
ar
X

iv
:1

90
1.

09
73

8v
1 

 [
cs

.I
T

] 
 2

3 
Ja

n 
20

19

Bandwidth Gain from Mobile Edge Computing and

Caching in Wireless Multicast Systems

Yaping Sun, Zhiyong Chen, Meixia Tao, IEEE Fellow and Hui Liu, IEEE Fellow

Abstract—In this paper, we present a novel mobile edge
computing (MEC) model where the MEC server has the input
and output data of all computation tasks and communicates
with multiple caching-and-computing-enabled mobile devices
via a shared wireless link. Each task request can be served
from local output caching, local computing with input caching,
local computing or MEC computing, each of which incurs a
unique bandwidth requirement of the multicast link. Aiming to
minimize the transmission bandwidth, we design and optimize
the local caching and computing policy at mobile devices
subject to latency, caching, energy and multicast transmission
constraints. The joint policy optimization problem is shown to
be NP-hard. When the output data size is smaller than the
input data size, we reformulate the problem as minimization
of a monotone submodular function over matroid constraints
and obtain the optimal solution via a strongly polynomial
algorithm of Schrijver. On the other hand, when the output
data size is larger than the input data size, by leveraging sample
approximation and concave convex procedure together with the
alternating direction method of multipliers, we propose a low-
complexity high-performance algorithm and prove it converges
to a stationary point. Furthermore, we theoretically reveal how
much bandwidth gain can be achieved from computing and
caching resources at mobile devices or the multicast transmis-
sion for symmetric case. Our results indicate that exploiting
the computing and caching resources at mobile devices as well
as multicast transmission can provide significant bandwidth
savings.

I. INTRODUCTION

A. Motivation

The accelerated acquisition of smart mobile devices brings

the proliferation of new kinds of mobile traffic, such as virtual

reality (VR) and augmented reality (AR) traffic. According

to Cisco’s prediction, VR traffic and AR traffic will increase

by 11 and 7 times in the next five years, respectively

[2]. These modern traffic loads require delivery of huge

data and intensive computation at ultra low latency, thereby

imposing significant stress on wireless network and incurring

severe spectrum scarcity problem. For example, mobile VR

delivery requires transmission rate on the order of G bit/s [3].

Therefore, how to tackle the spectrum scarcity problem and

save bandwidth becomes one of the most important issues of

the network operators.
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Recently, moible edge computing (MEC), caching and mul-

ticast have been envisioned as three efficient and promising

approaches to tackle the wireless spectrum crunch problem

[4], [5]. Specifically, modern data traffic generally incurs

heavy computation tasks, e.g., mobile VR/AR delivery and

online gaming [6]. Mobile edge computing offers a promising

paradigm to improve user-perceived quality of experience

(QoE) by computing some post-processing low-complexity

tasks closer to users, either at the mobile edge server or at the

mobile device. In the meantime, modern data traffic exhibits

a high degree of asynchronous content reuse [7]. Content

caching is an effective way to reduce peak time traffic by

prefetching contents closer to uses during off peak time,

thereby alleviating the backhaul capacity requirement and

improving user-perceived QoE in wireless networks. In ad-

dition, multicast transmission provides an efficient capacity-

offloading approach for common content delivery to multiple

subscribers on a same resource block [5].

Meanwhile, today’s smart mobile devices possess a

tremendous amount of computing power and storage space.

Taking the latest generation of iPhone (iPhone XS) for exam-

ple, iPhone XS not only has a six-core CPU and a quad-core

GPU, but also has the neural engine with 8-core with machine

learning core processor. Along with powerful computing

capability, iPhone XS also offers 512 GB inbuilt storage,

similar to the storage size of a computer in 2010. In light of

the above mentioned benefits from mobile edge computing,

caching and multicast, we would like to take full advantage

of the computing power and caching space available in the

mobile devices as well as multicast transmission in a multi-

user MEC system to save bandwidth cost.

The main challenge of utilizing the mobile device’s com-

puting and caching resources is how to design the computing

and caching policy for the mobile devices. One particular

example is mobile VR delivery [8]. In the VR framework, the

projection component can be computed at the MEC server or

at the mobile VR devices. Compared with computing at the

MEC server, computing at the mobile VR device can reduce

at least half of the traffic load, since the data size of the

output, i.e., 3D field of view (FOV), is at least twice larger

than that of the input, i.e., 2D FOV. However, computing at

the mobile VR device may incur longer latency, since the

computing capability of the mobile VR device is generally

weaker than that of the MEC server. Thus, the computing pol-

icy, i.e., the decision of computing the projection at the MEC

server or at the mobile VR device, requires careful design.

In addition, caching capability of each mobile VR device
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can be utilized to store some input or output data for future

requests, reducing the bandwidth cost. Specifically, compared

with caching the input data of some task, caching the output

data can help reduce both latency and energy consumption,

since the VR video request can be served directly from local

caching and with no need of computing. However, output

caching consumes larger caching resource at the mobile VR

device, since the output data size is at least twice larger

than the input data size. Thus, the caching policy, i.e., the

decision of caching the input or output data at the mobile

VR device, requires careful design. Such system model can

also be commonly seen in other communication-intensive,

computation-intensive and delay-sensitive applications, such

as online gaming and AR [3].

In general, a joint caching and computing policy for the

mobile devices is to decide what tasks to cache at each mobile

device, whether to cache the input or output data of each task,

and whether to compute each task locally or at the MEC

server. In this paper, we aim at optimizing the joint caching

and computing policy such that the bandwidth cost of the

wireless multicast channel is minimized and thereby illus-

trating the impacts of local caching and computing at mobile

devices as well as content-centric multicast transmission on

the saving of required bandwidth on the wireless link.

B. Contribution

This paper presents a novel MEC architecture, which con-

sists of a single MEC server and K computing-enabled and

caching-aided mobile devices, as shown in Fig. 1. The MEC

server has the input and output data of all computation tasks

and communicates with the mobile devices via a wireless

multicast channel. Each mobile device can pre-store the input

or output data of a task and also execute a task locally. Each

requested task can be served via the following four different

ways: i) local output caching if the output data has already

been cached locally; ii) local computing with local input

caching if the input data has already been cached locally

and is also chosen to be computed locally; iii) local com-

puting without local caching if the input data is downloaded

from the MEC server and then computed locally; iv) MEC

computing if the output data is directly downloaded from

the MEC server. As mentioned above, different caching and

computing policies have different bandwidth requirements on

the wireless multicast channel and therefore require careful

design. In this paper, we mainly address the following three

important issues.

1) What is the optimal caching and computing policy?

In order to address this issue, we formulate the joint

caching and computing policy optimization problem to min-

imize the average bandwidth requirement subject to the

latency and multicast transmission constraints for each task

as well as the energy and caching size constraints for each

mobile device. We show that the optimization problem is a

0-1 integer-programming problem, which is NP-hard in the

strong sense. To tackle the problem of intractability of closed-

form expression for the average bandwidth requirement since

Caching

Mobile devices

MEC server

Computing

Wireless broadcast 

channel

Input Output

F tasks

Figure 1: A MEC system consisting of one MEC server and K
computing-and-caching-aided mobile devices.

the expectation is taken over the system request space, we

approximate the expectation in the objective via sampling

[15] and [16].

According to the relationship between the input data size

and the output data size, we solve the problem respectively.

For the scenario that the output data size is smaller than the

input data size, we theoretically analyze the optimal structural

property and then reformulate the problem as minimization

of a monotone submodular function over matroid constraints.

This structure allows us to use a strongly polynomial algo-

rithm of Schrijver to obtain the optimal solution [17]. For

the scenario that the output data size is larger than the

input data size, we analyze the computation complexity and

propose a low-complexity high-performance algorithm based

on concave convex procedure (CCCP) in conjunction with

the alternating direction method of multipliers (ADMM). In

particular, firstly, in order to deal with the non-smoothness

of the original problem, we reformulate the problem as a

difference of convex (DC) problem [18] and [19]. Secondly,

in order to deal with the non-convexity of the DC problem,

we utilize CCCP algorithm to solve a sequence of convex

subproblems. Thirdly, to reduce the computation complexity

of each subproblem, we reformulate each subproblem as a

consensus ADMM form, which enables that each updating

step is performed by solving multiple small-size subproblems

with closed-form solutions in parallel [20]–[22].

2) How much bandwidth reduction can be achieved

by enabling caching and computing resources at mobile

devices locally compared with the traditional MEC com-

puting?

In this issue, we try to understand the impacts of the

caching and computing resources on the bandwidth gain.

