
1

Subset MMSE Receivers for Cell-Free Networks
Masoud Attarifar, Student Member, IEEE, Aliazam Abbasfar, Senior Member, IEEE,

Angel Lozano, Fellow, IEEE

Abstract—This paper formulates linear MMSE receivers that
are both network- and user-centric for the uplink of cell-free
wireless networks with centralized processing. Precisely, every
user’s reception involves a distinct subset of access points (APs)
while every AP participates in the reception of a distinct subset of
users, hence the moniker subset MMSE receivers. These subsets,
defined on the basis of the large-scale channel gains between
users and APs, capture the most relevant signal and interference
contributions while disregarding those whose processing is cost-
ineffective and whose associated channel estimations would incur
unnecessary overheads. With that, subset reception approaches
the performance of network-wide MMSE reception, offering a
multiple-fold improvement over cellular and matched-filtering
counterparts, while being scalable in terms of cost and channel
estimation. Moreover, because the subsets overlap considerably,
they can sometimes be advantageously combined and the compu-
tation of the corresponding receivers can share a hefty amount
of processing.

Index Terms—Cell-free networks, C-RAN, MMSE, ultradense
networks, user-centric networks

I. INTRODUCTION

The reigning paradigm in the organization of wireless
networks is the cellular structure, in which every user is
served by a single access point (AP) while being regarded as
interference by the rest of APs. This paradigm has served us
well. By virtue of the pathloss exponent η being substantially
above 2 (typically η ≈ 3.5–4) almost everywhere, universal or
quasi-universal frequency reuse is possible without other-cell
interference becoming overwhelming. Networks have densi-
fied drastically over the years, always within the confines of
the cellular paradigm, with only limited add-ons to allow for
some cooperation among adjacent cells [1]–[3].

Densification is bound to reach a transition point beyond
which the pathloss behaves differently, with η ≈ 2 over the
span of multiple cells and with an ensuing surge in other-cell
interference [4]–[7]. This motivates the interest in alternative
forms of network organization, and specifically in cell-free
structures where every user is potentially served by every
AP. These can be interpreted as deconstructions of a cellular
structure whereby the associations between users and cells are
released, or else as cellular networks whose cells are truly and
seamlessly cooperative [8]–[11].

Capitalizing on extensive fronthaul, cell-free networks
promise a host of advantages over their cellular counterparts:
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• A reinterpretation of the notion of interference that turns
the aforedescribed pathloss behavior into a virtue. Rather
than suffer stronger interference, a cell-free network can
potentially recover additional signal power. Densification
can proceed beyond the point where cellular networks
might collapse under their own interference.

• Large-scale diversity by virtue of the fact that each user is
not linked to a single AP, but rather to many, facilitating
a more uniform service.

• Amenability to cloud-based implementations of the base-
band processing, so-called C-RAN, with all the benefits
of software-defined implementations, the convenience of
maintenance and upgrades, and the elasticity in the use
of resources [12]–[19].

Altogether, the research interest in cell-free networks is
expanding [20]–[31] and it is reasonable to anticipate that,
at least for ultra-dense deployments, cell-free structures might
become the norm [32].

Focusing on the uplink, the AP observations must be
combined to extract the user signals, hence the processing
inevitably requires some degree of centralization [33]. A basic
combining method is matched filtering, which amounts to
desired-signal beamforming and performs satisfactorily when
the number of users per time-frequency signaling resource is
much smaller than the number of APs; as this is reminiscent
of massive MIMO, cell-free networks with matched filtering
can be viewed as a deconstruction of cellular massive MIMO.

By embracing complete centralization, possibly edge-cloud-
based, more sophisticated receivers can be envisioned and,
with those, a drastically higher number of users. Specifi-
cally, the optimum linear receiver—in the sense of maxi-
mizing the signal-to-interference-plus-noise ratio (SINR), and
subsequently the spectral efficiency—is the MMSE receiver.
A network-wide MMSE receiver, however, is not scalable
and, in large deployments with thousands of APs and users,
it becomes outright unfeasible. Moreover, a network-wide
MMSE receiver is an unnecessary overkill because (i) a user’s
transmission elicits negligible signal power at faraway APs,
and it causes negligible interference to faraway users, and (ii)
reliable channel estimates at faraway APs are so burdensome
overhead-wise that it is preferable to forgo those estimations
altogether [34]. This suggests a degree of confinement in the
channel estimation and in the data collection, with the aim
of approaching the network-wide MMSE performance in a
scalable manner. Important advances in this direction have
been made in [35]–[42], which discuss curtailing the users
and APs whose observations should be jointly processed. The
present paper builds on these works as follows:

• Linear MMSE receivers that are both AP-centric and
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user-centric, complete with AP and user subset selection
policies, are formulated and evaluated on a very large
network. Since they involve subsets of APs and users,
we compactly refer to them as subset MMSE receivers.

• The tradeoff is established between performance, com-
putational cost, and number of channel coefficients to
estimate (which, in turn, determines the pilot overhead).
Subset receivers are shown to be scalable, in the sense
that their cost and channel estimation requirements do not
grow faster than linearly with the size of the network. In
large networks, subset receivers approach the network-
wide MMSE performance with a tiny fraction of its cost
and its channel estimation requirements.

• Two schemes are proposed that exploit the overlap among
subsets to further improve the tradeoff between perfor-
mance and cost while drawing connections with existing
notions of cell clustering [43]–[52].

The document is organized as follows. Section II describes
the network and channel models that the formulation adheres
to. Then, Section III establishes the scalability criteria adopted
in the sequel, Section IV succinctly derives the channel-
estimation-based receiver observations, and Section V lays
down various benchmarks, chiefly the network-wide MMSE
receiver. The heart of the paper is Section VI, where subset
receivers are described and interpreted, subset selection poli-
cies are proposed and validated, and scalability is discussed;
the section finalizes with a large-network evaluation. Subse-
quently, Section VII elaborates on further improvements that
capitalize on the overlaps among subsets, and Section VIII
concludes the paper.

II. NETWORK AND CHANNEL MODELS

The networks under consideration feature N APs and K
users, all equipped with a single omnidirectional antenna.

Some time-frequency resource units are reserved for pilot
transmissions from the users, based on which the channels
are estimated by the APs. The remaining resource units are
available for data transmission.

