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Abstract

Cell-free system where a group of base stations (BSs) cooperatively serves users has received

much attention as a promising technology for the future wireless systems. In order to maximize the

cooperation gain in the cell-free systems, acquisition of downlink channel state information (CSI) at

the BSs is crucial. While this task is relatively easy for the time division duplexing (TDD) systems

due to the channel reciprocity, it is not easy for the frequency division duplexing (FDD) systems due

to the CSI feedback overhead. This issue is even more pronounced in the cell-free systems since the

user needs to feed back the CSIs of multiple BSs. In this paper, we propose a novel feedback reduction

technique for the FDD-based cell-free systems. Key feature of the proposed technique is to choose a few

dominating paths and then feed back the path gain information (PGI) of the chosen paths. By exploiting

the property that the angles of departure (AoDs) are quite similar in the uplink and downlink channels

(this property is referred to as angle reciprocity), the BSs obtain the AoDs directly from the uplink pilot

signal. From the extensive simulations, we observe that the proposed technique can achieve more than

80% of feedback overhead reduction over the conventional CSI feedback scheme.

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean

government [2018-0-01410, Development of Radio Transmission Technologies for High Capacity and Low Cost in Ultra Dense

Networks].

Parts of this paper was appeared at the ICC, 2019 [1].



3

Fig. 1: Comparison between (a) the conventional cellular systems and (b) the cell-free systems.

I. INTRODUCTION

In recent years, ultra dense network (UDN) has received a great deal of attention as a means to

achieve a thousand-fold throughput improvement in 5G wireless communications [2]. Network

densification can improve the capacity of cellular systems by overlaying the existing macro cells

with a large number of small (femto, pico) cells. However, throughput improvement of dense

networks might not be dramatic as expected due to the poor cell-edge performance. This is

because the portion of users in the cell-boundary (cell-edge users) increases sharply yet cell-

edge users suffer from significant inter-cell interference due to the reduced cell size. To address

this problem, an approach to entirely remove the notion of cell from the cellular systems, called

cell-free systems, has been introduced recently [3]. When compared to the conventional cellular

systems in which a single base station (BS) serves all the users in a cell, a group of BSs

cooperatively serves users in the cell-free systems (see Fig. 1). In the cell-free systems, BSs

are connected to the digital unit (DU) via advanced backhaul links to share the channel state

information (CSI) and the transmit data. Since the cell association is not strictly limited by the

regional cell, notions like cell and cell boundary are unnecessary in the cell-free systems. Also,

since the DU intelligently recognizes the user’s communication environments and organizes the

associated BSs for each user, cell-free systems can control inter-cell interference efficiently,

thereby achieving significant improvement in the spectral efficiency and coverage.
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In order to maximize the gain obtained by the BS cooperation, acquisition of accurate downlink

CSI at the BS is crucial. While this task is relatively easy for the time division duplexing

(TDD) systems due to the channel reciprocity, it is not easy for the frequency division duplexing

(FDD) systems due to the CSI feedback overhead. For this reason, most efforts on the cell-

free systems to date are based on the TDD systems [3]–[5]. In practice, however, TDD-based

cell-free systems have some potential problems. For example, due to the switching between the

uplink and downlink transmission in the TDD systems, users may not be able to obtain the

instantaneous CSI when the transmission direction is directed to the uplink [6]. Further, the

channel reciprocity in TDD systems might not be accurate due to the calibration error in the RF

chains [7]. These observations, together with the fact that the FDD systems have many benefits

over the TDD systems (e.g., continuous channel estimation and small latency), motivate us to

study FDD-based cell-free systems. One well-known drawback of the FDD systems is that the

amount of CSI feedback needs to be proportional to the number of transmit antennas to achieve

the rate comparable to the system with the perfect CSI [8]. This issue is even more pronounced

in the cell-free systems since the user needs to estimate and feed back the downlink CSIs of

multiple BSs. Therefore, it is of a great importance to come up with an effective means to relax

the feedback overhead in the FDD-based cell-free systems.

The primary purpose of this paper is to propose an approach to reduce the CSI feedback

overhead in the FDD-based cell-free systems. Key feature of the proposed technique is that

the spatial domain channel can be represented by a small number of multi-path components

(angle of departure (AoD) and path gain) [9]. By exploiting the property referred to as angle

reciprocity [10] that the AoDs are quite similar in the uplink and downlink channels, we only

feed back the path gain information (PGI) to the BSs. As a result, the number of bits required

for the channel vector quantization scales linearly with the number of dominating paths, not the

number of transmit antennas. Moreover, by choosing a few dominating paths maximizing the

sum rate, we can further reduce the feedback overhead considerably. In order to support the

dominating PGI acquisition and feedback at the user, we use spatially precoded downlink pilot

signal.

Through the performance analysis, we show that the proposed dominating PGI feedback

scheme exhibits a smaller quantization distortion than that generated by the conventional CSI

feedback scheme. In fact, the number of feedback bits required to maintain a constant gap to

the system with perfect PGI scales linearly with the number of dominating paths which is much



5

smaller than the number of transmit antennas. From the simulations on realistic scenarios, we

show that the proposed dominating PGI feedback scheme achieves more than 80% of feedback

overhead reduction over the conventional scheme relying on the CSI feedback. We also show

that the performance gain of the proposed dominating PGI feedback scheme increases with the

number of cooperating BSs. Note that no such benefit can be obtained for the conventional

CSI feedback scheme from the BS cooperation. This implies that the proposed dominating PGI

feedback scheme is a promising solution to reduce the feedback overhead in FDD-based cell-free

systems.

The rest of this paper is organized as follows. In Section II, we briefly introduce the system

and channel models for FDD-based cell-free systems. In Section III, we present the dominating

path selection technique. In Section IV, we present the downlink pilot precoding scheme for the

dominating PGI acquisition. In Section V, we present the performance analysis of the proposed

dominating PGI feedback scheme. In Section VI, we present the simulation results and conclude

the paper in Section VII.

Notations: Lower and upper case symbols are used to denote vectors and matrices, respectively.

The superscripts (·)T, (·)H, and (·)+ denote transpose, Hermitian transpose, and pseudo-inverse,

respectively. ⊗ denotes the Kronecker product. ‖x‖ and ‖X‖F are used as the Euclidean norm

of a vector x and the Frobenius norm of a matrix X, respectively. tr (X) and vec (X) denote the

trace and vectorization of X, respectively. Also, diag (X1,X2) denotes a block diagonal matrix

whose diagonal elements are X1 and X2. In addition, xΛ is a subvector of x whose i-th entry

is x(Λ(i)) and XΛ is a submatrix of X whose i-th column is the Λ(i)-th column of X for

i = 1, · · · , |Λ| (Λ is the set of partial indices and |Λ| is the cardinality of Λ).

II. CELL-FREE SYSTEM MODEL

In this section, we introduce the FDD-based cell-free systems and the multi-path channel

model. We also discuss the angle reciprocity between the uplink and downlink channels and the

conventional quantized channel feedback scheme.

A. cell-free System Model

We consider the FDD-based cell-free systems with M BSs and K users. Each BS is equipped

with a uniform linear array of N antennas and each user is equipped with a single antenna. Let
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Fig. 2: Narrowband ray-based channel model and angle reciprocity between the uplink and

downlink channels.

B = {1, · · · ,M} and U = {1, · · · , K} be the sets of BSs and users, respectively. In our work,

we consider the narrowband ray-based channel model consisting of P paths (see Fig. 2) [11].

