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Abstract— In this article, we develop an end-to-end wireless
communication system using deep neural networks (DNNs),
where DNNs are employed to perform several key functions,
including encoding, decoding, modulation, and demodulation.
However, an accurate estimation of instantaneous channel trans-
fer function, i.e., channel state information (CSI), is needed in
order for the transmitter DNN to learn to optimize the receiver
gain in decoding. This is very much a challenge since CSI
varies with time and location in wireless communications and
is hard to obtain when designing transceivers. We propose to
use a conditional generative adversarial net (GAN) to represent
channel effects and to bridge the transmitter DNN and the
receiver DNN so that the gradient of the transmitter DNN
can be back-propagated from the receiver DNN. In particular,
a conditional GAN is employed to model the channel effects
in a data-driven way, where the received signal corresponding
to the pilot symbols is added as a part of the conditioning
information of the GAN. To address the curse of dimensionality
when the transmit symbol sequence is long, convolutional layers
are utilized. From the simulation results, the proposed method
is effective on additive white Gaussian noise (AWGN) chan-
nels, Rayleigh fading channels, and frequency-selective channels,
which opens a new door for building data-driven DNNs for end-
to-end communication systems.

Index Terms— Channel GAN, CNN, end-to-end communica-
tion system, channel coding.

I. INTRODUCTION

IN A traditional wireless communication system shown
in Fig. 1(a), the data transmission entails multiple signal

processing blocks in the transmitter and the receiver. While
the technologies in this system are quite mature, individual
blocks therein are separately designed and optimized, often
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with different assumptions and objectives, making it difficult,
if not impossible, to ascertain global optimality of the sys-
tem. In addition, the channel propagation is expressed as an
assumed mathematical model embedded in the design. The
assumed model may not correctly or accurately reflect the
actual transmission scenario, thereby compromising the system
performance.

On the contrary, the learning based data-driven methods
provide a new way for handling the imperfection of the
assumed channel models [1]. Recently, deep learning has
been applied to refine the traditional block-structure commu-
nication systems, including the multiple-input and multiple-
output (MIMO) detection [2], [3], channel decoding [4]–[9],
and channel estimation [10], [11]. In addition, deep learning
based methods have also shown impressive improvement by
jointly optimizing the conventional communication blocks,
including joint channel estimation and detection [12], joint
channel encoding and source encoding [13].

Besides enhancing the traditional communication blocks,
deep learning provides a new paradigm for future communica-
tion systems. As a pure data-driven method, the features and
the parameters of a deep learning model can be learned directly
from the data, without handcraft or ad-hoc designs, by optimiz-
ing an end-to-end loss function. Inspired by this methodology,
end-to-end learning based communication systems have been
investigated in several prior works [14]–[18], where both the
transmitter and the receiver are represented by deep neural
networks (DNNs), as shown in Fig. 1(b). This framework can
be interpreted as an auto-encoder system, which is widely
used in learning representations of the data [19]–[21]. The
transmitter and the receiver correspond to the auto-encoder
and auto-decoder, respectively. From Fig. 1(b), the transmitter
learns to encode the transmitted symbols into encoded data, x,
which is then sent to the channel while the receiver learns to
recover the transmitted symbols based on the received signal,
y, from the channel. As a result, the traditional communication
modules at the transmitter, such as the encoding and modula-
tion, are replaced by a DNN while the modules at the receiver,
such as the decoding and the demodulation, are replaced by
another DNN. The transmitter and the receiver DNNs are
trained offline using measurement or simulated data set in a
supervised learning manner optimizing a loss function that
reflects recovery accuracy. From Fig. 1(b), the loss function
depends on the weight/parameter set of the transmit DNN,
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Fig. 1. Structures of a conventional wireless communication system and
end-to-end learning based communication systems: (a) conventional wireless
communication system; (b) end-to-end communication system based on auto-
encoder, where both the transmitter and the receiver are represented by DNN;
(c) proposed end-to-end communication system, where channel GAN is used
to model the channel effects.

θT , the weight/parameter set of the receiver DNN, θR, and
the channel realization, h, and thus can be expressed as
L(θT , θR,h). However, in the offline training phase, the chan-
nel realization, h, is unknown. We only know that it is from
a sample space/set, H, with certain features or characteristics,
such as indoor channels or typical urban channels. Therefore,
the parameter sets of the transmitter and receiver DNNs are
essentially optimized to minimize E(h∈H){L(θT , θR,h)}.