A. Large-scale Modeling

The conjunction of distance-dependent pathloss with expo-
nent η and shadowing gives rise to a local-average channel
gain Gn,k between the kth user and the nth AP.

Under the premise of AP positions that are agnostic to
the radio propagation, shadow fading renders the network
approximately Poisson-like from the vantage of any user [53]–
[55]. This approximation sharpens as the shadowing strength-
ens, being precise for values of interest [54]–[57]. Relying
on this result, we draw the AP positions uniformly; these
positions thus conform to a binomial point process, which,
as the network grows, converges to a Poisson point process,
avoiding the explicit modeling of shadowing as it is then
already captured by the network geometry. The user positions
are also drawn uniformly.

Letting P and σ2 denote a user’s radiated power and the
noise power, respectively, the local-average SNR of user k at
the nth AP is SNRn,k = Gn,kP/σ

2. We set P/σ2 such that,

for η = 4, SNRn,k = 25 dB at a distance d where d would
be the inter-AP distance if the network were arranged as a
hexagonal grid with the same spatial density that our network.
Under reasonable values for the transmit power, bandwidth,
and pathloss intercept [58], this is compatible with ultradense
deployments (d ≈ 5–20 m) and it would ensure interference-
limited operation should the network operate in cellular mode.

The local-average SNRs, and all the large-scale parameters,
are stable over each network snapshot.

B. Small-scale Modeling

Besides Gn,k, the channel between the kth user and the nth
AP features a small-scale fading coefficient hn,k ∼ NC(0, 1),
independent across users and APs. The fading coherence can
be visualized as tiles of size Tc × Bc in the time-frequency
plane, a block-wise structure that has been shown to be
equivalent to smooth autocorrelation functions as far as the
linear MMSE estimation of the fading is concerned [59], [60].
For any snapshot of the large-scale parameters, under the
premise that channel estimation errors and interference are
treated by the decoder as additional Gaussian noise, user k
can achieve a spectral efficiency of [61]

Ck = E
[
log2(1 + sinrk)

]
(1)

where sinrk denotes the SINR of user k and the expectation
is over the small-scale fading. Adding (1) over all K users,
we obtain the sum spectral efficiency. Unless otherwise stated,
the spectral efficiencies in this paper are gross, meaning that
pilot overheads are yet to be subtracted out.

III. SCALABILITY

We consider scalability in terms of those aspects that are
inherent to cell-free networks, namely (i) receiver obtainment
cost, (ii) linear combining cost, and (iii) channel estimation.
The decoding and remaining post-processing tasks are as in a
cellular network, one chain per user, hence inherently scalable.

We measure the cost in number of complex multiply-and-
accumulate (MA) operations per time-frequency coherence
block, respectively Mrx and Mc for the obtainment of the
receivers and for the linear combining, while we denote by
L the number of channel coefficients to be estimated per
coherence block. For K,N → ∞ with fixed K/N , we want
Mrx/N , Mc/N , and L/N , to be O(1) thereby ensuring that,
as the network grows, the per-AP cost and overhead remain
roughly constant, as in a cellular system.

Measured in MA operations, the cost of N × N matrix
inversions or multiplications is αNν for 2.37 ≤ ν ≤ 3 [62].
Likewise, the product of N ×K and K × N matrices costs
αKν−2N2. In both cases, a naı̈ve procedure leads to ν = 3;
pushing the exponent below ν = 3 comes at some expense in
numerical stability, in memory, and in an increased factor α.

We hasten to emphasize that our goal is not to present a
detailed complexity analysis, which would require positing
specific implementations, but rather to establish scalability and
to gauge the magnitude of the cost of each solution. With this
in mind, these measures suffice and simpler operations such
as additions can be neglected.
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IV. CHANNEL ESTIMATION AND DATA TRANSMISSION

Disregarding pilot contamination for now, the linear MMSE
channel estimate ĥn,k gathered by the network upon observa-
tion at the nth AP of a pilot transmission from user k satisfies
hn,k = ĥn,k + h̃n,k where

E
[
|ĥn,k|2

]
=

SNRn,k
1 + SNRn,k

(2)

while
h̃n,k ∼ NC

(
0,

1

1 + SNRn,k

)
(3)

is independent error. Generalizing (2)–(3) to multiple—as
opposed to one—pilot transmissions per user and per fad-
ing coherence block, or to power-boosted pilots, entails a
straightforward scaling of SNRn,k therein [63]. Ultimately,
the overhead corresponding to the resource units consumed by
pilots must be discounted from the gross spectral efficiency.

Subsequently, upon data transmission, on a given time-
frequency resource unit the nth AP observes

yn =

K−1∑
k=0

√
Gn,khn,kxk + vn (4)

=

K−1∑
k=0

√
Gn,kĥn,kxk +

K−1∑
k=0

√
Gn,kh̃n,kxk + vn︸ ︷︷ ︸

zn

(5)

where xk is the signal from user k, satisfying E[|xk|2] = P ,
while vn ∼ NC(0, σ

2).
The transmit-receive relationship between users and APs

can be vectorized into

y =

 y0
...

yN−1

 =

K−1∑
k=0

ĉkxk + z (6)

where

ĉk =


√
G0,k ĥ0,k

...√
GN−1,k ĥN−1,k

 z =

 z0
...

zN−1

 (7)

and E
[
zz∗

]
= σ2D with D a diagonal matrix whose (n, n)th

entry is [
D
]
n,n

= 1 +

K−1∑
k=0

SNRn,k
1 + SNRn,k

. (8)

V. BENCHMARKS: CELLULAR, MATCHED-FILTERING,
AND NETWORK-WIDE MMSE

The most basic benchmark is a cellular network where each
user connects with the AP to which it has the strongest large-
scale gain. If multiple users select the same AP, then multiple
access in time and/or frequency takes place.1 The user or users
connected to a given AP are interfered by all users connecting
to other APs.

1This is somewhat different from the cellular operation in [20], where, once
an AP has been selected by a user, it becomes unavailable, forcing other users
to connect to more distant APs.