The downlink channel vector hm,k ∈ CN from the BS m to the user k is expressed as

hm,k =
P∑
i=1

gm,k,ia (θm,k,i) , (1)

where θm,k,i is the AoD and gm,k,i is the complex path gain of the i-th path, respectively. We

assume that for every m, k, and i, gm,k,i ∼ CN (0, 1) are independent and identically distributed

(i.i.d.) random variables. In addition, a (θm,k,i) ∈ CN is the array steering vector given by

a (θm,k,i) =
[
1, e−j2π

d
λ

sin θm,k,i , · · · , e−j(N−1)2π d
λ

sin θm,k,i
]T
, (2)

where d is the antenna spacing and λ is the signal wavelength. The matrix-vector form of hm,k

is

hm,k = Am,kgm,k, (3)

where Am,k = [a (θm,k,1) , · · · , a (θm,k,P )] ∈ CN×P is the array steering matrix and gm,k =

[gm,k,1, · · · , gm,k,P ]T ∈ CP is the PGI vector. It is worth mentioning that the AoDs vary much

slower than the path gains. In fact, since scatterers affecting the signal transmission do not change

their positions significantly, the AoDs are readily considered as constant during the channel
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coherence time. Also, it has been shown that the number of propagation paths P is quite smaller

than the number of transmit antennas N [12]. We note that P is completely determined by the

scattering geometry around the BS. Since the BSs are usually located at high places such as a

rooftop of a building, only a few scatterers affect the signal transmission. For example, P is

2 ∼ 8 for 6 ∼ 60 GHz band due to the limited scattering of the millimeter-wave signal [13].

Also, for the sub-6 GHz band, P is set to 10 ∼ 20 (3GPP spatial channel model [14]) while N

is 32 ∼ 256 in the massive multiple-input multiple-output (MIMO) regime. In this setting, the

received signal yk ∈ C of the user k is given by

yk =
M∑
m=1

hH
m,kwm,ksk +

K∑
j 6=k

M∑
m=1

hH
m,kwm,jsj + nk, (4)

where wm,k ∈ CN is the precoding vector from the BS m to the user k, sk ∈ C is the data

symbol for the user k, and nk ∼ CN (0, σ2
n) is the additive Gaussian noise. The corresponding

achievable rate Rk of the user k is

Rk = E

log2

1 +

∣∣∣∑M
m=1 hH

m,kwm,k

∣∣∣2∑K
j 6=k

∣∣∣∑M
m=1 hH

m,kwm,j

∣∣∣2 + σ2
n


 . (5)

Approximately, we have1

Rk ≈ log2

1 +

E
[∣∣∣∑M

m=1 hH
m,kwm,k

∣∣∣2]
∑K

j 6=k E
[∣∣∣∑M

m=1 hH
m,kwm,j

∣∣∣2]+ σ2
n

 . (6)

B. Angle Reciprocity between Uplink and Downlink Channels

As mentioned, the AoDs in the uplink and downlink channels are fairly similar in the FDD

systems when their carrier frequencies do not differ too much (typically less than a few GHz).

The reason is because only the signal components that physically reverse the uplink propagation

path can reach the user during the downlink transmission [10] (see Fig. 2). Since the changes

of relative permittivity and conductivity of the scatterers are negligible in the scale of several

GHz, reflection and deflection properties determining the propagation paths in the uplink and

downlink transmissions are fairly similar [16], which in turn implies that the propagation paths

of the uplink and downlink channels are more or less similar. This so-called angle reciprocity

1This approximation becomes more accurate as the number of transmit antennas N increases [15, Lemma 1].
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is very useful since the BS can acquire the AoDs from the uplink pilot signal. In estimating the

AoDs, various algorithms such as multiple signal classification (MUSIC) [17] or estimation of

signal parameters via rotational invariance techniques (ESPRIT) [18] can be employed.

C. Conventional Quantized Channel Feedback

In the conventional quantized channel feedback, a user estimates the downlink channel vector

from the downlink pilot signal. Then, the user quantizes the channel direction h̄m,k =
hm,k
‖hm,k‖

and then feeds it back to the BS. Specifically, a codeword cîm,k is chosen from a pre-defined

B-bit codebook C = {c1, · · · , c2B} as

cîm,k = arg max
c∈C
|h̄H
m,kc|2. (7)

Then, the selected index îm,k is fed back to the BS. It has been shown that the number of

feedback bits B needs to be scaled linearly with the channel dimension N and SNR (in decibels)

to properly control the quantization distortion as [8]

B ≈ (N − 1)

3
× SNR. (8)

In the FDD-based cell-free systems, since multiple BSs cooperatively serve users, a user should

send the downlink CSIs to multiple BSs. Thus, the feedback overhead should also increase with

the number of associated BSs M . For example, if M = 6, N = 16, and SNR = 10 dB, then a

user has to send B = 300 bits just for the CSI feedback.

III. DOMINATING PATH GAIN INFORMATION FEEDBACK IN CELL-FREE SYSTEMS

The key idea of the proposed dominating PGI feedback scheme is to select a small number

of paths based on the AoD information and then feed back the measured path gains of the

chosen paths. As mentioned, the AoDs are acquired from the uplink pilot signal by using the

angle reciprocity. Since the number of propagation paths is smaller than the number of transmit

antennas, we can achieve a considerable reduction in the quantized channel dimension using the

dominating PGI feedback. We can further reduce the feedback overhead from multiple BSs by

choosing a few dominating paths among all possible multi-paths.

In a nutshell, overall operations of the proposed dominating PGI feedback scheme are as

follows: 1) user transmits the uplink pilot signal and then BSs acquire AoDs from the uplink
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Fig. 3: Overall transceiver structure of the proposed dominating PGI feedback scheme.

pilot signal, 2) DU performs the dominating path selection based on the acquired AoDs, 3) BSs

transmit the precoded downlink pilot signal, 4) each user acquires the dominating PGI from

the precoded downlink pilot signal and then feeds it back to the BSs, and 5) BSs perform the

downlink data transmission based on the dominating PGI feedback (see Fig. 3).

A. Uplink AoD Acquisition

Since the AoDs are quite similar in the uplink and downlink channels, the BS can acquire the

AoD information from the uplink pilot signal. Well-known angle estimation algorithm includes

MUSIC [17] and ESPRIT [18]. In the MUSIC algorithm, for example, the BS estimates the uplink

channel vector hUL
m,k and then computes the channel covariance matrix RUL

m,k = E
[
hUL
m,kh

UL,H
m,k

]
.

Key idea of the MUSIC algorithm is to decompose the eigenspace of RUL
m,k into two orthogonal

subspaces: signal subspace and noise subspace. To be specific, the eigenvectors of RUL
m,k that

correspond to the P largest eigenvalues form the signal subspace matrix Es and the rest form

the noise subspace matrix En. Since En is orthogonal to the signal subspace, the AoD θ should

satisfy EH
na (θ) = 0P . Thus, the AoDs are obtained from the peak of spectrum function fMUSIC(θ)

given by

fMUSIC(θ) =
1

aH (θ) EnEH
na (θ)

. (9)
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Fig. 4: Illustration of the dominating path selection

B. Dominating Path Selection Problem Formulation

Main advantage of the dominating PGI feedback over the conventional CSI feedback is the

reduction of the channel vector dimension to be quantized. However, since the user should feed

back the PGI to multiple BSs, feedback overhead is still considerable. In the proposed scheme,

by choosing a few dominating paths among all possible multi-paths between each user and the

associated BSs, we can control the feedback overhead at the expense of marginal degradation

in the sum rate.

