
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.”



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, APRIL 2019 1

Beam-Based Analog Self-Interference

Cancellation in Full-Duplex MIMO Systems

Anh Tuyen Le, Le Chung Tran, Senior Member, IEEE, Xiaojing Huang, Senior

Member, IEEE, and Y. Jay Guo, Fellow, IEEE

Abstract

Self-interference (SI) cancellation for full-duplex (FD) multiple input multiple output (MIMO)

systems is challenging due to both hardware and signal processing complexity. In this paper, a beam-

based adaptive filter structure with analog least mean square (ALMS) loops is proposed to significantly

reduce the complexity of SI cancellation for FD MIMO systems. With this structure, the number of

adaptive filters required for SI cancellation scales linearly with the number of transmit beams rather than

quadratically with the number of antennas. Furthermore, to avoid additional transmit chains used to up-

convert the beam signals to generate reference signals for the ALMS loops, a novel method is proposed

to select the optimized reference signals from all transmitted signals. In addition, our stationary analysis

shows that the proposed structure for FD MIMO systems outperforms the ALMS loop employed for an

FD single input single output system. Simulations are conducted to confirm the theoretical analyses.
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THE next generation wireless communication systems will leap forward the data trans-

mission performance in many aspects such as higher data rate, lower round-trip latency,

and less power consumption [1]. To achieve these objectives, many disruptive technologies have

been developed, including full-duplex (FD) and massive multiple input multiple output (MIMO)

transmission [2], [3]. With FD operation, a transceiver can simultaneously transmit and receive

signals in the same frequency band so that the throughput can be doubled compared to its half-

duplex counterpart [4]. Massive MIMO is promising because it can support many users by using

beamforming technique with increased spectral and energy efficiencies. Naturally, combining

FD with massive MIMO can further improve spectral efficiency [5] and reduce the round-trip

latency in networks requiring two-way relay channels [6].

A key issue that has prevented FD from becoming practical is the strong self-interference

(SI) from the co-located transmitter, which blocks the receiver from the signal of interest.

Therefore, investigation on SI mitigation has attracted significant attention from wireless industry

and research community. It has been shown in the literature that the SI can be mitigated by

consecutive passive suppression and active cancellation [7]. Passive suppression aims to isolate

the transmitter and receiver in the propagation domain so that SI is attenuated [8]–[10]. Active

cancellation intends to cancel the SI at both radio frequency (RF) domain [11]–[13] and digital

domain [14], [15]. A combination of these SI mitigation schemes can suppress SI to noise floor

level so that FD systems can be realized as demonstrated in [16], [17].

However, it is very challenging to mitigate SI in FD MIMO systems due to the complexity of

the SI channels. In particular, in an N×N antenna FD MIMO system, at each receive (Rx) chain,

there are presented SIs caused by the cross-talks from N transmit (Tx) antennas. One advantage

of MIMO systems is that beaforming techniques can be used to exploit spatial suppression in

FD MIMO systems [18]–[23]. To further mitigate the level of SI, analog domain cancellation

should be used. Among many different approaches, a multi-tap canceller has been proved as a

promising structure for SI cancellation in FD single antenna systems [13], [24]–[26]. This is

because the transmitted RF signal is utilized in this structure so that it can also mitigate the

Tx noise and nonlinear distortions of the transmitter [27]. However, if a cancellation circuit is
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used for each pair of Tx and Rx antennas, an N ×N antenna FD MIMO system will need N2

cancellation circuits [24]. Therefore, some strategies of using analog cancellation circuits have

been introduced in the literature to reduce the number of cancellers [24], [28]–[30]. However,

the multi-tap structures used in these publications require channel state information (CSI) and

digital signal processing (DSP) to synthesize the weighting coefficients in each tap. As a result,

such FD MIMO has to operate in the half-duplex mode when estimating the SI channel. In

addition, since the optimization depends on the cross-talk between each pair of co-located Tx

and Rx antennas, the complexity of DSP algorithms increases quadratically with the size of FD

MIMO systems [24]. The increase of DSP complexity results in larger digital hardware resources

such as field programmable gate array (FPGA) and higher power consumption. As an example,

DSP computations for 16 cancellation circuits in a 4× 4 FD MIMO system will consume up to

80 W [24].

Unlike the multi-tap structures mentioned above, the analog least mean-square (ALMS) loop

presented in [13] is an adaptive filter without any DSP involvement. Instead, a simple Resistor-

Capacitor (RC) low-pass filter (LPF) is utilized to synthesize the weighting coefficients for each

tap. The behaviors of the ALMS loop in different FD single antenna systems have been presented

in [13], [31]–[35]. A prototype of the ALMS loop has been demonstrated in [36]. Obviously,

adopting the ALMS loop for SI cancellation in FD MIMO systems can significantly reduce the

complexity of DSP at RF frontend.

In this paper, we propose a beam-based SI cancellation structure which employs ALMS loops

as the adaptive filters for SI mitigation in FD massive MIMO systems. Since the transmitted

signal power per antenna in FD massive MIMO systems is low, all Tx chains can be assumed

to be linear. In this case, the SI at the receiver side can be considered as a linear combination

of the transmitted beam signals for K users. As a result, instead of using N cancellers to cancel

the SI from N Tx antennas for each receive antenna, only K adaptive filters are sufficient. Since

K � N , the number of cancellation circuits is significantly reduced. Unlike the beam-based

structure presented in [37] where additional Tx chains are employed to up-convert the beam

signals to generate the required RF reference signals, in our proposed structure, the reference
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signals for the K ALMS loops are selected from the N transmitted signals. Hence, hardware

complexity is significantly reduced. Stationary analysis is then applied to evaluate the interference

suppression ratio given by the proposed cancellation structure. Further proposing a method to

select a set of optimized reference signals, we show that the performance of the proposed beam-

based cancellation structure is superior to that of the structure with N2 repeated ALMS loops

for all Tx-Rx pairs. The contributions of this paper are summarized as follows.