A second baseline is provided by matched-filtering cell-free
operation. The matched filter for user k is wMF

k = ĉk. For given
fading realizations, wMF

0 , . . . ,w
MF

K−1 yield

sinrMF

k =
E
[
|wMF∗

k ĉkxk|2 |ĉk
]∑

` 6=k E
[
|wMF∗

k ĉ`x`|2 |ĉ`
]
+ E

[
|wMF∗

k z|2
] (9)

=
|ĉ∗kĉk|

2∑
` 6=k |ĉ∗kĉ`|

2
+ σ2

P ĉ∗kDĉk
k = 0, . . . ,K − 1.

Since ĉ0, . . . , ĉK−1 are readily available, the receiver obtain-
ment cost is nil. However, applying the length-N matched
filters wMF

0 , . . . ,w
MF

K−1 to y entails Mc = KN complex
MA operations, hence the linear combining cost per AP is
Mc/N = K, which does not scale. Likewise, the number of
channel estimates per AP is L/N = K, also not scalable. The
matched-filter solution can be rendered scalable by curbing
the number of APs serving each user [35], [38]–[41].

Now, let Ĉ =
[
ĉ0 · · · ĉK−1

]
. The network-wide MMSE

receiver for all K users is [64, sec. 6.4]

W MMSE =
(
ĈĈ

∗
+ σ2

P D
)−1

Ĉ (10)

= D−1Ĉ
(
Ĉ∗D−1Ĉ + σ2

P I
)−1

, (11)

which gives

sinrMMSE

k =
|w∗kĉk|2∑

` 6=k |w∗kĉ`|2 + σ2

P w∗kDwk

(12)

where wk = [W MMSE]:,k is the kth column of W MMSE. With a
bit of algebra, the above can be seen to equal [64, sec. 6.4]

sinrMMSE

k =
ĉ∗k
(
ĈĈ

∗
+ σ2

P D
)−1

ĉk

1− ĉ∗k
(
ĈĈ

∗
+ σ2

P D
)−1

ĉk
(13)

=
P/σ2[(

Ĉ
∗
D−1Ĉ + σ2

P I
)−1]

k,k

− 1. (14)

In its more economic form for K ≤ N , the one in (11), the
obtainment cost of a network-wide MMSE receiver satisfies
Mrx/N = O(Kν/N). It is decidedly not scalable. The linear
combining cost and the number of channel estimates are as
with matched filtering, again not scalable.

VI. SUBSET MMSE RECEPTION

As mentioned, a network-wide MMSE receiver is generally
inordinate because, due to pathloss and shadowing, only a
small share of APs capture substantial power from user k and
only a small share of other users cause substantial interference
to user k. Mathematically, this is manifested by C having
most of its mass concentrated on a small share of its entries, a
condition that is best appreciated by examining either CC∗ or
C∗C: with proper AP and user indexing, both these matrices
are band-dominated, meaning that most of their mass lies
on a diagonal band. The band-dominated nature of CC∗,
for instance, is visualized in Fig. 1 for the large network
considered later in the paper. A network-wide MMSE receiver,
however, ignores this nature and treats all entries of C as
equally relevant.
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Fig. 1. Visualization of the entries of CC∗ that represent most of the mass
in a network with K = 4000 and N = 5000. The reverse Cuthill-McKee
ordering [65] has been applied to permute rows and columns (which amounts
to re-indexing APs and users) so as to concentrate high-mass entries around
the diagonal. The average thickness of the diagonal band depends on the
represented percentage of mass while its irregularities reflect those of the AP
and user locations.

Focusing on CC∗, the diagonal entries quantify the power
captured by the APs while the off-diagonals are a measure
of the interference. If CC∗ were purely diagonal, a cellular
structure would be optimum. If it were block-diagonal, then a
partition of the APs into disjoint clusters would be fitting. But
the actual nature of CC∗ is band-dominated, which invites a
tailored receiver structure involving only the relevant entries
of C while excluding other entries that are exceedingly weak.
In essence, this amounts to zeroing out those weak entries,
converting C into a sparse matrix. However, the entries to
zero out must be chosen with care to ensure balance across
rows and columns, such that (i) no users are overly favored
while others are poorly serviced or even disconnected, and (ii)
no APs are rendered inoperative.

Some channel sparsification approaches have been proposed
in the past, say in [35] by applying—in that case to the
downlink—a family of diagonal matrices to the columns of
C, or by alternative means in [38]. Our approach, presented
next, takes a different route towards the goal of conveniently
determining which channel entries to retain and which ones
to zero out.

A. Formulation

Let us restrict to a subset, denoted by Kn, the users whose
channels are estimated by the nth AP; users not in Kn are
treated as noise by such AP. Then, (5) can be rewritten as

yn =
∑
k∈Kn

√
Gn,kĥn,kxk +

∑
k/∈Kn

√
Gn,kĥn,kxk + zn︸ ︷︷ ︸

zn

(15)

from which

y =

 y0
...

yN−1

 = Ĉx+ z (16)

with z = [z0 · · · zN−1]T,

[Ĉ]n,k =

{
[Ĉ]n,k k ∈ Kn

0 otherwise,
(17)

and E[zz∗] = σ2D where

[D]n,n =
∑
k/∈Kn

SNRn,k
1 + SNRn,k

+ [D]n,n (18)

= 1 +
∑
k∈Kn

SNRn,k
1 + SNRn,k

+
∑
k/∈Kn

SNRn,k. (19)

Next, let us curb to a subset Nk the APs that participate in
the reception of user k. Denoting by |·| the cardinality of a
set, user k is then received based on the decimated |Nk| × 1
vector

yk = Ĉkx+ zk, (20)

where Ĉk and zk contain the rows of Ĉ and z corresponding to
APs within Nk. The subset MMSE receiver for user k, based
on the observations of the APs within Nk and conditioned on
the channel estimates available at each, is the |Nk| × 1 vector

wMMSE

k =
(
ĈkĈ

∗
k +

σ2

P Dk

)−1
ĉk (21)

where ĉk = [Ĉk]:,k. This receiver delivers, for user k,

sinrMMSE

k =
ĉ∗k
(
ĈkĈ∗k +

σ2

P Dk

)−1
ĉk

1− ĉ∗k
(
ĈkĈ∗k +

σ2

P Dk

)−1
ĉk
. (22)

We note that, for |Kn| = K and |Nk| = N , wMMSE
0 , . . . ,wMMSE

K−1
stretch to coincide with the columns of the network-wide
MMSE receiver in (10). What remains now is to see how
to determine the composition of the subsets Nk and Kn to
approach the corresponding performance in a scalable fashion.