In order to choose the paths that contribute to the sum rate most, we first need to express the

sum rate as a function of the dominating paths. Let Λm,k ⊆ {1, · · · , P} be the index set of the

dominating paths from the BS m to the user k and gΛm,k = [gm,k,i, i ∈ Λm,k]
T ∈ C|Λm,k| be the

dominating PGI vector. For example, if the first and the third paths are chosen as the dominating

paths, then Λm,k = {1, 3} and gΛm,k = [gm,k,1, gm,k,3]T. Also, let Λk = {Λ1,k, · · · ,ΛM,k} be the

combined index set for the user k and gΛk =
[
gT

Λ1,k
, · · · ,gT

ΛM,k

]T
∈ CL be the corresponding

dominating PGI vector. Note that L is the total number of dominating paths for each user. For
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example, if M = 3, L = 4, and Λ1,k = {1}, Λ2,k = {1, 3}, and Λ3,k = {2}, then Λk =

{{1}, {1, 3}, {2}} and gΛk = [g1,k,1, g2,k,1, g2,k,3, g3,k,1]T (see Fig. 4). Then, the user k estimates

and feeds back gΛk to the DU. The downlink precoding vector wm,k ∈ CN from the BS m to

the user k, constructed from the dominating PGI feedback, is

wm,k = VΛm,k ĝΛm,k , (10)

where VΛm,k ∈ CN×|Λm,k| is the precoding matrix to transform |Λm,k|-dimensional vector ĝΛm,k

into N -dimensional vector wm,k and ĝΛm,k is the dominating PGI vector fed back from the

user. In the following theorem, we express the achievable rate of the dominating PGI feedback

scheme as a function of the dominating path indices {Λm,k} and the precoding matrices {VΛm,k}.

Based on this, we can find {Λm,k} and {VΛm,k} maximizing the sum rate performance of the

dominating PGI feedback.

Theorem 1. The achievable rate R(ideal)
k of the user k for the ideal system with perfect PGI is

R
(ideal)
k

(
{Λm,k}, {VΛm,k}

)
= log2

1 +

∣∣∣∑M
m=1 tr

(
AH

Λm,k
VΛm,k

)∣∣∣2 +
∑M

m=1

∥∥AH
m,kVΛm,k

∥∥2

F∑K
j 6=k
∑M

m=1

∥∥AH
m,kVΛm,j

∥∥2

F
+ σ2

n


(11)

and the corresponding sum rate is Rtot =
∑K

k=1R
(ideal)
k where Am,k ∈ CN×P is the array steering

matrix in (3) and AΛm,k = [a(θm,k,i), i ∈ Λm,k] ∈ CN×|Λm,k| is the submatrix of Am,k.

Proof. See Appendix A.

Then, the dominating path selection problem to choose L paths maximizing the sum rate for

each user can be formulated as

P1 : max
{Λm,k},{VΛm,k

}
Rtot

(
{Λm,k}, {VΛm,k}

)
(12a)

s.t.
M∑
m=1

|Λm,k| = L, ∀k ∈ U (12b)

∥∥VΛm,k

∥∥
F

= 1, ∀m ∈ B, ∀k ∈ U . (12c)

Note that (12b) is the dominating path number constraint and (12c) is the transmit power

constraint.
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C. Alternating Dominating Path Selection and Precoding Algorithm

Major obstacle in solving P1 is the strong correlation between the dominating path index

set Λm,k and the precoding matrix VΛm,k . In fact, since the column dimension of VΛm,k is the

number of dominating paths |Λm,k|, Λm,k and VΛm,k cannot be determined simultaneously. In

this subsection, we propose an algorithm to determine {Λm,k} and {VΛm,k} in an alternating

way: 1) First, we fixed {Λm,k} and find out the optimal precoding matrices {VΛm,k} maximizing

the sum rate. 2) We then update {Λm,k} by removing the path index giving the minimal impact

on the sum rate. We repeat these procedures until L dominating paths remain for each user.

1) Precoding Matrix Optimization: We first discuss the way to find out the optimal precoding

matrices {VΛm,k} when {Λm,k} are fixed. Unfortunately, this problem shown in (13) is highly

non-convex and also contains multiple matrix variables. To address these issues, we first vectorize

and concatenate the variables of multiple BSs VΛ1,k
, · · · ,VΛM,k into xΛk . Then, by exploiting the

notion of leakage, we decompose the sum rate maximization problem into distributed leakage

minimization problems for each xΛk to obtain the tractable closed-form solution. Finally, we

de-vectorize and de-concatenate xΛk to obtain the desired precoding matrices VΛ1,k
, · · · ,VΛM,k .

By plugging (11) into P1, we obtain

P2 : max
{VΛm,k

},{tk}

K∑
k=1

tk (13a)

s.t.

∣∣∣∑M
m=1 tr

(
AH

Λm,k
VΛm,k

)∣∣∣2 +
∑M

m=1

∥∥AH
m,kVΛm,k

∥∥2

F∑K
j 6=k
∑M

m=1

∥∥AH
m,kVΛm,j

∥∥2

F
+ σ2

n

≥ 2tk − 1, ∀k ∈ U (13b)

∥∥VΛm,k

∥∥
F

= 1, ∀m ∈ B, ∀k ∈ U , (13c)

where {tk} are the auxiliary variables. Then, we vectorize the optimization variables (xΛm,k =

vec
(
VΛm,k

)
, µΛm,k

= vec
(
AΛm,k

)
) and then concatenate the variables of multiple BSs (xΛk =[

xT
Λ1,k

, · · · , xT
ΛM,k

]T
, µΛk

=
[
µT

Λ1,k
, · · · , µT

ΛM,k

]T
) to obtain

P3 : max
{xΛk

}, {tk}

K∑
k=1

tk (14a)

s.t.

∣∣µH
Λk

xΛk

∣∣2 + xH
Λk

Γk,kxΛk∑K
j 6=k xH

Λj
Γj,kxΛj + σ2

n

≥ 2tk − 1, ∀k ∈ U (14b)

‖xΛk‖ =
√
M, ∀m ∈ B, ∀k ∈ U , (14c)
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where Γj,k = diag
(
I|Λ1,j | ⊗A1,kA

H
1,k, · · · , I|ΛM,j | ⊗AM,kA

H
M,k

)
. Here, we use the properties

tr
(
AH

Λm,k
VΛm,k

)
=vec

(
AΛm,k

)Hvec
(
VΛm,k

)
and ‖AH

m,kVΛm,j‖F =
∥∥(I|Λm,j |⊗AH

m,k

)
vec
(
VΛm,j

)∥∥.

Also, since it is difficult to satisfy the norm constraint
∥∥VΛm,k

∥∥
F

=
∥∥xΛm,k

∥∥ = 1 for each and

every m ∈ B, we use a relaxed normalized constraint ‖xΛk‖ =
√∑M

m=1‖xΛm,k‖2 =
√
M in P3.

The modified problem P3 looks simpler than the original problem P2, but it is still hard to find

the optimal solution. The reason is because the rate constraint (14b) is a non-convex quadratic

fractional function (i.e., both numerator and denominator are quadratic functions) so that P3 is a

non-convex optimization problem. Further, P3 requires joint optimization for xΛ1,k
, · · · ,xΛM,k ,

and thus it is very difficult to find out the global solutions simultaneously. As a remedy, we

introduce the notion of leakage, a measure of how much signal power leaks into the other

users [19]. To be specific, the signal-to-leakage-and-noise-ratio (SLNR) of the user k is given

by

SLNRk =

E
[∣∣∣∑M

m=1 hH
m,kwm,k

∣∣∣2]
∑K

j 6=k E
[∣∣∣∑M

m=1 hH
m,jwm,k

∣∣∣2]+ σ2
n

(a)
=

∣∣µH
kxΛk

∣∣2 + xH
Λk

Γk,kxΛk∑K
j 6=k xH

Λk
Γk,jxΛk + σ2

n

. (15)

where (a) comes from (14b)2. Note that while (14b) is a function of xΛ1 , · · · ,xΛK , SLNRk in

(15) is a sole function of xΛk . Thus, for each user k, we can find out the optimal x∗Λk maximizing

SLNRk separately. While the solution is a bit sub-optimal, it is simple and easy to calculate [19].

