
ar
X

iv
:1

90
6.

00
71

1v
3

 [
cs

.N
I]

 1
4

A
pr

 2
02

0
1

Joint Optimization of Service Caching Placement

and Computation Offloading in Mobile Edge

Computing Systems
Suzhi Bi, Senior Member, IEEE, Liang Huang, Member, IEEE, and Ying-Jun Angela Zhang, Fellow, IEEE

Abstract—In mobile edge computing (MEC) systems, edge
service caching refers to pre-storing the necessary programs for
executing computation tasks at MEC servers. Service caching
effectively reduces the real-time delay/bandwidth cost on ac-
quiring and initializing service applications when computation
tasks are offloaded to the MEC servers. The limited caching
space at resource-constrained edge servers calls for careful design
of caching placement to determine which programs to cache
over time. This is in general a complicated problem that highly
correlates to the computation offloading decisions of computation
tasks, i.e., whether or not to offload a task for edge execution.
In this paper, we consider a single edge server that assists
a mobile user (MU) in executing a sequence of computation
tasks. In particular, the MU can upload and run its customized
programs at the edge server, while the server can selectively
cache the previously generated programs for future reuse. To
minimize the computation delay and energy consumption of
the MU, we formulate a mixed integer non-linear programming
(MINLP) that jointly optimizes the service caching placement,
computation offloading decisions, and system resource allocation
(e.g., CPU processing frequency and transmit power of MU). To
tackle the problem, we first derive the closed-form expressions
of the optimal resource allocation solutions, and subsequently
transform the MINLP into an equivalent pure 0-1 integer
linear programming (ILP) that is much simpler to solve. To
further reduce the complexity in solving the ILP, we exploit the
underlying structures of caching causality and task dependency
models, and accordingly devise a reduced-complexity alternating
minimization technique to update the caching placement and
offloading decision alternately. Extensive simulations show that
the proposed joint optimization techniques achieve substantial
resource savings of the MU compared to other representative
benchmark methods considered.

Index Terms—Mobile edge computing, service caching, com-
putation offloading, resource allocation.

I. INTRODUCTION

A. Motivations and Summary of Contributions

The proliferation of modern wireless applications, such

as mobile gaming and augmented reality, demands persis-

tent high-performance computations at commercial wireless

devices to execute complex tasks with ultra-low latency.

Over the last decade, large-scale cloud computing platforms

S. Bi is with the College of Electronic and Information Engineer-
ing, Shenzhen University, Shenzhen, Guangdong, China 518060 (e-mail:
bsz@szu.edu.cn).

L. Huang is with the College of Information Engineering, Zhejiang Uni-
versity of Technology, China (lianghuang@zjut.edu.cn).

Y-J. A. Zhang is with the Department of Information Engineering, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong. (e-mail:
yjzhang@ie.cuhk.edu.hk).

have been extensively deployed, which allows the wireless

devices to offload intensive computation to remote cloud

servers with abundant computing resource [1]. To reduce the

long backhaul transmission delay in the cloud, mobile edge

computing (MEC) has recently emerged to support ubiquitous

high-performance computing, especially for delay-sensitive

applications [2]. Specifically, MEC pushes publicly accessible

computing resource to the edge of radio access network, e.g.,

cellular base stations and Wi-Fi access points, such that mobile

users (MUs) can quickly offload computing tasks to their

nearby edge servers.

Computing a task requires both the user task data as the

input and the corresponding program that processes it. The

use of caching to dynamically store the program and/or task

data at the MEC system has been recently recognized as a

cost-effective method to reduce computation delay, energy

consumption, and bandwidth cost. Here, we refer to caching

the input and/or output data of computation tasks at the

server/user side as computation content caching (such as in

[3]–[7]). Likewise, we refer to caching the program data for

executing computation tasks as computation service caching

(such as in [8]–[13]). Content caching reduces the frequency

of repeated data transmissions and task computations. Its

effectiveness relies on a strong assumption that the cached

input/output data of a computation task is frequently reused by

future executions. In practice, however, the input data and the

corresponding computation output data of an application are

rather dissimilar and hardly reusable for separate executions,

e.g., human face recognition and interactive online gaming.

In comparison, program data (and/or library data) in the

cache is evidently reusable by future executions of the same

application, e.g., the program and library for human face

recognition. In an MEC platform, the cold start initialization

of an application includes starting a cloud function, loading

necessary libraries, and initializing user-specific code [14].

Among them, it may take tens of seconds to load all the nec-

essary application libraries. Caching the program data/library

can effectively reduce the delay caused by application initial-

ization or remote computation migration due to the absence of

necessary program [15]. Because edge servers are often limited

in the caching space, a major design problem is to selectively

cache service data over space (e.g., at multiple edge servers)

and time for achieving optimum computing performance, e.g.,

minimum computation delay.

Existing work on mobile service caching has mostly as-

sumed that the MU offloads all its computation tasks for

http://arxiv.org/abs/1906.00711v3

2

edge/cloud execution. The tasks are executed at the edge server

if the server has cached the required program. Otherwise, the

edge server further offloads the task to a remote cloud server

that can always compute the task at the cost of longer backhaul

delay and larger bandwidth usage (e.g., see [8]–[13]). The fo-

cus of these works is to optimize the offline and online service

caching placement decisions (i.e., what, when and where to

cache) to minimize the computation workload forwarded to the

cloud. Nonetheless, it is in general non-optimal to offload all

computation tasks for edge/cloud execution. On one hand, the

transmission of task data incurs long delay when the wireless

channel condition is unfavorable. On the other hand, the edge

computation may incur long delay in acquiring and initializing

the service program when it is not pre-cached. Alternatively,

opportunistic computation offloading that allows the flexibility

to execute some tasks locally at the MUs could be better off. Its

performance advantage over full computation offloading has

been verified by extensive recent studies under various network

setups [16]–[26]. Notice that the task offloading decisions (i.e.,

whether offloading a task or computing locally) and the service

caching placement are closely correlated. Intuitively, we tend

to offload a task if the required program is already cached at

the edge. Likewise, caching a program is cost-saving only if it

is frequently reused to execute the tasks offloaded in the future.

Therefore, it is necessary to jointly optimize service caching

placement and offloading decisions in an MEC system. Such

study, however, is largely overlooked in the existing literature.

Meanwhile, most existing work implicitly assumes that a

central entity, e.g., the owner of the edge/cloud servers, is

responsible for provisioning the program data in the cache,

and that all required programs can be retrieved from a program

pool in the backhaul network (e.g., in [8]–[13]). However,

as the mobile computing scenarios become increasingly het-

erogeneous, it is common to allow the MUs to run custom-

made or user-generated programs at the edge/cloud platforms.

In fact, this is consistent with the concept of virtualization

and infrastructure-as-a-service (IaaS) in edge/cloud computing

paradigms, where the MUs are entitled to running their own

programs using the physical resources of computing, storage,

and networking provided by the infrastructure owners [27].

For instance, [28] implemented an edge computing platform

for image recognition using serverless functions. Multiple

MUs send their own deep learning-based image recognition

applications and personal images to an edge server, from

which they receive the recognition results.1 The application

response latency is 744 milliseconds at its initial call and is

reduced to an average of 45 milliseconds in the subsequent

calls when the application service is cached. This implies

that the overhead on uploading and initializing the application

has significant impact to the service caching placement and

offloading decisions.

In this paper, we consider an MEC system, where an edge

server assists an MU in executing a sequence of M dependent

tasks, where the output of one task is the input of the next one.

1The image recognition application in [28] was written in C++ based on
the tiny-dnn library (https://github.com/tiny-dnn/tiny-dnn), compiled to native
x86 executable file in size 8.4 MB, and further executed within an OpenWhisk
Apache container (http://openwhisk.apache.org/) at the edge server.

Each task belongs to one of the N applications and is either

computed locally or offloaded for edge execution. In particular,

the MU provides the program data for computing the tasks

in the edge, while the edge server can selectively cache the

previously generated programs and reuse them for processing

future tasks. The detailed contributions of this paper are as

follows.

• We formulate a mixed integer non-linear programming

(MINLP) problem to minimize the overall computation

delay and energy consumption of the MU. Specifically,

the problem jointly determines the optimal offloading

decision of each task (M binary variables), the service

caching placement at the edge server throughout the

task execution time (MN binary variables), and system

resource allocation (continuous variables representing the

CPU processing frequency and transmit power of MU).

The MINLP problem is in general lack of an efficient

optimal algorithm in its original form.

• To tackle the problem, we first show that we can sepa-

rately optimize the system resource allocation and derive

the closed-form expressions of the optimal solutions.

Based on the results, we then transform the MINLP into

a pure 0-1 integer linear programming (ILP) problem that

optimizes only the binary offloading decisions and service

caching placements. The ILP problem can be handled by

standard integer optimization algorithms, e.g., branch and

bound method [29]. However, the exponential worst-case

complexity can be high when either M or N is large.

• To gain more insight on the optimal solution structure

and reduce the complexity of solving a large-size ILP

problem, we first study the problem to optimize the

MN caching placement variables given the offloading

decisions. By exploiting the caching causality property,

we transform the original problem into a standard mul-

tidimensional knapsack problem (MKP). The MKP has

no more than M binary variables and can be efficiently

handled by some off-the-shelf algorithms even if M is

relatively large, e.g., M = 600 [30].

• We then optimize the M offloading decisions given the

caching placement. Interestingly, we find that the only

difficulty lies in optimizing the offloading decisions of

the “uncached” tasks, whose required programs are not

in the service cache. Meanwhile, the optimal offloading

decisions of the remaining cached tasks can be easily

retrieved. Together with our analysis on caching place-

ment optimization, this leads to a reduced-complexity al-

ternating minimization that iteratively updates the caching

placements and offloading decisions.

Our simulations show that the joint optimization signifi-

cantly reduces the computation delay and energy consumption

of the MU compared to other benchmark methods. Meanwhile,

the sub-optimal alternating minimization provides a reduced-

complexity alternative for large-size problems. It is worth men-

tioning that this paper considers an offline model that assumes

non-causal knowledge of future computation task parameters.