B. AP Selection Policy

Our desiderata for the selection of the APs that constitute
N0, . . . ,NK−1 are:
• Based on large-scale quantities, hence relatively stable

in time and frequency, to avoid having to reselect at the
small scales of milliseconds and hundreds of kilohertz.

• Close-to-optimum performance.
• Scalable. For user k, the number of potential AP subsets

of size |Nk| is N !
|Nk|! (N−|Nk|)! ; the total number of subsets

of all sizes and for all K users is thus
K−1∑
k=0

N∑
|Nk|=1

N !

|Nk|! (N − |Nk|)!
= K

(
2N − 1

)
(23)

and an exhaustive search is not only unscalable, but out
of the question even for modest values of K and N .

The policy we propose to meet the above requisites, inspired
by [37], [39], [40], is to have Nk contain the |Nk| APs
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Fig. 2. Average sum spectral efficiency (bits/s/Hz per AP) as a function of
|N | with subset MMSE receivers: proposed AP subset selection policy (solid
line) vs exhaustive search (circles) for η = 4, N = 24, K = 19. Each AP
has channel estimates for all users.

whose Gn,k are largest, i.e., to which user k has the strongest
links. Although intuitive, this policy need not be optimal
under MMSE reception, hence we proceed to validate it for
a network small enough that an exhaustive search is feasible.
Specifically, for N = 24 APs and K = 19 users, we examine
the sum spectral efficiency averaged over the user and AP
positions and normalized by N . Shown in Fig. 2 is such
average sum spectral efficiency with subset MMSE receivers
as a function of the subset size |N |, identical for all users, both
with the proposed AP subset selection policy as well as with an
exhaustive search over all possible subsets (about 319 million).
The proposed policy proves to be highly effective, tracking
very closely the upper bound represented by the exhaustive
search and leaving very little room for improvement.

The figure also shows the performance improving promis-
ingly with |N |, but we hasten to emphasize that the absolute
performance in small networks is not fully representative
because of the scant amount of interference. For a meaningful
performance evaluation, larger networks must be contemplated
as done in Section VI-F.

C. User Subset Selection

To complete the specification of wMMSE
0 , . . . ,wMMSE

K−1 in (21),
we need to determine K0, . . . ,KN−1, i.e., the channel esti-
mates to be acquired by each AP. The earlier desiderata ap-
plies, and hence a dual policy of the one adopted for Nk seems
like a sensible solution for Kn. However, an added requirement
exists, namely that the nth AP should always estimate the
channels of users in whose reception it participates. To account
for this, we propound that Kn contain the union of:
• A fixed number of the users whose Gn,k are largest, i.e.,

with strongest links to AP n.
• All users for which n ∈ Nk, i.e., all users being received

by AP n.

We evaluate the efficacy of this policy directly on a large
network, in Section VI-F.

D. Interpretation

Before proceeding, let us pause to convey some intuition
on how the receiver structure spawned by the AP and user
subsets naturally emanates from that of C itself. The basis
is Ĉ in (17), which is a sparse version of C. While CC∗

and C∗C are merely band-dominated, ĈĈ∗ and Ĉ∗Ĉ are true
band matrices. In Ĉ, only the dominant entries of C have
been preserved; the proposed AP and user selection policies
enable identifying those dominant entries in a way that is both
efficient and balanced, ensuring that every row and column
retain a minimum of entries. All non-dominant entries—the
vast majority in a large network—have been zeroed out and
moved into the noise z in (16), and the corresponding fading
coefficients need not be estimated. Then, wMMSE

k is obtained
from Ĉk, which is a version of Ĉ decimated row-wise for
user k, and:

• If any other user has its channels estimated by all the
APs in wMMSE

k , the interference from such user is fully
rejected.

• Users whose channels are estimated by some (but not all)
of the APs in wMMSE

k are partially deflected.
• Users whose channels are not estimated by any AP within

wMMSE

k are treated as noise.

Noting that the rejection is in the MMSE sense (i.e., down
to the noise floor), the interference management with our
proposed subset selection policies exhibits this very desirable
feature: the stronger an interference term, the more resources
devoted to its mitigation. The |Nk| degrees of freedom that
wMMSE

k possesses in terms of interference avoidance are allo-
cated to reject very strong terms, deflect weaker ones, and
ignore the rest.

This is exemplified in Fig. 3 for a toy network. Receivers 0
and 1 fully reject their users’ mutual interference while only
partially deflecting the interference from user 2, and ignoring
the interference from user 3. Receiver 2, in turn, partially
deflects the interference from users 0 and 1 while ignoring the
interference from user 3. Finally, receiver 3 partially deflects
the interference from users 1 and 2.

E. Scalability

Provided the size of the subsets K0, . . . ,KN−1 and
N0, . . . ,NK−1 do not grow with K and N , scalability is
guaranteed. Precisely, the cost of obtaining wMMSE

0 , . . . ,wMMSE

K−1
satisfies

Mrx

N
= O

(∑K−1
k=0 |Nk|ν
N

)
, (24)

which is O(1) for fixed K/N . Turning to the cost of the linear
combinings, we have that