• A mathematical model of the SI in FD beamforming MIMO systems is derived, which shows

that the SI to each receive antenna is a linear combination of the transmitted beam signals.

This model suggests that the reference signals can be the linear combinations of the beam

signals, which can be selected from the Tx antennas. Hence no extra RF chain is required

to produce the reference signals from the beam signals and the hardware complexity is

significantly reduced.

• By employing the ALMS loop which does not require the CSI for tuning its weighting

coefficients, the proposed structure can save significant FPGA resources and hence reduce

energy consumption.

• A novel method is proposed to select the reference signals for the ALMS loops from

available transmitted signals, which not only reduces the hardware complexity, but also

enhances the level of cancellation given by the ALMS loops.

The rest of this paper is organized as follows. The proposed beam-based cancellation archi-

tecture for FD MIMO systems and signal models are described in Section II. In Section III,

stationary analysis is presented to evaluate the performance of the proposed structure, and the

method to select the reference signals is also devised. In Section IV, simulations are conducted

to verify the theoretical analysis. Finally, conclusions are drawn in Section V.

Notation: We use boldface lowercase and boldface capital letters (e.g. a and A) to indicate

vectors and matrices, respectively. AT and AH denote the transpose and Hermitian transpose of

A, respectively, while ⊗ is the Kronecker product. We denote diag{λi}, i = 1, · · · ,MKL, as

an M ×K×L diagonal matrix whose main diagonal elements are λ1, · · · , λMKL. IM represents

the identity matrix of order M . E{.} stands for the ensemble expectation operation, and C is
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Fig. 1. Proposed beam-based analog SI cancellation structure.

the complex set.

II. SYSTEM DESCRIPTIONS

A. Beam-Based Analog SI Cancellation

Consider an FD MIMO digital beamforming system with N Tx and M Rx antennas as shown

in Fig. 1. The transmitted data symbols for K directions, denoted as sk(i), i = −∞, . . . ,∞, k =

1, . . . , K, are multiplied with the corresponding array vector a(θk) before added together and

transmitted by N Tx chains. The vector of RF transmitted signals at N antennas is expressed as

x(t) = Re
{

X(t)ej2πfct
}

(1)

where X(t) = [X1(t) · · · XN(t)]T is the baseband equivalent vector. X(t) can be expressed as

X(t) = AS(t) =


a0(θ1) · · · a0(θK)

... . . . ...

aN−1(θ1) · · · aN−1(θK)



S1(t)

...

SK(t)

 (2)

where an(θk) = ejn
2π
λ
d sin θk , n = 0, . . . , N−1, is the array vector of the beam at direction θk, d is

the distance between antenna elements, Sk(t) =
∑∞

i=−∞ sk(i)p(t−iTs) is the low-pass equivalent

of the transmitted signal for the k-th user, sk(i) is the complex data symbol whose interval is
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Ts, and p(t) is the pulse shaping filter. In the rest of this paper, the following assumptions are

applied.

1) Transmit data for all directions are independent, i.e.,

E{sk(i)∗sk′(i′)} =


1, for k = k′ and i = i′

0, for k 6= k′ or i 6= i′
. (3)

2) All Tx and Rx chains are linear and have the same configuration. The gain of the power

amplifier is absorbed into the pulse shaping filter.

Due to the FD operation, at the inputs of M Rx chains, there are M SI signals caused by

N transmitted antennas, denoted as z(t) = Re{Z(t)ej2πfct} = Re
{

[Z1(t), . . . , ZM(t)]T ej2πfct
}

.

Assuming that the SI channel between a pair of co-located Tx and Rx antennas includes L paths,

and the transmitted signal in the l-th path is delayed by lTd, l = 0, . . . , L− 1, where Td is the

time delay between two adjacent paths. The baseband equivalents of all of the SI signals can be

represented as

Z(t) = [Z1(t) · · ·ZM(t)]T =
L−1∑
l=0

HH(l)AS(t− lTd) (4)

where H(l) =


h1,1(l) · · · h1,M(l)

... . . . ...

hN,1(l) · · · hN,M(l)

 is the N ×M coefficient matrix at the l-th path of all

SI channels.

It can be seen from (4) that the vector Z(t) is a linear combination of all basis vectors

S(t − lTd), l = 0, . . . , L − 1. The concept of beam-based cancellation is that the vector of

cancellation signals can be obtained by a linear transformation of the same basis S(t− lTd), l =

0, . . . , L− 1. This concept leads to two important points in the construction of the cancellation

structure. Firstly, multi-tap adaptive filters to approximate all the SI channels should be used.

Secondly, the reference signals for the cancellation circuit should be generated from the K beam

signals. As illustrated in Fig. 1, at the input of the m-th Rx chain, K adaptive filters (AFm,k, k =

1, . . . , K) are employed to correspondingly modify the K reference signals xr,k(t), k = 1, . . . , K.
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The outputs of the K adaptive filters are added together to generate the cancellation signal

ym(t),M = 1, · · · ,M . If each adaptive filter also has L taps with the tap delay Td, the vector

of cancellation signals y(t) = [y1(t), . . . , yM(t)]T is represented by

y(t) = Re
{ L−1∑

l=0

WH(l, t)xr(t− lTd)
}

(5)

where W(l, t) =


w1,1(l, t) · · · w1,M(l, t)

... . . . ...

wK,1(l, t) · · · wK,M(l, t)

 is the weighting coefficient matrix at the l-th tap

of all adaptive filters, and xr(t) = [xr,1(t), . . . , xr,K(t)]T is the vector of reference signals,which

can be generated from beam signals sk(i), k = 1, . . . , K, in several ways. The easiest way is

employing additional Tx chains which are the same as those in the main chains to up-convert

and amplify the beam signals as in [37]. However, this leads to more hardware complexity.