The assumption is made to characterize the optimal structures

of caching placement and offloading decisions. The obtained

http://openwhisk.apache.org/

3

results can serve as an offline benchmark and may inspire

future online algorithm designs that assume more practical

prior knowledge.

B. Related works

Extensive prior work, e.g., [16]–[26], has considered joint

optimization of the task offloading decision (i.e., whether

or how much data to offload) and system-level resource

allocation (e.g., spectrum and computing power) to maximize

the computational capability of an MEC system. Depending

on the nature of the computation tasks, computation offloading

is performed by following either a partial offloading policy,

i.e., an arbitrary part of the task data can be offloaded for

edge execution, or a binary offloading policy that an entire

task is either offloaded or computed locally [2]. For instance,

[17] optimizes a partial offloading policy in a multi-user MEC

system to minimize the weighted sum energy consumption

of the users. For multi-user MEC with binary offloading,

[18] applies a separable semidefinite relaxation method to

optimize the binary offloading decisions and wireless resource

allocation. To support heterogenous computation tasks in IoT

systems, [20] and [21] optimize the edge computation resource

provisioning and task offloading/scheduling decisions to maxi-

mize the system operating efficiency (e.g., minimum operating

cost or maximum accepted workload). To address the problem

of high computation power consumption of wireless devices,

[23]–[25] consider using wireless energy transfer technology

to power wireless devices in MEC networks, and optimize the

system computing performance under either partial or binary

offloading policy. When the computation tasks at different

MUs have input-output dependency, [26] studies the optimal

binary offloading strategy and resource allocation to minimize

the computation delay and energy consumption. The above

work, however, ignores the use of edge caching to enhance

the system-level computing performance.

On the other hand, recent work has applied content caching

to MEC systems to effectively reduce computation delay,

energy consumption, and bandwidth cost. In particular, an edge

server can cache task output data [3], task input data [4], and

intermediate task computation results that are potentially use-

ful for future task executions [5]. Meanwhile, content caching

can also be implemented at the MU side to minimize the

offloading (downloading) traffic to (from) the edge server [6].

To address the uncertainty of future task parameters, [5] and

[7] propose online caching placement and prediction-based

data prefetch methods. Despite their respective contributions,

the fundamental assumption on reusing task input/output data

may not hold for many mobile applications.

Computation service caching, on the other hand, caches the

program data for processing a specific type of application.

For instance, [8] considers caching program data of multiple

applications in a set of collaborative BSs, and optimizing the

caching placement and user-BS associations to minimize the

data traffic forwarded to the remote cloud. A similar service

caching placement problem is considered in [9] under commu-

nication, computation, and caching capacity constraints. Under

the uncertainty of user service requests, e.g., application type

and computation workload, [10] proposes a prediction-based

online edge service caching algorithm to reduce the traffic

load forwarded to the cloud. For a single edge server, [11]

assumes zero knowledge of future task arrivals and proposes

an online service caching algorithm that achieves the optimal

worst-case competitive ratio under homogeneous task arrivals.

[12] proposes an online caching algorithm for collaborative

edge servers to minimize the overall computation delay. Unlike

[8]–[12] that assume an entire task is computed either at an

edge server or the cloud, [13] assumes that a task can be

partitioned and executed in parallel at both the cloud and edge

servers that have cached the necessary program.

All the above works neglect an important scenario where a

task can be computed locally at the MU when edge execution

is costly. Besides, they implicitly assume that a service pro-

gram pool can provide all the programs required by the MUs.

In this paper, we include local computation as an option for the

MU, and allow the MU to upload its own programs to run at

the edge server. In this case, the optimal caching placement is

closely related to the offloading decisions, and vice versa, such

that a joint optimization is required for maximum computation

performance.

II. SYSTEM MODEL

A. Service Cache-assisted MEC System

In Fig. 1, we consider an edge server assisting the com-

putation of an MU. This may correspond to a tagged MU

in a multi-user network where each MU has been allocated

with dedicated edge computing and communication resource

to execute its own tasks. Some popular methods to achieve

edge resource isolation include the container [31] and server-

less computing technologies [14], where the server resources

(including CPU, memory, disk and networking resources, etc.)

are partitioned into separate user space environments that do

not interact with each other on the machine. For the tagged

MU, we assume that it has a sequence of M computation

tasks to execute and each task is processed by one of the N
programs considered. We refer to a task as a type-j task if it is

processed by the jth program. Accordingly, we define a binary

indicator ui,j such that ui,j = 1 if the ith task is a type-j task,

and 0 otherwise. Besides, we denote the type of the ith task

as ϕi ∈ {1, · · · , N}, e.g., ϕ1 = 1 and ϕ3 = 2 in Fig. 1. The

M tasks are dependent such that the input of the (i + 1)th
task requires the output of the ith task, i = 1, · · · ,M − 1.

One typical application of the sequential task execution model

is eyeDentify [32], which consists of a series of steps for

feature extraction operation in order to convert the raw image

into a feature vector. Another application is a real time face

recognition system in [33], which consists of a series of

subtasks such as image extract, feature computation, histogram

equalization, face detection, recognizer, and finding algorithm,

etc. The optimal computation offloading problem in MEC

system under the sequential task execution model have been

studied in [34] and [35], where the execution of each subtask

only requires the output of the previous one.

The size of the input and output data of the ith task

is denoted by Ii and Oi, respectively. Besides, Li denotes

4

L1 L2 L3 LM
…… LM+1L0

……

……

……

O0

I1

O1

I2

O2
L5 L6 L7L4

OM

I3 IM+1

h1 h3 h4 h5 h7 hM+1

Service cache

placement

Offloading

decision ai= 0 1 1 1 1 0 0 1 1 0

Task input/output

data
Program data

Edge Server

Mobile User

Task execution

Type-1 Type-1 Type-2 Type-3 Type-3 Type-3 Type-2 Type-2

Wireless Channel

xi,1

Cached program

xi,2

xi,3

Fig. 1: Schematics of the considered service cache-assisted MEC system.

the computing workload to process task i. For simplicity of

illustration, we introduce two pseudo-tasks indexed as 0 and

M + 1, and set L0 = LM+1 = 0, O0 = I1 and OM = IM+1.

Overall, the input and output task data sizes are related by

Ii = Oi−1, i = 1, · · · ,M + 1. The MU follows the binary

offloading policy so that each task can be computed either

locally at the MU or offloaded to the edge server for remote

execution. We use ai ∈ {0, 1} to denote that the ith task is

executed locally (ai = 0) or at the edge server (ai = 1). In

particular, we set a0 = 0 and aM+1 = 0, indicating that the

series of computations initiate and terminate both at the MU.

It is worth noting that the sequential task execution model can

be extended to cascade the sub-tasks of multiple applications

into a one “super-task” consisting of all the sub-tasks.

Suppose that the MU runs its customized programs at the

MEC platform by uploading its own program data (e.g., C/C++

code to generate a program). We denote the size of data to

generate the jth program as sj , j = 1, · · · , N . After receiving

the program data, the edge server generates the corresponding

program (e.g., the binary executable .EXE file) for processing

the task data later offloaded. We denote the size of the jth
generated program as cj , where cj is in general much larger

than sj . Meanwhile, the edge server has a service cache that

can cache the previously generated programs for future service

reuse. We denote xi,j = 1 (or 0) if the jth program is in

the edge service cache (or not) before the execution of the

ith task, either locally or at the edge, where i = 1, · · · ,M .

The edge server can decide to add (or remove) a program

to (from) the cache during each task execution time, if the

action is feasible under a finite caching space. For simplicity

of illustration, we neglect the cost of adding or removing a

program at the service cache and assume that the cache is

empty initially, i.e., x1,j = 0 for all j.

Notice that the program data and task data can be offloaded

separately. As an illustrative example in Fig. 1, at the server

side, a shaded (an empty) square in the jth row and ith column

denotes xi,j = 1 (xi,j = 0). For example, the 1st program is

cached before the execution of the 2nd task until the end of

the execution of the 4th task (i.e., x2,1 = x3,1 = x4,1 =

1). Besides, the dashed square denotes the location of task

execution. For example, the 4 tasks from the 1st until the

4th are executed at the edge, while the 5th and 6th tasks are

executed locally (i.e., a1 = a2 = a3 = a4 = 1 and a5 = a6 =
0 as shown in Fig. 1). For the 1st task to be executed at the

edge, we need to upload both program and task data, as they

are both absent at the server before the execution. However,

we only need to offload the program data of the 3rd and 4th

tasks, because their task input data is already at the edge as

the output of previous edge computations. In addition, the 7th

task only uploads the task data, because the corresponding

program is already in the edge service cache.

The detailed computation, caching, and communication

models are described as follows:

1) Computation Model: We assume that the MU has all the

programs needed to process its tasks, e.g., pre-installed in the

on-chip disk, such that the time consumed on processing a task

i locally only consists of the computation time.2 Specifically,

the time and energy consumed on computing the ith task

locally are [16]

τ li =
Li

fi
, eli = κfα

i τ
l
i = κ

(Li)
α

(τ li)
α−1

, (1)

respectively, where fi denotes the local CPU frequency and

is constrained by a maximum frequency fi ≤ fmax, κ > 0
denotes the computing energy efficiency parameter, and α ≥ 2
denotes the exponent parameter.

When task i is executed on the edge, the computation time

includes two parts. First, the task processing time τci = Li

f0
,

where f0 denotes the fixed CPU frequency of the edge server.

We assume that f0 > fmax, i.e., the server has stronger

computing power than the MU. Second, the server may need

to generate a new program (e.g., program compilation and

2For fast service data access and removal, edge servers cache the pro-
gram data in high-speed memory, e.g., SRAM or RAM. Many commercial
edge/cloud service platforms only allocate very limited memory to a user,
e.g., the AWS Lambda platform provides the choice of 128 MBytes memory
allocated to a user [14]. In comparison, a common mobile phone has at
least several Gigabytes disk memory available, which is slower but much
less expensive, and sufficiently large to pre-install all the programs.

5

load function library) if it is not already in the cache. The

program generation time of the ith task, if necessary, is

Wi ,
∑N

j=1 ui,jDj , where Dj denotes the generation time

of the jth program.