Mc

N
=

∑K−1
k=0 |Nk|
N

(25)
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<latexit sha1_base64="j6kwlVUxD9i0DzBj58cBbzA1ypA=">AAACF3icbVDLSgMxFM3UV62vUZdugkVwVWaqoMuCCG4KFe0DOuOQSTNtaOZBckcpQ//Cjb/ixoUibnXn35i2s9DWA0kO59xL7j1+IrgCy/o2CkvLK6trxfXSxubW9o65u9dScSopa9JYxLLjE8UEj1gTOAjWSSQjoS9Y2x9eTPz2PZOKx9EtjBLmhqQf8YBTAlryzIrjx6KnRqF+sofxXeaoADuKSp5AfsNIMFyv31yOPdszy1bFmgIvEjsnZZSj4ZlfTi+macgioIIo1bWtBNyMSOBUsHHJSRVLCB2SPutqGpGQKTeb7jXGR1rp4SCW+kSAp+rvjoyEajK6rgwJDNS8NxH/87opBOduxqMkBRbR2UdBKjDEeBIS7nHJKIiRJkSHoGfFdEAkoaCjLOkQ7PmVF0mrWrFPKtXr03IN53EU0QE6RMfIRmeohq5QAzURRY/oGb2iN+PJeDHejY9ZacHIe/bRHxifP4WZoJ8=</latexit>

wMMSE

2
<latexit sha1_base64="ly5N5x6DNNqVOzi/zW0hQyUsGGs=">AAACF3icbVDLSgMxFM3UV62vUZdugkVwVWaqoMuCCG4KFe0DOrVk0kwbmnmQ3FHKMH/hxl9x40IRt7rzb8y0s9DWA0kO59xL7j1uJLgCy/o2CkvLK6trxfXSxubW9o65u9dSYSwpa9JQhLLjEsUED1gTOAjWiSQjvitY2x1fZH77nknFw+AWJhHr+WQYcI9TAlrqmxXHDcVATXz9JA/pXeIoDzuKSh5BfsNEMFyv31ym/WrfLFsVawq8SOyclFGORt/8cgYhjX0WABVEqa5tRdBLiAROBUtLTqxYROiYDFlX04D4TPWS6V4pPtLKAHuh1CcAPFV/dyTEV9noutInMFLzXib+53Vj8M57CQ+iGFhAZx95scAQ4iwkPOCSURATTYgOQc+K6YhIQkFHWdIh2PMrL5JWtWKfVKrXp+UazuMoogN0iI6Rjc5QDV2hBmoiih7RM3pFb8aT8WK8Gx+z0oKR9+yjPzA+fwCHHaCg</latexit>

wMMSE

3
<latexit sha1_base64="02BG7VPLpwt5MvNLrU0nrpVGfGc=">AAACF3icbVDLSgMxFM34rPU16tJNsAiuykwr6LIggptCRfuATi2ZTKYNzTxI7ihlmL9w46+4caGIW935N6btLLT1QJLDOfeSe48bC67Asr6NpeWV1bX1wkZxc2t7Z9fc22+pKJGUNWkkItlxiWKCh6wJHATrxJKRwBWs7Y4uJn77nknFo/AWxjHrBWQQcp9TAlrqm2XHjYSnxoF+0ofsLnWUjx1FJY8hv2EsGK7Xby6zfrVvlqyyNQVeJHZOSihHo29+OV5Ek4CFQAVRqmtbMfRSIoFTwbKikygWEzoiA9bVNCQBU710uleGj7XiYT+S+oSAp+rvjpQEajK6rgwIDNW8NxH/87oJ+Oe9lIdxAiyks4/8RGCI8CQk7HHJKIixJkSHoGfFdEgkoaCjLOoQ7PmVF0mrUrar5cr1aamG8zgK6BAdoRNkozNUQ1eogZqIokf0jF7Rm/FkvBjvxsesdMnIew7QHxifP4ihoKE=</latexit>

Fig. 3. Toy network withN = 4 (common to all APs); every AP estimates the
channels of the union of (i) its two strongest users, and (ii) users connecting to
it. The APs that comprise wMMSE

0 , wMMSE
1 , wMMSE

2 , and wMMSE
3 , are delineated

in (a) while the channels to estimate are indicated in (b).

which is also O(1) for fixed K/N . Finally, the number of
channel estimates satisfies

L

N
=

∑N−1
n=0 |Kn|
N

, (26)

which once more is O(1). And sinrMMSE

0 , . . . , sinrMMSE

K−1, neces-
sary for link adaptation purposes, do not demand any matrix
operation in addition to those required by wMMSE

0 , . . . ,wMMSE

K−1.

F. Evaluation in a Large Network

Let us now contemplate a network having N = 5000 APs,
which, in ultradense deployments, could cover 1–2 km2 (say a
mall, large sports arena, or concert hall). For that purpose, we
resort to a wrapped-around (i.e., without boundaries) universe
with the APs elevated 2 m above the users to avoid distance
singularities. Thanks to the wrap-around, all APs and users
contribute equally to the statistics. The number of network
snapshots is adjusted to push the 95% confidence interval
below 0.01 b/s/Hz.

The AP subset size N is identical for all users, while
the user subsets K0, . . . ,KN−1 contain the K

N |N | users with
strongest channels to the respective APs in union with the
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Fig. 4. Average sum spectral efficiency (b/s/Hz per AP) as a function of
K/N for η = 4 and N = 5000: network-wide MMSE vs matched-filtering
and cellular reception. Also shown, for K/N = 0.8, is the performance with
subset MMSE receivers for |N | = 30 and |N | = 58.

users being received by each such AP. The cardinality of the
user subsets therefore varies across APs.

To begin with, Fig. 4 depicts the average sum spectral
efficiency as a function of K/N . The load K/N = 0.8 is
where the maximum takes place for network-wide MMSE
reception and, since this is the ultimate benchmark, we adopt
this load henceforth. The performance of subset MMSE re-
ception is represented by the dotted line. As we move up
that line, we progress from cellular operation (|N | = 1) to
network-wide MMSE reception (|N | = 5000), trading cost
and channel estimation requirements for performance. For
|N | = 30, subset MMSE reception almost quadruples the
cellular spectral efficiency, reaching 80% of what a network-
wide MMSE receiver would attain. For |N | = 58, that share
goes up to 90%. The network-wide MMSE performance is
closely approached, and at a radically lower cost as seen next.

Taking the cost parameters to be α = 1 and ν = 3,
and ignoring the cost of inverting and applying the diagonal
matrix D, the cost Mrx of obtaining the network-wide MMSE
receiver in (11) satisfies

Mrx

N
=
K3 + 2NK2

N
(27)

= 4.5 · 107 (28)

while the combining cost satisfies Mc/N = K = 4000 and
the number of channel estimates per AP is L/N = K = 4000.
In contrast, obtaining wMMSE

0 , . . . ,wMMSE

K−1 with |N | = 30 entails
(see Appendix A)

Mrx

N
=

2.3 · 106 + 4000
(
303 + 302

)
5000

(29)

= 22780 (30)

while the combinings require Mc/N = K|N |/N = 24. The
average number of channel estimates per AP, generated by the
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Fig. 5. Average sum spectral efficiency (b/s/Hz per AP) as a function of |N |
for η = 4, N = 5000, and K = 4000; in solid, with the proposed subsetting
policies of both users and APs; in dashed, with the proposed subsetting of
APs, but with all user channels estimated at every AP.

simulator, is

L

N
=

∑N−1
n=0 |Kn|
N

(31)

= 26.4. (32)

Altogether, 80% of the network-wide MMSE performance is
achieved with 0.05% of the cost and 0.6% of the channel
estimates. Similarly, for N = 58, subset MMSE reception
attains 90% of the performance of network-wide MMSE with
0.3% of the cost and 1.2% of the channel estimates.