From the above discussion, several critical challenges in
the learning based end-to-end communication system need
to be addressed in order to apply this framework to various
wireless channels. As is well known, the weights of the DNN
are usually updated using stochastic gradient descent (SGD)
with the computed loss gradients propagated from the output
layer back to the input layer. When the channel transfer
function, y = fh(x), is not available, the back-propagation
of the gradients from the receiver DNN to the transmitter
DNN is blocked, preventing the overall learning of the end-to-
end system. The channel transfer function may be assumed,
but any such assumption would bias the learned weights,
repeating the pitfalls caused by the likely discrepancy between
the assumed model and the actual channel. In addition, in real
communication systems, an accurate instantaneous CSI is hard
to obtain in advance due to the various inherent uncertainties
of wireless channels, such as channel noise and being time-
varying. These uncertainties are often unknown or cannot be
expressed analytically.

Another key challenge of the end-to-end paradigm is the
curse of dimensionality during the training when the trans-
mitted symbol sequence is long. The code block size in a
communication system needs to be long enough to ensure

a sufficient coding gain. However, as the size of possible
codewords grows exponentially with the code block size,
the portion of the unseen codewords during training will sig-
nificantly increase accordingly. Previous works on the learning
based decoding [7] show that the decoding performance of the
DNN on the unseen codewords is still poor even if nearly 90%
of the codewords have been included in the training of the
DNN. Therefore, almost all the previous works on the end-
to-end paradigm are concentrating on examples with a small
block size, such as the Hamming codes (7,4) [14], [22]. As
a result, it is desirable to develop a channel agnostic end-
to-end communication system based on deep learning, where
different types of channel effects can be automatically learned
without knowing the specific channel transfer function and the
block-length remains long enough to be practical.

In this article, we develop a channel agnostic end-to-
end communication system to address the challenges, where
the distributions of channel output are learned through a
conditional generative adversarial net (GAN) [23], as shown
in Fig. 1(c). The conditioning information for the GAN to
generate samples is the encoded signals from the transmitter
along with the received pilot information used for estimating
the channel. By iteratively training the conditional GAN,
the transmitter, and the receiver, the end-to-end loss can be
optimized in a supervised way.

This channel agnostic end-to-end system provides a new
way to optimize communication systems and is applicable to a
wide range of wireless channels. In addition, the convolutional
neural networks (CNNs) are used to overcome the curse of
dimensionality and the block-length can be extended from
several bits to a couple of hundred bits. Our main contributions
in this article are threefold.

• We use the conditional GAN to model the conditional
distribution, p(y|x), of wireless channels. By adding
the received pilot symbol as a part of the conditioning
information, the conditional GAN can generate more
specific samples for the time-varying channels.

• Based on the conditional GAN modeling the channel
conditional distribution, an end-to-end learning based
communication system is developed, where the gradients
of the end-to-end loss can be propagated to the transmitter
DNN through the conditional GAN.

• CNNs are employed for alleviating curse of dimension-
ality. From the experimental results, the transmitter with
convolutional layers can learn to encode the transmit data
into a high dimensional embedding vector, which can be
effectively decoded by the receiver.

Part of the work has been published in [22]. Compared with
the previous work, we have made two significant improve-
ments. First, we introduce convolutional layers so that this
approach can be extended from several bits to a couple of hun-
dred bits. Second, our framework is extended to more practical
wireless channels, such as frequency-selective channels, where
there exists inter-symbol interference (ISI).

The rest of the paper is organized as follows. The related
works are discussed in Section II. In Section III, the condi-
tional GAN based channel modeling approach is introduced. In



YE et al.: DEEP LEARNING-BASED END-TO-END WIRELESS COMMUNICATION SYSTEMS 3135

Section IV, the training for the end-to-end system is presented
in detail. In Section V, the simulation results are presented and
the conclusions are drawn in Section VI.

II. RELATED WORKS

Our proposed method is closely related to GANs, end-to-end
learning based communication systems, and learning based
decoders. In this section, previous works in the related topics
are briefly reviewed.