2) Service Caching Model: We assume that the MU can

only upload the program data for processing the current task

that is executed at the edge. That is, the MU can only upload

the j-th program data when executing the ith task at the edge

if ui,j = 1 and ai = 1. Accordingly, xi,j = 1 is attainable

only if at least one of the following two conditions holds:

1) the jth program was in the cache before the execution

of the last task (xi−1,j = 1);

2) the jth program data was uploaded to the edge server

in the last task execution time. This requires ui−1,j = 1
and ai−1 = 1, or equivalently ai−1ui−1,j = 1.

If neither condition is satisfied, we have xi,j = 0. Equivalently,

the above caching causality constraint is expressed as

xi,j ≤ ai−1ui−1,j + xi−1,j , (2)

for i = 1, · · · ,M, j = 1, · · · , N . Besides, we need to

observe the following caching capacity constraint throughout

processing the M tasks,

∑N
j=1cj · xi,j ≤ C, i = 1, · · · ,M, (3)

where C is the caching space allocated by the MEC plat-

form to serve the MU. In this paper, we assume that C ≥
maxj=1,··· ,M cj to avoid trivial solution.

3) Communication Model: Data transmissions between the

edge server and the MU include uploading the program

and/or task data, and downloading the computation result. For

simplicity, we assume uplink/downlink channel reciprocity and

use hi to denote the channel gain when transmitting the data

of the ith task. We assume that hi remains constant during

the data transmission of the ith task and may vary across

different tasks. The uploading data rate for the ith task is

Ru
i = B log2

(

1 + pihi

σ2
i

)

, where B denotes the communica-

tion bandwidth, pi denotes the transmit power, and σ2
i denotes

the receiver noise power including both potential interference

and receiver thermal noise. Without loss of generality, we

assume equal noise power for notation brevity, i.e., σ2
i = σ2

for i = 1, · · · ,M . Then, the time consumed on offloading the

program data of the ith task is

τsi =

∑N
j=1 ui,jsj

Ru
i

,
Vi
Ru

i

, (4)

where Vi ,
∑N

j=1 ui,jsj denotes the program data size of the

ith task. Define function g(x) = σ2
(

2
x
B − 1

)

. It follows from

(4) that the transmit power psi and the energy consumption esi
are

psi =
1

hi
g

(

Vi
τsi

)

, esi = psi τ
s
i =

τsi
hi
g

(

Vi
τsi

)

, (5)

respectively. Notice that esi is convex with respect to τsi .

Similarly, the time, power and energy spent on offloading the

task data for the ith task are denoted as

τui =
Oi−1

Ru
i

, pui =
1

hi
g

(

Oi−1

τui

)

,

eui = pui τ
u
i =

τui
hi
g

(

Oi−1

τui

)

,

(6)

respectively. When both the task data and program data are

offloaded to the edge, we assume that they are jointly encoded

in one packet to reduce the packet header overhead. Accord-

ingly, the edge server only starts initializing the program after

receiving and decoding the whole packet. It can be easily

verified that the time and energy consumed on transmitting

both the program and task data of length (Vi +Oi−1) are

merely the sum of the corresponding two parts in (4)-(6).

Furthermore, the time consumed on downloading the input

data of the ith task for local computation is τdi = Oi−1

Rd
i

, where

Rd
i = B̄ log2

(

1 + P0hi

σ̄2

)

denotes a given downlink data rate

for the ith task when the server transmits using fixed power

P0 and downlink bandwidth B̄ under downlink receiver noise

power σ̄2.

B. Performance Metric

The key performance metric considered in this paper is the

total computation time and energy cost (TEC) of the MU. In

particular, the total computation time consists of two parts.

The first part is the task execution time of the M tasks, which

can be expressed as

T exe =
∑M+1

i=1

[

(1− ai) τ
l
i + aiτ

c
i

]

. (7)

The two terms correspond to the processing delay that a task is

executed locally and at edge server, respectively. The second

part, denoted as T pre, is the time spent on preparing for

the program and task data before task execution, i.e., data

transmission and program generation. Consider a tagged task

i, we discuss the preparation time in the following cases.

1) Case 1 (ai−1 = 0 and ai = 0): In this case, the two

consecutive tasks are computed locally, which incurs no

delay on either program or task data transmission.

2) Case 2 (ai−1 = 0 and ai = 1): In this case, it takes

τui amount of time to offload the task data to the

edge. Meanwhile, program data uploading and program

generation are needed if the program for computing the

ith task is not in the cache. Mathematically, the delay

overhead in offloading and initializing the program is

τoi , (Wi + τsi)
∑N

j=1(1 − xi,j)ui,j . (8)

Overall, the preparation time is τui + τoi .

3) Case 3 (ai−1 = 1 and ai = 0): Only the computation

output of the previous task needs to be downloaded to

the MU. Accordingly, the time consumed is τdi .

4) Case 4 (ai−1 = 1 and ai = 1): The input task data of

the ith task is already available after the computation

of the previous task. Thus, the preparation time is the

time needed for program data transmission and program

6

generation, if the program data is not in the service

cache. In other words, the time consumed is τoi .

From the above analysis, we have

T pre =
∑M+1

i=1

[

(1− ai−1) aiτ
u
i + ai−1 (1− ai) τ

d
i + aiτ

o
i

]

,

where a0 = aM+1 = 0 by definition. Therefore, the total

computation delay of the M tasks is

T = T exe + T pre

=
∑M+1

i=1

[

(1− ai−1) aiτ
u
i + ai−1 (1− ai) τ

d
i

+ (1− ai) τ
l
i + aiτ

o
i + aiτ

c
i

]

.

(9)

Meanwhile, the energy consumption of the MU is

E =
∑M+1

i=1

[

(1− ai) e
l
i + (1− ai−1) aie

u
i + aie

o
i

]

, (10)

where eoi = esi
∑N

j=1(1 − xi,j)ui,j denotes the energy con-

sumed on uploading the program data for the ith task. The

other two terms correspond to the energy consumed on local

computation and task data offloading, respectively. The perfor-

mance metric TEC is the weighted sum of the two objectives,

i.e., TEC = βT + (1− β)E, where β ∈ [0, 1] is a weighting

parameter.

III. JOINT CACHING PLACEMENT AND COMPUTATION

OFFLOADING OPTIMIZATION

In this section, we formulate a joint optimization of resource

allocation, caching placement and computation offloading de-

cisions to minimize the TEC. We first derive the closed-form

expressions of the optimal resource allocation. Accordingly,

we show that (P2) can be equivalently transformed into a pure

binary ILP problem, which can be handled by off-the-shelf

algorithms.

A. Problem Formulation

In this paper, we are interested in minimizing the TEC of the

MU by jointly optimizing the task offloading decision a, the

computational caching decision X, and the system resource

allocation {f , τ ,p}. Here, f = {fi}, τ =
{

τ li , τ
u
i , τ

s
i

}

, p =
{pui , p

s
i}. That is, we solve

(P1) : minimize
a,X,f ,τ ,p

βT + (1 − β)E (11a)

subject to (2), (3), (11b)

0 ≤ pui , p
s
i ≤ Pmax, ∀i, (11c)

0 ≤ fi ≤ fmax, ∀i, (11d)

τ li , τ
u
i , τ

s
i ≥ 0, ∀i, (11e)

ai, xi,j ∈ {0, 1} , ∀i, j. (11f)

Notice that T and E are non-linear functions of the optimizing

variables, with the detailed expressions given in (9) and

(10), respectively. (11b) corresponds to the caching causality

and capacity constraints. (11c) and (11d) correspond to the

maximum transmit power and CPU frequency of the MU.

From (1), there is a one-to-one mapping between τ li and fi.
Besides, pui is uniquely determined by τui in (6), and psi is

uniquely determined by τsi in (5). By substituting {f ,p} with

τ , we can equivalently express (P1) as

(P2) : minimize
a,X,τ

βT + (1− β)E

subject to (2), (3),

ai, xi,j ∈ {0, 1} , ∀i, j,

τ li ≥
Li

fmax

, i = 1, · · · ,M,

τui ≥
Oi−1

Rmax
i

, i = 1, · · · ,M,

τsi ≥
Vi

Rmax
i

, i = 1, · · · ,M,

(12)

where Rmax
i = B log2

(

1 + hiPmax

σ2

)

is a parameter. Problem

(P2) is a mixed integer non-linear programming (MINLP),

which lacks of efficient algorithm in its current form. In

the following, we show that the problem can be equivalently

transformed into a pure 0-1 integer linear programming (ILP).

B. Optimal Resource Allocation

A close observation of (P2) shows that the feasibility set

of the binary variables {a,X} is not related to the resource

allocation variables τ . Meanwhile, for any feasible {a,X},

the optimal τ
∗ is not related to {a,X}, and thus can be

separately optimized. Intuitively, this is because we can al-

ways decrease the objective by minimizing the energy and

computation delay cost incurred by each task, regardless of

the caching placement solution X and offloading decision a.

After plugging the optimal τ ∗ back to (P2) and performing

some simple manipulations, (P2) can be equivalently written

as the following problem:

(P3) : minimize
a,X

∑M+1
i=1 ρi

subject to (2), (3), ai, xi,j ∈ {0, 1} , ∀i, j,
(13)

where

ρi ,o
∗
i (1− ai−1) ai + l∗i (1− ai) + s∗i ai

∑N
j=1 (1− xi,j)ui,j

+ βai−1 (1− ai) τ
d
i + βaiτ

c
i ,

and {o∗i , l
∗
i , s

∗
i }’s are parameters obtained by optimizing the

resource allocation variables τ . Specifically, o∗i is obtained by

optimizing τui as follows,

o∗i = minimize
τu
i

βτui + (1− β)
τui
hi
g

(

Oi−1

τui

)

(14a)

subject to τui ≥
Oi−1

Rmax
i

, (14b)

for i = 1, · · · ,M + 1. Likewise, l∗i is obtained by optimizing

τ li as follows,

l∗i = minimize
τ l
i

βτ li + (1− β)κ
(Li)

α

(τ li)
α−1

(15a)

subject to τ li ≥
Li

fmax

, (15b)

7

for i = 1, · · · ,M+1. In addition, s∗i is obtained by optimizing

τsi as follows,

s∗i = minimize
τs
i

βWi + βτsi + (1− β)
τsi
hi
g

(

Vi
τsi

)

(16a)

subject to τsi ≥
Vi

Rmax
i

, (16b)

for i = 1, · · · ,M + 1. In other words, the optimization

of the vector τ can be decomposed into individual scalar

optimization problems. The following Proposition 1 derives

the closed-form expression of the optimal solution (τui)
∗

to

(14).