The distributed SLNR maximization problem for the user k is given by

P4 : x∗Λk = arg max
‖xΛk‖=

√
M

∣∣µH
Λk

xΛk

∣∣2 + xH
Λk

Γk,kxΛk∑K
j 6=k xH

Λk
Γk,jxΛk + σ2

n

, ∀k ∈ U . (16)

Using the normalization constraint, we can simplify the objective function of P4 as∣∣µH
Λk

xΛk

∣∣2 + xH
Λk

Γk,kxΛk∑K
j 6=k xH

Λk
Γk,jxΛk + σ2

n

=
xH

Λk

(
µΛk

µH
Λk

+ Γk,k

)
xΛk

xH
Λk

(∑K
j 6=k Γk,j + σ2

n

M
IN |Λk|

)
xΛk

(17)

=
xH

Λk
UkxΛk

xH
Λk

WkxΛk

, (18)

where Uk = µΛk
µH

Λk
+ Γk,k and Wk =

∑K
j 6=k Γk,j + σ2

n

M
IN |Λk|. Then, P4 can be re-expressed as

P4 : x∗Λk = arg max
‖xΛk‖=

√
M

xH
Λk

UkxΛk

xH
Λk

WkxΛk

, ∀k ∈ U . (19)

2When compared to the signal-to-interference-and-noise-ratio (SINR) of the user k in (5), one can observe that the only

difference is the exchange of user index at the denominator between hH
m,jwm,k and hH

m,kwm,j . Hence, we can easily obtain

the closed-form expression of SLNRk from (14b).
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Lemma 1. The solution x∗Λk of P4 is given by [19]

x∗Λk =
√
M

uk,max

‖uk,max‖
, (20)

where uk,max is the eigenvector corresponding to the largest eigenvalue of W−1
k Uk.

Using Lemma 1, we can easily obtain the closed-form solution x∗Λk of P4. From the de-

vectorization and de-concatenation of x∗Λk , we obtain the desired matrices V∗Λ1,k
, · · · ,V∗ΛM,k .

2) Dominating Path Index Update: Once we obtain {VΛm,k} from the precoding matrix

optimization, we then update the dominating path indices {Λm,k} by removing the path index

giving the minimal impact on the sum rate. In particular, for each user k, we choose the path

index îk corresponding to the minimum l2-norm column vector of
[
VΛ1,k

, · · · ,VΛM,k

]
as

(m̂k, îk) = arg min
m∈B, i∈Λm,k

‖vm,k,i‖ , (21)

and then remove îk from Λm̂k,k. Note that vm,k,i is the column vector of VΛm,k corresponding

to the i-th path from the BS m to the user k. The intuition behind this choice is because

E
[
‖wm,k‖2] = E

∥∥∥∥∥∥
∑
i∈Λm,k

ĝm,k,ivm,k,i

∥∥∥∥∥∥
2 (22)

=
∑
i∈Λm,k

‖vm,k,i‖2E
[
|ĝm,k,i|2

]
(23)

=
∑
i∈Λm,k

‖vm,k,i‖2, (24)

and thus, the removal of the minimum l2-norm column vector vm̂k,k,̂ik would give a minimal

impact on wm,k. In addition, since the sum rate is a function of wm,k, it is quite reasonable

to assume that the removal of corresponding path index îk would also give a minimal impact

on the sum rate3. The precoding matrix optimization and the dominating path index update are

repeated iteratively until only L paths remain for each user. The proposed alternating algorithm

is summarized in Table I.

Once the dominating paths maximizing the sum rate are chosen, each user acquires the

corresponding dominating PGI from the downlink pilot signal, quantizes the acquired dominating

PGI, and then feeds it back to the BSs. In the following section, we will discuss this issue in

detail.

3Even though L is chosen to be larger than the effective number of propagation paths, the precoding matrix would be optimized

such that the transmit power is focused on the best column vectors (corresponding to the dominant paths).
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TABLE I Alternating dominating path selection and precoding algorithm
Input: Path AoDs {θm,k,i}, BS set B, user set U , number of propagation paths P ,

number of dominating paths L

Initialization: Λm,k = {1, · · · , P}, ∀m ∈ B, ∀k ∈ U

{VΛm,k} = Precoding matrix optimization ({θm,k,i}, {Λm,k})

Iteration:

while
∑M

m=1|Λm,k| > L for some k do // Check the number of dominating paths

for k ∈ U do

if
∑M

m=1|Λm,k| > L then

(m̂k, îk) = arg min
m∈B, i∈Λm,k

‖vm,k,i‖ // Find the minimal l2-norm column vector

Λm̂k,k = Λm̂k,k \ {̂ik} // Remove the corresponding path index

end if

end for

{VΛm,k} = Precoding matrix optimization ({θm,k,i}, {Λm,k})

end while

Function Precoding matrix optimization ({θm,k,i}, {Λm,k})

µΛm,k
= vec

(
AΛm,k

)
,µΛk

=
[
µT

Λ1,k
, · · · , µT

ΛM,k

]T
, ∀m ∈ B, ∀k ∈ U

Γj,k = diag
(
I|Λ1,j | ⊗A1,kA

H
1,k, · · · , I|ΛM,j| ⊗AM,kA

H
M,k

)
, ∀j, k ∈ U

for k ∈ U do

Uk = µΛk
µH

Λk
+ Γk,k, Wk =

∑K
j 6=k Γk,j + σ2

n

M
IN |Λk|

uk,max = max eigenvector
(
W−1

k Uk

)
x̂Λk =

√
M

uk,max
‖uk,max‖[

x̂T
Λ1,k

, · · · , x̂T
ΛM,k

]T
= x̂Λk

V̂Λm,k = vec−1
(
x̂Λm,k

)
, ∀m ∈ B

end for

return {V̂Λm,k}

end function

Output: {Λm,k}, {VΛm,k}
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Fig. 5: Downlink pilot precoding for dominating PGI acquisition

IV. DOWNLINK PILOT PRECODING FOR DOMINATING PATH GAIN INFORMATION

ACQUISITION

In the FDD systems, a user acquires the channel information from the downlink pilot signal

and then feeds the quantized channel vector back to the BS. In contrast, in the proposed scheme,

a user acquires the dominating PGI and then feeds back the quantized value to BS. There are

however some difficulties in the dominating PGI acquisition. First, since each user needs to

selectively feed back PGIs of the dominating paths, the BS must assign additional resources

to indicate the desired path information. Also, it is computationally inefficient for the user to

estimate the gain of all possible paths. To handle this issue, we propose a new downlink training

scheme using spatially precoded pilot signal in the acquisition of dominating PGI.

In essence, the goal of precoded pilot signal is to convert the downlink channel vector into

the dominating PGI vector so that the user can easily estimate the dominating PGI using the

conventional channel estimation techniques such as the linear minimum mean square error

(LMMSE) estimator [20] (see Fig. 5). Additionally, since the dimension of dominating PGI

(i.e., the number of dominating paths) is reduced and thus becomes much smaller than that of

the downlink CSI (i.e., the number of transmit antennas), we can achieve a reduction in the pilot

resources.