A. GANs and Conditional GANs

GANs have been proposed in [25] as a generative frame-
work, where a generator and a discriminator are competing
with each other in the training stage. With the feedback of the
discriminator, the generator improves its ability to generate
samples that are similar to the real samples. GAN and its
variants [26], [27] are most widely used in computer vision.
Much of the recent GAN research is focusing on improving
the quality of the generated images [28].

In order to generate samples with a specific property,
a conditional GAN is proposed based on the GAN framework,
where the context information is added to the generator and
the discriminator. Originally, the condition added is the label
information so that the generator can generate corresponding
samples given a particular category. Nowadays, conditional
GANs are widely used in changing the style and the content
of the input [29], [33]. For instance, GANs have been uti-
lized to generate high-resolution images from low-resolution
images [29].

Apart from applications in computer vision, recently GANs
have been exploited to model the channel effects of additive
white Gaussian noise (AWGN) channels [24], similar to our
work. However, our approach can be applied to more realistic
fading channels by using conditional GAN, which employs
the received pilot information as a part of the condition
information when generating the channel outputs.

B. DNN Based End-to-End Communications

The objective of the paper is to build an end-to-end com-
munication system for wireless channels, where the channel
effects are modeled with conditional GAN. The idea of end-
to-end learning communication systems has been proposed in
[14] and has been shown to have a similar performance as the
traditional approaches with block structures under the AWGN
condition. In [15], the end-to-end method has been extended to
handle various hardware imperfection. In [16], an end-to-end
learning method is adopted within the orthogonal frequency-
division multiplexing (OFDM) system. In [30], CNNs are
employed for modulation and demodulation, where improved
results have been shown for very high order modulation.
In addition, source coding can also be considered as a part
of the end-to-end communication system for transmitting
text or image [13].

Training the end-to-end communication system without
channel models has been investigated recently. A reinforce-
ment learning based framework has been employed in [17]

to optimize the end-to-end communication system without
requiring the channel transfer function or CSI, where the
channel and the receiver are considered as the environment
when training the transmitter. The recovery performance at
the receiver is considered as the reward, which guides the
training of the transmitter. In [18], a model-free end-to-end
learning method has been developed based on simultaneous
perturbation methods. However, both works are conducted
with a small block length. For example, blocks of eight
information bits are used in [17]. How to extend the end-
to-end framework to a large block size and how to model the
unknown channel using a data-driven approach are still open
problems, which are addressed in our proposed approach.

C. Learning Based Decoders

Our proposed method is also closely related to learning
based encoding and decoding. Learning based approach has
been utilized in improving decoding performance for a long
time. It dates back to the 1990s when several attempts had been
made to decode the codes with the recurrent neural network
(RNN) [31].

With the widely used deep learning approaches, DNN has
been utilized in decoding with a wide range of applications. In
[7], a fully connected neural network is trained for decoding
short Polar codes. The performance of decoding is similar to
maximum likelihood decoding. But they find it difficult to
break through the curse of dimensionality. In order to train
long codewords, a partition method has been employed in [7].
Moreover, there have been several trials to incorporate some
prior information in the decoding process. RNN is used in [5]
for decoding the convolutional and turbo codes. In [4], the tra-
ditional belief-propagation decoding algorithm is extended as
deep learning layers to decode linear codes. Recently, the curse
of dimensionality is mitigated when the convolutional and
circular convolutional layers are utilized to learn the encoding
and decoding modules simultaneously rather than just learning
to decode human-designed codewords [6].

III. MODELING CHANNEL WITH CONDITIONAL GAN

An end-to-end communication system learns to optimize
DNNs for the transmitter and the receiver. However, the back-
propagation algorithm, which is used to train the weights of
DNNs, is blocked by the unknown CSI, preventing the overall
learning of the end-to-end system. To address the issue, we use
a conditional GAN to learn the channel effects and to act as
a bridge for the gradients to pass through. By the conditional
GAN, the output distribution of the channel can be learned in
a data-driven manner and therefore many complicated effects
of the channel can be addressed. In this section, we introduce
the conditional GAN and discuss how to use it to model the
channel effects.

A. Conditional GAN

GAN [25] is a new class of generative methods for distri-
bution learning, where the objective is to learn a model that
can produce samples close to some target distribution, pdata.
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Fig. 2. Structure of conditional GAN.