Proposition 1: The optimal solution τui is

(τui)
∗
=







Oi−1

Rmax
i

, if hi ≤ η,
ln 2·Oi−1

B·
[

W
(

e−1
[

βhi

(1−β)σ2 −1
])

+1
] , otherwise, (17)

where η , σ2

Pmax

(

A
−W(−A exp(−A)) − 1

)

and A = 1 +
β

(1−β)Pmax
are fixed parameters. W(x) denotes the Lambert-W

function, which is the inverse function of J(z) = z exp(z) =
x, i.e., z = W(x).

Proof: Please see the detailed proof in Appendix A. �

Because W(x) > −1 when x > −1/e, the denominator in

the second term of (17) (and thus (τui)
∗
) is always positive.

Similar to the proof in Proposition 1, the optimal (τsi)
∗

to (16)

is

(τsi)
∗
=







Vi

Rmax
i

, if hi ≤ η,
ln 2·Vi

B·
[

W
(

e−1
[

βhi

(1−β)σ2 −1
])

+1
] , otherwise.

(18)

Meanwhile, the optimal solution
(

τ li
)∗

to (15) can be obtained

by calculating the derivative of the objective and considering

the boundary condition, as follows

(

τ li
)∗

=











Li

fmax
, if fmax ≤

(

β
κ(1−β)(α−1)

)
1
α

,
(

κ(1−β)(α−1)
β

)
1
α

Li, otherwise.

(19)

When the optimal τ ∗ is obtained, the optimal {f∗,p∗} in (P1)

can be retrieved accordingly from (1), (5) and (6).

Remark 1: For the offloaded tasks, when hi is weaker

than the fixed threshold in (17), the MU should transmit

at maximum power (pui)
∗

= Pmax (or equivalently at the

maximum data rate Rmax
i) to minimize the offloading time.

Otherwise, when hi is stronger than the threshold, the MU

offloads for a shorter time (τui)
∗

when hi increases, because

W (x) is an increasing function when x > −1/e. Similar

results can also be obtained for (τsi)
∗

and (psi)
∗

from (18).

For the tasks computed locally, the optimal solution
(

τ li
)∗

in

(19) shows that the MU should compute faster either when

a larger weight β is assigned to the delay cost or when the

local computation is more energy-efficient (small κ). When

β is sufficiently large or κ is sufficiently small, the MU

should compute at a maximum speed fmax to minimize the

computation delay.

C. Equivalent ILP Formulation

Given the fixed parameters {o∗i , l
∗
i , s

∗
i } in (P3), the problem

is a quadratic integer programming problem due to the multi-

plicative terms. To further simplify the problem, we introduce

two sets of auxiliary variables zi , aixi,ϕi
and bi , aiai−1

for i = 1, · · · ,M . Recall that ϕi denotes the service type of

the ith task. Accordingly, we re-express (P3) as

minimize
a,b,z,X

M
∑

i=1

(

o∗i + βτci + βτdi+1 + s∗i − l∗i
)

ai (20a)

−
M
∑

i=2

(

o∗i + βτdi
)

bi −
M
∑

i=2

s∗i zi +

M
∑

i=1

l∗i , (20b)

subject to bi ≤
1

2
(ai−1 + ai) , i = 1, · · · ,M, (20c)

zi ≤
1

2
(ai + xi,ϕi

) , i = 1, · · · ,M, (20d)

(2), (3), ai, bi, zi, xi,j ∈ {0, 1} , ∀i, j. (20e)

Constraint (20c) forces bi to be zero if either ai−1 or ai
is zero. Otherwise, if ai−1 = ai = 1, bi = 1 must hold

at the optimum because the objective is decreasing in bi.
Therefore, bi = aiai−1 holds at the optimum when constraint

(20c) is satisfied. Similar argument also applies to constraint

(20d). Overall, the above problem is a standard 0-1 ILP

problem, which can be handled by standard exact algorithms,

e.g., branch and bound method [29]. Notice that the problem

has M(N + 3) binary variables. The worst-case complexity

of branch-and-bound method, as well as many other well-

known exact algorithms for ILP, grows exponentially with

the number of binary variables. Therefore, the complexity of

solving (P3) can still be high when either M or N is large,

e.g., taking several minutes to compute when M equals several

hundred. To reduce the complexity of solving a large-size ILP

in real implementation, we investigate in the following sections

an alternating minimization heuristic, where service caching

placements and offloading decisions are optimized separately

and iteratively.

IV. OPTIMAL SERVICE CACHING PLACEMENT

A. Structure of the Caching Causality

In this section, we assume a feasible offloading decision a

is given in (P3) and optimize the service caching placement

X. By eliminating the unrelated terms, (P3) reduces to

(P4) : maximize
X∈{0,1}M×N

∑

i∈As
∗
i xi,ϕi

(21a)

subject to (2), (3), (21b)

where A denotes the index set of offloading tasks. For ex-

ample, A = {1, 3, 4, 5, 6, 8, 9, 10, 11, 12} in Fig. 2. There

are in total MN integer variables in (P4). However, as we

show below, it is sufficient to optimize only the caching

placement for the offloading tasks, i.e., {xi,ϕi
|i ∈ A}, while

the other variables are redundant. Let us first introduce the

following two definitions to establish the caching causality of

consecutive tasks.

Definition 1: Let νji = {mink≥i k|uk,j = ak = 1} denote

the index of the next type-j task that is offloaded for edge

8

Service 1

Service 2

Service 3

72

1 4

5

6

11

3

8

12

9

10

1,2x

3,3x 5,3x

4,2x 8,2x 9,2x 11,2x

10,1x

12,3x

6,1x

Fig. 2: An example task offloading decision. The rows represent the
service types (N = 3) and the columns represent the task indices
(M = 12). For instance, the 1st task is type-2 and the 2nd task is
type-1. A solid square indicates the task is computed at the edge (i.e.,
ai = 1, such as task 6), and a dashed square indicates local computing
(i.e., ai = 0, such as task 2). The variable below each solid box
is the corresponding caching placement variable xi,j . The red lines
illustrate the index sets V8 = {5, 6, 7, 8} and V10 = {7, 8, 9, 10} in
Definition 2.

execution since the execution of the ith task. In particular,

νji = i if ui,j = ai = 1, and νji = ∅ when no such task exists.

For instance, ν111 = ∅, ν211 = 11, and ν311 = 12 in Fig. 2.

Definition 2: For a task k ∈ A of service type ϕk , we

denote Vk = {i | νϕk

i = k, i = 1, · · · , k} as the index set of

consecutive preceding tasks that satisfy νϕk

i = k. That is,

νϕk

i = k holds for |Vk| consecutive tasks from task i = k −
|Vk|+1 to task k, where |Vk| denotes the cardinality of Vk. For

instance, V8 = {5, 6, 7, 8}, V9 = {9}, and V10 = {7, 8, 9, 10}
in Fig. 2.

We first show that we can safely set some variables xi,j = 0
without affecting the optimal value of (P4). Recall that νj1
denotes the index of the first type-j task that is offloaded for

edge execution (if any), e.g., ν11 = 6, ν21 = 1, and ν31 = 3 in

Fig. 2. By our assumption that the cache is initially empty, it

holds from the caching causality constraint (2) that x
ν
j
1 ,j

= 0,

j = 1, · · · , N . In Fig. 2, for instance, x6,1 = x1,2 = x3,3 = 0.

Besides, notice that for any xi,j satisfying νji = ∅ (such as

x11,1), there is no type-j task offloaded for edge execution

afterwards. Thus, we can simply set xl,j = 0, for l ≥ i,
without affecting the optimal value of (P4). For instance, we

can set x11,1 = x12,1 = x12,2 = 0 in Fig. 2. In this sense,

we consider in the following only those variables xi,j ’s that

satisfy νji 6= ∅, i.e., {xi,ϕk
| ∀k ∈ A, ∀i ∈ Vk}. The following

Proposition 2 proves that many of the remaining variables are

redundant and can be removed from (P4).

Proposition 2: Suppose that X̂ = {x̂i,j} is a feasible

solution of (P4), we can construct another feasible solution

X̄ = {x̄i,j} by setting x̄i,ϕk
= x̂k,ϕk

, ∀k ∈ A and ∀i ∈ Vk.

Meanwhile, the objective values of (P4) are the same with X̂

and X̄.

Proof: Please see the detailed proof in Appendix B. �

Remark 2: Proposition 2 indeed shows that only

{xk,ϕk
| ∀k ∈ A} are independent variables, while the rest

of the variables {xi,j} in (P4) are dependent variables and

redundant. For a tagged offloading task k ∈ A, by replacing

xi,ϕk
with xk,ϕk

, ∀i ∈ Vk in (P4), we remove not only the

dependent variables in Vk, but also the redundant constraints

in (2) for i ∈ Vk and j = ϕk. Furthermore, by considering

all k ∈ A, we remove all dependent variables and all the

constraints in (2) without affecting the optimal value of (P4).

Take Fig. 2 as an example. We can intuitively visualize the

variable replacements derived from Proposition 2. That is, each

caching placement variable xi,j corresponding to a blank slot

(e.g., x7,2) or a dashed square (e.g., x7,1) can be equivalently

replaced by that corresponding to the next solid square in the

same row (e.g., by x8,2 and x10,1, respectively). For instance,

we can replace {x7,1, x8,1, x9,1} by x10,1 while achieving the

same optimal value of (P4). The replacement also removes the

constraints in (2) for i = 7, 8, 9, 10 and j = 1.