When the pilot precoding matrix Wd
m,k ∈ C|Λm,k|×N is applied, the downlink precoded pilot

signal xd
m(t) ∈ CN of the BS m at time slot t is given by

xd
m(t) =

K∑
k=1

Wd,H
m,kψm,k(t), t = 1, · · · , τ (25)

where {ψm,k(t)}τt=1 ⊆ C|Λm,k| is the downlink pilot sequence from the BS m to the user k.
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Then, the received signal yd
k(t) ∈ C of the user k at time slot t is

yd
k(t) =

M∑
m=1

(
Wd

m,khm,k
)H
ψm,k(t) +

M∑
m=1

K∑
j 6=k

(
Wd

m,jhm,k
)H
ψm,j(t) + zk(t) (26)

where zk(t) ∼ CN (0, σ2
z) is the Gaussian noise. The user k collects this received signal for each

slot, i.e., yd
k =

[
yd
k(1), · · · , yd

k(τ)
]H and then multiplies Ψm,k =

[
ψm,k(1), · · · ,ψm,k(τ)

]
to get

Ψm,ky
d
k = Ψm,k

(
M∑
m=1

ΨH
m,kW

d
m,khm,k +

M∑
m=1

K∑
j 6=k

ΨH
m,jW

d
m,jhm,k + zk

)
(27)

(a)
= Wd

m,khm,k + nk (28)

where zk = [zk(1), · · · , zk(τ)]H and nk = Ψm,kzk. Also, (a) is due to the orthogonality of pilot

sequence.

From (28), we observe that if the BS uses a precoding matrix Wd
m,k satisfying Wd

m,khm,k =

gΛm,k , then one can extract the dominating PGI vector gΛm,k from Ψm,ky
d
k. To generate the

desired precoding matrix Wd
m,k, we basically need to perform two operations: 1) application

of the matrix inversion of A+
m,k =

(
AH
m,kAm,k

)−1
AH
m,k and 2) compression of gm,k into gΛm,k .

Note that A+
m,k exists as long as AH

m,kAm,k is invertible, which is easily guaranteed by the fact

that the array steering vectors corresponding to different AoDs are independent and the number

of transmit antennas N is larger then the number of paths P . Thus,

A+
m,khm,k

(a)
= A+

m,kAm,kgm,k = gm,k (29)

where (a) is from (3). Once gm,k is obtained, we then extract gΛm,k from gm,k using the path

selection matrix Gm,k. For example, if the number of propagation paths is 3 and Λm,k = {1, 3},

then Gm,k =

[
1 0 0

0 0 1

]
and thus,

Gm,kgm,k =

1 0 0

0 0 1



gm,k,1

gm,k,2

gm,k,3

 =

gm,k,1
gm,k,3

 = gΛm,k (30)

In summary, the pilot precoding matrix Wd
m,k from the BS m to the user k is given by

Wd
m,k = Gm,kA

+
m,k (31)

Using Wd
m,k in (31), we can convert hm,k into gΛm,k (i.e., Wd

m,khm,k = gΛm,k). Hence, (28) can

be re-expressed as

Ψm,ky
d
k = gΛm,k + nk, (32)
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Finally, the user k acquires ĝΛm,k from Ψm,ky
d
k by using the linear MMSE estimation [20] as

ĝΛm,k =
1

1 + σ2
z

Ψm,ky
d
k (33)

After the estimation of the dominating PGI, each user quantizes it and then feeds back to

the BS. To be specific, the user k concatenates gΛ1,k
, · · · ,gΛM,k into a single vector gΛk =[

gT
Λ1,k

, · · · ,gT
ΛM,k

]T
∈ CL and then quantizes gΛk into a codeword index îk as

îk = arg max
i

∣∣ḡH
Λk

ci
∣∣2 (34)

where ḡΛk = gΛm,k/
∥∥gΛm,k

∥∥ and ci is the codeword. For example, one can use the random vector

quantization (RVQ) codebook [8]. After receiving îk, DU reconstructs the original dominating

PGI as ĝΛk = ‖gΛk‖ cîk where ‖gΛk‖ is the channel magnitude feedback of user.

V. PERFORMANCE ANALYSIS OF THE PROPOSED DOMINATING PATH GAIN INFORMATION

FEEDBACK

In this section, we study the performance of the proposed dominating PGI feedback scheme.

We first analyze the distortion induced from the quantization of dominating PGI vector gΛk and

then analyze the rate gap between the ideal system with perfect PGI and the realistic system with

finite rate PGI feedback. Finally, we compute the number of feedback bits required to maintain

a constant rate gap with the ideal system.

A. Quantization Distortion Analysis

The quantization distortion Dk of the user k is defined as

Dk = E

∣∣∣∣∣
M∑
m=1

hH
m,kw

(ideal)
m,k

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑
m=1

hH
m,kwm,k

∣∣∣∣∣
2
 (35)

where w
(ideal)
m,k is the precoding vector constructed from the perfect PGI. By plugging (3) and

(10) into (35), we get

Dk = E

∣∣∣∣∣
M∑
m=1

gH
m,kA

H
m,kVΛm,kgΛm,k

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑
m=1

gH
m,kA

H
m,kVΛm,k ĝΛm,k

∣∣∣∣∣
2


(a)
= E

∣∣∣∣∣
M∑
m=1

gH
Λm,k

AH
Λm,k

VΛm,kgΛm,k

∣∣∣∣∣
2

−

∣∣∣∣∣
M∑
m=1

gH
Λm,k

AH
Λm,k

VΛm,k ĝΛm,k

∣∣∣∣∣
2
 (36)
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where (a) is due to the fact that Am,kgm,k = AΛm,kgΛm,k +AΛC
m,k

gΛC
m,k

and ĝΛm,k is independent

with gΛC
m,k

. Based on (36), the normalized quantization distortion D̄k is given by

D̄k =

E
[∣∣∣∑M

m=1 gH
Λm,k

AH
Λm,k

VΛm,kgΛm,k

∣∣∣2 − ∣∣∣∑M
m=1 gH

Λm,k
AH

Λm,k
VΛm,k ĝΛm,k

∣∣∣2]
E
[∣∣∣∑M

m=1 gH
Λm,k

AH
Λm,k

VΛm,kgΛm,k

∣∣∣2] (37)

In the following proposition, we provide an upper bound of D̄k.

Proposition 1. The normalized quantization distortion D̄k of the user k is upper bounded

D̄k ≤
L− δk

(L− 1)(1 + δk)
2−

B
L−1 , (38)

where δk =

∑M
m=1‖AH

Λm,k
VΛm,k

‖2F
|
∑M
m=1 tr(AH

Λm,k
VΛm,k

)|2 . Furthermore, D̄k is generally upper bounded as D̄k ≤ 2−
B
L−1 .

Proof. In order to simplify the expression, we use the notation AΛk = diag
(
AΛ1,k

, · · · ,AΛM,k

)
and VΛk = diag

(
VΛ1,k

, · · · ,VΛM,k

)
. Then, we have

D̄k =
E
[∣∣gH

Λk
AH

Λk
VΛkgΛk

∣∣2 − ∣∣gH
Λk

AH
Λk

VΛk ĝΛk

∣∣2]
E
[∣∣gH

Λk
AH

Λk
VΛkgΛk

∣∣2]
(a)
= 1−

E
[
‖gΛk‖

4
∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2]
E
[
‖gΛk‖

4
∣∣ḡH

Λk
AH

Λk
VΛk ḡΛk

∣∣2]
= 1−

E
[∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2]
E
[∣∣ḡH

Λk
AH

Λk
VΛk ḡΛk

∣∣2] (39)

where (a) is due to the independence of the vector norm ‖gΛk‖ and the vector direction ḡΛk .