In our system, a GAN is applied to model the distribution of
the channel output and the learned model is then used as a
surrogate of the real channel when training the transmitter so
that the gradients can pass through to the transmitter.

As shown in Fig. 2, the GAN system consists of two
DNNs, i.e., the generator, G, and the discriminator, D. The
input to the generator, G, is a noise vector z sampled from
a prior distribution pz , e.g., uniform distribution. The input
z is transformed by the generator into a generated sample,
G(z). The input of the discriminator, D, is either a real sample
from the target distribution, pdata, or a generated sample,
G(z), while the output of the discriminator is a real value
representing the probability that the input is sampled from the
target distribution, pdata.

During the training, the discriminator, D, learns to dis-
tinguish the data generated by the generator and the data
from the target distribution while the generator, G, learns
to generate samples to fool the discriminator into making
mistakes. The samples from the real data and those generated
from the generator are collected to train the discriminator to
maximize the ability to distinguish between the two categories.
If the discriminator can successfully classify the samples of
the two sources, then its success will be used to generate
feedback to the generator, so that the generator can learn to
produce samples more similar to the real samples. The training
procedure will end upon reaching an equilibrium, where the
discriminator, D, can do no better than random guessing to
distinguish the real samples and the generated fake samples.

Denote the parameter sets of the generator, G, and the
discriminator, D, as θG and θD , respectively, and the objective
functions for training the generator and the discriminator can
be expressed as

LG = min
θG

Ez∼pz [log(1 − D(G(z)))], (1)

LD = max
θD

Ex∼pdata
[log(D(x))]

+Ez∼pz [log(1 − D(G(z)))], (2)

respectively. The objective of the discriminator, D, is to give
a high value when the input belongs to the real dataset and
a low one when the input is generated by the generator, G,

Fig. 3. Training and testing of the end-to-end system.

while the objective of generator, G, is to maximize the output
of the discriminator, D, given the generated samples, G(z).

The GAN can be extended to a conditional model if both
the generator, G, and the discriminator, D, are conditioned on
some extra information, m, as in Fig. 2. We only need to feed
the conditioning information, m, into both the generator and
discriminator as the additional input. Therefore, the output of
the G will be G(x,m) and the output of D will be D(x,m).
The optimization objective functions for the generator and the
discriminator become

LG = min
θG

Ez∼pz [log(1 − D(G(z,m),m))], (3)

LD = max
θD

Ex∼pdata
[log(D(x,m))]

+Ez∼pz [log(1 − D(G(z,m),m))], (4)

respectively. The conditional GAN is employed in our end-
to-end communication system to model the channel output
distribution with the given conditioning information on the
encoded signal and the received pilot data.

B. Modeling Channels

Since the channel output, y, for given input, x, is deter-
mined by the conditional distribution, p(y|x), a conditional
GAN can be employed for learning the output distribution
of a channel by taking x as the condition information. The
generator will try to produce the samples similar to the
output of the real channel while the discriminator will try to
distinguish data coming from the real channel and the data
coming from the generator.

The instantaneous CSI, h, is regarded as a sample from a
large channel set H and is also vital for coherent detection
of the transmit symbols at the receiver. In order to obtain the
CSI, a common practice is to send some pilot information to
the receiver so that the channel information is inferred based
on the received signal corresponding to the pilot symbols, yp.
In our proposed method, the received signal corresponding to
the pilot symbols, yp, is added as a part of the conditioning
information so that the output samples follow the distribution
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of y given the input x and the received pilot data, yp. If yp

is excluded from the condition information, the conditional
GAN will learn to generate different channel conditions with
different z. With yp as the conditional information, the output
distribution of the conditional GAN will stick to the current
channel instead of being a multi-modal distribution.

C. Convolutional Layers Based Channel GAN

The convolutional layers have been introduced to efficiently
extract features for images based on their shared-weight
architecture and translational invariance characteristics [34].
In a fully connected layer, each neuron is connected to all
neurons in the previous layer. In contrast, in a convolutional
layer, each neuron is only connected to a few nearby neurons
in the previous layer, which is called the receptive field of
this neuron, and the same set of weights is shared by all
neurons in a layer. Inspired by the convolutional codes, where
the encoding process can be represented by a convolutional
transform, we use hierarchical one-dimensional convolutional
layers in the channel GAN as well as the transmitter and the
receiver.

