functions of X12 and X21 are similar. In Fig. 3, in addition, we depict the

corresponding cumulative distribution functions of X12 and X21. We observe that they are
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not so different from each other, especially for short distances. Furthermore, it is apparent

that X21 overestimates X12.

• By applying the TIN-based scheduling algorithm, some BSs are turned off if the TIN

optimality conditions in (3) are not fulfilled. Even though the point process of BSs is a

PPP, the point process of the active BSs after applying TIN is not a PPP anymore. The

TIN-based scheduling algorithm, in fact, introduces some spatial correlations among the set

of active BSs that depend on the amount of downlink interference generated and received

throughout the entire cellular network. To the best of our knowledge, no exact analytical

characterization of the point process of the active BSs exists in the open technical literature.

For analytical tractability, and similar to [15], [16], [22], we approximate the point process

of the active BSs with an inhomogeneous PPP. The spatial inhomogeneity is, in particular,

determined by the spatial constraints imposed by the TIN optimality conditions in (3), which

allows us to account, at least in part, for the spatial correlations among the active BSs. The

details of the approximating inhomogeneous PPP are provided in the sequel.

Based on the Crofton cell approximation, the joint probability density function of X11 and

X21 is approximated as follows [36]:

fX11,X21(x11, x21) ≈ (2πλb)
2 x11x21e

−πλbx
2
21 , (5)

if x11 < x21 and fX11,X21(x11, x21) = 0 otherwise. Also, we have fX11(x11) ≈ 2πλbx11e
−πλbx

2
11

and fX11,X21(x11, x21) ≈ fX11(x11)fX21|X11(x21|x11), where fX21|X11(x21|x11) is the conditional

probability density function of X21. Based on the second approximation, furthermore, we assume

fX12(x12) ≈ fX21(x21). By capitalizing on the Crofton cell approximation, in addition, the typical

UE can be assumed to be at the origin without loss of generality.

Based on the inhomogeneous PPP approximation, the point process of the interfering BSs

after applying the TIN optimality conditions is approximated with an inhomogeneous PPP of

distance-dependent density λI(r) defined as follows:










λI(r) = 0 if r < RI

λI(r) = λbP [AUE] if r ≥ RI ,
(6)

where AUE denotes the event that (3) is true, P [AUE] is its probability of occurrence, and RI

constitutes the smallest distance from the origin of any interfering BSs after applying TIN. RI
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Fig. 3: Empirical cumulative distribution functions of X11, X21 and X12

is referred to as the inhomogeneity ball and can be formulated as follows:

RI = max(X11, X
µ
2
11

(

P

N

)
2−µ
2α
(

1

M

)
1
2α

), (7)

where max (·, ·) denotes the maximum operator, and its first and second arguments originate from

the shortest distance cell association criterion and from the TIN-based optimality conditions in

(3), respectively. From (7), the condition X21 ≥ RI holds implicitly true.

The accuracy of the proposed approximations is analyzed in Section V with the aid of Monte

Carlo simulations. It is shown that the proposed approximations lead to a tractable yet accurate

analytical formulation of the SINR coverage probability and average rate. In the sequel, the

proposed approximations are used for all the analytical derivations.

B. Probability of TIN

In this section, we compute the probability that a randomly selected UE satisfies the TIN

optimality conditions in (4). Based on the approximations in Section III-A, the event, AUE, that

the typical UE fulfills the TIN optimality conditions can be formulated as follows:

AUE =

[

X11 ≤ M
1
αµ

(

N

P

)
2−µ
αµ

X
2
µ

21

]

. (8)

The probability that the typical UE fulfills the event AUE is given in the following lemma.
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Lemma 1. The probability that the typical UE is active can be formulated as follows:

P [AUE] = P

[

X11 ≤ M
1
αµ

(

N

P

)
2−µ
αµ

X
2
µ

21

]

=

∫ ∞

0

2 (πλb)
2 x21e

−πλbx
2
21min 2

(

x21,M
1
αµ

(

N

P

)
2−µ
αµ

x
2
µ

21

)

dx21,

(9)

where min (·, ·) denotes the minimum function.