Unfortunately, we cannot obtain the closed-form expression

for the minimum bandwidth requirement in the general case.

In the symmetric case where all the computation tasks are of



the same input and output data size as well as computation

load, and user requests are uniformly distributed, we address

this issue theoretically. For example, we reveal that when

f1 ≥
√

FĒ
µwC

, the ratio of the minimum bandwidth require-

ment B∗ of the proposed system to that of the traditional

MEC B∗
MEC is

B∗

B∗
MEC

= 1− βc −max

{(

1−
1

α

)

βe, 0

}

,

where f1, Ē, w and C are the CPU-cycle frequency (in

cycles/s), energy (in J), computation load (in cycles/bit) and

caching size (in bits) of each mobile device, respectively, F is

the total number of tasks, µ is a constant related to the hard-

ware architecture, βc ,
C
FO

≤ 1 representing the normalized

cache size at each device with respect to the total output data

size of all the tasks and βe , Ē
µIwf2

1

≤ 1 representing the

normalized energy at each device with respect to the total

average energy consumption of all the tasks. Here, I and O
denote the input data size and output data size of each task,

respectively, and then we define α = O
I

.

Our analysis reveals that when the size of output data is

smaller than that of input data, i.e., α ≤ 1, the bandwidth

gain only depends on local caching but not local computing.

Otherwise, the gain depends on both local caching and

computing. These analytical results offer useful guidelines for

designing practical MEC-based multiuser wireless networks.

3) How much bandwidth reduction can be achieved by

exploiting multicast transmission compared with unicast

transmission?

In the symmetric case, we further find that the ratio

of the minimum bandwidth requirement B∗ of multicast

transmission to that of unicast transmission B∗
unicast is

B∗

B∗
unicast

=
F (1− (1− 1

F
)K)

K
,

implying that the gain only depends on the number of mobile

devices and that of tasks, and is independent of local caching

and computing capiblities.

C. Related Works

Communications and Caching Model. Caching at the MEC

networks has been exploited to reduce the required transmis-

sion rate [5], [9]–[13]. [10]–[12] design the optimal caching

policy at the end-users. For example, the core idea of [10]

is how to design the cache placement and coded delivery

scheme to achieve global caching gain and minimize the peak

transmission rate. [11] designs the optimal joint pushing and

caching policy to maximize the bandwidth utilization and

smooth the traffic load. [12] studies the fundamental tradeoff

between storage and latency in a general wireless interference

network with caches equipped at all the transmitters and

receivers. [5], [9], [13] design the caching policy at the base

stations. However, most existing literature on caching does

not exploit the computing resources at the MEC network.

Communications and Computing Model. In the traditional

MEC model, each mobile device generates its own computa-

tion task, then decides whether to execute the task locally or

offload the task to the MEC server via uplink transmission

[14]. In the latter case, the MEC server needs to send the

output of the computation task back to the mobile device via

downlink transmission. This traditional model mainly focuses

on the cost of sending the input data of each computation

task in the uplink while ignoring the cost of sending back

the output data in the downlink. It is thus not suitable for

applications that are bandwidth hungry in downloading the

computation output, such as VR video streaming. In addition,

most existing literature on computing does not exploit the

caching resources at the MEC networks.

Communications, Computing and Caching Model. Caching

and computing resources at the MEC networks have been

exploited collaboratively in [26]–[30]. Specifically, [26] pro-

poses a joint cache allocation and computation offloading

policy to maximize the resource utilization in a collaborative

MEC network. [27] extends the results in [26] to a big

data MEC network. [28] proposes hybrid control algorithms

in smart base stations along with devised communication,

caching, and computing techniques based on game theory

to maximize network resource utilization and maximize the

users’ QoE. [29] formulates an optimization framework for

VR video delivery in a cache-enabled cooperative multi-

cell network to maximize the service rewards and explores

the fundamental tradeoffs between caching, computing and

communication. [30] designs the optimal caching and com-

puting offloading policy to minimize the average energy

consumption.

It is worthy to note that [26]–[30] mainly try to utilize

the caching and computing resources at the MEC servers

to alleviate the computation burdens at the mobile devices.

However, as mentioned above, taking the mobile VR delivery

as an example, computing at the MEC server may incur more

transmission data since the computation results are generally

larger than the inputs. Joint caching and computing at mobile

devices for VR delivery has been studied in [31] and our

previous work [8]. [31] exploits the caching and computing

resources at the mobile device to minimize the traffic load

over wireless link. [8] obtains the closed-form expression

of the minimum average transmission rate, and analytically

illustrates the tradeoff among communication, computing and

caching. Note that [31] and [8] only consider a single-user

setting and can not be easily extended to the multi-user case

which considers multicast.

The remainder of this paper is organized as follows.

Section II introduces the considered MEC system model. In

Section III, we formulate the joint caching and computing

policy optimization problem, and show its NP-hardness.

Section IV provides the optimal joint policy in scenarios of

α ≤ 1 and α > 1. In Section V, we analytically quantify

the bandwidth gain from caching, computing and multicast.

Comprehensive numerical results are provided in Section VI.

Finally, conclusions are drawn in Section VII.



II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a multi-user MEC

system consisting of one single-antenna MEC server and K
single-antenna mobile devices. It is assumed that the MEC

server has access to the input and output datas of all the

tasks.1 Each mobile device is endowed with a local cache

with finite storage size and a local computing server with

finite average energy and limited computation frequency.

Each mobile device thereby can pre-store the input or output

data of a task and also execute a task locally. The system

operates in a time-slotted manner with each slot long enough

to complete all the computation tasks. At the beginning of

every time slot, each mobile device uploads a negligible

amount of information to the MEC server via uplink to trigger

a computation task according to certain demand probabilities

and then downloads the desired data (either the input or

output data) via downlink. We assume that each mobile

device requests a single task at a time and each request must

be served within τ seconds. Users requesting the same data

(either input or output data of the same task) are grouped

together and served using multicast transmission [5].

A. Task and Request Models

Each task f ∈ F , {1, 2, · · · , F} is characterized with

input size If (in bits), computation load wf (in cycles/bit)

and output size Of (in bits) with the ratio α =
Of

If
for all

f ∈ F . The task request stream at each mobile device is

assumed to conform to independent reference model (IRM)

based on the following assumptions: i) the required tasks

are fixed to the set F ; ii) the probability of the request for

task f at mobile device k, denoted as Pk,f , is constant and

independent of all the past requests. We have
∑

f∈F Pk,f =

1, for all k ∈ K , {1, 2, · · · ,K}. Denote with Ak ∈ F
the task requested by mobile device k, and A , (Ak)k∈K ∈
FK the system task request state, where FK represents the

system task request space. We assume that the K task request

processes are independent of each other, and thus we have

P (A) =
∏

k∈K Pk,Ak
.

In addition, we assume that each task request must be

satisfied within a given time deadline of τ seconds for quality

of experience. For example, in VR video streaming, τ≈20ms

to avoid dizziness and nausea [3].

B. Caching and Computing Models

Each mobile device k can trigger a computation task from

F randomly at each time. First, consider the cache placement

at mobile device k, for all k ∈ K. We consider that each

mobile device k is equipped with a cache size Ck (in bits),

and is able to store the input or output data of some tasks.

Denote with cIk,f ∈ {0, 1} the caching decision for input data

of task f , where cIk,f = 1 means that the input data of task

f is cached in the mobile device k, and cIk,f = 0 otherwise.

1It is assumed that the main required input data of each computation task
is not generated by mobile devices but is available in advance at the MEC
server.

Denote with cOk,f ∈ {0, 1} the caching decision for output

data of task f , where cOk,f = 1 means that the output data

of task f is cached in the mobile device k, and cOk,f = 0
otherwise. Under the cache size constraint, we have

F
∑

f=1

If c
I
k,f +Ofc

O
k,f ≤ Ck, k ∈ K. (1)

Denote with (cI , cO) the system caching decision, where

cI , (cIk,f )k∈K,f∈F and cO , (cOk,f )k∈K,f∈F satisfy the

cache size constraint in (1).

Next, consider the computing decision at mobile device

k, for all k ∈ K. Each mobile device k is equipped with

a computing server, which can run at a constant CPU-cycle

frequency fk (in cycles/s) and with a fixed average energy

Ēk (in J). The power consumed at the mobile device for

computation per cycle with frequency fk is µf3
k . Denote

with dk,f ∈ {0, 1} the computation decision for task f ,

where dk,f = 1 means that task f is computed at the mobile

device k, and dk,f = 0 otherwise. Under the average energy

consumption constraint, we have

F
∑

f=1

Pk,fµf
2
kIfwfdk,f ≤ Ēk, k ∈ K. (2)

Denote with d , (dk,f )k∈K,f∈F the system computing

decision, which satisfies the average energy consumption

constraint in (2).