A different outlook is provided in Fig. 5, which shows the
average sum spectral efficiency as a function of |N |. The
performance improves rapidly with |N | and, as mentioned, for
|N | = 30 and |N | = 58 it respectively reaches 80% and 90%
of what a network-wide MMSE receiver would deliver. This
figure also validates our user subset selection policy, whose
performance very closely tracks—with drastically lower cost
and exceedingly fewer estimates—what would be achieved if
every AP estimated the channel of all K users.

Next, let us complement the foregoing perspective by going
beyond performance averages. In particular, Fig. 6 presents the
cumulative distribution function (CDF) over the user and AP
locations of E

[
sinrk

]
, expected over the small-scale fading.

With cellular operation, about 30% of users fall below −5 dB
(which is reasonable threshold for coverage) whereas, with
subset receivers and |N | = 30, that share drops below 1%.
Also, this plot evidences that comparing cellular and MMSE
receivers at the same K/N is inappropriate. The proper
comparison should be at the respective values of K/N that
guarantee a certain coverage, and ensuring E

[
sinrk

]
< −5 dB

with small probability in a cellular network requires K/N far
below 0.8, e.g., through a frequency reuse factor. Referring to
Fig. 4, the MMSE advantage is then substantially larger than
indicated by the dotted line therein.
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Fig. 6. CDF of E
[
sinrk

]
, expected over the small-scale fading, for η = 4,

N = 5000, and K = 4000: network-wide MMSE, matched filtering, and
subset MMSE receivers for |N | = 30 and |N | = 58. Also shown, in dashed,
is the CDF for the corresponding cellular network.

G. Dual-Slope Pathloss

The performance of MMSE subset reception, as presented
in the previous section, is conservative because of the single-
slope pathloss, which was applied precisely as a precaution
against performance overstatements. Now, let us redo the
comparisons with a dual-slope model: η = 2 up to d,
and η = 4 beyond, with d being as usual the inter-AP
distance we would have in a hexagonal grid arrangement,
and with P/σ2 adjusted such that the SNR at distance d is
preserved. The results, presented in Fig. 7, confirm that the
cellular performance degrades and the advantage of cell-free
solutions increases, even with simple matched filtering. This
trend becomes more pronounced with longer pathloss breaking
distances, as considered in [20], or equivalently with denser
networks.

VII. FURTHER ELABORATIONS

An inspection of the AP subsets formed by our proposed
policy reveals that, as one would expect, they overlap sub-
stantially. Therefore, the matrices Ĉ0, . . . , ĈK−1 from which
wMMSE

0 , . . . ,wMMSE

K−1 are obtained via (21) exhibit substantial
commonality: if users k and ` are in the vicinity of each other,
Ĉk and Ĉ` are likely to share most of their rows, as is the case
with users 0, 1, and 2 in the toy network of Fig. 3. This opens
the door to further cost reductions, especially in light of the
fact that the inversion of ĈkĈ∗k is what dominates the cost of
obtaining wMMSE

k . We propose two distinct ideas to capitalize
on these overlaps.

A. Subset Mergers

If the AP subsets for two users exhibit sufficient com-
monality, cost-wise it pays off to merge them into a single
subset containing the union of the respective APs. Precisely,
if |Nk ∪ N`|ν < |Nk|ν + |N`|ν , the merger of Nk and N`
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slope pathloss model, N = 5000, and K = 4000: network-wide MMSE,
matched filtering, and subset MMSE receivers for |N | = 30 and |N | = 58.
Also shown, in dashed, is the CDF for the corresponding cellular network.

gives a new subset from which the receivers for users k and `
can be obtained—recall (21)—with a single matrix inversion.
The aggregate cost is lowered while the performance can
only improve, with the only downside of a possibly increased
number of channel estimates.

The idea of merging subsets connects with the notion of
arranging the network into clusters—an approach on which
there is a rich literature (e.g., [43]–[52] and references therein).
However, we merge subsets only when appropriate, e.g., when
various users concentrate in close proximity relative to the rest;
otherwise, the original subsets stand, unique to each user. And
we note that whatever larger subsets may be formed through
mergers have different sizes in general, may overlap with
other subsets, and may deflect interference from outside users.
This can be appreciated in the toy example of Fig. 3, where
users 0 and 1 have identical AP subsets whose merger can be
interpreted as a cluster of four APs serving two users, with
two of the APs also participating in the subset that receives
user 2, and with partial deflection of the interference from
such user 2.

Subset mergers provide a mechanism for cell-free networks
to take advantage of user concentrations.

B. Shared Processing

Once the appropriate subsets have been advantageously
merged, a second idea can be applied: when various matrices
have portions in common, their inversions share many of the
operations. In particular, as shown in Appendix B, if K subsets
have Ncm APs in common, then, rather than

∑K−1
k=0 α |Nk|ν ,

the total cost of inverting the corresponding Ĉ0, . . . , ĈK−1 is,
at most,

αNν
cm +

K−1∑
k=0

α
(
|Nk|ν − ξkNν

cm

)
. (33)

TABLE I
SHARED PROCESSING TOY EXAMPLE

Ncm Paired Subsets Common APs Cost Savings
5 K0, K1 {1, 2, 3, 4, 5} α (ξ0 + ξ1 − 1) 5ν

4 K0, K2 {1, 2, 3, 4} α (ξ0 + ξ2 − 1) 4ν

4 K0, K3 {1, 2, 3, 4} α (ξ0 + ξ3 − 1) 4ν

3 K4, K5 {2, 3, 8} α (ξ4 + ξ5 − 1) 3ν

2 K0, K4 {2, 3} α (ξ0 + ξ4 − 1) 2ν

where

ξk = 1−
(
2 + ρν−3 − ν

)
ρ−

(
3ρν−3 −

(
ν
2

))
ρ2

−
(
ρν−3 −

(
ν
3

))
ρ3 +

(
ν
4

)
ρ4 (34)

with ρ = |Nk|
Ncm
− 1 and

(
ν
k

)
= ν(ν−1)...(ν−k+1)

k! . In particular,
for α = 1 and ν = 3, the cost of inverting K matrices of size
|N | × |N | goes from K |N |3 to, at most,

N3
cm +K

(
|N |3 −N3

cm

)
= K |N |3 − (K − 1)N3

cm. (35)

For given α and ν, the extent of the possible cost savings
depends on the degree of commonality among the post-merger
AP subsets throughout the network.