Denote u(i)[n] as the output of the n-th neuron in the i-th
layer of a DNN. For a fully connected layer, the output of the
n-th neuron in the i-th layer is

u(i)[n] = σ(
∑

k

w
(i)
nkui−1[k]),

where σ(·) is an activation function and w
(i)
nk is the weight

connected the k-th neuron in the (i− 1)-th layer and the n-th
neuron in the i-th layer. w

(i)
nk is different for different i, n, or k.

Therefore, if there are Ni neurons in the i-th layer, there will
be NiNi−1 weights in total to fully connect the (i−1)-th layer
to the i-th layer.

On the other hand, for a convolutional layer, the output of
the n-th neuron in the i-th layer will be

u(i)[n] = σ(
L∑

k=1

w
(i)
k u(i−1)[n − k]),

where w
(i)
k is the coefficient for the convolution and is same

for different n’s in the i-th layer. There are L weights in total
(L is usually much smaller then Ni or Ni−1) to implement
NiL connections between the (i − 1)-th and the i-th layers.
In brief, compared with a fully connected DNN, the CNN has
much fewer connections between adjacent layers and much
fewer weights to train, which will reduce the complexity and
significantly improve the convergence speed of training.

Apart from being easier to train, CNN has two addi-
tional merits in the end-to-end communication system. First,
the curse of dimensionality can be alleviated by the usage
of convolutional layers [6]. When both the transmitter and
the receiver are represented by CNNs, the codes learned by
a CNN are more easily recovered at the receiver than the
conventional handcraft codes. Second, it is appropriate to
employ convolutional layers to deal with the ISI channels since
the effect of the channel can be expressed by the convolutional
operation in the ISI channel.

IV. END-TO-END COMMUNICATION SYSTEM

As stated in the introduction, the end-to-end communication
paradigm can be interpreted as a deep auto-encoder frame-
work. With the conditional GAN, the gradients can be back-
propagated to the transmitter even if channels are unknown. In
this section, the proposed framework is first introduced and the
training procedures for each module are presented in detail.

A. System Overview

As in Fig. 1(b), the auto-encoder learns to map N informa-
tion bits, s ∈ {0, 1}N , into a fixed length embedding of length
K , x ∈ R

K , and sends the embedding to the channel while
the auto-decoder learns to recover the original information
according to the received signal y from the channel. The
distance between the original information bits, s, and the
recovered information, ŝ ∈ [0, 1]N , will be calculated. The
binary cross-entropy loss is used to measure the distance,
which can be expressed as

L =
N∑

n=1

(sn log(ŝn) + (1 − sn) log(1 − ŝn)), (5)

where sn and ŝn represent the nth elements of s and ŝ,
respectively.

The training and testing of the proposed end-to-end com-
munication system are shown in Fig. 3. To obtain training
data set, the information bits, s, are randomly generated and
the instantaneous CSI is sampled randomly from the channel
set. Due to different objectives in modules, the transmitter,
the receiver, and the channel generator in the conditional GAN
can be trained iteratively based on the training data. Each
component is trained by fixing the parameters of the others.
The objective is to minimize the end-to-end loss when training
the receiver and the transmitter. The optimization objective
functions (3) and (4) are used when training the conditional
GAN for generating the channel. In the testing stage, the end-
to-end reconstruction performance is evaluated on the learned
transmitter and receiver with real channels.

B. Training Receiver

At the receiver, a DNN model is trained for recovering the
transmitted signal s, where the input is the received signals
corresponding to the transmitted data, y, while the output is
the estimation ŝ. By comparing the s and ŝ, the loss function
can be calculated based on (5). The receiver can be trained
easily since the loss function is computed at the receiver and
thus the gradients of the loss can be easily obtained. For
the time-varying channels, by directly putting the received
signal, y, and the receive pilot data, yp, together as the input,
the receiver can automatically infer the channel condition and
perform the channel estimation and detection simultaneously
without explicitly estimating the channel, as we have discussed
in [12].

C. Training Transmitter

With the channel generator as a surrogate channel, the train-
ing of the transmitter will be similar to that of the receiver.
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During the training, the transmitter, the generator, and the
receiver can be viewed as a whole DNN. The output of the
transmitter is the values of the last hidden layer in the trans-
mitter DNN. The end-to-end cross-entropy loss is computed
at the receiver as in (5), and the gradients are propagated back
to the transmitter through the conditional GAN. The weights
of the transmitter will be updated based on SGD while the
weights of the conditional GAN and the receiver remain fixed.
The transmitter can learn the constellation of the embedding,
x, so that the received signal can be easily detected at the
receiver.