Another way to obtain xr(t) is to select them from N transmitted signals as shown in Fig. 1.

The method to select the optimized reference signals will be discussed in the next section.

B. ALMS Loop

As mentioned in the Introduction, all adaptive filters can be implemented by ALMS loops as

presented in Fig. 2. From the concept of beam-based cancellation, at the m-th Rx chain, K ALMS

loops are employed to generate the cancellation signal. Operation of the ALMS loop is described
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as follows. Each ALMS loop has L taps in which each tap includes a tap delay, a quadrature

demodulator, LPFs, and a quadrature modulator. The ALMS loop has two inputs for the reference

and the looped-back signals and one output for the cancellation signal. For simplicity, the losses

caused by power splitters for both reference and looped-back signals are normalized to one.

Considering the k-th ALMS loop, at the l-th tap, the delayed reference signal xr,k(t− l)Td), l =

0, · · · , L − 1, is multiplied by the looped-back signal at the demodulator. The output of this

demodulator is then filtered by the RC LPF to obtain the weighting coefficients wk,m(l, t) which

will modulate a copy of the delayed reference signal xr,k(t− lTd) at the modulator. The outputs

of all L taps are added together before combined with the outputs of other ALMS loops to

generate the cancellation signal ym(t) which is used to cancel the SI zm(t) at the input of the

m-th Rx chain. The residual signal is amplified and looped-back to the inputs of all ALMS

loops.

The receive signal at the m-th Rx chain, denoted as rm(t), includes the desired signal from

the remote end sm,r(t), the SI from N co-located transmitters zm(t) and the additive Gaussian

noise nm(t), i.e., rm(t) = zm(t)+sm,r(t)+nm(t) = Re
{

[Zm(t)+Sm,r(t)+Nm(t)]ej2πfct
}

where

Zm(t), Sm,r(t) and Nm(t) are the low-pass equivalents of these signals, respectively. Without loss

of generality, we assume that the transmitted data Sk(t), k = 1, . . . , K, Sm,r(t), and Nm(t),m =

1, . . . ,M, are all independent. From [13, Eq. (5)], the vector of weighting coefficients at the

m-th Rx chain wm(l, t) = [w1,m(l, t), . . . , wK,m(l, t)]T , l = 0, . . . , L− 1, is obtained by

wm(l, t+ t0) =
2µα

K1K2

t+t0∫
t0

e−α(t−τ)[rm(τ)− ym(τ)]Xr(τ − lTd)ej2πfc(τ−lTd)dτ (6)

where K1 and K2 are the dimensional constants of the multipliers inside the demodulators and

modulators, respectively, 2µ is the gain of the LNA, α = 1/RC is the decay constant of the

LPF with resistance R and capacitance C, Xr(t) is the vector of baseband equivalents of the

reference signals, and 0 ≤ t0 < Ts is an initial starting time.
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III. STATIONARY ANALYSIS

In this section, we apply stationary analysis to analyze the performance of the proposed struc-

ture. Strictly speaking, the signals in a digital communication system demonstrate cyclostationary

properties [13]. Stationary analysis performs time averaging on the signals over one symbol

duration Ts so that the system performance at macro scale can be tractably evaluated. Therefore,

for stationary analysis, both ensemble expectation and time averaging (over one Ts) operations,

denoted as Ē{.}, are applied to evaluate the random processes. From the assumptions in Section

II, the normalized auto-correlation functions of the transmitted signals Sk(t), k = 1, . . . , K, are

defined as

Φk,k′(τ) =
1

K1K2

Ē
{
S∗k(t)Sk′(t− τ)

}
=


Φ(τ) for k = k′

0 for k 6= k′
(7)

where Φ(τ) = 1
K1K2Ts

∫ Ts
0
p∗(t)p(t− τ)dt.

A. Cancellation Performance

The cancellation performance of the proposed structure can be presented by the interference

suppression ratio (ISR) which is the ratio between the total residual SI power Pd(t) after

cancellation and the total SI power Pz across all Rx chains. Denoting the residual signal at

the m-th Rx chain as dm(t) = zm(t)− ym(t), ISR is defined as

ISR(t) =
Pd(t)

Pz

(8)

where Pd(t) =
∑M

m=1 Pdm(t) and Pz =
∑M

m=1 Pzm . In this evaluation, we evaluate the per-

formance of the proposed structure under one realization of the SI channels but with random

transmitted data symbols. Therefore, Pz does not change over the time. Meanwhile, the residual

SI power is a function of time to show the convergence property of all ALMS loops. When the

SI channels vary, the weighting coefficients of all ALMS loops will adapt accordingly. To derive

ISR(t), Pz and Pd(t) are calculated as follows.
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1) Total SI power: In general, the SI signal at the m-th Rx chain can be expressed as

Zm(t) =
N∑
n=1

∞∫
−∞

h∗n,m(τ)Xn(t− τ)dτ (9)

where hn,m(τ) is the actual SI channel between the n-th Tx and m-th Rx antenna. The total

normalized (to K1K2) SI power across all M Rx chains is calculated as

Pz =
M∑
m=1

1

K1K2

Ē{z2
m(t)} =

M∑
m=1

1

2K1K2

Ē{|Zm(t)|2}

=
1

2K1K2

M∑
m=1

N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Ē{Xn(t− τ)X∗n′(t− τ ′)}hn′,m(τ ′)dτdτ ′

=
1

2K1K2

M∑
m=1

N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Φ(τ − τ ′)anaHn′hn′,m(τ ′)dτdτ ′

(10)

where an is the n-th row of the matrix A.