In what follows, we present a specific scheme that exploits
subset commonalities. It is a sequential procedure that starts
by identifying all pairs of user receivers whose subsets share
Ncm APs. From (33), the cost reduction associated with this
commonality when obtaining wMMSE

k and wMMSE

` is, at least,
α (ξk + ξ` − 1)Nν

cm. If more than two receivers share the
same Ncm APs, the savings add up as per (33). The procedure
continues with Ncm decreased by 1, by identifying pending
receivers whose subsets have Ncm APs in common with any
already obtained one, and so on until Ncm is smaller than the
minimum commonality, at which point all the receivers have
been computed.

In Table I, we illustrate the procedure with a toy example
featuring K = 6 users and these AP subsets:

K0 = {1, 2, 3, 4, 5}
K1 = {1, 2, 3, 4, 5}
K2 = {1, 2, 3, 4, 6}
K3 = {1, 2, 3, 4, 7}
K4 = {2, 3, 8, 9, 10}
K5 = {2, 3, 8, 11, 12}.

At a minimum, a total cost reduction equal to the sum of the
entries in the rightmost column of Table I is possible. In an
actual implementation, the procedure may be stopped once
Ncm is small enough that the savings become negligible.

It behooves us to indicate that savings higher than those
achieved with the above procedure may be possible with alter-
native schemes, which makes the processing sharing problem
a fertile ground for further research.

C. Evaluation

To test the subset merging and the shared processing
schemes, we apply them to the large network (N = 5000,
K = 4000) studied in Section VI-F, with α = 1 and ν = 3 as
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considered therein. First, all subset mergers resulting in cost
reductions are executed, and then the receivers are computed
via the shared processing procedure. The improvements are as
follows:
• Thanks to subset merging, the value N = 30 required

to achieve 80% of the network-wise MMSE sum spectral
efficiency shrinks to N = 26. (This is the pre-merger
subset size, with the subsets then swelling to various
sizes with an average of 33 APs. (Although some merging
does take place, a majority of the initial subsets remain
unmerged.) The cost declines by 35% while the number
of channel estimates per AP increases slightly, from
L/N = 26.5 to L/N = 32.

• With shared processing, the cost is reduced by an addi-
tional 45% without incurring extra overheads.

Altogether, the cost of achieving 80% of the network-wise
MMSE performance becomes about 1/3 of the value without
further elaborations. And the savings expand as higher perfor-
mance levels are targeted: for 90% of network-wide MMSE,
the cost drops to about 1/4 what it would be without subset
mergers and shared processing.

VIII. CONCLUSION

Subset MMSE reception is a flexible and natural solution
for the wireless uplink. Rather than conform to an a-priori
cellular structure, it configures itself depending on the AP and
user locations, as well as the propagation. Subset reception
can perform arbitrarily close to network-side MMSE reception
while being scalable in terms of cost and channel estimation.
In large networks, where network-wide MMSE becomes un-
feasible, subset MMSE reception is fully viable.

Subset reception would surely perform even better if the
subset cardinalities were separately optimized, rather than
being equal as in our results; this constitutes a subject of
follow-up research. As a step in this direction, we have
presented a procedure to merge subsets.

We have conducted, with pilot overheads and pilot contam-
ination disregarded, a clean assessment of the performance,
computational cost, and channel estimation requirements of
subset reception relative to network-wide MMSE, matched
filtering, and cellular. Further accounting for the overheads
would amount to postulating a fading coherence, BcTc, and
then scaling the spectral efficiencies by (1− Np

BcTc
) where Np

is the number of resource units reserved for pilots. While it
is certainly of interest to further refine our results accounting
for overheads, and for contamination as well, it is important to
emphasize that ultradense deployments exhibit (because of the
short range) very high frequency coherences and, most likely,
also very high time coherences. Altogether, BcTc is in the
thousands of resource units, a very benevolent situation as far
as overheads and contamination are concerned. For instance,
for very conservative coherences of Bc ≈ 2 MHz and Tc ≈ 5
ms, we have BcTc ≈ 104 and, allocating only 10% of those to
pilots, we would have Np ≈ 1000. This is already an order of
magnitude more than the Np ≈ 100 required for contamination
to become unimportant with matched filtering and random
pilot assignment [66], and let alone with active contamination

mitigation procedures such as the ones propounded in [20, sec.
IV] or in [66]–[68].

The ratio P/σ2 and the pathloss model affect the perfor-
mance surge over matched filtering and cellular, as well as the
subset sizes needed for a certain performance, but they do not
alter the qualitative findings. As one would expect, and [20]
confirms, shadow fading correlations within the large-scale
gains are bound to worsen the performance of every type of
receiver, but the qualitative conclusions are again upheld (with
the cell-free advantage over cellular slightly diminished).

Power control is a key interference management mechanism
in cellular and matched-filtering cell-free networks [20], [69]–
[71], and it would be appropriate to replicate the comparisons
of subset reception with such baselines in the presence of
power control. This requires devising power control policies
that are suitable for subset reception, hence this is another
follow-up research topic. Importantly though, power control is
far less critical with MMSE receivers than it is with matched
filters because of the inherent interference mitigation abilities
of the former.