Now, we compute the closed-form expression of the nominator E
[∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2] and the

denominator E
[∣∣ḡH

Λk
AH

Λk
VΛk ḡΛk

∣∣2] in (39). When the B-bit RVQ codebook Ck = {c1, · · · , c2B}

is used, the correlation
∣∣ḡH

Λk
cîk
∣∣2 between the dominating PGI direction ḡΛk and the chosen

codeword cîk is β-distributed random variable with parameters 1 and L− 1 [8]. That is

1− E
[∣∣ḡH

Λk
cîk
∣∣2] = 2Bβ

(
2B,

L

L− 1

)
≤ 2−

B
L−1 (40)

Unfortunately, we cannot directly use this result since AH
Λk

VΛk is inserted in the middle of

E
[∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2]. To handle this, we exploit the property that the dominating PGI direction
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ḡΛk can be written as a sum of two vectors: one in the direction of the chosen codeword cîk

and the other isotropically distributed in the null space of cîk [8]:

ḡΛk =
√
Zcîk +

√
1− Zs (41)

where s is a unit norm vector isotropically distributed in the null space of cîk and Z is β-

distributed according to
∣∣ḡH

Λk
cîk
∣∣2. Also, s and Z are independent. Using (41), we obtain

E
[∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2] = E
[
cH
îk

VH
Λk

AΛk

(
Zcîkc

H
îk

+ (1− Z) ssH
)

AH
Λk

VΛkcîk

]
(42)

= γE
[∣∣∣cH

îk
AH

Λk
VΛkcîk

∣∣∣2]+ (1− γ)E
[∣∣sHAH

Λk
VΛkcîk

∣∣2] (43)

where γ = E [Z] = E
[∣∣ḡH

Λk
cîk
∣∣2] = 1− 2Bβ

(
2B, L

L−1

)
in (40). Using Lemma 2 (see Appendix

A), we obtain the closed-form expression of the first term in (43) as

E
[∣∣∣cH

îk
AH

Λk
VΛkcîk

∣∣∣2] =
1

L(L+ 1)

(∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

)
(44)

Whereas, since s is in the null space of cîk , s and cîk are correlated, and thus it is not easy to

obtain the closed-form expression of the second term in (43). As a remedy, we use the law of

total expectation, that is

Es,cîk

[∣∣sHAH
Λk

VΛkcîk
∣∣2] = Ecîk

[
Es

[∣∣sHAH
Λk

VΛkcîk
∣∣2 | cîk]] (45)

= Ecîk

[
cH
îk

VH
Λk

AΛkEs

[
ssH | cîk

]
AΛkV

H
Λk

cîk

]
(46)

In the following lemma, we provide the conditional covariance of s for a given cîk .

Lemma 2. The conditional covariance of s for a given cîk is

Es

[
ssH | cîk

]
=

1

L− 1

(
IL − cîkc

H
îk

)
(47)

Proof. See Appendix B.

By plugging (47) into the second term of (43), we obtain

E
[∣∣sHAH

Λk
VΛkcîk

∣∣2] =
1

L− 1
Ecîk

[
cH
îk

VH
Λk

AΛk

(
IL − cîkc

H
îk

)
AΛkV

H
Λk

cîk

]
=

1

L− 1

(
Ecîk

[∣∣AH
Λk

VΛkcîk
∣∣2]− Ecîk

[∣∣∣cH
îk

AH
Λk

VΛkcîk

∣∣∣2])
=

1

L− 1

(
1

L

∥∥AH
Λk

VΛk

∥∥2

F
− 1

L(L+ 1)

(∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

))
=

1

L2 − 1

(∥∥AH
Λk

VΛk

∥∥2

F
− 1

L

∣∣tr (AH
Λk

VΛk

)∣∣2) (48)
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Finally, by plugging (44) and (48) into (43), we get

E
[∣∣ḡH

Λk
AH

Λk
VΛkcîk

∣∣2] =γ
1

L(L+ 1)

(∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

)
+ (1− γ)

1

L2 − 1

(∥∥AH
Λk

VΛk

∥∥2

F
− 1

L

∣∣tr (AH
Λk

VΛk

)∣∣2) (49)

Next, we consider E
[∣∣ḡH

Λk
AH

Λk
VΛk ḡΛk

∣∣2] in (39). Since both ḡΛk and cîk distributed uniformly

on the surface of a L-dimensional unit sphere, the closed-form expression of E
[∣∣ḡH

Λk
AH

Λk
VΛk ḡΛk

∣∣2]
can be obtained in the same way to (44). Finally, the closed-form expression and the upper bound

of D̄k is

D̄k = 1−
γ

L(L+1)

(∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

)
+ 1−γ

L2−1

(∥∥AH
Λk

VΛk

∥∥2

F
− 1

L

∣∣tr (AH
Λk

VΛk

)∣∣2)
1

L(L+1)

(∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

)
= (1− γ)

1

L− 1

L
∣∣tr (AH

Λk
VΛk

)∣∣2 − ∥∥AH
Λk

VΛk

∥∥2

F∣∣tr (AH
Λk

VΛk

)∣∣2 +
∥∥AH

Λk
VΛk

∥∥2

F

= (1− γ)
L− δk

(L− 1)(1 + δk)

(a)

≤ 2−
B
L−1

L− δk
(L− 1)(1 + δk)

(50)

where δk =

∑M
m=1‖AH

Λm,k
VΛm,k

‖2F
|
∑M
m=1 tr(AH

Λm,k
VΛm,k

)|2 and (a) is due to (40). By using that 1
L
≤ ‖C‖2F
|tr(C)|2 , we can

obtain a simple upper bound of D̄k as

D̄k ≤
L− 1

L

(L− 1)(1 + 1
L

)
2−

B
L−1 = 2−

B
L−1 (51)

Since 1
L
≤ δk, we can observe that D̄k is smaller than the normalized quantization distortion of

the conventional L-dimensional vector quantization, that is 1− γ in (40). It is worth mentioning

that D̄k is a function of the number of dominating paths L, not the number of transmit antennas

N . In Fig. 6, we plot the normalized quantization distortion D̄k as a function of the number

of dominating paths L. We plot the numerical evaluation of D̄k, the upper bound in (50), the

simplified upper bound in (51), and the conventional L-dimensional vector quantization using

RVQ codebook in (40). One can observe that the numerical evaluation is close to the derived

upper bound. One can also observe that the quantization distortion of the proposed scheme is

much smaller than that of the conventional vector quantization.
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Fig. 6: Normalized quantization distortion as a function of the number of dominating paths L

(M = 5, N = 8, P = 4, B = 6, SNR = 15 dB)

B. Rate Gap Analysis of the Dominating PGI Feedback

In this subsection, we analyze the per user rate gap of the dominating PGI feedback scheme

between the ideal feedback system and the finite rate feedback system.

Theorem 2. The per user rate gap ∆Rk between the ideal system using the perfect PGI and

the realistic system using the finite rate feedback of the user k is upper bounded as

∆Rk ≤ log2

(
1 +

SNR
1 + SNR

L− δk
(L− 1)(1 + δk)− 2−

B
L−1 (L− δk)

2−
B
L−1

)
(52)

where SNR is the signal-to-noise-ratio.

Proof. The achievable rate Rk of the user k in the realistic system with finite rate feedback is

Rk = log2
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Note that Rk consists of the desired signal part DSk, the unselected signal part USk, and

interference signal part ISk, respectively. Since gΛm,k is independent with gΛC
m,k

and gm,j (j 6= k),

ĝΛm,k is also independent with with gΛC
m,k

and gm,j (j 6= k) so that the quantization of gΛm,k

only affects DSk. This means that USk and ISk remain unchanged regardless of the quantization.