The ALMS loop is designed based on the assumption that the SI channel can be approximated

as a L-stage filter, i.e.,

Zm(t) =
N∑
n=1

∞∫
−∞

h∗n,m(τ)Xn(t− τ)dτ ≈
N∑
n=1

L−1∑
l=0

h∗n,m(l)Xn(t− lTd). (11)

Therefore, the vector hn,m(l), l = 0, . . . , L − 1, n = 1, . . . , N , can be found by minimizing the

following modeling error

ε2m =
1

K1K2

Ē

{∣∣∣ N∑
n=1

∞∫
−∞

h∗n,m(τ)Xn(t− τ)dτ −
N∑
n=1

L−1∑
l=0

h∗n,m(l)Xn(t− lTd)
∣∣∣2}. (12)

Geometrically, Xn(t− lTd), n = 1, · · · , N, and l = 0, · · · , L− 1, can be seen as an orthogonal

basis for a space CN×L. From the principle of orthogonality, the modeling error is minimized

when h∗n,m(l)Xn(t− lTd) are the projections of Zm(t) on CN×L, i.e.,

Ē

{
Xn(t− lTd)

[ N∑
n′=1

∞∫
−∞

hn′,m(τ)X∗n′(t− τ)dτ −
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)X∗n′(t− l′Td)
]}

= 0 (13)

for n = 1, . . . , N and l = 0, . . . , L − 1. After some multiplications and extensions for M Rx
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chains (see Appendix A), we find the vector of modeled channel coefficients h = [h1,1(0), . . . h1,1(L−

1), . . . hN,M(0) . . . hN,M(L− 1)]T as

h = [INM ⊗Φ]−1


∫∞
−∞Φ(−τ)h1,1(τ)dτ

...∫∞
−∞Φ((L− 1)Td − τ)hN,M(τ)dτ

 (14)

where Φ =


Φ(0) Φ(−Td) · · · Φ(−(L− 1)Td)

...
... . . . ...

Φ((L− 1)Td) Φ((L− 2)Td) · · · Φ(0)

 is the auto-correlation ma-

trix of the transmitted signals. Therefore, when calculating the signal power using the SI channel

model, we need to take into account the total modeling error, denoted as ε, derived in Appendix

A as

ε2 =
M∑
m=1

ε2m =
M∑
m=1

N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Φ(τ − τ ′)anaHn′hn′,m(τ ′)dτdτ ′ − hH [IM ⊗Θ]h (15)

where h = [IM ⊗ (AH ⊗ IL)]h, and Θ = IK ⊗Φ. Hence, the total normalized SI power at all

M Rx chains can also be calculated as

Pz =
1

2
ε2 +

1

2
hH [IM ⊗Θ]h. (16)

2) Residual SI power : Following the same steps above, the power of the residual SI at the

m-th Rx chain can be calculated as

Pdm(t) =
1

K1K2

Ē{[zm(t)− ym(t)]2} =
1

2K1K2

Ē{|Zm(t)− Ym(t)|2}

=
1

2K1K2

Ē

{∣∣∣[Zm(t)−
L−1∑
l=0

hHm(l)X(t− lTd)
]
+

L−1∑
l=0

[
hHm(l)X(t− lTd)−wH

m(l, t)e−j2πfclTdXr(t− lTd)
]∣∣∣2}

(17)

where hm(l),wm(l) are the m-th column vectors of the matrices H(l),W(l), respectively,

Xr(t) = ArS(t) is the low-pass equivalent of K reference signals selected from X(t), and
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Ar ⊂ A is a K × K matrix obtained from A. Since Xr(t) is a subset of X(t), from the

principle of orthogonality, Pdm(t) can be rewritten as

Pdm(t) =
1

2
ε2m +

1

2K1K2

Ē

{∣∣∣ L−1∑
l=0

[
hHm(l)A−wH

m(l, t)e−j2πfclTdAr

]
S(t− lTd)

∣∣∣2}. (18)

Denote um(l, t) = [um,1(l, t), . . . , um,K(l, t)]T = AHhm(l) −AH
r wm(l, t)ej2πfclTd as the vector

of weighting error functions, which shows the difference between the channel coefficients of the

l-th tap in the SI channel and the weighting coefficients of the same tap in the K ALMS loops

at the m-th Rx chain. The expression of Pdm(t) becomes

Pdm(t) =
1

2
ε2m +

1

2K1K2

Ē

{∣∣∣∣ L−1∑
l=0

uHm(l, t)S(t− lTd)
∣∣∣∣2
}

=
1

2
ε2m +

1

2K1K2

Ē

{
L−1∑
l=0

uHm(l, t)S(t− lTd)
L−1∑
l′=0

SH(t− l′Td)um(l′, t)

}

=
1

2
ε2m +

1

2

L−1∑
l=0

L−1∑
l′=0
l′ 6=l

¯̄uHm(l, t)Θ((l − l′)Td)¯̄um(l′, t) +
1

2
Φ(0)

L−1∑
l=0

K∑
k=1

¯̄u2
m,k(l, t)