C. Service Mechanism

Based on the joint caching and computing decision, i.e.,

(cI , cO, d), we can see that request for task f ∈ F at

mobile device k ∈ K can be served via the following

four routes, each of which yields a unique transmission

rate requirement. Denote with Rk
f,j (in bits/s) the minimum

transmission rate required for satisfying task f at mobile

device k via Route j ∈ {1, 2, 3, 4} within the deadline τ
seconds.

• Route 1: Local output caching. If cOk,f = 1, i.e., the

output data of task f has been cached at the mobile

device k, request for task f can be satisfied directly

from the cache of mobile device k, thereby without any

need of computing or transmission. Thus, the required

latency is negligible and Rk
f,1 = 0.

• Route 2: Local computing with local input caching.

If cOk,f = 0, but cIk,f = 1 and dk,f = 1, i.e., the input

data of task f has been cached and computed at the

mobile device k, request for task f can be satisfied via

local computing based on the cached input data, thereby

without any need of transmission. Thus, the required

latency is
Ifwf

fk
and Rk

f,2 = 0. For feasibility, we assume

that
Ifwf

fk
≤ τ, f ∈ F , k ∈ K.

• Route 3: Local computing without local caching. If

cOk,f = 0, cIk,f = 0 and dk,f = 1, i.e., the output or

input data of task f has not been cached and task f
is chosen to be computed at the mobile device k, the



Table I: Transmission Rates vs. Local Caching and Computing Costs

Service Route Rate Caching Cost Computing Cost

xk
f,1=1

(cO
k,f

=1,cI
k,f

= 0,dk,f =0)
0 Of 0

xk
f,2=1

(cO
k,f

=0,cI
k,f

= 1,dk,f =1)
0 If Pk,fµIfwff

2
k

xk
f,3=1

(cO
k,f

=0,cI
k,f

= 0,dk,f =1)
Rk

f,3 0 Pk,fµIfwff
2
k

xk
f,4=1

(cO
k,f

=0,cI
k,f

= 0,dk,f =0)
Rk

f,4 0 0

execution for satisfying task f consists of the following

two stages: i) the input data of task f is transmitted

from the MEC server; ii) the input data is computed

at the mobile device k. Thus, the required latency is
If

Rk
f,3

+
Ifwf

fk
. Under the latency constraint, we have

If
Rk

f,3

+
Ifwf

fk
= τ , i.e., Rk

f,3 =
If

τ−
Ifwf
fk

.

• Route 4: MEC computing. If cOk,f = 0, cIk,f = 0 and

dk,f = 0, i.e., output or input data of task f has not

been cached and task f is not chosen to be computed

locally, task f is satisfied via downloading the output

data from the MEC server. Thus, the required latency is
Of

Rk
f,4

. Under latency constraint, we have
Of

Rk
f,4

= τ , i.e.,

Rk
f,4 =

Of

τ
.

In summary, denote with xk
f,j ∈ {0, 1} the service decision

for task f at mobile device k, where xk
f,j = 1 means that

task f at mobile device k is served via above-mentioned

Route j ∈ {1, 2, 3, 4}, and xk
f,j = 0 otherwise. To guarantee

that task f at mobile device k gets served, we have

4
∑

j=1

xk
f,j = 1, f ∈ F , k ∈ K. (3)

In addition, the cache size and average energy consumption

constraints in (1) and (2) can be rewritten as

F
∑

f=1

Ifx
k
f,2 +Ofx

k
f,1 ≤ Ck, k ∈ K, (4)

F
∑

f=1

Pk,fµf
2
kIfwf (x

k
f,2 + xk

f,3) ≤ Ēk, k ∈ K. (5)

For clarity, we illustrate the relationship between the ser-

vice policy x , (xk
f,j)f∈F ,j∈{1,2,3,4},k∈K and joint caching

and computing policy, i.e., (cI , cO, d), as well as the asso-

ciated transmission rates and local caching and computing

costs in Table I.

D. Multicast Transmission Model

At each time slot, given system task request state A and

service decision x, users requesting the same data (either

input or output data of the same task) are grouped together

and served using multicast transmission. Specifically, denote

with BI
f (x,A) and BO

f (x,A) (in Hz) the bandwidth allocated

by the MEC server for transmitting the input and output data

of task f ∈ F , respectively. To guarantee each user’s QoE

and considering that the multicast rate is limited by the user

with the worst channel condition, we have

BI
f (x,A)min

k∈K
log

(

1 +
Ph2

k

σ2

)

1(Ak = f)xk
f,3

≥ max
k∈K

Rk
f,31(Ak = f)xk

f,3, f ∈ F , (6)

BO
f (x,A)min

k∈K
log

(

1 +
Ph2

k

σ2

)

1(Ak = f)xk
f,4

≥ max
k∈K

Rk
f,41(Ak = f)xk

f,4, f ∈ F , (7)

where P denotes the transmission power of the MEC server,

σ2 denotes the variance of complex white Gaussian channel

noise, and hk denotes the channel gain for mobile device

k, which is assumed to be constant within the deadline

τ seconds, respectively. 1(·) denotes the indicator function

throughout the paper.

Under x, denote with B(x) the average bandwidth require-

ment, and we have

B(x) = E









F
∑

f=1

BI
f (x,A) +BO

f (x,A)







 , (8)

where the expectation is taken over the system request state

A∈FK .

III. PROBLEM FORMULATION AND ANALYSIS

In this paper, our objective is to minimize the aver-

age bandwidth requirement subject to the latency, multicast

transmission, cache size and average energy consumption

constraints. The optimization problem can be formulated as

the following 0-1 integer-programming problem.

Problem 1 (Average Bandwidth Minimization).

min
x

B(x)

s.t. (3), (4), (5), (6), (7),

xk
f,j ∈ {0, 1}, f ∈ F , k ∈ K, j ∈ {1, 2, 3, 4}. (9)

Denote with B∗ the minimum average bandwidth, and x∗

the optimal service decision. Thus, we have B∗ = B(x∗) and

then obtain the optimal joint caching and computing policy

(cI∗, cO∗, d∗) from Table I with x∗.

It is direct to observe that (6) and (7) are reduced to

equality for optimality, and accordingly we have

BI
f (x,A) = max

k∈K

1

log
(

1 +
Ph2

k

σ2

)1(Ak = f)xk
f,3

×max
k∈K

Rk
f,31(Ak = f)xk

f,3, f ∈ F , (10)

BO
f (x,A) =

Of

τ
max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(Ak = f)xk
f,4,

f ∈ F . (11)



A. Computation Intractability

In the following, we show that Problem 1 is NP-hard in the

strong sense. Consider a single user scenario for the problem,

i.e., K = 1. For all task f ∈ F , denote with xf,j the service

decision for Route j ∈ {1, 2, 3, 4}, Pf the request probability,

C the cache size, Ē the average energy, f1 the computation

frequency (in cycles/s) and h the channel gain of the single

mobile device. In this case, Problem 1 can be formulated as

the following maximization problem:

Problem 2 (Optimization for Single User Scenario).

max
(xf,j)f∈F,j∈{1,2,3,4}

F
∑

f=1

4
∑

j=1

vf,jxf,j

s.t.

F
∑

f=1

4
∑

j=1

w1
f,jxf,j ≤ C, (12)

F
∑

f=1

4
∑

j=1

w2
f,jxf,j ≤ Ē, (13)

4
∑

j=1

xf,j = 1, f ∈ F , (14)

xf,j ∈ {0, 1}, f ∈ F , j ∈ {1, 2, 3, 4}, (15)

where

vf,j ,



















Pf
Of

τ
1

log(1+Ph2

σ2
)
, j = 1, 2,

Pf

(

Of

τ
−

If

τ−
Ifwf
f1

)

1

log(1+Ph2

σ2
)
, j = 3,

0, j = 4,
(16)

denotes the profit value for the choice of Route j for task f ,

w1
f,j ,











Of , j = 1,

If , j = 2,

0, j = 3, 4,

(17)

denotes the caching cost for the choice of Route j for task

f , and

w2
f,j ,

{

PfµIfwff
2
1 , j = 2, 3,

0, j = 1, 4,
(18)

denotes the energy cost for the choice of Route j for task f .