D. Training Channel GAN

The training procedure of channel GAN is illustrated in
Algorithm 1 in detail. In each iteration, the generator and
the discriminator are trained iteratively. The parameters of
one model will be fixed while training the other. With the
learned transmitter, the real data can be obtained with the
encoded signal from the transmitter going through the real
channel while the fake data is obtained from the encoded data
going through the channel generator. The parameters of the
generator and the discriminator are updated according to the
loss function of equations (3) and (4), respectively.

Algorithm 1 Channel GAN Training Algorithm
1: for number of training iterations do
2: % Updating the Generator
3: Sample minibatch of transmit data {s} and channel {h}.
4: Get the minibatch of condition information {m} from

the output of the transmitter DNN and the received pilot
signal from the channel {h}.

5: Sample minibatch of samples {z}.
6: Update the generator by ascending the stochastic gradient

of the loss function (3).
7: % Updating the Discriminator
8: Sample minibatch of transmit data {s} and channel {h}.
9: Get the minibatch of condition information {m} from

the output of the transmitter DNN and the received pilot
signal from the channel {h}.

10: Sample minibatch of examples real data by collecting the
output of channel.

11: Sample minibatch of samples {z}.
12: Update the discriminator by descending the stochastic

gradient of the loss function (4).
13: end for

V. EXPERIMENTS

In this section, the implementation details of the end-to-
end learning based approach are provided and the simulation
results are presented. For several types of most commonly used
channels, the channel GAN has shown the ability to model
the channel effects in a data-driven way. In addition, the end-
to-end communication system, which is built on the channel
GAN, can achieve similar or better results even the channel
information is unknown during training and optimizing the
transmitter and the receiver.

TABLE I

MODEL PARAMETERS OF FCN

TABLE II

MODEL PARAMETERS OF CNN

A. Experimental Settings

1) Implementation Details: Two types of DNN models are
designed in our experiments. One is fully connected networks
(FCN) and the other is the CNN. The FCN is used for a small
block size and the CNN is used in the a large block size to
avoid the curse of dimensionality. The parameters of the FCN
and CNN are shown in Table I and Table II, respectively. The
weights of both models are updated by Adam [32] and the
batch size for training is 320.

2) Channel Types: Three types of channels are considered
in our experiments, i.e., AWGN channels, Rayleigh channels,
and frequency-selective multipath channels. In an AWGN
channel, the output of the channel, y, is the summation of
the input signal, x, and Gaussian noise, w, that is, y =
x + w. Rayleigh fading is a reasonable model for narrow-
band wireless channels when many objects in the environment
scatter the radio signal before arriving at the receiver. In a
Rayleigh channel, the channel output is determined by y =
hn · x + w, where hn ∼ CN (0, 1). The channel coeffi-
cient hn is time-varying and is unknown when designing
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transceivers. Therefore, channel estimation is required to get
the instantaneous CSI, which is then used by the receiver to
detect the transmit data. With frequency-selective channels,
radio signal propagates via multiple paths, which differ in
amplitudes, phases, and delay times, and cause undesired
frequency-selective fading and time dispersion of the received
signal. The baseband complex channel impulse response can
be expressed as

h(t) =
Kp∑

k=0

bkejθkp(t − τk),

where there are Kp paths in all, bk, θk, and τk represent
the path gain, the phase shift, and the time delay of the
kth path, respectively, and p(t) is the shaping pulse in the
communication system. In our simulation, a three-tap channel
with equal average power is considered, that is, E|bk|2 = 1,
and τk = 0, T, 2T , with T as the symbol duration.