Based on this observation, the achievable user rates for the realistic system Rk and the ideal

system R
(ideal)
k are given by

Rk = log2

(
1 +

DSk + USk
ISk + σ2

n

)
(53)

R
(ideal)
k = log2

(
1 +

DS(ideal)
k + USk
ISk + σ2

n

)
(54)

where DS(ideal)
k is the desired signal part constructed from the perfect PGI. Thus, the rate gap

∆Rk = R
(ideal)
k −Rk is

∆Rk = log2

(
1 +

DS(ideal)
k + USk
ISk + σ2

n

)
− log2

(
1 +

DSk + USk
ISk + σ2

n

)
(55)

= log2

(
1 +

DS(ideal)
k − DSk

DSk + USk + ISk + σ2
n

)
(56)

From DS(ideal)
k −DSk = DS(ideal)

k D̄k we get DS(ideal)
k = DSk

1−D̄k
. Using this, together with Proposition

1, we have

∆Rk = log2

(
1 +

D̄k

1− D̄k

DSk
DSk + USk + ISk + σ2

n

)
(a)
= log2

(
1 +

D̄k

1− D̄k

DSk(
1 + 1

SNR

)
(DSk + USk + ISk)

)

≤ log2

(
1 +

D̄k

1− D̄k

SNR
1 + SNR

)
(b)

≤ log2

(
1 +

SNR
1 + SNR

2−
B
L−1 (L− δk)

(L− 1)(1 + δk)− 2−
B
L−1 (L− δk)

)
where (a) is because SNR = DSk+USk+ISk

σ2
n

and (b) is from Proposition 1.

Finally, we can obtain the number of feedback bits required to maintain a constant rate gap

with the ideal system.

Proposition 2. To maintain a constant rate gap with the ideal system with perfect PGI within

log2 (β) bps/Hz per user, it is sufficient to scale the number of bits per user according to

B = (L− 1)

(
log2

(
SNR

(SNR + 1) (β − 1)
− 1

)
+ log2

(
L− δk

(L− 1) (1 + δk)

))
(57)
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Proof. To maintain a rate gap of ∆Rk ≤ log2 (β), the number of feedback bits B should satisfy

∆Rk ≤ log2

(
1 +

SNR
1 + SNR

L− δk
(L− 1)(1 + δk)− 2−

B
L−1 (L− δk)

2−
B
L−1

)
= log2 (β) . (58)

After simple manipulations, we get the desired result.

In Fig. 7, we plot the per user rate as a function of SNR. We observe that the analytic upper

bound obtained from the Theorem 2 is close to the upper bound obtained from the numerical

evaluation. This means that by using a proper scaling of feedback bits in Proposition 2, the rate

loss can be controlled effectively.

Fig. 7: Per user rate as a function of SNR (M = 5, N = 8, P = 4, L = 8, B = 6)

C. Dominating Path Number Selection

In the subsection, we discuss how to choose the dominating path number. In a nutshell, we

compute the lower bound of the sum rate
∑K

k=1 Rk (l) for each l (l = 1, · · · ,MP ) and then

choose the value L maximizing the sum rate. That is

L = arg max
l=1,··· ,MP

K∑
k=1

Rk (l) . (59)

Note that Rk (l) is obtained from the dominating path selection algorithm. In each iteration of this

algorithm (see Section III.C), we obtain the dominating path indices {Λm,k} and the precoding
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matrices {VΛm,k} and then compute the lower bound of the achievable rate using {Λm,k} and

{VΛm,k}4.

Since the dominating path selection depends on AoD information, it is in general very difficult

to express the sum rate as a function of L. However, in a single cell massive MIMO systems

where a macro cell serves users in a cell, we can express the lower bound of sum rate as a

function of L.

Theorem 3. The per user rate Rk of the user k in the single cell massive MIMO systems using

the dominating path number L is lower bounded as

Rk ≥ log2

(
1 +

L+ 1

σ2
n

)
− log2

(
1 +

SNR
1 + SNR

L− δk
(L− 1)(1 + δk)− 2−

B
L−1 (L− δk)

2−
B
L−1

)
. (60)

Proof. See Appendix C.

By using Theorem 3, we can easily find out L maximizing the lower bound of sum rate.

VI. SIMULATION RESULTS

In this section, we investigate the sum rate performance of the proposed dominating PGI

feedback scheme. For comparison, we use the conventional CSI feedback schemes with the AoD-

adaptive subspace codebook [21] and the RVQ codebook [8]. In our simulations, we consider

the FDD-based cell-free systems where M = 5 (except for Fig. 12) BSs equipped with N = 8

transmit antennas cooperatively serve K = 5 users equipped with a single antenna. We set the

maximum transmit power of BS to 10 W and the total transmit power of cooperating BS group

to 25 W. Also, we distribute the BSs and users randomly in a square area (size of a square is

1×1 km2). We use the downlink narrowband multi-path channel model whose carrier frequency

is fc = 2 GHz and set the number of propagation paths to P = 4 (except for Fig. 11). The

angular spread of AoD is set to 10◦. In the proposed dominating PGI feedback scheme, we

select L = 8 (except for Fig. 10) dominating paths among all possible MP = 20 paths. Further,

the number of feedback bits per user is B = 6 (except for Fig. 9). In order to avoid special

scenarios where the proposed technique is favorable (or unfavorable), we used 1000 randomly

generated cell-free system realizations.

4To be specific, the lower bound of the rate is Rk(l) = R
(ideal)
k (l)−∆Rk(l) where R

(ideal)
k (l) is the rate of ideal system with

perfect PGI (see Theorem 1) and ∆Rk(l) is the upper bound of the rate gap over the ideal system (see Theorem 2).
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Fig. 8: Sum rate as a function of SNR (M = 5,

K = 5, N = 8, P = 4, L = 8, B = 6)

Fig. 9: Sum rate as a function of the number

of feedback bits B (M = 5, K = 5, N = 8,

P = 4, L = 8, SNR = 15 dB)

In Fig. 8, we plot the sum rate performance as a function of SNR. The performance of ideal

system with perfect PGI (or CSI) and the realistic system with finite rate feedback are plotted as a

dotted line and a real line, respectively. We observe that the proposed dominating PGI feedback

scheme outperforms the conventional schemes by a large margin. For example, at 15 bps/Hz

region, the proposed scheme achieves more than 10 dB gain over the conventional CSI feedback

scheme. We also observe that the performance loss of the proposed scheme over the perfect

PGI system is within 3 dB whereas the conventional AoD-adaptive codebook scheme and the

RVQ codebook scheme suffer more than 5 dB and 10 dB loss. As mentioned, this is because the

number of feedback bits in the proposed scheme required to maintain a constant rate gap with

the ideal system scales linearly with the number of dominating paths L while such is not the

case for the conventional schemes. In fact, with only B = 6 feedback bits, the proposed scheme

performs similar to the conventional feedback scheme with the perfect CSI.

In Fig. 9, we set SNR = 15 dB and plot the sum rate as a function of the number of feedback

bits B. We observe that the proposed dominating PGI feedback scheme achieves a significant

feedback overhead reduction over the conventional schemes. For example, in achieving 18 bps/Hz,

the proposed dominating PGI feedback scheme requires B = 4 bits while the AoD-adaptive

subspace codebook scheme requires more than B = 20 bits, resulting in more than 80% reduction
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Fig. 10: Sum rate as a function of the number

of dominating paths L (M = 5, K = 5, N = 8,

P = 4, B = 6, SNR = 15 dB)

Fig. 11: Sum rate as a function of the number

of propagation paths P (M = 5, K = 5, N =

8, L = 2P , B = 6, SNR = 15 dB)

in feedback overhead). Further, the proposed scheme requires only B = 8 bits to maintain

3 bps/Hz rate gap with the ideal system while the conventional AoD-adaptive codebook scheme

requires B = 20 bits to maintain the same rate gap.

In order to show the effectiveness of the dominating path selection, we compare the proposed

dominating path selection with the random path selection. By the random path selection, we

mean an approach to feed back the PGI of randomly selected paths. The total number of paths

is set to MP = 20. We measure the sum rate as a function of the number of selected paths L.

Overall, we observe that the dominating path selection provides a considerable sum rate gain

over the random path selection approach. When L = 8, for example, the PGI feedback with

dominating path selection achieves 4 bps/Hz sum rate gain over the PGI feedback with random

path selection. We also observe that the performance gain of the proposed scheme increases

when the number of dominating paths is small.