We can see that Problem 2 is a 4-choice 2-dimensional

knapsack problem, which is a well-known NP-hard problem

in the strong sense [32]. Thus, we conclude that Problem 1

in the multiple-user scenario is also NP-hard in strong sense.

B. Equivalent Problem Reformulation

Furthermore, it is difficult to derive a closed-form expres-

sion for the objective function in (8) since the expectation is

taken over the systematic request space FK . We replace the

objective function in (8) with its sample approximation [15],

[16] and reformulate Problem 1 as:

Problem 3 (Equivalent Problem Reformulation).

min
x

1

N

N
∑

n=1

F
∑

f=1

(

BI
f (x,An) +BO

f (x,An)
)

s.t. (3), (4), (5), (9),

BI
f (x,An) = max

k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk
f,3

×max
k∈K

Rk
f,31(An,k = f)xk

f,3,

f ∈ F , n ∈ N , (19)

BO
f (x,An) =

Of

τ
max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk
f,4

f ∈ F , n ∈ N , (20)

where N is the sample size, N , {1, · · · , N} and

{An}n∈N , {(An,k)k∈K}n∈N are the request samples

drown according to the distribution of A.

IV. OPTIMAL POLICY DESIGN

In this section, when the output data size is smaller than

the input data size (α ≤ 1), we reformulate the problem as

minimization of a monotone submodular function over ma-

troid constraints via analyzing the optimal structural property.

On the other hand, when α > 1, we analyze its computation

complexity and propose a low-complexity high-performance

algorithm named as CCCP-ADMM to obtain a stationary

point.

A. Optimal policy design for α ≤ 1

When α ≤ 1, we obtain the structural properties of the

optimal service policy as below.

Property 1. For all f ∈ F and k ∈ K, we have xk,∗
f,2 = 0

and xk,∗
f,3 = 0, i.e., cI,∗k,f = 0 and d∗k,f = 0.

Property 1 can be proofed by contradiction. First, suppose

that there exist k′ ∈ K and f ′ ∈ F such that xk′,∗
f ′,2 = 1.

However, by setting xk′,∗
f ′,2 from 1 to 0 and xk′,∗

f ′,1 from 0 to

1, B(x∗) does not change and caching cost is saved. Thus,

xk′,∗
f ′,2 = 1 is not optimal. Secondly, suppose that there exist

k′ ∈ K and f ′ ∈ F such that xk′,∗
f ′,3 = 1. However, by setting

xk′,∗
f ′,3 from 1 to 0 and xk′,∗

f ′,4 from 0 to 1, B(x∗) does not

increase since Rk′

f ′,3 ≥ Rk′

f ′,4 when α ≤ 1 and computing

cost is saved. Thus, xk′,∗
f ′,3 = 1 is not optimal.

Property 1 indicates that when α ≤ 1, there is no gain

from local input caching and local computing, and only exists

output caching gain. Based on Property 1, Problem 1 can be

reformulated as Problem 4.

Problem 4 (Equivalent Optimization when α ≤ 1).

(xk,∗
f,1)f∈F ,k∈K

, arg min
(xk

f,1
)f∈F,k∈K

N
∑

n=1

F
∑

f=1

Of

τ
max

k∈K:An,k=f

1− xk
f,1

log
(

1 +
Ph2

k

σ2

)



s.t.

F
∑

f=1

Ofx
k
f,1 ≤ Ck, k ∈ K,

xk
f,1 ∈ {0, 1}, f ∈ F , k ∈ K.

And xk,∗
f,4 = 1− xk,∗

f,1 , ∀ f ∈ F and k ∈ K.

Lemma 1. Problem 4 is a monotonically nonincreasing

submodular function minimization problem subject to matroid

constraints.

Proof. Please see Appendix A.

This structure allows us to use a strongly polynomial

algorithm of Schrijver to obtain the optimal solution [17].

B. Optimal policy design for α > 1

When α > 1, Problem 3 is not easy to solve mainly

due to the following three reasons. First, the objective func-

tion is nonsmooth and nonconvex. Secondly, (9) are binary

constraints, albeit (3), (4) and (5) are convex. Thirdly, the

sample size N generally needs to be large enough such that

the sample average is a good approximation to the original

expectation [16]. Thus, solving Problem 3 directly is of high

computation complexity. In the following, we first reformu-

late Problem 3 as a continuous smooth DC problem, and then

leverage CCCP to approximate the nonconvex problem as a

sequence of convex subproblems. Each convex subproblem is

then reformulated as a consensus ADMM form. The ADMM

reformulation enables that each updating step is performed

by solving multiple small-size subproblems with closed-form

solutions in parallel. Finally, we obtain a stationary point of

the original problem.

1) DC problem formulation: Firstly, for all f ∈ F and

n ∈ N , introduce auxiliary variables aIf,n, bIf,n and aOf,n
satisfying

aIf,n = max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk
f,3,

f ∈ F , n ∈ N , (21)

bIf,n = max
k∈K

Rk
f,31(An,k = f)xk

f,3, f ∈ F , n ∈ N , (22)

aOf,n = max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk
f,4,

f ∈ F , n ∈ N , (23)

respectively. Accordingly, BI
f (x,An) in (19) and BO

f (x,An)
in (20) can be rewritten as

BI
f (x,An) =

(

aIf,n + bIf,n

)2

4
−

(

aIf,n− bIf,n

)2

4
,

f ∈ F , n ∈ N , (24)

BO
f (x,An) =

Of

τ
aOf,n, f ∈ F , n ∈ N , (25)

respectively, each of which is a DC function.

Secondly, (9) can be rewritten as

xk
f,j ∈ [0, 1], f ∈ F , j ∈ {1, 2, 3, 4}, k ∈ K, (26)

K
∑

k=1

F
∑

f=1

4
∑

j=1

xk
f,j(1− xk

f,j) ≤ 0. (27)

Then, by substituting BI
f (x,An) and BO

f (x,An) with (24)

and (25), (9) with (26) and (27), respectively, Problem 3 is

reformulated as Problem 5.

Problem 5 (Equivalent DC Problem).

min
x

1

N

N
∑

n=1

F
∑

f=1

(

BI
f (x,An) +BO

f (x,An)
)

s.t. (3), (4), (5), (21), (22), (23), (24), (25), (26), (27).

Note that Problem 5 is a continuous DC problem. However,

(27) is not a convex constraint, and thus obtaining an efficient

algorithm for solving Problem 5 is still very challenging.

2) Penalized formulation and CCCP algorithm: To fa-

cilitate the problem solving, we transform Problem 5 into

Problem 6 by penalizing the concave constraints in (27) to

the objective function.

Problem 6 (Penalized Optimization).

min
x

1

N

N
∑

n=1

F
∑

f=1

(

BI
f (x,An) +BO

f (x,An)
)

− ρ

K
∑

k=1

F
∑

f=1

4
∑

j=1

xk
f,j(x

k
f,j − 1)

s.t. (3), (4), (5), (21), (22), (23), (24), (25), (26),

with the penalty parameter ρ > 0.

Based on Theorem 5 and Theorem 8 in [18], we show

the equivalence between Problem 5 and Problem 6 in the

following lemma.

Lemma 2 (Exact Penalty). There exists ρ0 > 0 such that

when ρ ≥ ρ0, Problem 6 and Problem 5 have the same

optimal solution.

Lemma 2 illustrates that Problem 6 is equivalent to Prob-

lem 5 if the penalty parameter ρ is sufficiently large. Thus, in

the sequel, we solve Problem 6 instead of Problem 5 by using

CCCP to obtain the stationary point [18]. In general, CCCP

involves iteratively solving a sequence of convex subprob-

lems, each of which is obtained via linearizing the concave-

term of the objective function of Problem 6, i.e., replacing

the concave parts with their first-order Taylor expansions.

Specifically, in the t-th iteration, we need to solve

Problem 7 (CCCP Subproblem in the t-th Iteration).

min
{aI , bI , aO, x}

1

N

N
∑

n=1

F
∑

f=1

[

(

aIf,n + bIf,n

)2

4
+

Of

τ
aOf,n



−
aIf,n(t)− bIf,n(t)

2

(

aIf,n − bIf,n
)

]

− ρ

K
∑

k=1

F
∑

f=1

4
∑

j=1

(

2xk
f,j(t)− 1

)

xk
f,j

s.t. (3), (4), (5), (21), (22), (23), (26),

where aI , (aIf,n)f∈F ,n∈N , bI
, (bIf,n)f∈F ,n∈N , aO ,

(aOf,n)f∈F ,n∈N , and

{

(aIf,n(t))f∈F ,n∈N , (bIf,n(t))f∈F ,n∈N ,

(xk
f,j(t))f∈F ,j∈{1,2,3,4},k∈K

}

are the optimal solution ob-

tained from the last iteration, and the penalty parameter

ρ > 0.