3) Baselines: The end-to-end learning based communica-
tion system is compared with the conventional communication
system, which is composed of multiple signal processing
modules and each module is designed based on the prior
knowledge on the channel. The bit-error rate (BER) and block-
error rate (BLER) are compared under each type of channel.
In our baseline system, 4-QAM is used as the modulation
and the Hamming code or convolutional codes are used. For
the convolutional codes, the Viterbi algorithm [35] is used for
maximum likelihood sequence decoding. A commonly used
example of a convolutional code, rate-1/2 recursive systematic
convolutional (RSC) code, is used for channel coding [5].
OFDM is utilized to deal with the ISI in the frequency-
selective multipath channel. For simplicity, xp is set as a delta
signal in the following experiments. The received the signal yp

can be expressed as yp = h + np, where the np is the additive
noise in the received pilot signal. In order to eliminate the
effects of channel estimation error and get a fair comparison
of the end-to-end approach with the traditional ones, including
channel coding and modulation techniques, we assume the
transmitter can increase the power of pilot signal so that
the additive noise np is negligible. In general, DNN can
work with various pilot signals other than the delta signal
as indicated in our prior work [12]. In addition, for AWGN
and Rayleigh fading channels, the proposed conditional GAN
based end-to-end system is also compared with the end-to-end
systems, which are trained with real channel models instead of
using conditional GANs as surrogate channels. For the AWGN
channel, the auto-encoder system is trained by injecting the
Gaussian noise directly to the hidden layer [14]. For the
Rayleigh fading channel, an additional equalization layer is
employed [17]. The input of the auto-decoder is the equalized
signal ŷ = y

ĥ
, where ĥ is obtained from the pilot information.

B. Modeling the Channel Effects

We use FCN to model the effects of Rayleigh fading
channels. Since Rayleigh fading channels are time-varying,
additional conditional information is added to the chan-
nel generator and the receiver. Besides the encoded signal,
the received pilot data, yp, is used as the additional conditional

Fig. 4. Signal constellations at the output of a Rayleigh channel represented
by a conditional GAN, where channel gains and phase rotations vary according
to conditioning information yp.

Fig. 5. KL divergence of the generated channel distribution and real channel
distribution.

information. We test the effectiveness of the conditional GAN
in learning the distribution of the channel with standard
16 QAM as the encoded symbols. Fig. 4 shows generated
samples of a Rayleigh fading channel with different encoded
symbols and received pilot signal as the conditioning informa-
tion. From the figure, the conditional GAN is able to produce
the samples with different channel gains and phase rotations
according to conditioning information.

Fig. 5 shows the Kullback-Leibler (KL) divergence [36]
of the generated distribution and the real distribution,
KL(G(z)||pdata), which is estimated based on the k-nearest
neighbor estimation approach in [37]. From the figure, the KL
divergence deceases with the training iterations, indicating that
the generated distribution converges to the target distribution
pdata.

C. End-to-End Communication System

Based on the channel GAN, a channel agnostic end-to-end
communication system is built on three types of channels,
i.e., the AWGN channel, the Rayleigh fading channel, and
the frequency-selective multipath channel. We compare our
channel agnostic end-to-end learning based approach with the
traditional methods, which are designed based on the channel
transfer functions.

1) AWGN Channel: We first use FCN for a small block
size. The end-to-end recovering performance on the AWGN
channel is shown in Fig. 6. At each time, four information
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Fig. 6. BER and BLER with a block size of 4 bits under a AWGN channel.

Fig. 7. BER and BLER with a block size of 128 bits under an AWGN
channel.

bits are transmitted and the length of the transmitter output
is set to be seven. From the figure, the BER and BLER
of learning based approach are similar to Hamming (7,4)

Fig. 8. BER and BLER under a Rayleigh channel.

code with maximum-likelihood decoding (MLD) and with the
model-aware end-to-end auto-encoder system trained under the
AWGN channel, which proves the effectiveness of using the
conditional GAN as a surrogate channel.

In order to train models with a large block size, CNNs are
then used to mitigate the curse of dimensionality. We first train
the CNN under the AWGN channel where the noise is added
to the hidden layer directly, as used in [14]. The network is
trained at 3 dB fixed signal-to-noise ratio (SNR) and tested by
different SNRs. Fig. 7 shows the BER and BLER curves of
the proposed end-to-end method with the length of 128 bits,
respectively. From the figure, the performance of the proposed
method is similar to RSC in the low SNR area and significantly
outperforms RSC in the high SNR area. Compared with the
model-aware end-to-end auto-encoder system, the performance
loss is negligible with the increased block size.