Although not quantified in the paper, subset reception
relaxes the fronthaul quantization specifications relative to
network-wide MMSE, as weak signal and interference terms
no longer need to be captured. This is bound to increase the
compatibility with some of the functional splits proposed for
C-RAN implementations of 5G and beyond [72], [73]. Also,
subset reception is highly amenable to parallelization, as it
entails the inversion of many small matrices as opposed to
a giant one. Moreover, these small matrices exhibit major
overlaps, which can be exploited to further reduce the cost;
some ideas in this direction have been put forth.

Finally, the generalization to multiantenna APs and users is
yet another avenue for subsequent research.

APPENDIX A
SUBSET RECEIVER OBTAINMENT COST

Let A be a binary matrix that is a mask of Ĉ, i.e., such that

an,k =

{
1 if [Ĉ]n,k 6= 0

0 if [Ĉ]n,k = 0
(36)

whereby an,k = 1 indicates that the nth AP does estimate
the channel from user k. Then, the number of complex
MA operations required to compute ĈĈ∗ equals the sum
of the entries of AAT, i.e.,

∑N−1
n=0

∑N−1
m=0

∑K−1
k=0 an,kam,k.

However, since AAT is Hermitian, that number goes down to

1

2

N−1∑
n=0

N−1∑
m=0

K−1∑
k=0

an,kam,k +
1

2
tr
(
AAT

)
. (37)

From ĈĈ∗, we can readily produce Ĉ0Ĉ∗0, . . . , ĈK−1Ĉ
∗
K−1

through row and column elimination. From there on, obtaining
wMMSE

0 , . . . ,wMMSE

K−1 entails K matrix inversions and K multi-
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plications with vectors of dimensions N0, . . . ,NK−1, with the
total cost adding up to

Mrx =
1

2

N−1∑
n=0

N−1∑
m=0

K−1∑
k=0

an,kam,k +
1

2
tr
(
AAT

)
+

K−1∑
k=0

α
(
|Nk|ν + |Nk|ν−1

)
. (38)

The two leading terms, which are computed by the simulator,
become progressively less significant as |N0|, . . . , |NK−1|
grow large, and (38) becomes dominated by α

∑K−1
k=0 |Nk|ν .

APPENDIX B
INVERSION OF MATRICES WITH COMMON ENTRIES

Let B be a Q×Q matrix where Q = Q0+Q1. This matrix
consists of four submatrices, namely

B =

[
B0,0 B0,1︸ ︷︷ ︸
Q0

B1,0 ︸ ︷︷ ︸
Q1

B1,1

] }
Q0}
Q1
. (39)

The jth column of B−1, denoted by rj = [rj0 rj1]
T,

satisfies [
B0,0 B0,1

B1,0 B1,1

] [
rj0
rj1

]
=

[
ej0
ej1

]
, (40)

where rj0 and rj1 have, respectively, lengths Q0 and Q1. In
turn, ej = [eTj0 eTj1]

T is a standard basis vector having 1 in
the jth position and zeroes elsewhere. Hence,

rj1 =
(
B1,1 −B1,0B

−1
0,0B0,1

)−1 (
ej1 −B1,0B

−1
0,0ej0

)
rj0 = B−10,0

(
ej0 −B0,1rj1

)
= B−10,0 ej0 −B−10,0B0,1

(
B1,1 −B1,0B

−1
0,0B0,1

)−1
·
(
ej1 −B1,0B

−1
0,0ej0

)
(41)

The cost of obtaining rj0 and rj1 can be tallied from the
breakdown in Table II. Altogether, the cost of obtaining B−1

exploiting its submatrix structure is seen to be

cost
{
B−1

}
= α

(
Qν0+Q

ν
1+2Qν−10 Q1+Q

2
0Q

ν−2
1 +3Q0Q

ν−1
1

)
(42)

while the cost of a direct inversion can be expanded into

α (Q0 +Q1)
ν = αQν0

(
1 +

∞∑
k=1

(
ν

k

) (
Q1

Q0

)k)
(43)

where
(
ν
k

)
= ν(ν−1)...(ν−k+1)

k! and where the expansion holds
for both integer and non-integer ν. Letting ε = −

(
ν
4

)
Qν−40 Q4

1,

(Q0 +Q1)
ν ≥ Qν0 + ν Qν−10 Q1 +

(
ν

2

)
Qν−20 Q2

1

+

(
ν

3

)
Qν−30 Q3

1 − ε, (44)

which holds because, for 2.37 ≤ ν ≤ 3, higher order terms
have alternating signs and are decreasing in absolute value.

TABLE II
COST OF THE OPERATIONS REQUIRED TO OBTAIN B−1

Operation Cost
B−1

0,0 αQν0
B−1

0,0B0,1 αQν−1
0 Q1

B1,0B
−1
0,0 αQν−1

0 Q1

Ξ =
(
B1,1 −B1,0B

−1
0,0B0,1

)−1
α (Q0Q

ν−1
1 +Qν1)

ΞB1,0B
−1
0,0 αQ0Q

ν−1
1

B−1
0,0B0,1Ξ αQ0Q

ν−1
1

B−1
0,0B0,1ΞB1,0B

−1
0,0 αQ2

0Q
ν−2
1

Combining (42) and (44),

(Q0 +Q1)
ν ≥ 1

α
cost

{
B−1

}
− (2 + β − ν)Qν−10 Q1

−
(
3β −

(
ν

2

))
Qν−20 Q2

1

−
(
β −

(
ν

3

))
Qν−30 Q3

1 − ε (45)

with β =
(
Q0

Q1

)3−ν
. Using cost{B−10,0} = αQν0 , we have that

cost
{
B−1

}
− cost{B−10,0} ≤ α

(
(Q0 +Q1)

ν − ξ Qν0
)

(46)

where

ξ = 1− (2 + β − ν) Q1

Q0
−
(
3β −

(
ν

2

))(
Q1

Q0

)2
−
(
β −

(
ν

3

))(
Q1

Q0

)3
− εQ−ν0 . (47)

Now, from (46) and the decomposition

cost
{
B−1

}
=
(

cost
{
B−1

}
− cost{B−10,0}

)
+ cost{B−10,0}

(48)
we can assert that, if K matrices have B0,0 in common, then
the aggregate cost of their inversions is not Kα(Q0 + Q1)

ν ,
but rather it is, at most,

αQν0 +Kα
(
(Q0 +Q1)

ν − ξ Qν0
)
. (49)
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