Note that Problem 7 is a convex problem and can be

solved via a general-purpose solver based on interior-point

methods. However, it may suffer from high computation

complexity due to the large sample size N . In the following,

we exploit the specific structure of Problem 7 and find its

optimal solution using an ADMM algorithm [20].

3) ADMM algorithm for each CCCP subproblem: First,

we introduce a set of consensus constraints xk,n
f,j = xk

f,j , f ∈
F , j ∈ {1, 2, 3, 4}, k ∈ K, n ∈ N , and reformulate

Problem 7 as

Problem 8 (Equivalent CCCP Subproblem in the t-th Itera-

tion).

min
{aI , bI , aO, x}

1

N

N
∑

n=1

F
∑

f=1

[

(

aIf,n + bIf,n

)2

4
+

Of

τ
aOf,n

−
aIf,n(t)− bIf,n(t)

2

(

aIf,n − bIf,n
)

]

− ρ
1

N

N
∑

n=1

K
∑

k=1

F
∑

f=1

4
∑

j=1

(

2xk
f,j(t)− 1

)

xk,n
f,j

(28)

s.t. (3), (4), (5), (26),

aIf,n ≥
1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk,n
f,3 ,

k ∈ K, f ∈ F , n ∈ N , (29)

bIf,n ≥ Rk
f,31(An,k = f)xk,n

f,3 ,

k ∈ K, f ∈ F , n ∈ N , (30)

aOf,n ≥
1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk,n
f,4 ,

k ∈ K, f ∈ F , n ∈ N , (31)

xk,n
f,j = xk

f,j ,

f ∈ F , j ∈ {1, 2, 3, 4}, k ∈ K, n ∈ N , (32)

where x = (xk
f,j)f∈F ,j∈{1,2,3,4},k∈K in constraints

(21), (22) and (23) is replaced with {xn}n∈N ,

(xk,n
f,j )f∈F ,j∈{1,2,3,4},k∈K,n∈N in constraints (29), (30) and

(31).

Then, drop the constant 1/N in (28) and we obtain the

partial augmented Lagrangian of Problem 8 via moving

the consensus constraint (32) to the objective function of

Problem 8 as follows:

Lγ

(

aI , bI , aO, (xn)n∈N , x; (λn)n∈N

)

,

N
∑

n=1

F
∑

f=1

[

(

aIf,n + bIf,n

)2

4
+

Of

τ
aOf,n

−
aIf,n(t)− bIf,n(t)

2

(

aIf,n − bIf,n
)

]

− ρ

N
∑

n=1

K
∑

k=1

F
∑

f=1

4
∑

j=1

(

2xk
f,j(t)− 1

)

xk,n
f,j

+

N
∑

n=1

K
∑

k=1

F
∑

f=1

4
∑

j=1

[

λk,n
f,j

(

xk,n
f,j − xk

f,j

)

+
γ

2

(

xk,n
f,j − xk

f,j

)2
]

,

(33)

where λn , (λk,n
f,j )f∈F ,j∈{1,2,3,4},k∈K, λk,n

f,j is the La-

grangian multiplier corresponding to the constraint xk,n
f,j =

xk
f,j and γ > 0 is the penalty parameter.

In general, ADMM involves iteratively updating the primal

varaibles via minimizing the augmented Lagrangian (33),

and then updating the Lagrangian multiplier. In particular,

ADMM updates the variables at iteration q+ 1 according to

the following three steps [16], [20], [21]:

•

{

aI , bI , aO, (xn)n∈N

}

Update. Given {x, (λn)n∈N }q

obtained from iteration q, update
{

aI , bI , aO, (xn)n∈N

}

for iteration q + 1 as the solution to the following

problem:

min
{aI ,bI ,aO,(xn)n∈N}

Lγ

(

aI , bI , aO, (xn)n∈N , {x}q;

{(λn)n∈N }q
)

s.t. (29), (30), (31).

• x Update. Given
{

aI , bI , aO, (xn)n∈N

}q+1
obtained

from iteration q + 1 and {(λn)n∈N }q obtained from

iteration q, update x for iteration q + 1 as the solution

to the following problem:

min
x

Lγ

(

{

aI , bI , aO, (xn)n∈N

}q+1
, x; {(λn)n∈N }q

)

s.t. (3), (4), (5), (26).

• (λn)n∈N Update. Given
{

aI , bI , aO, (xn)n∈N , x
}q+1

obtained from iteration q + 1, update (λn)n∈N for

iteration q + 1 according to:

{

λk,n
f,j

}q+1

=
{

λk,n
f,j

}q

+ γ

(

{

xk,n
f,j

}q+1

−
{

xk
f,j

}q+1
)

,

f ∈ F , j ∈ {1, 2, 3, 4}, k ∈ K, n ∈ N . (34)

For the update of
{

aI , bI , aO, (xn)n∈N

}

, the optimization

problem is decoupled among the N request realizations and



the F files, and into NF subproblems. For each n ∈ N and

f ∈ F , we solve the following subproblem:

min
{aI

f,n
,bI

f,n
,aO

f,n
,xn

f}

(

aIf,n + bIf,n

)2

4
+

Of

τ
aOf,n

−
aIf,n(t)− bIf,n(t)

2

(

aIf,n − bIf,n
)

− ρ
K
∑

k=1

4
∑

j=1

(

2xk
f,j(t)− 1

)

xk,n
f,j

+

K
∑

k=1

4
∑

j=1

[

{

λk,n
f,j

}q

xk,n
f,j +

γ

2

(

xk,n
f,j −

{

xk
f,j

}q
)2
]

s.t. aIf,n ≥
1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk,n
f,3 , k ∈ K,

bIf,n ≥ Rk
f,31(An,k = f)xk,n

f,3 , k ∈ K,

aOf,n ≥
1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)xk,n
f,4 , k ∈ K.

Based on KKT conditions, the closed-form expression for

the optimal solution
{

aI , bI , aO, (xn)n∈N

}q+1
is given by

aIf,n = max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)
{

xk,n
f,3

}q+1

,

bIf,n = max
k∈K

Rk
f,31(An,k = f)

{

xk,n
f,3

}q+1

,

aOf,n = max
k∈K

1

log
(

1 +
Ph2

k

σ2

)1(An,k = f)
{

xk,n
f,4

}q+1

,

{

xk,n
f,j

}q+1

=
ρ

γ

(

2xk
f,j(t)− 1

)

−
1

γ

{

λk,n
f,j

}q

+
{

xk
f,j

}q
,

j ∈ {1, 2}, k ∈ K,
{

xk,n
f,3

}q+1

=
ρ

γ

(

2xk
f,3(t)− 1

)

−
1

γ

{

λk,n
f,3

}q

+
{

xk
f,3

}q

−
u1,k

γ
R3

k,f1 (An,k = f)

−
u2,k

γ

1

log
(

1 +
Ph2

k

σ2

)1 (An,k = f) , k ∈ K,

{

xk,n
f,4

}q+1

=
ρ

γ

(

2xk
f,4(t)− 1

)

−
1

γ

{

λk,n
f,4

}q

+
{

xk
f,4

}q

−
u3,k

γ

1

log
(

1 +
Ph2

k

σ2

)1 (An,k = f) , k ∈ K,

where (u1,k)k∈K, (u2,k)k∈K and (u3,k)k∈K are given by

u1,k =

{

0, k 6= k∗1 ,
u1,k∗

1
, k = k∗1 ,

(35)

u2,k =

{

0, k 6= k∗2 ,
u2,k∗

2
, k = k∗2 ,

(36)

u3,k =

{

0, k 6= k∗3 ,
Of

τ
, k = k∗3 ,

(37)

with k∗1 , argmaxk∈K R3
k,f1 (An,k = f)

{

xk,n
f,3

}q+1

, k∗2 ,

argmaxk∈K
1

log

(

1+
Ph2

k
σ2

)1 (An,k = f)
{

xk,n
f,3

}q+1

, and u1,k∗
1

and u2,k∗
2

satisfying

R3
k∗
1
,f1
(

An,k∗
1
= f

)

2

{

x
k∗
1
,n

f,3

}q+1

+
1
(

An,k∗
2
= f

)

2 log

(

1 +
Ph2

k∗
2

σ2

)

{

x
k∗
2
,n

f,3

}q+1

−
aIf,n(t)− bIf,n(t)

2

= u1,k∗
1
, (38)

and k∗3 , argmaxk∈K
1

log

(

1+
Ph2

k

σ2

)1 (An,k = f)
{

xk,n
f,4

}q+1

.