=
1

2
ε2m +

1

2
¯̄uHm(t)Θ¯̄um(t) +

1

2
Φ(0)

[ L−1∑
l=0

K∑
k=1

¯̄u2
m,k(l, t)− ¯̄uHm(t)¯̄um(t)

]
(19)

where ¯̄um(l, t) = Ē{um(l, t)} and ¯̄u2
m,k(l, t) = Ē{u2

m,k(l, t)}. Hence, the total residual SI power

of all M Rx chains is represented by

Pd(t) =
M∑
m=1

Pdm(t)

=
1

2
ε2 +

1

2
¯̄uH(t)[IM ⊗Θ]¯̄u(t) +

1

2
Φ(0)

[∑
m,k,l

¯̄u2
m,k(l, t)− ¯̄uH(t)¯̄u(t)

] (20)

where ¯̄u(t) = [¯̄u1,1(0, t), . . . , ¯̄u1,1(L − 1, t), . . . , ¯̄uM,K(L − 1, t)]T . Therefore, we need to derive

the weighting error function vector ¯̄u(t) and
∑

m,k,l
¯̄u2
m,k(l, t) to calculate the residual SI power.

Substituting the definition of the weighting error function into (6), after some multiplications

(see Appendix B), we have the equation that the expected weighting error function vector should
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satisfy

¯̄u(t) = h− µα
t∫

0

e−α(t−τ)Ψ¯̄u(τ)dτ (21)

where Ψ = IM ⊗
[
(B ⊗ IL)Θ

]
with B = AH

r Ar. We can see that (21) has the same form as

that in the single antenna case [13, Eq. (26)]. Following similar steps shown in [13], we obtain

the solution of the expected the weighting error function vector as

¯̄u(t) = Qdiag
{ 1

1 + µλi
+

µλi
1 + µλi

e−(1+µλi)αt
}

Q−1h,∑
m,k,l

¯̄u2
m,k(l, t) = hHQdiag

{ 1

(1 + µλi)2
+

2µλi
(1 + µλi)2

×

e−(1+µλi)αt +
(µλi)

2e−2(1+µλi)αt

(1 + µλi)2
− e−2(1+µλ̄)αt

}
Q−1h

(22)

where λi, i = 1, . . . ,M × K × L, are the eigenvalues of Ψ and Q is the orthonormal modal

matrix whose columns are the M ×K × L eigenvectors of Ψ, and λ̄ = Φ(0).

From (16) and (20), we obtain the ISR as

ISR(t) =
Pd(t)

Pz

=

ε2 + ¯̄uH(t)[IM ⊗Θ]¯̄u(t) + λ̄
[ ∑
m,k,l

¯̄u2
m,k(l, t)− ¯̄uH(t)¯̄u(t)

]
ε2 + hH [IM ⊗Θ]h

.

(23)

Eq. (23) represents the performance of the proposed structure at time instance t. We can see

that when t � 1
α(1+µλ̄)

, all the ALMS loops have converged to their stable state. In this case,

¯̄u(t)→ ¯̄u = Qdiag
{

1
1+µλi

}
Q−1h and

∑
m,k,l

¯̄u2
m,k(l, t)→ ¯̄uH ¯̄u, (23) becomes

ISR = ISR(t)|t� 1
α(1+µλ̄)

=
ε2 + ¯̄uH [IM ⊗Θ]¯̄u

ε2 + hH [IM ⊗Θ]h
.

(24)

To study the behavior of the proposed structure, we consider some special cases as follows.

1) When M = N = K = 1 corresponding to an FD single antenna system, (24) becomes

[13, Eq. (39)]. It means that the ALMS loop in the FD single antenna system is a special
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case of this beam-based cancellation structure. Hence, the properties of the ALMS loop

presented in [13], [31], [32], [34], [35], such as the interference suppression lower bound

and convergence speed, are also applicable in this case.

2) When B = IK , i.e., additional Tx chains are employed to up-convert K beam signals to

form RF reference signals, Ψ = IM ⊗Θ = IMK ⊗Φ, (24) becomes

ISR =
ε2 + hHQdiag{ λi

(1+µλi)2}Q−1h

ε2 + hHQdiag{λi}Q−1h
. (25)

From the property of the Kronecker product, since the eigenvalues of IMK are all one,

λi, i = 1, . . . ,MKL, are M × K replica of the eigenvalues of Φ. Therefore, (25) gives

the same result as [13, Eq. (39)] in single antenna systems. It means that if additional

Tx chains were employed to generate the reference signals for the M ×K ALMS loops,

the SI cancellation performance would be the same as that of the ALMS loop in a single

antenna FD system.

Since no additional Tx chain is employed in this structure, a new factor affecting its performance

is how to select the reference signals from N transmitted signals. This problem is addressed as

follows.

B. Selection of Reference Signals

In this section, we present an algorithm to select the reference signals for the adaptive filters.

From (24), the performance of the proposed structure can be represented by the weighting error

function vector ¯̄u. The smaller ¯̄u is, the lower ISR will be obtained. From the definition of ¯̄u,

the problem of reference signal selection can be stated as how to select a K×K matrix Ar from

the given N ×K matrix A to minimize ¯̄u. Since both AHhm(l) and AH
r wm(l, t)ej2πfclTd result

in two vectors in the same space CK , the solution of this problem always exist. However, as

wm(l, t) is unknown, it is unable to find the solution using conventional least square approach.

Instead, we propose an algorithm to find a sub-optimal solution as follows.