Proof. The probability that a UE is active can be written as follows:

P [AUE] = EX11,X21

[

1 (X11 ≤ X21)× 1

(

X11 ≤
(

M
1
αµ

(

N

P

)
2−µ
αµ

X
2
µ

21

))]

, (10)

where the fist indicator function, 1 (·), is due to the cell association criterion based on the

shortest distance and the second indicator function is due to the TIN optimality conditions. The

expectation in (10) can be computed from the joint probability density function in (5), which

results in the following integral:

P [AUE] =

∫ ∞

0

∫ min

(

X21,M
1
αµ (N

P )
2−µ
αµ X

2
µ
21

)

0

(2πλb)
2 x11x21e

−πλbx
2
21dx11dx21.

By solving the inner integral with respect to x11, the expression in (9) is obtained. This concludes

the proof.

It is worth noting that P [AUE] = 1 if M = 1 and µ = 2. This corresponds to the scenario

where the TIN optimality conditions are inactive and the system model reduces to a conventional

cellular network without TIN.

C. Probability Density Function of X11 Conditioned Upon AUE

In this section, we compute the probability density function of the distance, X11, between

the typical BS and the typical UE conditioned upon the event AUE, i.e., the TIN optimality

conditions are fulfilled. It is formally stated in the following lemma.

Lemma 2. The probability density function of X11 conditioned upon AUE in (8) can be formulated

as follows:

fX11 (x11|AUE) =
2πλbx11e

−πλb max2
(

x11,x
µ/2
11 (P

N)
2−µ
2α ( 1

M)
1
2α

)

P [AUE]
, (11)

where P [AUE] is given in Lemma 1.



15

Proof. The probability density function of X11 conditioned upon AUE is defined as follows:

fX11 (x11|AUE) =
d

dx11

P [X11 ≤ x11,AUE]

P [AUE]
. (12)

The numerator of (12) can be expressed as follows:

P [X11 ≤ x11,AUE] = EX11,X21

[

1 (X21 > X11)× 1

(

X21 > X
µ/2
11

(

P

N

)
2−µ
2α
(

1

M

)1/2α
)]

=

∫ x11

0

∫ ∞

max

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1/2α

) (2πλb)
2 x11x21e

−πλbx
2
21dx21dx11,

(13)

where the last equality is obtained by using (5). The proof follows by computing the inner

integral with respect to x21 and then applying Leibniz’s integration rule. This concludes the

proof.

It is worth noting that (11) reduces to the probability density function of the distance of the

nearest BS to the origin of a conventional cellular network if M = 1 and µ = 2. This corresponds

to the scenario where TIN is not applied.

D. SINR Coverage Probability

In this section, we provide a tractable analytical framework for computing the SINR coverage

probability of cellular networks in which the TIN-based scheduling algorithm is applied.

By capitalizing on the three approximations in Section III-A, the SINR at the typical UE can

be formulated as follows:

SINR =
h11X

−α
11

∑

i∈Φ′
b
hiD

−α
i 1

(

Di ≥ max(X11, X
µ
2
11

(

P
N

)
2−µ
2α
(

1
M

)
1
2α )
)

+ N
P

, (14)

where hi is the channel gain of the ith interfering BS, h11 is the channel gain of the intended link,

Di is the distance between the ith interfering BS and the typical UE, Φ
′

b is the inhomogeneous

PPP of interfering BSs whose density is defined in (6), and the indicator function makes explicit

that the interfering BSs must lie outside the inhomogeneity radius defined in (7).

We are interested in computing the effective SINR coverage probability, Cnet, of the typical

UE, which accounts for the fact that the typical UE may not be served by the typical BS if it

is turned off because it does not fulfill the TIN optimality conditions. Cnet can be formulated as

follows:

Cnet = P [AUE]C, (15)
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where P [AUE] is the probability that the typical UE is active, which is given in (9), and C is

the SINR coverage probability of the typical active UE. This latter probability is defined and

computed in the following theorem.