Following the variable replacement technique proposed in

Proposition 2, (P4) is equivalently transformed to the following

problem

(P4-Eq) : maximize
xi,ϕi

,∀i∈A

∑

i∈As
∗
i xi,ϕi

(22a)

subject to xi,ϕi
∈ {0, 1} , ∀i ∈ A, (22b)

x
ν
j
1 ,j

= 0, j = 1, · · · , N, (22c)
∑N

j=1cj · xνj
i ,j

≤ C, ∀i. (22d)

Notice that the above problem (P4-Eq) is a standard multidi-

mensional knapsack problem (MKP) [30]. Compared to (P4),

the number of binary variables is reduced from MN to only

|A| ≤M . Besides, as we will illustrate in the next subsection,

many constraints in (22d) are duplicated or redundant. When

there is more than one effective constraint in (P4-Eq), there

does not exist a fully polynomial-time approximation scheme

(FPTAS) [30]. However, for MKP problems of moderate size,

plenty of algorithms include hybrid dynamic programming and

branch-and-bound methods can be applied to solve for the

exact optimal solution in a reasonable computation time, e.g.,

within 0.1 second of computation time for over 500 variables

[36].

B. Optimal Caching Placement: A Case Study

In this subsection, we use the example in Fig. 2 to illustrate

the problem transformation from (P4) to (P4-Eq). We first

apply the above variable replacement technique to the M con-

straints in (3) of (P4) one by one to construct the corresponding

M constraints in (22d) of (P4-Eq). Starting from the first

constraint in (22d), we note that
{

ν11 , ν
2
1 , ν

3
1

}

= {6, 1, 3}, and

thus focus on variables {x6,1, x1,2, x3,3}. Because the service

cache is assumed empty initially, we have x6,1 = x1,2 =
x3,3 = 0. Therefore, the first constraint in (22d) of (P4-Eq) is

unnecessary. The second constraint in (22d) can be expressed

as C2 : c2x4,2 ≤ C because ν22 = 4. After applying the similar

variable replacement procedure to constraint i = 3, · · · , 12,

we obtain the M constraints of (P4-Eq), which however

contain duplicated or redundant constraints. For instance, C2 is

redundant due to the assumption that C ≥ ci, ∀i. Meanwhile,

it can be easily verified that the 3rd constraint C3 in (22d) is

the same as C2. In addition, for the 6th and 7th constraints in

(22d), we have

C6 : c2x8,2 + c3x12,3 ≤ C,

C7 : c1x10,1 + c2x8,2 + c3x12,3 ≤ C,

where C6 is evidently redundant if C7 is satisfied.

9

Service 1

Service 2

Service 3

*

1,2 0x =

72

1 4

5

6

11

3

8

12

9

10

*

3,3 0x = *

5,3 1x =
*

12,3 0x =

*

6,1 0x =
*

10,1 1x =

*

4,2 1x =
*

8,2 1x =
*

9,2 1x =
*

11,2 0x =

Service 1

Service 2

Service 3

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

(a) Caching Solution to (P4-Eq)

(b) Caching Solution to (P4)

1 2 3 4 5 6 7 8 9 10 11 12

(c) Caching State

Cached

Segment 2

130

2e 3e2u 3u1u

Cached

Segment 1

Cached

Segment 3

Uncached

Segment 1

Uncached

Segment 2

Uncached

Segment 3

Fig. 3: (a). An example optimal solution to (P4-Eq) adapted from
Fig. 2, where a red (black) box indicates x∗

i,j = 1 (0); (b). The
retrieved caching solution to (P4); (c). The caching state derived from
the caching solution. A shaded (empty) box indicates xi,ϕi = 1 (0).

After removing all the duplicated/redundant constraints,

(P4-Eq) becomes

maximize
xi,ϕi

,∀i∈Ā

∑

i∈Ā

s∗i xi,ϕi

subject to xi,ϕi
∈ {0, 1} , ∀i ∈ Ā,

C4 : c2x4,2 + c3x5,3 ≤ C,

C5 : c2x8,2 + c3x5,3 ≤ C,

C7 : c1x10,1 + c2x8,2 + c3x12,3 ≤ C,

C9 : c1x10,1 + c2x9,2 + c3x12,3 ≤ C,

C10 : c1x10,1 + c2x11,2 + c3x12,3 ≤ C,

(23)

where Ā , {4, 5, 8, 9, 10, 11, 12} denotes the indices of

the remaining offloading tasks. Compared with its original

formulation in (P4), the numbers of binary variables are

reduced from MN = 36 to 7, the number of caching

capacity constraints is reduced from M = 12 to 5, and all

the caching causality constraints are removed. Besides, the

original generic ILP is converted to a standard 0-1 MKP, where

many specialized exact and approximate solution algorithms

are available.

After solving (23) optimally, we can easily retrieve the

solution in (P4) by Proposition 2. For example, for the

2nd program, the optimal solutions can be retrieved from
{

x∗4,2, x
∗
8,2, x

∗
9,2, x

∗
11,2

}

as x∗2,2 = x∗3,2 = x∗4,2, x∗5,2 = x∗6,2 =
x∗7,2 = x∗8,2, x∗10,2 = x∗11,2, while x∗i,2 = 0 for the rest task

i. The optimal solution of x∗i,1’s and x∗i,3’s can be similarly

obtained. As an illustrating example, suppose that Fig. 3(a)

is the optimal caching solution to (P4-Eq) for the example

in Fig. 2, Fig. 3(b) shows the corresponding optimal caching

placement solution to (P4).

V. OPTIMAL TASK OFFLOADING DECISION

In this section, we optimize the task offloading decision a

given a caching placement decision X in (P3). Interestingly,

we find that the only difficulty lies in optimizing the offloading

decisions of the “uncached” tasks, which effectively reduces

the number of binary variables.

A. Reduced-Complexity Decomposition Method

Notice that once X is given, (P3) is reduced to

minimize
a

∑M+1
i=1

{

o∗i (1− ai−1) ai + l∗i (1− ai) (24a)

+ (λ∗i + βτci) ai + βτdi ai−1 (1− ai)
}

(24b)

subject to ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i, j, (24c)

ai ∈ {0, 1} , i = 1, · · · ,M, (24d)

where a0 = 0 and aM+1 = 0. Here, λ∗i in the objective is a

parameter determined by the value of xi,ϕi
, where λ∗i = 0 if

xi,ϕi
= 1 and λ∗i = s∗i if xi,ϕi

= 0, for i = 1, · · · ,M+1. We

assume without loss of generality that problem (24) is feasible

given the caching placement X.3 In the following Lemma 1,

we reveal an interesting structure of the feasible solutions of

(24) to simplify the problem.

Definition 3: With a given X, we refer to a block of

consecutive tasks with xi,j = 1 for a specific program j as a

run. Beside, we denote the index set of the first task of each

run as S, i.e., S = {i|xi,j > xi−1,j , ∀i, j}. For instance, there

are in total 3 runs in Fig. 3(b) (red boxes) and S = {2, 4, 7}.

Lemma 1: With the given X in (24), a necessary and

sufficient condition for an offloading decision a ∈ {0, 1}M

being a feasible solution of (24) is that ai−1 = 1, ∀i ∈ S.

Proof: Please see the detailed proof in Appendix C. �

From Lemma 1, we can equivalently replace all the con-

straints in (24c) with ai−1 = 1, ∀i ∈ S, which essentially

removes |S| variables as well as all the MN constraints in

(24c). Then, we introduce auxiliary variables bi = ai−1ai,
i = 1, · · · ,M , as in (20), which transforms (24) to the

following ILP:

minimize
a,b

∑M
i=1

(

o∗i + λ∗i + βτci + βτdi+1 − l∗i
)

ai

−
∑M

i=1

(

o∗i + βτdi
)

bi +
∑M

i=1l
∗
i ,

subject to bi ≤
1

2
(ai−1 + ai) , i = 2, · · · ,M,

ai, bi ∈ {0, 1} , i = 1, · · · ,M,

ai−1 = 1, ∀i ∈ S.

(25)

In general, the problem has 2M − |S| binary variables. In

the following, we study the properties of optimal offloading

decisions to further reduce the complexity of solving the ILP

in (24).

Recall that the value of parameter xi,ϕi
represents whether

the program for computing the ith task is already in the

service cache, where i = 1, · · · ,M . Specifically, we refer

to the ith task with xi,ϕi
= 1 as a cached task, and an

uncached task otherwise. To facilitate illustration, we set

x0,ϕ0 = 1 and xM+1,ϕM+1 = 0 for the two virtual tasks

without affecting both the objective and constraints of (24).

As an illustrative example in Fig. 3(c), the caching state

3The feasibility of (24) can be guaranteed in the alternating minimization
method proposed in Section V-C.

10

φk,1 =

{

o∗1a1, k = 1,
∑uk−1

i=ek+1 ψi +
[

o∗uk
(1− auk−1) auk

+ βτduk
auk−1 (1− auk

)
]

k = 2, · · · ,K,
(27)

φk,0 =
[

l∗uk
(1− auk

) +
(

λ∗uk
+ βτcuk

)

auk

]

+
∑ek+1

i=uk+1ψi, k = 1, · · · ,K. (28)

vector
[

x0,ϕ0 , x1,ϕ1 , · · · , xM+1,ϕM+1

]

consists of alternating

patterns of consecutive 0’s and 1’s. Here, we refer to a block

of consecutive tasks with xi,ϕi
= 1 as a cached segment,

and a block of consecutive tasks with xi,ϕi
= 0 as an

uncached segment, such as the three cached segments and three

uncached segments in Fig. 3(c). In particular, these M+2 tasks

always start with a cached segment and end with an uncached

segment. Therefore, the numbers of cached and uncached

segments are always the same and are denoted by K ≥ 1.

In the following, we separate our discussions according to the

value of K .

1) K = 1: Note that x1,ϕ1 = 0 always holds because the

service cache is assumed empty initially. Therefore, the first

cached segment always has only one task (i.e., task 0). K = 1
indicates that xi,ϕi

= 0 for i = 1, · · · ,M + 1. This indeed

is the most difficult case in that we need to solve a general

ILP by setting λ∗i = s∗i for all i = 1, · · · ,M in (25) without

any improvement on computational complexity. In practice,

however, this case rarely occurs when a proper initial caching

placement is set.

2) K > 1: In this case, there exists some cached task i
for 1 < i ≤ M . We denote ek and uk as the indices of

the uncached tasks preceding and following the kth cached

segment, respectively, while e1 is not defined. For instance,

u1 = 1, {e2, u2} = {3, 6} and {e3, u3} = {6, 11} in Fig. 3(c).