Defining Ω = Qdiag
{

1
1+µλi

}
Q−1, i = 1, . . . ,M×K×L, from ¯̄u = Ωh, we see that Ω is the

transformation matrix of vector h, and |det(Ω)| is the scaling factor of this transformation. As
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an example, Fig. 3 shows the transformation from h to ¯̄u when they are in the two dimensional

space. The area of the rectangular defined by ¯̄u (green) is equal to that of the rectangular

defined by h (orange) multiplied by |det(Ω)|. Therefore, Ar can be selected based on |det(Ω)|.

From det(Ω) =
M×K×L∏
i=1

1
1+µλi

, Ar can be found if the eigenvalues of the matrix Ψ satisfy that

h

h1

h2

¯̄u

u1

u2

Fig. 3. Transformation of h to u

DΩ = |
M×K×L∏
i=1

(1 + µλi)| is maximized. The solution found in this way is sub-optimal because

there may be several selections of Ar that give the same DΩ, and ISR is determined by the

modulus of ¯̄u rather than its volume. However, this is a simple method and the solution will

always be found even though A may not be full ranked. The algorithm to select the reference

signals is given in Algorithm 1 and is described as follows. Since Ar is formed by a combination

of K rows from N rows in the matrix A, there are
(
N
K

)
possible selections which are indexed

as Rind. Ar and Ψ are then constructed, and DΩ is calculated for all
(
N
K

)
. The sub-optimal Ar

is found if it gives the highest DΩ. In Fig. 1, Algorithm 1 can be run in the reference signal

selection block in the digital domain. From the users’ beam angle information and transmitted

signal autocorrelation matrix, the reference signals are determined and then connected to the

cancellation circuits by the corresponding RF switches.

As an example, consider an 8 × 8 beamforming FD systems with 4 distinguished beams at

angles θk = kπ/8, k = 1, . . . , 4. All SI channels have 8 paths each with the path delay being

the same as the tap delay in the ALMS loops. From 8 transmitted signals, there are 70 possible

selections of the reference signals. Figure 4(a) presents the geometric mean of DΩ calculated

for all possible selections of Ar as well as the case of Ar = IK . We can see that the maximum
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Algorithm 1 Selection of reference signals
1: procedure FIND(Ar)
2: Input A,Φ.
3: Number of selections: NoS =

(
N
K

)
.

4: Possible combinations of N rows of A: Rind =
(

[1:N ]
K

)
.

5: for n = 1 to NoS do
6: Generate Ar from A: Ar = A(Rind(n), :);
7: Compute Ψ and its eigenvalues λi;

8: Compute DΩ(n) =
M×K×L∏
i=1

(1 + µλi);

9: end for
10: Find the maximum of DΩ

11: Optimal reference signals found!
12: end procedure

of DΩ appears at n = 22 and n = 30. Ar constructed at either these two positions is acceptable

because the difference of ISRs given by them is negligible as can be seen in Fig. 4(b). It is

also worth noting that the optimal selection of the reference signals in the proposed structure

provides higher level of cancellation than the case with additional Tx chains. This is because

the beamforming matrix has an impact on the autocorrelation function of the transmitted signals

so that the level of cancellation can be improved.

IV. SIMULATIONS AND COMPARISONS

A. Simulation Results

Simulations are performed to illustrate the behaviors of the proposed cancellation structure.

In all simulations, an 8 × 8 beamforming FD MIMO system communicates with four users at

angles of θk = kπ/8, k = 1, . . . , 4. The antenna elements are spaced at 30 mm which is a

half of the wave-length of the transmitted carrier frequency fc = 5 GHz. Data for all users

are independent and QPSK modulated with symbol duration of Ts = 20 ns. In all Tx chains,

root-raised cosine pulse shaping filters with roll-off factor β = 0.25 are employed. The power

of the transmitted signal per antenna is 0 dBm for 50 Ohm load. The transmitted signals at the

outputs of 8 antennas are labeled from 1 to 8 for reference signal selections. On the receiver

side, the LNA gain 2µ in each Rx chain is selected as µ = 10. The ALMS loops are designed

with L = 8 taps equally spaced at Td = Ts/2. The multiplier dimensional constants are set at
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Fig. 4. (a) Geometric mean of DΩ and (b) ISR for all possible selections of Ar

K1K2 = 0.001 V 2. The LPF parameter of all ALMS loop is chosen as αTs = 1.7655 × 10−5

which is the same as in [13]. The propagation losses of all SI channels are set to be 25 dB.

In the first two simulations, the reference signals are chosen based on Algorithm 1, which are

coupled at the outputs of Tx chains 1, 3, 5 and 8.

In the first simulation, the SI channel between a pair of Tx and Rx antennas is modeled

with L = 8 paths and the multipaths have an arbitrary delay. Specifically, the delay of the l-th

path is chosen as (l − 1.5 + rand)Td where rand is an uniformly distributed random number

between 0 to 1. It means that the maximum delay experienced by the SI signals is limited to

be smaller than LTd which is the delay range covered by the ALMS loops. Fig. 5(a) presents
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Fig. 5. SI channel impulse response h2,4(t) (top) and modeled tap coefficients h2,4(l) (bottom) for (a) arbitrary and (b) Td
spaced delay between multipaths

the impulse response (top) and the modeled tap coefficients (bottom) of the SI channel from

the fourth transmit antenna to the second received antenna. The modeling error calculated from

(15) in this case is 0.002. In the second simulation, the SI channels for all pairs of Tx and

Rx antennas are modeled to have the same number of paths and path delay as in the ALMS

loop so that the modeling error is zero. The channel impulse response and the modeled channel

coefficients for the same SI channel in the first simulation are presented in Fig. 5(b).