Theorem 1. Let Θ be the SINR decoding threshold. The SINR coverage probability of the typical

active UE, C = P [SINR ≥ Θ], can be formulated as follows:

C =
2πλb

P [AUE]

∫ ∞

0

x11e
−πλb max2

(

x11,x
µ/2
11 (P

N)
2−µ
2α ( 1

M)
1
2α

)

e

(

− xα11ΘN

P

)

LI (x
α
11Θ) dx11, (16)

where LI (s) is the Laplace transform of the interference:

LI (s) = e

(

−2πλbP[AUE]
α−2

s

(

max2
(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

))1−α
2

2F1

[

1,1− 2
α
,2− 2

α
;−s

(

max2
(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

))−α
2
])

. (17)

Proof. See Appendix A.

Corollary 1. If M = 1 and µ = 2, the SINR coverage probability in Theorem 1 simplifies as

follows:

C = 2πλb

∫ ∞

0

x11e
−
(

πλbx
2
11+

xα11ΘN

P
+πλbx

2
11Θ

2
α
∫∞

Θ
−2
α

1

1+zα/2
dz

)

dx11, (18)

which is the SINR coverage probability of a conventional cellular network when TIN is not

applied [23].

E. SINR Average Rate

In this section, we provide a tractable analytical framework for computing the average rate of

cellular networks in which the TIN-based scheduling algorithm is applied.

Similar to the SINR coverage probability, we are interested in computing the effective SINR

average rate, RSEnet, of the typical UE, which accounts for the fact that the typical UE may

not be served by the typical BS if it is turned off because it does not fulfill the TIN optimality

conditions. RSEnet can be formulated as follows:

RSEnet = P [AUE]RSE , (19)

where a similar notation as in (15) is used and RSE is the SINR average rate of the typical active

UE. This latter average rate is defined and computed in the following theorem and is measured

in nats/sec/Hz.
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Theorem 2. Let RSE = E [ln [1 + SINR]], where the SINR is given in (14). The SINR average

rate of the typical active UE, RSE , can be formulated as follows:

RSE =
2πλb

P [AUE]

∞
∫

0

x11e

(

−πλb max2
(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)) ∞
∫

τ>0

e(−
N
P
xα
11(e

τ−1))LI (x
α
11 (e

τ − 1)) dτdx11,

(20)

where LI (·) is the Laplace transform of the interference:

LI (x
α
11 (e

τ − 1)) = e

(

−2πλbP[AUE]
α−2

xα
11(e

τ−1)

(

max2
(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

))1−α
2

2F1

[

1,1− 2
α
,2− 2

α
;−xα

11(e
τ−1)

(

max2
(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

))−α
2
])

(21)

Proof. By definition of SINR average rate, we have:

RSE=E [ln [1 + SINR]]=
2πλb

P [AUE]

∫ ∞

0

E

[

ln

[

1 +
h11x

−α
11

I + N
P

]]

x11e
−πλb max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

dx11

=
2πλb

P [AUE]

∫ ∞

0

x11e
−πλb max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

∫ ∞

τ>0

P

[

ln

[

1 +
h11x

−α
11

I + N
P

]

≥ τ

]

dτdx11

=
2πλb

P [AUE]

∫ ∞

0

x11e
−πλb max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

∫ ∞

τ>0

e−xα
11(e

τ−1)N
P LI (x

α
11 (e

τ − 1)) dτdx11,

(22)

where I denotes the other-cell interference and its Laplace transform LI (x
α
11 (e

τ − 1)) can be

computed by using the same analytical steps as for the SINR coverage probability in Theorem

1. This concludes the proof.

Corollary 2. If M = 1 and µ = 2, the SINR average rate in Theorem 2 simplifies as follows:

RSE = 2πλb

∞
∫

0

x11e
(−πλbx

2
11)

∞
∫

τ>0

e
−
(

N
P
xα
11(e

τ−1)+πλbx
2
11(e

τ−1)
2
α
∫∞

(eτ−1)
− 2

α

1

1+zα/2
dz

)

dτdx11, (23)

which is the SINR average rate of a conventional cellular network if TIN is not applied [23].