Note that k∗1 , k∗2 and k∗3 can be determined via brute-

force search on the complexity order O(K3), and then
{

aI , bI , aO, (xn)n∈N

}q+1
is obtained directly.

For the update of x, the optimization problem is decom-

posed among the request realizations and the K users, and

into NK subproblems. For each n ∈ N and k ∈ K, we solve

the following subproblem:

min
(xk

f,j
)f∈F,j∈{1,2,3,4}

F
∑

f=1

4
∑

j=1

[

λk,n
f,j

(

xk,n
f,j −

{

xk
f,j

}q
)

+
γ

2

(

xk,n
f,j −

{

xk
f,j

}q
)2
]

s.t. (3), (4), (5), (26).

Based on KKT conditions, we can obtain the optimal

solution (xk
f,j)f∈F ,j∈{1,2,3,4} in the closed-form expression

as following

{

xk
f,1

}q+1
= min

{

max

{

Sk
k,1 −

λ1

2
Of −

µf

2
, 0

}

, 1

}

,

{

xk
f,2

}q+1
= min

{

max
{

Sk
k,2 −

λ1

2
If −

λ2

2
PfµIfwff

2
k

−
µf

2
, 0
}

, 1

}

,

{

xk
f,3

}q+1
= min

{

max
{

Sk
k,3 −

λ2

2
PfµIfwff

2
k −

µf

2
, 0
}

,

1

}

,

{

xk
f,4

}q+1
= min

{

max
{

Sk
k,4 −

µf

2
, 0
}

, 1
}

,

where λ1, λ2 and (µf )f∈F are the optimal Lagrangian

multipliers satisfying (3),
∑F

f=1 Ofx
k
f,1 + Ifx

k
f,2 = Ck and

∑F
f=1 PfµIfwff

2
k (x

k
f,2 + xk

f,3) = Ēk.

Based on Section 3.2 in [21] and Proposition 15 in [22],

the above mentioned ADMM is guaranteed to converge to the



Algorithm 1 CCCP-ADMM algorithm

1: Initialization. Find an initial feasible point x(0) of Problem 8
and set t = 0.

2: Repeat

3: Obtain x(t+1) the optimal solution to the t + 1-th subproblem
via ADMM algorithm.

4: Set t← t+ 1.

5: until
[

G (t− 1)−H(t−1; t−2)
]

−[G (t)−H (t; t− 1)] ≤ δ,

where G (t) , 1
N

∑N

n=1

∑F

f=1

(aI
f,n(t)+bIf,n(t))2

4
+

Of

τ
aO
f,n(t) and H(t; t − 1) ,

1
N

∑N

n=1

∑F

f=1

aI
f,n(t−1)−bIf,n(t−1)

2

(

aI
f,n(t)− bIf,n(t)

)

+

ρ 1
N

∑N

n=1

∑K

k=1

∑F

f=1

∑4
j=1

(

2xk
f,j(t− 1)− 1

)

xk,n

f,j (t).

optimal solution to Problem 8. Thus, our proposed CCCP-

ADMM algorithm, as illustrated in Algorithm 1, converges to

a stationary point of our original problem. Based on CCCP-

ADMM, we can see that the computation complexity is

reduced from O
(

23K
)

to O (N max{F,K}).

V. BANDWIDTH GAIN ANALYSIS

In this section, we analyze the symmetric scenario to

gain more design insights, i.e., for all f ∈ F , k ∈ K,

(If , wf , Of ) = (I, w,O), Pk,f = 1
F

, fk = f1, Ck = C,

Ēk = Ē and hk = h. Accordingly, we have Rk
f,3 = R3

and Rk
f,4 = R4, where R3 , I

τ− Iw
f1

and R4 , O
τ

, for all

f ∈ F and k ∈ K. For notation convenience, we define

βc , C
FO

≤ 1, which represents the normalized cache size

at each device with respect to the total output data size of

all the tasks; denote βe , Ē
µIwf2

1

≤ 1, which represents the

normalized average energy at each device with respect to the

total average energy of all the tasks.

A. Optimal Policy

First, by analyzing the structure of the problem, we obtain

the optimal policy in the symmetric scenario, given as below.

Lemma 3 (Optimal policy in symmetric scenario). For all

k ∈ K,

xk,∗
f,1 =

{

1, f = 1, · · · , n1,

0, otherwise,
(39)

where n1 , F max
{

βc −min
{

βc,
1
α
βe

}

1(α > 1), 0
}

,

xk,∗
f,2 =

{

1, f = n1 + 1, · · · , n1 + n2,

0, otherwise,
(40)

where n2 , F min {αβc, βe} 1(α > 1),

xk,∗
f,3 =

{

1, f = n1 + n2 + 1, · · · , n1 + n2 + n3,

0, otherwise,
(41)

where n3,F (βe−min {αβc, βe}) 1
(

α> 1, f1 >
Iw

(1−1

α
)τ

)

,

xk,∗
f,4 =

{

1, f = n1 + n2 + n3 + 1, · · · , F,

0, otherwise.
(42)

Proof. Please see Appendix B.

From Lemma 3, note that when α ≤ 1, xk,∗
f,2 = xk,∗

f,3 = 0 for

all k ∈ K and f ∈ F , meaning that joint local input caching

and computing does not bring any bandwidth gain, and the

caching resources at all the mobile devices are utilized merely

for output caching. On the other hand, when α > 1, from

(39) and (40), we can see that caching at each mobile device

is exploited for input caching first and then output caching

if there still remains underutilized caching. From (40) and

(41), we can see that computing at each mobile device is

exploited from local computing with local caching first and

then local computing only if there still remains underutilized

computing resource and also local computing frequency is

large enough.

B. Bandwidth Gain from Local Caching and Computing

Next, we analytically quantify the gain on the bandwidth

requirement that caching and computing resources at the

mobile devices can bring over MEC computing, i.e., the

outputs of all the tasks are transmitted from the MEC server.

Denote with B∗
MEC the minimum bandwidth requirement

via MEC computing. Based on Lemma 3, we obtain the

following theorem.

Theorem 1 (Bandwidth Gain from Local Caching and Com-

puting). When α ≤ 1, we have

B∗

B∗
MEC

= 1− βc, (43)

which decreases with C but is independent of f1.

When α > 1 and f1 ≥
√

FĒ
µwC

, we have

B∗

B∗
MEC

= 1− βc −

(

1−
1

α

)

βe, (44)

which decreases with C and increases with f1.

When α > 1 and Iw
(1− 1

α
)τ

< f1 <
√

FĒ
µwC

, we have

B∗

B∗
MEC

= 1−αβc −

(

1−
τ

α(τ − Iw
f1

)

)

(βe − αβc) , (45)

which decreases with C and first decreases and then in-

creases with f1.

When α > 1 and f1 ≤ min
{

Iw
(1− 1

α
)τ
,
√

FĒ
µwC

}

, we also

have
B∗

B∗
MEC

= 1− αβc, (46)

which decreases with C and is independent of f1.

Proof. Please see Appendix C.

Remark 1 (α ≤ 1). We can see from Theorem 1 that when

the size of output data is smaller than that of input data

(α ≤ 1) in the symmetric scenario, the bandwidth benefits

only from the local caching and thus there is no need for

local computing.



Remark 2 (α > 1). In Theorem 1, we also reveal the

important fact that when α > 1, computing and caching do

not affect the bandwidth gain independently, but interact on

each other to get the bandwidth gain. For example, when the

computing ability f1 and the caching size C of the mobile

device satisfy the following relationship: f1 ≥
√

FĒ
µwC

, the

bandwidth gain is 1 − βc −
(

1− 1
α

)

βe. Otherwise, the

bandwidth gain becomes (45) or (46).

C. Bandwidth Gain from Multicast

Finally, we analytically quantify the bandwidth gain result-

ing from the multicast transmission over the unicast transmis-

sion, in which the MEC server transmits the requested datas

to the mobile devices via K independent unicast channels.

The average bandwidth requirement for unicast transmission

under x, denoted as Bunicast(x), is given by

Bunicast(x),
K
∑

k=1

F
∑

f=1

Pk,f

4
∑

j=1

Rk
f,j

1

log(1 +
Ph2

k

σ2 )
xk
f,j , (47)

and denote with B∗
unicast the minimum required bandwidth

for unicast transmission. Based on Lemma 3, we obtain the

multicast gain B∗

B∗
unicast

as below.