Results of these two simulations are presented in Fig. 6. It can be seen in both simulations

that the simulated results match the theoretical ISR(t) (obtained from (23)) and hence confirm
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Fig. 6. Interference suppression ratio under (a) fractional interference channel and (b) Td spaced interference chanel.

the analyses presented in Section III. Due to the modeling error in the first simulation, the level

of cancellation given by the ALMS loops is about 5 dB less than that in the second simulation.

However, a level of 38 dB cancellation is still achieved.

In the third simulation, the reference signals are selected from the first four transmitted signals

while the SI channels are modeled in the same way as in the second simulation. The simulation

result for this case is presented in Fig. 7. We can see that even though the ALMS loop has

exactly the same tap delay as in the SI channel, the performance of the ALMS loop is worse

than that in the first simulation. These results demonstrate the importance of the selection of

reference signals on the performance of the ALMS loop.
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Fig. 7. Interference suppression ratio with the worst reference signals.

TABLE I
COMPARISON WITH EXISTING METHODS FOR FD MIMO

Complexity
ISR Comments

Analog circuits DSP CSI (dB)

[24] O(ML) Involved Required 40 3× 3 MIMO

[28] O(MNL) Involved Required 40 2× 2 MIMO

[29], [38], [39] O(M)+MUX/DEMUX Involved Required N/A 4× 4 MIMO

Proposed O(MKL) No No 38-42 8× 8 MIMO

B. Comparison with existing methods for FD MIMO systems

We compare the complexity and performance of the proposed structure with those of some

other existing RF domain cancellation methods [24], [28], [29], [38], [39] as summarized in Table

I. In this comparison, the complexity of each work includes the analog circuits, the requirement

of CSI, and the involvement of DSP for tuning the cancellation circuits. The performance of

these methods in terms of ISR is also provided for information and reference purpose since these

FD MIMO systems have different number of antennas and transmission bandwidths. In addition,

some baselines [29], [38], [39] present the sum-rate rather than ISR. As can be seen in Table I,

all other baselines require DSP and CSI for tuning analog cancellation circuits.
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V. CONCLUSION

In this paper, we have proposed a novel beam-based analog SI cancellation architecture, which

significantly reduces both hardware and signal processing complexities conventionally required

for SI mitigation in FD MIMO systems. Considering interference at the receiver side as a linear

combination of the data transmitted from all beams, we have proved that the number of adaptive

filters at each Rx chain is reduced to the number of transmitted beams rather than as high as the

number of Tx antennas. Further, a novel method has been proposed to select the best reference

signals for the adaptive filters from the Tx antennas. Stationary analysis shows that, the level

of SI cancellation given by the proposed structure is higher than that obtained by employing

an ALMS loop for each Tx-Rx antenna pair with reference signals generated by additional Tx

chains. Our future works will be the consideration of SI cancellation for FD hybrid beamforming

MIMO systems and derivation of an optimal precoding matrix that enhances both SI cancellation

and beamforming performance.
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APPENDIX A

DERIVATION OF MODELING ERROR

From (13), we have

N∑
n′=1

∞∫
−∞

hn′,m(τ)Ē
{
Xn(t− lTd)X∗n′(t− τ)

}
dτ −

N∑
n′=1

L−1∑
l′=0

hn′,m(l′)Ē
{
Xn(t− lTd)X∗n′(t− l′Td)

}
= 0 (26)

for n = 0, . . . , N, and l = 0, . . . , L−1. Substituting Xn(t) = anS(t) where an = [an,1, . . . , an,K ]

is the n-th row vector of A into (26), we get

N∑
n′=1

∞∫
−∞

hn′,m(τ)anĒ
{
S(t− lTd)SH(t− τ)

}
aHn′dτ

−
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)anĒ
{
S(t− lTd)SH(t− l′Td)

}
aHn′

}
= 0.

(27)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, APRIL 2019 22

From E{Sk(t)Sk′(t− τ)} = 0 for k 6= k′, (27) becomes

N∑
n′=1

[ ∞∫
−∞

hn′,m(τ)Φ(lTd − τ)ana
H
n′dτ −

L−1∑
l′=0

hn′,m(l′)Φ((l − l′)Td)anaHn′

]
= 0. (28)

Therefore,

∞∫
−∞

hn,m(τ)Φ(lTd − τ)dτ =
L−1∑
l′=0

hn,m(l′)Φ((l − l′)Td), (29)

or, in the matrix form
∫∞
−∞Φ(−τ)hn′,m(τ)dτ

...∫∞
−∞Φ((L− 1)Td − τ)hn′,m(τ)dτ

 = Φ


hn′,m(0)dτ

...

hn′,m(L− 1)dτ

 . (30)

Extend (30) to the full form of N × M channel, we found the vector of modeled channel

coefficients h as

h =


h1,1(0)

...

hN,M(L− 1)

 = [INM ⊗Φ]−1


∫∞
−∞Φ(−τ)h1,1(τ)dτ

...∫∞
−∞Φ((L− 1)Td − τ)hN,M(τ)dτ

 . (31)

The modeling error for SI channels from N Tx antennas to the m-th Rx antenna is calculated

by

ε2m =
1

K1K2

Ē

{∣∣∣ N∑
n=1

∞∫
−∞

h∗n,m(τ)Xn(t− τ)dτ −
N∑
n=1

L−1∑
l=0

h∗n,m(l)Xn(t− lTd)
∣∣∣2}

=
1

K1K2

Ē

{[ N∑
n=1

∞∫
−∞

h∗n,m(τ)Xn(t− τ)dτ −
N∑
n=1

L−1∑
l=0

h∗n,m(l)Xn(t− lTd)
]

·
[ N∑
n′=1

∞∫
−∞

hn′,m(τ ′)X∗n′(t− τ ′)dτ ′ −
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)X∗n′(t− l′Td)
]}
.