IV. ASYMPTOTIC ANALYSIS AND SYSTEM OPTIMIZATION

The aim of this section is to study the existence and optimal setup for the pair of system

parameters M and µ, in order to maximize the effective SINR coverage probability. We focus

our attention, in particular, on the effective SINR coverage probability, since the corresponding

analytical framework is more tractable than (20).
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The effective SINR coverage probability can be formulated as follows:

Cnet = 2πλb

∫ ∞

0

x11e
−πλb max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

e(−
sN
P )LI (s) dx11, (24)

where s = xα
11Θ, and LI (·) is given in (17).

For simplicity, and without loss of generality, we assume M = 1 and focus our attention on

optimizing µ ∈ [1, 2]. In order to find the optimal value of µ, it is convenient to have a closed

form solution of the integral in (24). To this end, we employ the following approach.

First, we rewrite the max(·, ·) function, which allows us to split the integration range as

follows:

Cnet = 2πλb

∫ β
1
α

0

x11e

(

−πλbx
µ
11β

2−µ
α

)

e

(

−xα11Θ

β

)

e

(

−πλbP[AUE]x
2
11Θ

2
α
∫∞

x
µ−2
11

Θ
−2
α β

2−µ
α

1

1+zα/2
dz

)

dx11

+ 2πλb

∫ ∞

β
1
α

x11e
(−πλbx

2
11)e

(

−xα11Θ

β

)

e

(

−πλbP[AUE]x
2
11Θ

2
α
∫∞

Θ
−2
α

1

1+zα/2
dz

)

dx11, (25)

where we introduce the notation β = P
N

.

In (25), the second integral is negligible compared with the first integral for sufficiently high

values of the SNR β (high SNR regime). Under this assumption, (25) can be approximated as

follows:

Cnet ≈ 2πλb

∫ β
1
α

0

x11e

(

−πλbx
µ
11β

2−µ
α

)

e

(

−xα11Θ

β

)

e

(

−πλbP[AUE]x
2
11Θ

2
α
∫∞

x
µ−2
11

Θ
−2
α β

2−µ
α

1

1+zα/2
dz

)

dx11.

(26)

It is known that the integral inside the exponential function can be expressed in terms of the

Gauss hypergeometric function for general values of the path-loss exponent α > 2 [23]. In order

to better highlight the proposed approach, we assume α = 4 in the sequel. A similar approach

can be applied for other values of α. This generalization is left to the reader. By letting α = 4

and by using some algebraic manipulations, (26) can be written as follows:

Cnet ≈ 2πλb

∫ β
1
4

0

x11e

(

−πλbx
µ
11β

2−µ
4

)

e

(

−x411Θ

β

)

e



−πλbP[AUE]x
2
11

√
Θ





π
2
−arctan





x
µ−2
11 β

2−µ
4

√
Θ













dx11.

(27)

The term e

(

−x411Θ

β

)

can be ignored, because when β is dominant then e

(

−x411Θ

β

)

≈ 1 and when

the x4
11Θ dominates then the rest of the integral tends to 0. Therefore, (27) simplifies as follows:

Cnet ≈ 2πλb

∫ β
1
4

0

x11e



−πλbx
µ
11β

2−µ
4 −πλbP[AUE]x

2
11

√
Θ





π
2
−arctan





x
µ−2
11

β
2−µ
4

√
Θ













dx11. (28)
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In the next two sections, we further simplify (28) by considering large and small values of

Θ, respectively.

A. Large Values of Θ

By definition, µ ∈ [1, 2]. In addition, the function arctan (·) becomes small for large values

of Θ, i.e., arctan (1/Θ) ≈ 0. Thus, it can be ignored for large values of Θ:

Cnet ≈ 2πλb

∫ β
1
4

0

x11e

(

−πλbx
µ
11β

2−µ
4 −π2λbP[AUE]x

2
11

√
Θ

2

)

dx11 = 2πλb

∫ β
1
4

0

x11e
(−A1x

µ
11−A2x2

11)dx11,

(29)

where A1 = πλbβ
2−µ
4 and A2 =

π2λbP[AUE]
√
Θ

2
.