Notice that uk = ek+1 may occur when there is only one task

in an uncached segment, such as u2 = e3 = 6. For simplicity

of illustration, we denote

ψi =o
∗
i (1− ai−1) ai + l∗i (1− ai)

+ (λ∗i + βτci) ai + βτdi ai−1 (1− ai) ,

such that the objective of (24) is expressed as
∑M+1

i=1 ψi. Al-

ternatively, the objective of (24) can be decomposed based on

{ek, uk}’s, such that problem (24) can be recast as following

minimize
a∈{0,1}M

∑K
k=1 (φk,1 + φk,0) (26a)

subject to ai−1 = 1, ∀i ∈ S, (26b)

where φk,1 and φk,0 are expressed in (27) and (28) respectively

at the top of this page. Intuitively, φk,1 and φk,0 correspond to

the TEC induced by the kth cached and uncached segments,

respectively. Besides, the sets of optimizing variables in φk,1
and φk,0 are

Ak,1 =

{

a1, k = 1,

{ai|i = ek, ek + 1, · · · , uk} , k = 2, · · · ,K,

and Ak,0 = {ai|i = uk, uk + 1, · · · , ek+1} , k = 1, · · · ,K.
A closer observation of Ak,1 and Ak,0 shows that once

the values of {aek , auk
}’s are fixed, for i = 1, · · · ,K , φk,1’s

ek ek+1 i j uk-1 uk

ek ek+1

i* uk-1 uk

ek ek+1

j* uk-1 uk ek ek+1

i*

j* uk-1 uk

(a) (b)

(c) (d)

Edge execution

Edge execution

Local execution

Edge execution

Local execution

Edge execution

Local execution

i j
Hypothetical local

execution

Fig. 4: Optimal offloading decision given the values of aek and auk
.

and φk,0’s can be separately optimized with disjoint sets

of variables. In the following, we first discuss the optimal

offloading decisions of the cached tasks that minimize φk,1’s.

Without loss of generality, we focus on the kth cached

segment, supposing that {aek , auk
} are given. Depending on

the values of {aek , auk
}, there are four cases, as illustrated in

Fig. 4.

1) aek = auk
= 1, as shown in Fig. 4(a). In this case,

the optimal offloading solution is ai = 1, for i = ek +
1, · · · , uk − 1. That is, all the cached tasks are executed

at the edge server. Due to the page limit, we only provide

a sketch of proof here, by contradiction. Suppose that

tasks i to j are computed locally instead of at the edge

in Fig. 4(a). This will incur not only additional time and

energy for downloading (uploading) the input (output) of

the ith (jth) task, but also additional time and energy for

local computation, because f0 > fmax and the energy

consumption on edge computation is neglected.

2) aek = 0 and auk
= 1, as shown in Fig. 4(b). For the

optimal offloading decision, there must exist an optimal

task i∗ ∈ {ek + 1, · · · , uk − 1}, such that for each i =
ek + 1, · · · , uk − 1, we have a∗i = 0 if i < i∗ and

a∗i = 1 if i ≥ i∗. This indicates that the computation is

offloaded to the edge exactly once within the segment.

The proof follows that in the first case and is omitted

for brevity. In particular, i∗ can be found via a simple

linear search.

3) aek = 1 and auk
= 0, as shown in Fig. 4(c). For the

optimal offloading decision, there must exist an optimal

task j∗ ∈ {ek + 1, · · · , uk − 1}, such that for each i =
ek + 1, · · · , uk − 1, we have a∗i = 1 if i < j∗ and

a∗i = 0 if i ≥ j∗. The proof also follows the idea in the

first case. This indicates that the computation result is

downloaded to the MU exactly once within the segment.

In particular, j∗ can be found using a linear search.

11

4) aek = auk
= 0, as shown in Fig. 4(d), implying that

the computations start and end both at the MU. This

corresponds to the case in [26], which shows that the

optimal computation offloading strategy satisfies a “one-

climb” policy where the tasks are either offloaded to the

edge server for exactly once, or all executed locally at

the MU. There must exist i∗ ≤ j∗, such that the optimal

solution of ai, i = ek + 1, · · · , uk − 1, is

a∗i =

{

0, i < i∗ or i ≥ j∗,

1, i∗ ≤ i < j∗.
(29)

The optimal {i∗, j∗} can be efficiently obtained through

a two-dimensional search.

From the above discussion, the optimal value φk,1 un-

der the above four cases can be efficiently obtained. Let

us denote the optimal values by v
(1)
k , v

(2)
k , v

(3)
k , and v

(4)
k

for the four cases, respectively. Moreover, the calculations

of
{

v
(1)
k , v

(2)
k , v

(3)
k , v

(4)
k

}

’s can be performed in parallel for

different segments. This way, φk,1 can be expressed as

φk,1 = v
(1)
k aekauk

+ v
(2)
k (1− aek) auk

+ v
(3)
k aek (1− auk

) + v
(4)
k (1− aek) (1− auk

) .
(30)

By substituting (30) into (26), we eliminate all the offload-

ing decision variables corresponding to the cached tasks,

and leaving only the variables for the uncached tasks, i.e.,

{ai|xi,ϕi
= 0, i = 1, · · · ,M}. In the following, we transform

(26) into an equivalent ILP problem.

B. Equivalent ILP Formulation

The basic idea is similar to that for (P3) in Section III-C,

where the new challenge is in the multiplicative terms in (30).

By denoting âi , 1− ai, where âi ∈ {0, 1}, we rewrite (30)

as

φk,1 = v
(1)
k aek (1− âuk

) + v
(2)
k (1− aek) auk

+ v
(3)
k aek (1− auk

) + v
(4)
k (1− aek) âuk

.
(31)

We further define qk , aekauk
and q̂k , aek âuk

, and express

the above equation as

ωk,1 ,

(

v
(1)
k + v

(3)
k

)

aek + v
(2)
k auk

+ v
(4)
k âuk

−
(

v
(1)
k + v

(4)
k

)

q̂k −
(

v
(2)
k + v

(3)
k

)

qk.
(32)

By substituting (32) into (26) and introducing auxiliary vari-

ables bi = ai−1ai, we have

minimize
a,â,b,q,q̂

∑K
k=1 (ωk,1 + φk,0) (33a)

subject to ai−1 = 1, ∀i ∈ S, (33b)

bi ≤
1

2
(ai−1 + ai) , (33c)

∀i ∈ Ak,0 \ uk, k = 1, · · · ,K, (33d)

qk ≤
1

2
(aek + auk

) , k = 2, · · · ,K, (33e)

q̂k ≤
1

2
(aek + âuk

) , k = 2, · · · ,K, (33f)

âuk
+ auk

= 1, k = 2, · · · ,K, (33g)

ai, âi, bi, qk, q̂k ∈ {0, 1}, ∀i, k. (33h)

100 200 300 400 500 600

No. of tasks (M)

0

50

100

150

200

250

300

350

400

450

75.9

17.9

147.6

34.1

225.9

52.1

274.4

62.4

341.2

76.4

427.7

97.4

Average no. of segments K

Average no. of cached tasks |A1|

Fig. 5: The average number of segments K and cached tasks |A1|
when solving (33) during the alternating minimization under different
number of tasks M . The simulation parameters are in Table I.

We see that the inequalities (33c) to (33f) are equivalent

to bi = ai−1ai, qk = aekauk
, and q̂k = aek âuk

, re-

spectively, because the objective decreases with {bi, qk, q̂k}’s.

Similar to (25), the problem above is also a pure 0-1 in-

teger optimization problem. Compared to (25), it reduces

2|A1| variables that correspond to the cached tasks, where

A1 = {i|xi,ϕi
= 1, i = 1, · · · ,M}, while introducing addi-

tional 3(K − 1) auxiliary variables. In general, the above for-

mulation can effectively reduce the computational complexity

because |A1| is often much larger than K in practice. To

see this, we plot in Fig. 5 the average number of cached

tasks (|A1|) and segments (K) when solving (33) during the

execution of the alternating minimization (to be introduced

in the next subsection), where the former is more than 4
times larger than the latter for all M . The complexity of

the alternating minimization will be evaluated numerically in

Section VI.B.

C. Alternating Minimization

Sections IV-A and V-A show that we can compute the

optimal caching placement X∗ with low complexity when the

offloading decision a is given, and vice versa. This leads to an

alternating minimization scheme that optimize the two set of

variables X and a alternately. Starting from an initial a(0), we

iteratively compute the optimal X(i) given a(i−1) (by solving

(P4)), and the optimal a(i) given X(i) (by solving problem

(24)) for i = 1, 2, · · · , until the improvement on the objective

function of (P3) becomes marginal. Because the objective of

(P3) is bounded below and non-increasing as the iterations

proceed, the alternating minimization method is asymptotically

convergent. The detailed algorithm description is omitted for

brevity.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithms through numerical simulations. All the computa-

tions are solved in MATLAB on a computer with an Intel

Core i7-4790 3.60-GHz CPU and 16 GB of memory. Besides,

12

TABLE I: Simulation Parameters

B = B̄ = 106 Hz fmax = 0.5 GHz

σ2 = σ̄2 = 10−10 Watt κ = 10−26

P0 = 1 Watt β = 0.1
f0 = 10 GHz M = 400
Pmax = 0.1 Watt N = 6
Oi ∈ [2, 5] Mb dM = 30 meters

Li ∈ [50, 200]× 106 Cycles de = 2.6
sj ∈ [0.5, 1.5] Mb Ad = 4.11
Dj = 3 seconds, ∀j fc = 915 MHz

Normalized C = 3 α = 3

we use Gurobi optimization tools to solve the ILP problems

[37]. In all simulations, we assume that the average channel

gain h̄i follows a path-loss model h̄i = Ad

(

3×108

4πfcdM

)de

,

i = 1, · · · ,M , where Ad denotes the antenna gain, fc denotes

the carrier frequency, de denotes the path loss exponent,

and dM denotes the distance between the MU and the edge

server. The time-varying fading channel hi follows an i.i.d.