(32)
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From (26), (32) becomes

ε2m =
N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Φ(τ − τ ′)anaHn′hn′,m(τ ′)dτdτ ′

−
N∑
n=1

N∑
n′=1

L−1∑
l′=0

∞∫
−∞

h∗n,m(τ)Φ(τ − l′Td)anaHn′hn′,m(l′)dτ

=
N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Φ(τ − τ ′)anaHn′hn′,m(τ ′)dτdτ ′

−
N∑
n=1

N∑
n′=1

L−1∑
l′=0

L−1∑
l=0

h∗n,m(l)Φ((l − l′)Td)anaHn′hn′,m(l′)

=
N∑
n=1

N∑
n′=1

∞∫
−∞

∞∫
−∞

h∗n,m(τ)Φ(τ − τ ′)anaHn′hn′,m(τ ′)dτdτ ′ − hHm[A⊗ IL]Θ[AH ⊗ IL]hm

(33)

where hm = [h1,m(0), . . . , hN,m(L− 1)]T .

APPENDIX B

DERIVATION OF WEIGHTING ERROR FUNCTIONS

From (6), we have

wm(l, t+ t0) =
2µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)Re
{[
Dm(τ) + Sm,r(τ) +Nm(τ)

]
ej2πfcτ

}
·Xr(τ − lTd)ej2πfc(τ−lTd)dτ

=
µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)

{[
Dm(τ) + Sm,r(τ) +Nm(τ)

]
ej2πfcτ

+
[
D∗m(τ) + S∗m,r(τ) +N∗m(τ)

]
e−j2πfcτ

}
Xr(τ − lTd)ej2πfc(τ−lTd)dτ

(34)

where Dm(t) =
∑L−1

l=0 hHm(l)X(t − lTd) −
∑L−1

l=0 e
−j2πfclTdwH

m(l, t)Xr(t − lTd) is the low-pass

equivalent of the residual SI signal dm(t) = zm(t) − ym(t). Substituting X(t) = AS(t) and

Xr(t) = ArS(t) into the expression of Dm(t) and noting that Dm(t) is a scalar function (hence
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DT
m(t) = Dm(t)), we obtain

D∗m(t) =
L−1∑
l=0

SH(t− lTd)[AHhm(l)−AH
r e

j2πfclTdwm(l, t)]. (35)

Substituting (35) into (34), after some multiplications and noting that signal components centered

about the frequency 2fc are eliminated by the LPF whose bandwidth is assumed to be very narrow

compared to fc, we get

wm(l, t+ t0) =
µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)

{
L−1∑
l′=0

SH(τ − l′Td)[AHhm(l′)−AH
r e

j2πfcl′Tdwm(l′, τ)]

+ S∗r (τ) +N∗(τ)

}
Are

−j2πfclTdS(τ − lTd)dτ.

(36)

Multiplying both sides of (36) with AH
r e

j2πfclTd and defining B = AH
r Ar, we have

AH
r e

j2πfclTdwm(l, t+ t0) =
µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)

{
L−1∑
l′=0

SH(τ − l′Td)
[
AHhm(l′)−

AH
r e

j2πfcl′Tdwm(l′, τ)
]

+ S∗r (τ) +N∗(τ)

}
BS(τ − lTd)dτ.

(37)

Substituting the definition of um(l, t) = AHhm(l)−AH
r e

j2πfclTdwm(l, τ) into (37), we have

um(l, t+ t0) = AHhm(l)− µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)
[ L−1∑
l′=0

SH(τ − l′Td)um(l′, τ)

+ S∗r (τ) +N∗(τ)
]
BS(τ − lTd)dτ.

(38)

Taking ensemble expectation on two sides of (38) and assuming that all the transmitted signals

are independent to the received signals and noise, we have

ūm(l, t+ t0) = AHhm(l)− µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)

L−1∑
l′=0

BS(τ − l′Td)SH(τ − lTd)ūm(l′, τ)dτ.

(39)
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Taking time average over one symbol period Ts of ūm(l, t+ t0) with respect to the starting time

t0, we obtain

¯̄um(l, t) = AHhm(l)− µα
t∫

0

e−α(t−τ)

L−1∑
l′=0

BΘ((l − l′)Td)ūm(l′, τ)dτ (40)

where Θ((l − l′)Td) = Φ((l − l′)Td)IK . In derivation of (40), we have assumed that ūm(l, t)

changes slowly and it can be seen as a constant during Ts, i.e., ūm(l, t + t0) ≈ ¯̄um(l, t) =

1
Ts

∫ Ts
0

ūm(l, t+ t0)dt0. Eq. (40) can be rewritten in the full form of L-taps as

¯̄um(t) = (AH ⊗ IL)hm − µα
t∫

0

e−α(t−τ)
[
(B⊗ IL)Θ

]
¯̄um(τ)dτ. (41)

Expanding (41) to all M Rx chains, we obtain the expected weighting error function vector as

¯̄u(t) = [IM ⊗ (AH ⊗ IL)]h− µα
t∫

0

e−α(t−τ)
{

IM ⊗
[
(B⊗ IL)Θ

]}
¯̄u(τ)dτ. (42)

Denoting Ψ = IM ⊗
[
(B⊗ IL)Θ

]
and h = [IM ⊗ (AH ⊗ IL)]h, we obtain the final equation of

¯̄u(t) as in (21).
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