The integral in (29) cannot be formulated in a simple closed-form expression that is suitable

to get insight for system optimization. To circumvent this issue, we express the exponential

e(−A1xu
11) by using its power series representation:

Cnet ≈ 2πλb

∫ β
1
4

0

x11

[

1− A1x
µ
11

1!
+

A2
1x

2µ
11

2!
− A3

1x
3µ
11

3!
+

A4
1x

4µ
11

4!
+ · · ·

]

e(−A2x2
11)dx11. (30)

To further simplify the analysis, since the high SNR assumption is considered, the upper

integration limit can be simplified as β1/α → ∞. With the aid of this approximation, we obtain:

Cnet ≈ 2πλb

[
∫ ∞

0

x11e
(−A2x2

11)dx11 −
A1

1!

∫ ∞

0

xµ+1
11 e(−A2x2

11)dx11 +
A2

1

2!

∫ ∞

0

x2µ+1
11 e(−A2x2

11)dx11

−A3
1

3!

∫ ∞

0

x3µ+1
11 e(−A2x2

11)dx11 +
A4

1

4!

∫ ∞

0

x4µ+1
11 e(−A2x2

11)dx11 · · ·
]

≈ πλb

[

Γ (1)

A2

− A1 Γ
(

µ+2
2

)

A
µ+2
2

2

+
A2

1 Γ
(

2µ+2
2

)

2!A
2µ+2

2
2

− A3
1 Γ
(

3µ+2
2

)

3!A
3µ+2

2
2

+
A4

1 Γ
(

4µ+2
2

)

4!A
4µ+2

2
2

+ · · ·
]

, (31)

where the last expression is obtained by solving each integral and writing it in terms of the

Gamma function, i.e.,
∫∞
0

xme−ζxn
dx = Γ(γ)

nζγ
where γ = m+1

n
[38].

Equation (31) can be formulated, in a more compact form, as follows:

Cnet ≈
πλb

A2

∞
∑

n=0

(−1)nR
n
2 Γ
(

nµ+2
2

)

n!
, (32)

where R = A2
1/A

µ
2 .

It is not possible, to the best of our knowledge, to compute the explicit result of the series

for arbitrary values of µ. This is possible, however, for the special case µ = 2:

Cnet ≈=
πλb

A1 + A2
.
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Fig. 4: R as a function of µ.

In Fig. 4, we plot R as a function of µ. We observe that, for constant values of λb and β, R

decreases if µ increases. It is difficult, however, to find the analytical expression of the optimal

value of µ that maximizes Cnet in (32). To circumvent this issue, we have performed extensive

Monte Carlo simulations and found that Cnet is maximized by the value of µ that corresponds

to R = 1.

As a result, the optimal value of µ that maximizes Cnet is the unique solution of the following

equation R = 1:

A2
1 − Aµ

2 =
(

π2λ2
bβ

2−µ
2

)

−
(

π2λbP [AUE]
√
Θ

2

)µ

= 0. (33)

To compute the optimal value of µ, a tractable expression of P [AUE] is needed, which is itself

a function of µ. From (9), P [AUE] can be computed as follows:

P [AUE] = 2 (πλb)
2

∫ ∞

0

x21e
−πλbx

2
21

2

min

(

x21, β
µ−2
4µ x

2
µ

21

)

dx21 ≈
2 Γ
(

2
u

)

µ (πλb)
2
µ
−1 β

1
µ
− 1

2

, (34)

where the approximation is obtained by using similar approximations as those used for computing

Cnet in the high SNR regime.