Rician distribution with LOS link gain equal to 0.2h̄i. Unless

otherwise stated, the parameters used in the simulations are

listed in Table I, which correspond to a typical outdoor MEC

system. For simplicity of illustration, we assume that cj’s are

equal for all the programs, such that the caching capacity C is

normalized to indicate the number of programs that can cache.

Unless otherwise stated, all results in the simulations are

the average performance of 50 independent simulations. In

each simulation, we first randomly generate M tasks that

belong to N = 6 types of programs, where the types of

the sequential tasks follow a Markov chain with a random

initial state. Specifically, the Markov transition probability

Pi,j , Pr (ϕk+1 = j|ϕk = i) = 0.4 if i = j, and Pi,j = 0.12
if i 6= j, ∀i, j, k, where ϕk denotes the program type of the kth

task. Then, the parameters of each task (Oi and Li) and each

type of program (sj) are uniformly generated from the ranges

specified in Table I for i = 1, · · · ,M and j = 1, · · · , N .

In the following, we evaluate the performance of the pro-

posed optimal joint optimization (in Section III-C) and alter-

nating minimization (in Section V-C) methods. Specifically,

we initialize ai = 1 for all i in the alternating minimization.

Besides, we also consider the following benchmark methods

for performance comparison:

• Popular-cache: we first neglect the offloading decision

of the MU and cache the most popular programs that

are executed most frequently throughout the time. Then,

we optimize the offloading decision given the caching

placement using the method in Section V-B. This is

similar to the top-R caching method in [8] and Pop-aware

caching method in [38].

• Cache-oblivious offloading: we first neglect the edge

caching placement and optimize the offloading decisions

by assuming that the service programs for processing

all the tasks are available at the edge server. Then, we

optimize the caching placement based on the obtained

offloading decision using the method in Section IV-A.

0 10 20 30 40 50 60 70 80 90 100

Energy consumption (J)

80

100

120

140

160

180

200

220

C
om

pu
ta

tio
n

de
la

y
(s

)

0.75 β=0.95

β increases

0.1

0.35
0.3

0.55

0.25

0.15

0.2

β=0.05

Fig. 6: The optimal energy-delay tradeoff of the joint optimization
under different values of β.

A. TEC Performance Evaluation

We first examine the optimal performance tradeoff between

the two competing objectives in (P1), i.e., computation delay

T and energy consumption E of the MU, by varying the

weighting parameter β. As excepted, T decreases with β while

E increases. In particular, T first quickly decreases with β and

gradually becomes a constant when β ≥ 0.75. The curve can

be used to set proper value of β, e.g., setting β = 0.1 when

requiring the total energy consumption to be lower than 5 J.

Without loss of generality, we set β = 0.1 in the following

simulations.

We then evaluate the TEC performance under different

system setups. In Fig. 7(a), we vary the program generation

time Dj from 0.5 to 4.5 seconds, which naturally results in

an increase of TEC for all the methods. The Cache-oblivious

method performs closely to the optimal scheme when Dj

is small, e.g., Dj ≤ 2, but its performance degrades as Dj

further increases. To examine the underlying cause, we plot in

Fig. 8(a) the ratio of offloaded tasks. As expected, the offload-

ing ratios of all methods decrease with the program generation

time. Meanwhile, we notice that the Cache-oblivious method

offloads almost all the tasks for edge execution under dif-

ferent Dj , which is consistent with the one-climb offloading

policy in [26]. As a result, the conserved computation time

and energy from edge computation is gradually exceeded by

the overhead due to frequent offloading/initialization of new

programs when Dj increases. The alternating minimization

method has a similar trend as the Cache-oblivious method,

because it is largely affected by the initial offloading solution

where all the tasks are offloaded to the edge. Besides, the TEC

performance of the Popular-cache method gradually converges

as Dj increases. This is because when Dj is large, a task

tends to be offloaded for edge execution only if its required

program is already cached. As popular-cache method has a

fixed caching placement throughout the time (C = 3 out of

the N = 6 programs are cached), its offloading ratio converges

to 0.5 when Dj is large and is verified in Fig. 8(a). This also

leads to a convergent TEC performance.

In Fig. 7(b) and Fig. 8(b), we vary the normalized caching

13

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(a) Program generation time/s

5

10

15

20

25

30

35

40

45

Cache-oblivous
Popular-cache
Alternate min.
Optimal

2 3 4 5 6

(b) Caching capacity

0

10

20

30

40

50

2 2.2 2.4 2.6 2.8 3

(c) Pathloss factor

15

20

25

30

35

40

45

0.05 0.1 0.15 0.2 0.25 0.3

(d) Beta

10

20

30

40

50

60

70

80

90

Fig. 7: TEC performance comparisons of different methods.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(a) Program generation time/s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache-oblivous
Popular-cache
Alternate min.
Optimal

2 3 4 5 6

(b) Caching capacity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 2.2 2.4 2.6 2.8 3

(c) Pathloss factor

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25 0.3

(d) Beta

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8: Ratio of offloaded tasks when different methods are applied.

capacity from 2 to 6. Because a larger caching capacity trans-

lates to more savings in program offloading and generation,

the TEC decreases and the task offloading ratio increases

for all the schemes considered. Specifically, when C = 6,

i.e., all the programs can be stored in the cache, the Cache-

oblivious scheme approaches the optimal scheme. In Fig. 7(c)

and Fig. 8(c), we vary the path-loss factor de from 2 to 3,

which leads to a drastic decrease of wireless channel gains. As

expected, the weaker channels suffer lower offloading ratio and

higher TEC because the higher cost of transmitting the task

and program data discourages task offloading. The proposed

joint optimization has significant performance gain over all

the other schemes considered, especially when de is large.

Specifically, it reduces the TEC by more than 25% compared

with all the other schemes when de = 3.

At last, in Fig. 7(d) and Fig. 8(d), we vary the weighting

parameter β from 0.05 to 0.3, where a smaller (larger) β
indicates stronger emphasis on minimizing the energy con-

sumption (delay). We notice that the TEC increases with β
because the delay cost dominates the energy consumption

(e.g., one order of amplitude larger in Fig. 6 when β ≤ 0.3).

Meanwhile, the high program generation delay discourages

task offloading, leading to a decreased offloading ratio when

β increases. As a result, the Cache-oblivious scheme performs

the worst when β = 0.3 because of the high delay cost on

program generation at the edge server.

Overall, the optimal joint optimization scheme has evi-

dent TEC performance advantage over the others schemes.

The Cache-oblivious scheme performs well only when the

program generation time is short or under less stringent

delay requirement. The Popular-cache scheme performs poorly

in most cases due to its negligence to the task offloading

decisions. This is in contrast to the traditional content caching

schemes, where caching popular contents (e.g., large and most

frequently accessed files) usually performs well. The alter-

nating minimization has relatively good performance in most

scenarios. However, more tasks are offloaded than actually

required in the optimal solution.

We also compare in Fig. 9 the TEC Performance when the

number of tasks M varies. We observe that the TEC increases

linearly with M for all the schemes, while the optimal scheme

and the alternating minimization significantly outperforms the

others. In particular, the optimal scheme achieves on average

13.5% lower TEC than the alternating minimization method.

In the following, we evaluate the computational complexity of

the two best-performing schemes, i.e., the joint optimization

and the alternating minimization methods.

B. Complexity Evaluation

When the number of tasks M varies from 100 to 600,

we plot in Fig. 10 the average number of iterations used by

alternating minimization and the average CPU time compar-

ison of the joint optimization and the alternating minimiza-

tion methods. The result is an average of 100 independent

simulations. We see in Fig. 10(a) that the average number

of iterations of the alternating minimization method does not

vary significantly and is below 3 for all M . This is also one

important reason behind the slow increase of CPU time of

the alternating minimization method in Fig. 10(b), where the

CPU time increases slightly from 0.1 to 0.25 second when M
increases by 6 times. In vivid contrast, the CPU time of the

joint optimization method increases by more than 340 times

from 3.3 seconds to around 19 minutes. The quick increase of

CPU time may result in an unaffordable delay in practice when

M is large. In practice, the alternating minimization method

provides a reduced-complexity alternative.

14

100 200 300 400 500 600

No. of tasks (M)

5

10

15

20

25

30

35

40

45

50
T

E
C

Cache-oblivious
Popular-cache
Alternate min.
Optimal

Fig. 9: TEC performance comparison when the number of tasks
varies.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have considered a cache-assisted single-

user MEC system, where the server can selectively cache the

previously generated programs for future reuse. To minimize

the computation delay and energy consumption of the MU, we

studied the joint optimization of service caching placement,

computation offloading decisions, and system resource alloca-

tion. We first transformed the complicated MINLP problem to

a pure 0-1 ILP problem by separately deriving the closed-

form expressions of the optimal resource allocation. Then,

we proposed reduced-complexity algorithms to obtain the

optimal caching placement by fixing the offloading decision,

and vice versa. We further devised an alternating minimization

to update the caching placement and offloading decision alter-

nately. Extensive simulations show that the joint optimization

achieves substantial resource savings of the MU compared to

other representative benchmark methods considered. In partic-

ular, the sub-optimal alternating minimization method achieves

a good balance of system performance and computational

complexity.

Finally, we conclude the paper with some interesting future

working directions of service-cache assisted MEC. First, it

is interesting to consider dynamic resource allocation (on

computing, storage, and communication resource) in a general

multi-user MEC system to improve utilization efficiency. In

particular, the cached service programs from different MUs

may be shared to reduce the program uploading cost. This also

raises many new technical challenges, such as inter-user inter-

ference in task offloading and privacy issues in service sharing.

Secondly, it is also promising to extend the single-server setup

to a multi-server one. For instance, we may consider a two-

tier MEC network where some large-size computation tasks

are forwarded by local micro-BS edge server to more powerful

macro-BS server. Meanwhile, we can balance the computation

workloads at different edge servers by allowing multiple edge

servers to provide computing service collaboratively. Thirdly,

we assume in this paper a sequential task execution model.