2) Rayleigh Fading Channel: CNNs are employed in trans-
mission with a large block size and the channel encoding
is included. We compare the end-to-end approach with a
baseline method, where QAM is used as the modulation and
the RSC of coderate 1/2 are used as the coding. In each
block, 64 information bits will be transmitted, thus the input
size of the end-to-end approach is 64. From Fig. 8, the end-
to-end approach shows similar performance to the traditional
methods in terms of BER and BLER. The conditional GAN
based end-to-end approach also shows similar performance
to the model-aware end-to-end system trained with Rayleigh
channels.
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Fig. 9. BER and BLER under a frequency-selective multipath channel.

3) Frequency-Selective Fading Channel: Under the
frequency-selective channel, the end-to-end communication
systems are developed with CNN and the OFDM system is
used as the baseline. There are 64 subcarriers in the OFDM
system and the length cycle-prefix is set as 16 and 4 QAM
is used for the modulation. The RSC is utilized for channel
coding. In order to have a fair comparison, we set the block
size of the end-to-end system as 64 bits and pad 16 zeros
between two consecutive blocks.

Fig. 9 shows the performance of the proposed end-to-
end approach. From Fig. 9, the proposed end-to-end system
outperforms the OFDM system by 2 dB in terms of BER. The
BLER of the end-to-end system is also significantly lower in
the high SNR area when compared with the OFDM system.
The usage of the pilot information in our end-to-end system
has two advantages. With the pilot information, the receiver
can obtain information on a specific channel realization, which
is very helpful for recovering the transmit data. Moreover,
with the pilot data, the GAN based channel generator learns
to generate the channel output distribution under the current
channel realization. On the contrary, without the pilot infor-
mation, the channel generator learns to produce the mixture
channel output distributions of all the channel realizations. The
importance of the pilot information is justified in Fig. 9, where
the end-to-end performance degrades significantly without the
pilot information.

Moreover, in order to show the performance in the real
scenario, the WINNER II channels [38] are employed and
the parameters for channel generation are the same with [12]

Fig. 10. BER and BLER under WINNER II channel.

except that the maximum delay 8 sampling period is used. The
block size is 128 bits for both the OFDM system and the end-
to-end approach. As shown in Fig. 10, the BER performance of
the proposed end-to-end system is similar to the OFDM system
when the SNR is below 10 dB and is significantly better when
SNR is over 10 dB. The BLER performance of the proposed
end-to-end system is slightly worse than the OFDM system
in the low SNR area but outperforms the baseline system by
about 4 dB in the high SNR area.

The computational complexities of the end-to-end system
and the baselines are also compared. The computational com-
plexity of the CNN is O(

∑
l=1:L Nk2

l Fl−1Fl), where the N
is the block size, L is the number of the layers, kl is the
kernel size of the lth layer, and Fl−1 and Fl are the numbers
of filters in the (l − 1)th layer and the lth layer, respectively.
For the OFDM system, the computational complexity of the
fast Fourier transform (FFT) is O(N log N). The complexity
of the Viterbi decoding is O(N2k), where k is the length of
the memory. To complete our discussion of the computational
complexity, we have measured the average running time of the
proposed algorithm and the baseline approach on a Windows
server with Intel i7 CPU and an Nvidia 1080Ti GPU. The
average running time for the OFDM system is about 2.2 ×
10−2 seconds while the average running time for the end-to-
end system is only about 2.5 × 10−3 seconds.

VI. CONCLUSION AND DISCUSSION

In this article, we investigate the end-to-end learning of
a communication system without prior information of the
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channel. We show that the conditional distribution of the
channel can be modeled by a conditional GAN. In addition,
by adding the pilot information into the condition information,
the conditional GAN can generate data corresponding to the
specific instantaneous channel.

The end-to-end pipeline consists of DNNs for the trans-
mitter, the channel GAN, and the receiver. By iteratively
training these networks, the end-to-end loss can be optimized
in a supervised way. The simulation results on the AWGN
channels, Rayleigh fading channels, and frequency-selective
channels confirm the effectiveness of the proposed method,
by showing similar or better performance compared with the
traditional approaches, which are designed based on expert
knowledge and channel models. Our research opens a new
door for building the pure data-driven communication systems.

One of the future directions is to test the proposed method
with real data. As we have indicated in the introduction,
in real communication scenarios, many imperfections make
the real channel difficult to be modeled analytically, but are
very suitable to be modeled in a data-driven manner.
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