By inserting (34) in (33) and with the aid of some algebraic manipulations, we obtain:

µµ (πλb)
4 β2−µ −

(

π3λ2
b

√
ΘΓ

(

2

µ

))µ

= 0. (35)

The optimization problem in (35) is much simpler to solve than (24). For example, it can be

easily solved by using the fzero function in Matlab. By direct inspection of (35), in addition,
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Fig. 5: Understanding the optimization problem (35).

the following conclusions can be drawn. The minuend term, µµ (πλb)
4 β2−µ, is independent of

Θ, and the subtrahend term,
(

π3λ2
b

√
ΘΓ

(

2
µ

))µ

, is dependent on Θ. In the minuend, the term

µµ increases as µ increases from 1 to 2, but the term β2−µ decreases very rapidly with the

same increase of µ. This suggests that the minuend is a decreasing function of µ. For fixed and

realistic values of λb and Θ, the subtrahend decreases if µ increases. We plot both the minuend

and subtrahend terms in Fig. 5. It can be observed that, for the given parameters, both the

minuend and subtrahend decrease if µ increases. The minuend and subtrahend terms, however,

cross each other in exactly one point, which guarantees that there is a unique optimal value of

µ that maximizes the effective coverage probability.

In Fig. 6, we show that, for each value of Θ, an optimal value of µ exists. In addition, the

accuracy of the solution of (35) compared with the exact values of µ that maximizes (24) is

studied. A good accuracy is obtained. Fig. 6a, in particular, shows that the effective coverage

probability is maximized for values of µ smaller than 2, which correspond to a conventional

cellular network where TIN is not applied.

B. Small Values of Θ

In this section, we study the existence of optimal values of µ for small values of the SINR

threshold. If Θ is small, i.e. Θ ≈ 0, we have arctan

(

xµ−2
11 β

2−µ
4√

Θ

)

= arctan (∞) = π
2
, and (28)
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Fig. 7: Optimal µ when Θ is very small.

reduces to:

Cnet ≈ 2πλb

∫ ∞

0

x11e

(

−πλbx
µ
11β

2−µ
4

)

dx11 ≈
2 Γ
(

2
u

)

µ (πλb)
2
µ
−1 β

1
µ
− 1

2

. (36)

By direct inspection of (36), we evince that Cnet increases if µ increases. In particular, Cnet = 1

when µ = 2. This finding suggests that there is no need to turn any BSs off if the SINR threshold

is small. For small values of Θ, in other words, there is no need to apply TIN. Figure 7 confirms

this conclusion.

V. RESULTS AND DISCUSSION

In this section, we illustrate some numerical and simulation results. We emphasize that the

Monte Carlo simulation results are generated without any approximations or assumptions that
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Fig. 8: Probability of TIN versus µ.

are exploited to obtain the analytical frameworks. As for the simulation setup, we set P = 46

dBm and N = −110 dBm/Hz.

In Fig. 8, we plot the probability of TIN against µ. The figure shows that the probability of

TIN increases with µ. It can be observed that the probability of TIN is zero if µ = 1 and tends

to one if M = 10 and µ = 1.9. Similarly, the probability tends to one if M = 1 and µ = 2. We

remind the reader that no BSs are turned off if the probability of TIN is equal to one. In other

words, every BS schedules a UE in any given time slot, as in conventional cellular networks.

This illustrates that both M and µ are tunable parameters that control the number of UEs to be

scheduled. For simplicity, and without loss of generality, we keep M = 1 and vary µ in the rest

of the results.

In Fig. 9, we plot the probability of TIN versus the density of the BS. It can be observed that,

for a given value of µ, the probability of TIN decreases if λb increases. This result shows that,

if we increase λb, the probability that the UEs satisfy the TIN criterion in (8) reduces. This is

due to the increase of the amount of interference in the network.

Fig. 10 shows the effect of the path-loss exponent on the probability of TIN. It can be

observed that the probability of TIN increases if α increases. If the path-loss exponent is large,

the interference received at a UE is low, and, therefore, the probability that a UE satisfies the

TIN criterion increases (8).

Fig. 11 compares the simulation and analytical curves of the SINR coverage probability. We

remind the reader that the first simulation curve is obtained if the TIN-based scheduling is based
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on (4) and the second simulation curve is obtained if the TIN-based scheduling is based on (8).

The curve corresponding to the classical scheduling is obtained by not turning any BSs off. The

figure highlights that the analytical and simulation curves are quite close to each other, which

substantiates the accuracy of our analysis. The small gap between the two curves originates from

the approximations discussed in Section III-A.