Theorem 2 (Bandwidth Gain from Multicast). In the sym-

metric scenario, we have

B∗

B∗
unicast

=
F (1− (1− 1

F
)K)

K
, (48)

which increases with F
K

.

Proof. Please see Appendix D.

Theorem 2 shows that in the symmetric scenario, the

multicast gain depends only on the number of users K and

that of tasks F , and is unrelated to the computing and caching

capabilities of mobile device.

VI. NUMERICAL RESULTS

In this section, we present numerical results to evaluate

the performance of the proposed CCCP-ADMM algorithm in

terms of bandwidth saving. We compare it with the following

three baselines:

• MEC computing: requests for all tasks are satisfied via

Route 4, i.e., xk
f,4 = 1 for all f ∈ F and k ∈ K;

• Greedy caching: all the requests are satisfied via

Route 1, i.e., for each user k ∈ K, sort F according

to
Pk,fR

k
f,4

Of
in descending order, denote with ⌊j⌋ the

index f ∈ F with the j-th maximal value of
Pk,fR

k
f,4

Of
,

and sc the split index satisfying
∑sc−1

j=1 O⌊j⌋ ≤ Ck and
∑sc

j=1 O⌊j⌋ > Ck. Set xk
⌊j⌋,1 = 1, xk

⌊j⌋,4 = 0 for all

j ∈ {1, · · · , sc} and xk
⌊j⌋,1 = 0, xk

⌊j⌋,4 = 1, otherwise.

xk
f,i = 0 for all i ∈ {2, 3} and f ∈ F . Note that the

complexity of this algorithm is O (KF log(F ));

0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

1.5

2

2.5

3

3.5
108

MEC computing
Greedy caching
Greedy caching and computing
CCCP-ADMM

Figure 2: Impact of C. Ck = C, fk = f1 and 1

log(1+
Ph2

k
σ2

)

= 0.1∗k

for all k ∈ K, F = 50, K = 4, If ∈ [10, 15] M bits, α = 3, w =
10 cycles/bit, µ = 10−27, f1 = 1.1 ∗ 1011Hz, Ē = 1.7 ∗ 103J ,
Pk,f ∝

1
fγ with γ = 1, ρ = 104.
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Figure 3: Impact of f1. C
∑

F
f=1

If
= 0.3 and other parameters are

the same as that in Fig. 2.

• Greedy caching and computing: for each user

k ∈ K, local input caching with local comput-

ing is determined via greedy algorithm, i.e., sort

F according to
Pk,fR

k
f,4

Of+Pk,fµIfwff
2

k

in descending or-

der, denote with ⌊j⌋ the index f ∈ F with

the j-th maximal value of
Pk,fR

k
f,4

Of+Pk,fµIfwff
2

k

, and s1c

the split index satisfying
∑s1c−1

j=1 I⌊j⌋ ≤ Ck and
∑s1c

j=1 I⌊j⌋ > Ck or
∑s1c−1

j=1 Pk,⌊j⌋µI⌊j⌋w⌊j⌋f
2
k ≤ Ēk

and
∑s1c

j=1 Pk,⌊j⌋µI⌊j⌋w⌊j⌋f
2
k > Ēk. Set xk

⌊j⌋,2 = 1 for

all j ∈ {1, · · · , s1c − 1}, and xk
⌊j⌋,2 = 0, otherwise.

Then, if there still exists underutilized cache size, i.e.,
∑s1c−1

j=1 I⌊j⌋ < Ck, then outputs of the rest of tasks
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Figure 4: Impact of K. C
∑

F
f=1

If
= 0.3 and other parameters are

the same as that in Fig. 2.
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Figure 5: Impact of βc on local caching and computing gain. F =
50, K = 10, I = 15M bits, w = 10 cycles/bit, α = 2.

are cached at the mobile device via greedy algorithm.

Otherwise, if
∑s1c−1

j=1 Pk,⌊j⌋µI⌊j⌋w⌊j⌋f
2
k < Ēk, then

local computing without caching is decided via greedy

algorithm according to
Pk,f (R

k
f,4−Rk

f,3)

Pk,fµIfwff
2

k

. Note that the

complexity of this algorithm is O (KF log(F )).

Fig. 2 and Fig. 3 illustrate the impacts of the local

cache size, i.e., C, and computation frequency, i.e., f1, on

the average bandwidth cost, respectively. Fig. 4 illustrates

the impact of the number of users, i.e., K , on the band-

width requirement. We see that CCCP-ADMM exhibits great

promises in saving communication bandwidth compared with

the baselines. For example, in Fig. 2, compared with MEC

computing, greedy caching and greedy caching and comput-

ing, CCCP-ADMM brings significant transmission rate gain

(e.g., 57.2%, 42.3 % vs. 25% at C
∑

F
f=1

If
= 17.5%).

In Fig. 5, we present the bandwidth gain versus the normal-

ized caching size βc with different normalized average energy
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1010
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0.6

0.7
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Figure 6: Impact of f1 on local caching and computing gain. βc =
0.3, µ = 10−27 and other parameters are the same as that in Fig. 5.
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Figure 7: Impact of K on multicast gain.

in the symmetric scenario. We can see that the local caching

and computing gain increases with βc and the increasing rate

depends on the relationship between βe and βc.

From Fig. 6, we can see that the local caching and

computing gain decreases with f1 when the average energy

is limited, since increasing f1 decreases the number of

computation tasks that can be computed locally. However,

the gain first increases and then decreases with f1 when

the average energy is relatively large, since increasing f1
decreases the transmission rate requirement.

From Fig. 7, we can see that the multicast gain increases

with K . This is mainly because when the number of users

K increases, the probability that multiple users request the

same task increases, and thus the multicast gain is growing.

VII. CONCLUSION

In this paper, we investigate the impacts of the caching and

computing resources at mobile devices on the transmission

bandwidth, and optimize the joint caching and computing

policy to minimize the average transmission bandwidth under

the latency, local caching and local average energy consump-



tion constraints. In particular, we first show the NP-hardness

of the problem and transform it to a DC problem without

loss of equivalence, which is solved efficiently via CCCP

together with ADMM. In the symmetric scenario, we obtain

the optimal joint policy and the closed form expressions for

local caching and computing gain as well as multicast gain.

In summary, we show theorectically that: in the symmetric

scenario,

•
B∗

B∗
MEC

decreases with C;

•
B∗

B∗
MEC

increases with f1 when α > 1 and f1 >
√

FĒ
µwC

;

•
B∗

B∗
MEC

first decreases and then increases with f1 when

α > 1 and Iw
(1− 1

α
)τ

< f1 ≤
√

FĒ
µwC

;

•
B∗

B∗
MEC

remains unchanged with f1 when α ≤ 1 or when

α > 1 and f1 ≤
Iw

(1− 1

α
)τ

;

•
B∗

B∗
unicast

decreases with K .

APPENDIX A: PROOF OF LEMMA 1

Monotonicity is obvious since any caching of a new

file cannot increase the value of the objective function.

In order to show the submodularity of the objective func-

tion, it is enough to prove that for each n ∈ N and

f ∈ F ,
Of

τ
maxk∈K:An,k=f

1−xk
f,1

log

(

1+
Ph2

k

σ2

) is a submodular

function since the sum of submodular functions is submod-

ular [33]. It is direct to see that the marginal value of
Of

τ
maxk∈K:An,k=f

1−xk
f,1

log

(

1+
Ph2

k
σ2

) for adding a new file de-

creases with xk
f,1. Thus, the objective function of Problem 4

is a nonincreasing submodular function. In addition, the

constraints of Problem 4 can be rewritten as multiple matroid

constraints according to [33] directly. The proof ends.

APPENDIX B: PROOF OF LEMMA 3

First, in the symmetric scenario, Problem 1 can be rewrit-

ten as

Problem 9 (Optimization Problem in Symmetric Scenario).

min
x

1

FK

1

log
(

1 + Ph2

σ2

)

∑

A∈FK

F
∑

f=1

[

R3 max
k∈K

1(Ak = f)xk
f,3

+R4 max
k∈K

1(Ak = f)(1 −
3
∑

j=1

xk
f,j)

]

s.t.