In Fig. 11, we plot the sum rate as a function of the number of propagation paths P . In this

simulation, we set SNR = 15 dB and L = 2P so that the number of dominating paths increases

linearly with the number of propagation paths. Although the sum rate of the proposed dominating

PGI feedback scheme decreases with P , the rate loss is not too large even in the rich scattering

environment. In fact, when P increases from 2 to 10, the rate loss of the proposed scheme is

less than 1 bps/Hz.
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Fig. 12: Sum rate as a function of the number

of BSs M (K = 5, N = 8, P = 4, L = 8,

B = 6, SNR = 15 dB)

Fig. 13: Sum rate as a function of SNR (M = 1,

K = 5, N = 8, P = 8, L = 4, B = 6)

In Fig. 12, we plot the sum rate as a function of the number of BSs when SNR = 15 dB. We

observe that the sum rate of the proposed dominating PGI feedback scheme increases dramatically

with the number of BSs whereas no such effect can be expected from the conventional CSI

feedback schemes. In particular, when M = 2, the rate gap between the dominating PGI scheme

and the CSI feedback scheme is 5 bps/Hz. However, when M = 12, this rate gap increases to

almost 11 bps/Hz. The reason is because when the number of BSs increases, we can choose the

dominating paths from increased number of total paths so that we can achieve the gain obtained

from path diversity.

In Fig. 13, we investigate the performance of proposed dominating PGI feedback when only

one BS serves users in a cell. Although the gain obtained from the BS cooperation would not

be significant in this scenario, we can still acquire accurate dominating PGI and control the

inter-user interference via precoding matrix optimization in the proposed scheme. As a result,

the proposed scheme achieves more than 4 dB gain in the low SNR region and 3 dB gain in the

mid SNR region over the AoD-adaptive subspace scheme.
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VII. CONCLUSION

In this paper, we proposed a novel feedback reduction technique for FDD-based cell-free

systems. The key feature of the proposed scheme is to choose a few dominating paths among

all possible propagation paths and then feed back the PGI of the chosen paths. Key observation

in our work is that 1) the spatial domain channel is represented by a small number of multi-path

components (AoDs and path gains) and 2) the AoDs are quite similar in the uplink and downlink

channel owing to the angle reciprocity so that the BSs can acquire AoD information directly

from the uplink pilot signal. Thus, by choosing a few dominating paths and only feed back the

path gain of the chosen paths, we can achieve a significant reduction in the feedback overhead.

We observed from the extensive simulations that the proposed scheme can achieve more than

80% of feedback overhead reduction over the conventional schemes relying on the CSI feedback.

APPENDIX A

PROOF OF THEOREM 1

We first compute the closed-form expression of numerator of Rk and then compute the closed-

form expression of denominator of Rk. Note that the channel vector is decomposed as

hm,k = Am,kgm,k = AΛm,kgΛm,k + AΛC
m,k

gΛC
m,k
, (61)

the numerator of Rk is given by

E
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where (a) is due to the independence of the vector norm ‖gΛk‖ and the vector direction ḡΛk .

Since ḡΛk and ḡΛC
k

are independent, the closed-form expression of the second term in (62) is
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ḡH

ΛC
k
AH

ΛC
k
VΛk ḡΛk ḡ
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ḡΛC

k

)]
(63)

= tr
(
E
[
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Whereas, the closed-form expression of the first term in (62) is not easy to compute. To address

this issue, we use the following lemma.

Lemma 3. Let A be a L× L matrix, g be a L× 1 complex normal vector, and ḡ = g
|g| . Then,

E
[∣∣ḡHAḡ

∣∣2] =
1

L(L+ 1)

(
|tr (A)|2 + ‖A‖2

F

)
. (66)

Proof. Let (i, j)-th element of A be ai,j and i-th element of ḡ be gi. Then,

E
[∣∣ḡHAḡ
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where (a) is due to the fact that E
[
|gi|4

]
= 2

L(L+1)
and E

[
|gi|2

]
= E

[
|gi|2 |gj|2

]
= 1

L(L+1)
.

By plugging the result of Lemma 3 and (65) into (62), we get
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Next, since gm,k and gΛm,j are independent, the denominator of Rk can be obtained similarly

to (63)–(65) as
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F
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Combining (74) and (76), we obtain the data rate expression in Theorem 1.
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APPENDIX B

PROOF OF PROPOSITION 1

Let {cîk ,u1, · · · ,uL−1} be the orthonormal basis of CL. Also, let U = [u1, · · · ,uL−1] ∈

CL×(L−1). Then, the null space of cîk can be represented as {Uα | ‖α‖ = 1} where α is

isotropically distributed on the (L− 1)-dimensional unit sphere. Hence, we have

E
[
ssH | cîk

]
= UE

[
ααH]UH =

1

L− 1
UUH (a)

=
1

L− 1

(
IL − cîkc

H
îk

)
, (77)

where (a) is due to the fact that IL =
[
cîk U

] [
cîk U

]H
= cîkc

H
îk

+ UUH.

APPENDIX C

PROOF OF THEOREM 3

Recall that the precoding matrix VΛk is obtained from the de-vectorization of xΛk =
uk,max

‖uk,max‖ .

Here, uk,max is the eigenvector corresponding to the largest eigenvalue of W−1
k Uk where

Uk = µΛk
µH

Λk
+ IL ⊗AkA

H
k (78)
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K∑
j 6=k

IL ⊗AjA
H
j + σ2

nINL = IL ⊗
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ΦkΦ

H
k + σ2

nIN
)
, (79)

where Φk = [Aj, j 6= k] ∈ CN×(K−1)P . By using the Woodbury matrix identity, we obtain
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where (a) is due to the fact that ΦH
kΦk = I(K−1)P . Thus, we get
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where (a) is due to the fact that Φk is orthogonal to µΛk
and Ak. From (83), we observe that xΛk

is the eigenvector of Uk. Consequently, xΛk is in the column space of Uk which is orthogonal

to the column space of IL ⊗Aj for every j 6= k. Thus, the rate in (14b) can be re-expressed as
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where λk,max is the largest eigenvalue of Uk. In the following lemma, we provide λk,max as a

function of L.

Lemma 4. The largest eigenvalue λk,max of Uk is L+ 1

Proof. We show that µΛk
is an eigenvector of Uk corresponds to λk,max = L+ 1. Note that

Uk = µΛk
µH

Λk
+ IL ⊗AkA

H
k (87)

=
[
µΛk

, IL ⊗Ak

] [
µΛk

, IL ⊗Ak

]H (88)

It is worth mentioning that the columns of IL ⊗ Ak are mutually orthonormal. Also, since

µΛk
= vec (AΛk), µΛk

can be expressed as a linear combination of the columns of IL ⊗ Ak

(i.e., µΛk
=
√
L (IL ⊗Ak)α for some α ∈ CLP , ‖α‖ = 1). Hence, the columns of IL ⊗Ak

form an orthonormal basis of the column space of Uk. Note that
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H
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= LµΛk
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(91)

Thus, µΛk
is the eigenvector corresponding to the eigenvalue L + 1 of Uk. Now, let v be an

eigenvector corresponding to the eigenvalue λ of Uk. Since v is in the column space of Uk, it

can be expressed as v = (IL ⊗Ak)β for some β ∈ CLP , ‖β‖ = 1. Then we get

λ = vHUkv (92)

= βH (IL ⊗AH
k

) (
µΛk

µH
Λk

+ IL ⊗AkA
H
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= L
∣∣αHβ

∣∣2 + 1 (96)

Hence, λk,max is obtained when β = α and thus, we get λk,max = L+ 1.

By using Lemma 4, R(ideal)
k in (86) is re-expressed as

R
(ideal)
k = log2

(
1 +

L+ 1

σ2
n

)
(97)

Finally, combining (97) and the result of Theorem 2, we obtain the desired result.
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