Fig. 12 illustrates the effect of λb and Θ on the optimal value of µ that maximizes the SINR

coverage probability. The optimal value of µ is obtained as the solution of (35). The figure

highlights that the optimal value of µ decreases if the SINR threshold increases. This shows
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that, for large values of the SINR threshold, more BSs need to be turned off to maximize

the effective coverage probability. Furthermore, it can be observed that the optimal value of µ

increases if the density of the BSs increases. To understand this effect, we need to consider

the effect of λb on the probability of TIN. We have seen in Fig. 9 that the probability of TIN

decreases if the density of the BS increases. Our optimization problem not only maximizes the

SINR coverage probability, but, at the same time, tries to turn the smallest number of BSs off.

Therefore, the optimal value of µ increases by increasing the density of the BS.
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Fig. 13 shows the SINR coverage probability gain provided by our proposed distributed TIN-

based scheduling scheme compared with the conventional scheduling scheme where no BSs

are turned off. The optimal value of µ is obtained from (35) if the distributed TIN scheduling

algorithm is based on (8). It is obtained through simulations, on the other hand, if the distributed

TIN scheduling algorithm is based on (4). It can be observed that the improvement provided

by the distributed TIN scheduling scheme over the conventional scheduling scheme changes

with the SINR threshold. Specifically, it can be noticed that, if Θ = 10dB, the improvement is

67% when the distributed TIN scheduling is based on (4), and 36% when the distributed TIN

scheduling is based on (8).

In Fig. 14, we depict the effective average rate against the density of the BSs. The curves

of the distributed TIN scheduling are obtained by setting µ = 1.9. It can be observed that

the distributed TIN scheduling based on (4) improves the average rate by 21%, whereas the

distributed TIN scheduling based on (8) improves the average rate by 11%. Furthermore, it can

be observed that the gain remains constant for various values of λb. From Fig. 13 and 14, it can

be concluded that a simple distributed TIN-based scheduling algorithm significantly enhances

the SINR effective coverage probability and the effective average rate.
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VI. CONCLUSION

In this paper, we have proposed a simple scheduling algorithm for application to cellular

networks that is based on the TIN optimality condition. The original form of the scheduling

algorithm is shown not to be mathematically tractable. To overcome this issue, we have proposed

a simplified analytical framework to estimate the SINR effective coverage probability and the

effective average rate by using stochastic geometry tools. To enable a simple optimization of

the system parameters, we have developed simplified analytical frameworks in the high SNR

regime, and for small and large values of the SINR decoding threshold. By optimizing the system

with the aid of the proposed analytical frameworks, it is shown that the proposed TIN-based

scheduling algorithm outperforms conventional cellular networks in terms of effective coverage

probability and effective average rate.

Interesting future works include the analysis of the trade-off between average rate and user

fairness, as well as the energy efficiency gain provided by the proposed scheduling algorithm.
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APPENDIX A

PROOF OF THEOREM 1

The SINR coverage probability of the typical UE given that it satisfies the TIN optimality

conditions can be expressed as follows:

C =

∫ ∞

0

P [SINR ≥ Θ] fX11 (x11|AUE) dx11

(a)
=

2πλb

P [AUE]

∫ ∞

0

P

[

h11x
−α
11

I + N
P

≥ Θ

]

x11e
−πλb max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

dx11

(b)
=

2πλb

P [AUE]

∫ ∞

0

e−xα
11Θ

N
P EI

[

e−xα
11ΘI

]

x11e
−πλb max2

(

x11,x
µ
2
11( P

N )
2−µ
2α ( 1

M )
1
2α

)

dx11,

(37)

where I denotes the other-cell interference, (a) follows by using fX11 (x11|AUE) in (11), (b)

follows because h11 ∼ exp (1) is an exponential random variable, and EI

[

e−xα
11ΘI

]

= LI (x
α
11Θ)

is the Laplace transform of the other-cell interference I .