3
∑

j=1

xk
f,j ≤ 1, f ∈ F , k ∈ K, (49)

F
∑

f=1

αxk
f,1 + xk

f,2 ≤
C

I
, k ∈ K, (50)

F
∑

f=1

xk
f,2 + xk

f,3 ≤
FĒ

µIwf2
1

, k ∈ K, (51)

xk
f,j ∈ {0, 1}, f ∈ F , j ∈ {1, 2, 3}, k ∈ K. (52)

And xk
f,4 can be obtained from xk

f,4 = 1 −
∑3

j=1 x
k
f,j , for

all f ∈ F and k ∈ K.

Then, we show the optimality of symmetric policy, i.e.,

xk1

f,j = xk2

f,j , for all f ∈ F , j ∈ {1, 2, 3, 4}, k1 ∈ K and

k2 ∈ K. In addition, since the parameters of all the tasks

are uniformly distributed in such scenario, it is equivalent to

show that x̌ , (x̌k
f,j)f∈F ,j∈{1,2,3,4},k∈K given by

x̌k
f,j =

{

1 f =
∑max{j−1,1}

j′=1 nj′ + 1, · · · ,
∑j

j′=1 nj′ ,

0 otherwise,

(53)

is without loss of optimality, where nj represents the number

of tasks that are served via Route j at each mobile device.

In the following, we prove (53) based on contradiction.

Specifically, for any x̄ , (x̄k
f,j)f∈F ,j∈{1,2,3,4},k∈K satisfying

that: i) there exists k′ ∈ K, f1 ∈ F and f2 ∈ F such that

f1 ≤ f2, x̄k′

f1,j1
= 0, x̄k′

f1,j2
= 1, x̄k′

f2,j1
= 1 and x̄k′

f2,j2
= 0,

where ji , argj∈{1,2,3,4} 1(x̌k′

fi,j
= 1); ii) x̄k

f,j = x̌k
f,j

otherwise, we have

B(x̄)−B(x̌)

=
1

FK

1

log
(

1 + Ph2

σ2

)

[

∑

A∈{FK :Ak′=f1}

(

W (A, f1, x̄)−W (A, f1, x̌)
)

+
∑

A∈{FK :Ak′=f2}

(

W (A, f2, x̄)−W (A, f2, x̌)
)

]

, (54)

where W (A, f i, x) , R3 maxk∈K 1(Ak = f i)xk
fi,3 +

R4 maxk∈K 1(Ak = f i)
(

1−
∑3

j=1 x
k
fi,j

)

. In the sequel,

we analyze the positivity of B(x̄) − B(x̌) in the following

cases:

• If f1 ≤ n1, f
2 ≤ n1, then we have j1 = j2 = 1. Thus,

x̄ = x̌ and B(x̄)−B(x̌) = 0;

• If f1 ≤ n1, n1 + 1 ≤ f2 ≤ n1 + n2, then we have

j1 = 1 and j2 = 2. Thus, W (A, f i, x̌) = W (A, f i, x̄) =
0, for all i ∈ {1, 2} and A ∈

{

FK : Ak′ = f i
}

, and

B(x̄)−B(x̌) = 0;

• If f1 ≤ n1, n1 + n2 + 1 ≤ f2 ≤ n1 + n2 + n3,

then we have j1 = 1 and j2 = 3. Accordingly,

W (A, f1, x̄) = R3, W (A, f1, x̌) = 0,

W (A, f2, x̄) = R3 maxk∈K\k′ 1{Ak = f2}x̄k
f2,3

and W (A, f2, x̌) = R3. Thus, B(x̄) − B(x̌) =
1

FK
1

log
(

1+Ph2

σ2

)

∑

A∈{FK :Ak′=f2} R3 maxk∈K\k′ 1{Ak=

f2}x̄k
f2,3 ≥ 0;

• If f1 ≤ n1, n1+n2+n3+1 ≤ f2 ≤ n1+n2+n3+n4,

then we have j1 = 1 and j2 = 4.

Accordingly, W (A, f1,x̄) = R4, W (A, f1, x̌) = 0,

W (A, f2, x̄) = R4 maxk∈K\k′ 1{Ak = f2}̄xk
f2,4

and W (A, f2, x̌) = R4. Thus, B(x̄) − B(x̌) =
1

FK
1

log
(

1+Ph2

σ2

)

∑

A∈{FK :Ak′=f2} R4 maxk∈K\k′ 1{Ak=

f2}x̄k
f2,4 ≥ 0;



• If n1+1 ≤ f1 ≤ n1+n2, similar to the cases mentioned

above, we have B(x̄)−B(x̌) ≥ 0;

• If n1 + n2 + 1 ≤ f1 ≤ n1 + n2 + n3, n1 + n2 + 1 ≤
f2 ≤ n1 + n2 + n3, then we have j1 = j2 = 3. Thus,

x̄ = x̌ and B(x̄)−B(x̌) = 0;

• If n1+n2+1 ≤ f1 ≤ n1+n2+n3, n1+n2+n3+1 ≤
f2 ≤ n1+n2+n3+n4, then we have j1 = 3 and j2 = 4.

Accordingly, W (A, f1, x̄) = R3 maxk∈K\k′ 1{Ak =
f1}x̄k

f1,3 + R4, W (A, f1, x̌) = R3, W (A, f2, x̄) =

R3 + R4 maxk∈K\k′ 1{Ak = f2}x̄k
f2,4 and

W (A, f2, x̌) = R4. Thus, B(x̄) − B(x̌) =

1
FK

1

log
(

1+Ph2

σ2

)

[

∑

A∈{FK :Ak′=f1} R3 maxk∈K\k′ 1{Ak =

f1}x̄k
f1,3 +

∑

A∈{FK :Ak′=f2} R4 maxk∈K\k′ 1{Ak =

f2}x̄k
f2,4

]

≥ 0.

Thus, we have B(x̄)−B(x̌) ≥ 0, which contradicts the opti-

mality of x̌, and the optimality of the symmetric assumption

in (53) holds.

Next, based on the symmetric property of the joint policy

in (53), the objective function of Problem 9, i.e., B(x), can

be rewritten as:

B(x)

(a)
=

1

log
(

1+ Ph2

σ2

)

∑

A∈FK

P (A)

(

n1+n2+n3
∑

f=n1+n2+1

R3

max
k∈K

1(Ak = f) +
F
∑

f=n1+n2+n3+1

R4max
k∈K

1(Ak = f)

)

(b)
=

1

log
(

1 + Ph2

σ2

)

[

R3

n1+n2+n3
∑

f=n1+n2+1

∑

(πf,k)k∈K∈{0,1}K

P ((πf,k)k∈K) 1

(

∑

k∈K

πf,k > 1

)

+R4

F
∑

f=n1+n2+n3+1

∑

(πf,k)k∈K∈{0,1}K

P ((πf,k)k∈K)

1

(

∑

k∈K

πf,k > 1

)]

=
1

log
(

1 + Ph2

σ2

)

(

1− (1−
1

F
)K
)

(R3n3+R4 (F − n1 − n2 − n3)) , (55)

where P ((πf,k)k∈K) ,
1
F
πf,k + (1− 1

F
)(1− πf,k). Specif-

ically, (a) is directly obtained from (53), and (b) has been

proved in [34]. Accordingly, Problem 9 can be rewritten as

Problem 10 (Optimization Problem in Symmetric Scenario).

min
n1,n2,n3

1

log
(

1 + Ph2

σ2

)

(

1− (1−
1

F
)K
)

(

R3n3

+R4 (F − n1 − n2 − n3)
)

s.t. αn1 + n2 ≤
C

I
, (56)

n2 + n3 ≤
FĒ

µIwf2
1

, (57)

n1 + n2 + n3 ≤ F, (58)

n1 ≥ 0, n2 ≥ 0, n3 ≥ 0. (59)

Note that Problem 10 is a linear programming, and the

solution can be trivially obtained. The proof ends.

APPENDIX C: PROOF OF THEOREM 1

B∗
MEC and B∗ can be obtained directly from (55). Specif-

ically, for MEC computing, we have n1 = n2 = n3 = 0 and

n4 = F , and thus

B∗
MEC =

1

log
(

1 + Ph2

σ2

)

(

1− (1−
1

F
)K
)

FR4. (60)

For B∗, similarly, from Lemma 3, we can obtain the optimal

value of ni for all i ∈ {1, 2, 3, 4}. By substituting ni for

all i ∈ {1, 2, 3, 4} into (55), we can directly obtain B∗. The

proof ends.

APPENDIX D: PROOF OF THEOREM 2

In the symmetric scenario, B∗
unicast can be obtained di-

rectly from [8], and B∗ can be obtained as mentioned above.

The proof ends.
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