Let us define s = xα
11Θ. The Laplace transform LI (s) can be written as follows:

LI (s) = EI

[

e−sI
]

= Ehi,Di

[

e
−s
∑

i∈Φ
′
b

hiD
−α
i

]

= EDi

∏

i∈Φ′
b

Ehi

[

e−shiD
−α
i

]

(c)
= EDi

∏

i∈Φ′
b

1

1 + sD−α
i

(d)
= exp



−2πλbP [AUE]

∫ ∞
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µ/2
11 ( P
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2−µ
2α ( 1

M )
1
2α

)

(

1− 1

1 + su−α
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udu





= exp



−πλbP [AUE]s
2
α

∫ ∞

s
−2
α max2

(

x11,x
µ/2
11 ( P

N )
2−µ
2α ( 1

M )
1
2α

)

1

1 + zα/2
dz



 ,

(38)

where (c) follows by computing the expectation with respect to hi, and (d) follows from the

probability generating functional theorem of PPPs [23] by assuming that the point process of

interfering BSs is an inhomogeneous PPP whose density is given in (6). The proof follows with

the aid of simple algebraic manipulations.

REFERENCES

[1] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, “Coordinated multipoint transmission

and reception in lte-advanced: deployment scenarios and operational challenges,” IEEE Communications Magazine, vol. 50,

no. 2, pp. 148–155, February 2012.

[2] D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference

coordination challenges in heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 22–30, June 2011.



29

[3] G. J. Foschini, K. Karakayali, and R. A. Valenzuela, “Coordinating multiple antenna cellular networks to achieve enormous

spectral efficiency,” IEE Proceedings - Communications, vol. 153, no. 4, pp. 548–555, August 2006.

[4] Q. Ye, M. Al-Shalashy, C. Caramanis, and J. G. Andrews, “On/off macrocells and load balancing in heterogeneous cellular

networks,” in Global Communications Conference (GLOBECOM), 2013 IEEE. IEEE, 2013, pp. 3814–3819.

[5] E. U. T. R. Access, “Physical layer procedures, 3gpp std,” TS, vol. 36, p. V9, 2013.

[6] C. U. Castellanos, D. L. Villa, C. Rosa, K. I. Pedersen, F. D. Calabrese, P. H. Michaelsen, and J. Michel, “Performance

of uplink fractional power control in utran lte,” in VTC Spring 2008 - IEEE Vehicular Technology Conference, May 2008,

pp. 2517–2521.

[7] H. Zhang, N. Prasad, S. Rangarajan, S. Mekhail, S. Said, and R. Arnott, “Standards-compliant lte and lte-a uplink power

control,” in Communications (ICC), 2012 IEEE International Conference on. IEEE, 2012, pp. 5275–5279.

[8] C. Geng, N. Naderializadeh, A. S. Avestimehr, and S. A. Jafar, “On the optimality of treating interference as noise,” IEEE

Transactions on Information Theory, vol. 61, no. 4, pp. 1753–1767, April 2015.

[9] A. S. Motahari and A. K. Khandani, “Capacity bounds for the gaussian interference channel,” IEEE Transactions on

Information Theory, vol. 55, no. 2, pp. 620–643, 2009.

[10] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low-interference regime

and new outer bounds on the capacity region,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3032–3050,

2009.

[11] M. A. Charafeddine, A. Sezgin, Z. Han, and A. Paulraj, “Achievable and crystallized rate regions of the interference

channel with interference as noise,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1100–1111, 2012.

[12] N. Naderializadeh and A. S. Avestimehr, “Itlinq: A new approach for spectrum sharing in device-to-device communication

systems,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1139–1151, June 2014.

[13] X. Yi and G. Caire, “Optimality of treating interference as noise: A combinatorial perspective,” IEEE Transactions on

Information Theory, vol. 62, no. 8, pp. 4654–4673, 2016.

[14] R. K. Mungara, X. Zhang, A. Lozano, and R. W. Heath, “Analytical characterization of itlinq: Channel allocation for device-

to-device communication networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3603–3615, May

2016.

[15] F. J. Martin-Vega, G. Gomez, M. C. Aguayo-Torres, and M. D. Renzo, “Analytical modeling of interference aware power

control for the uplink of heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 10,

pp. 6742–6757, Oct 2016.
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