Moving forward, it is of high practical value to study cache-

assisted computations under a general task execution model,

100 200 300 400 500 600
0

1

2

3

(a) Average no. of alternating iterations

2.23 2.31 2.37
2.58 2.57 2.64

100 150 200 250 300 350 400 450 500 550 600

 No. of tasks (M)

10-2

100

102

104
(b) Average CPU time/s

0.1 0.12 0.15 0.18 0.2 0.25

3.3
28.6

161.8 395.7 623.7 1122.6Alternate min.
Optimal

Fig. 10: Comparison of CPU time when the number of tasks varies.

e.g., a tree or mesh model. Fourthly, it is worth studying

a scenario where the edge platform can download some

publicly accessible programs from the core network, such that

it may pre-cache the service data beforehand to further reduce

computation delay. Fifthly, the cache update frequency of this

work is relatively high due to the dynamic task arrivals, e.g.,

on average once every 22.4 seconds of the optimal scheme

in the simulation. When cache switching cost is considered,

additional penalty terms need to be included in the objective to

reduce the update frequency. At last, we studied in this paper

an offline optimization problem that assumes the future system

parameters, such as the wireless channel gains and task data

size, are known beforehand. In practice, they may be revealed

only upon the task executions, thus an online design is needed.

Depending on the knowledge of future information, there are

numerous methods to design an online scheme. For instance,

when the channel and task arrival distributions are known, we

can apply dynamic programming technique to minimize the

expected cost. Otherwise, when they are unknown, we may

apply reinforcement learning technique [25] to directly learn

the optimal mapping between the caching/channel state to the

offloading and caching actions.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: We denote the objective of the problem as L(τui),
which is a strictly convex function within the feasible set τui ≥
Oi−1

Rmax
i

≥ 0. Accordingly, the minimum is achieved at either the

boundary point
Oi−1

Rmax
i

or the point v1 that satisfies L′(v1) =

0, depending on the value of v1. To obtain v1, we take the

15

derivative of L(τui) and set it equal to zero, i.e.,

L′(τui)

=β +
(1− β)σ2

hi

(

2
Oi−1
Bτu

i − 1− ln 2 · 2
Oi−1
Bτu

i ·
Oi−1

Bτui

)

=
(1− β)σ2e

hi

[

e−1

(

βhi
(1− β)σ2

− 1

)

− e
ln 2

Oi−1
Bτu

i
−1

(

ln 2 ·
Oi−1

Bτui
− 1

)]

= 0,

⇒e
ln 2

Oi−1
Bτu

i
−1

(

ln 2 ·
Oi−1

Bτui
− 1

)

= e−1

(

βhi
(1 − β)σ2

− 1

)

.

(34)

Because e−1
(

βhi

(1−β)σ2 − 1
)

≥ −1, the above equality is

equivalent to

ln 2 ·
Oi−1

Bτui
− 1 = W

(

e−1

[

βhi
(1− β)σ2

− 1

])

, (35)

where W(x) denotes the Lambert-W function. Therefore, we

have v1 = ln 2·Oi−1

B·
[

W
(

e−1
[

βhi
(1−β)σ2 −1

])

+1
] .

If v1 <
Oi−1

Rmax
i

, or equivalently L′(τui) = 0 is not achievable

within the feasible set, we can infer that the optimal solution

is obtained the boundary (τui)
∗ = Oi−1

Rmax
i

. Because L(τui) is

convex, L′(τui) is an increasing function. Given L′(v1) = 0,

the condition v1 <
Oi−1

Rmax
i

is equivalent to L′
(

Oi−1

Rmax
i

)

> 0. By

substituting τui = Oi−1

Rmax
i

into (34), we have v1 <
Oi−1

Rmax
i

when

β + (1− β)Pmax

[

1− ln (1 + qi)

(

1

qi
+ 1

)]

> 0

⇒ ln (1 + qi) ≤

(

1 +
β

(1− β)Pmax

)(

1−
1

1 + qi

)

⇒ ln

(

1

1 + qi

)

≥ −A+
A

1 + qi
,

(36)

where qi , hiPmax

σ2 and A , 1 + β
(1−β)Pmax

. By taking a

natural exponential operation at both sides of (36), we have

exp

(

−
A

1 + qi

)(

1

1 + qi

)

≥ exp (−A)

⇒ exp

(

−
A

1 + qi

)(

−
A

1 + qi

)

≤ −A exp (−A) .

Evidently, the RHS of the above inequality satisfies e−1 ≤
−A exp (−A) ≤ 0. Then, the above inequality can be equiv-

alently expressed as

−
A

1 + qi
≤ W (−A exp (−A)) . (37)

The equivalence holds because W(x) is an increasing function

when x ≥ −1/e. After some simple manipulation, we obtain

from (37) that the optimal solution (τui)
∗ = Oi−1

Rmax
i

when

hi ≤
σ2

Pmax

(

A

−W (−A exp (−A))
− 1

)

. (38)

Otherwise, if (38) does not hold, we conclude that v1 ≥ Oi−1

Rmax
i

and L′(τui) = 0 is achievable such that the optimal solution

is (τui)
∗
= v1. This proves Proposition 1. �

APPENDIX B

PROOF OF PROPOSITION 2

Proof: Consider a tagged task k ∈ A and ϕk = j (i.e,

ak = uk,j = 1). We examine the potential change of feasibility

and objective value of (P4) after setting xi,j = x̂k,j , ∀i ∈
Vk, in the solution of X = X̂. We assume without loss of

generality that |Vk| > 1. Because the value of xk,j remains

unchanged, we only focus on task i ∈ Vk \ k. By definition,

for a task i ∈ Vk \k, either ai = 0 or ui,j = 0 must hold (i.e.,

aiui,j = 0), because otherwise we would have νji = i, which

contradicts with our assumption that i ∈ Vk \ k.

We first examine the impact to the feasibility of (P4). If

x̂k,j = 1, the corresponding constraints in (2) reduces to
{

xk−1,j ≥ 1,

xi−1,j ≥ xi,j , i = k − |Vk|+ 1, · · · , k − 1.
(39)

Using backward induction from i = k− 1 to i = k−|Vk|+1,

we can infer that xi,j = 1 must hold ∀i ∈ Vk \ k to satisfy

the above inequalities. On the other hand, if x̂k,j = 0, by

setting xi,j = 0, ∀i ∈ Vk \ k, we see that the corresponding

constraints in (2) reduces to xi,j ≥ 0, ∀i ∈ Vk, which are

automatically satisfied. Meanwhile, all the constraints in (3)

still hold because the LHS of (3) is non-increasing when

setting xi,j = 0, ∀i ∈ Vk \ k. From the above discussion,

(P4) is still feasible after setting xi,j = x̂k,j , ∀i ∈ Vk \ k.

Because the value of xi,j , ∀i ∈ Vk \ k, does not affect the

objective value of (P4), the objective remains unchanged after

setting xi,j = x̂k,j , ∀i ∈ Vk \ k. Therefore, after repeating the

above substitutions for all the k ∈ A, (P4) is still feasible and

the objective remains unchanged, which proves Proposition 2.

�

APPENDIX C

PROOF OF LEMMA 1

Proof: We first prove the necessary condition. That is, if

a ∈ {0, 1}M is a feasible solution of (24), then ai−1 = 1,

∀i ∈ S must hold. Suppose that a is a feasible solution, with

the given X, the following constraints in (24c) are satisfied

ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i ∈ S, j = 1, · · · , N. (40)

By the definition of S = {i|xi,j > xi−1,j , ∀i, j}, we have

xi,j − xi−1,j = 1 for ∀i ∈ S, j = 1, · · · , N . Then, it directly

follows from (40) that ai−1 = 1, ∀i ∈ S must hold.

We then prove the sufficient condition. That is, if some

a ∈ {0, 1}M satisfies ai−1 = 1, ∀i ∈ S, then a is a feasible

solution of (24). Recall that ϕi−1 denotes the service type of

task (i − 1), i.e., ui−1,ϕi−1 = 1. We show that all the con-

straints in (24c) hold (i.e., ui−1,jai−1 ≥ xi,j − xi−1,j , ∀i, j)
by separating the constraints into three non-overlapping cases:

1) i ∈ S and j = ϕi−1. The corresponding constraint holds

because ui−1,jai−1 = 1; 2) i ∈ S and j 6= ϕi−1. In this

case, xi,j − xi−1,j ≤ 0 must hold because otherwise we

have ui−1,jai−1 = 1, such that ϕi−1 = j, which contradicts

with our assumption that j 6= ϕi−1. Then, the corresponding

constraint in (24c) is satisfied because xi,j − xi−1,j ≤ 0; 3)

i /∈ S. By the definition of S, we infer that xi,j ≤ xi−1,j holds

for all j, such that the corresponding constraint in (24c) holds.

16

To sum up, all the constraints in (24c) are satisfied, such that

a is a feasible solution of (24). This also concludes the proof

of Lemma 1. �

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7-18,
May 2010.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: the communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, Aug. 2017.
[3] Y. Cui, W. He, C. Ni, C. Guo, and Z. Liu, “Energy-efficient resource

allocation for cache-assisted mobile edge computing,” in Proc. IEEE

LCN, pp. 640-648, Oct. 2017.
[4] P. Liu, G. Xu, K. Yang, K. Wang, and X. Meng, “Jointly optimized

energy-minimal resource allocation in cache-enhanced mobile edge
computing systems,” IEEE Access, vol. 7, pp. 3336-3347, Dec. 2018.

[5] G. Lee, W. Saad, and M. Bennis, “Online optimization for low-latency
computational caching in fog networks,” in Proc. IEEE FWC, 2017.

[6] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Bandwidth gain from mobile
edge computing and caching in wireless multicast systems,” submitted
for publication, available on-line at arxiv.org/abs/1702.00606.

[7] S-W. Ko, K. Huang, S-L. Kim, and H. Chae, “Live prefetching for mo-
bile computation offloading,” IEEE Trans. Wireless Commun., vol. 16,
no. 5, pp. 3057-3071, May 2018.

[8] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard
to share: joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in Proc. ICDC, pp. 365-375,
2018.

[9] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint
service placement and request routing in multi-cell mobile edge com-
puting networks,” to appear in Proc. IEEE INFOCOM 2019, available
on-line at arxiv.org/abs/1901.08946.

[10] Q. Xie, Q. Wang, N. Yu, H. Huang, and X. Jia, “Dynamic service
caching in mobile edge networks,” in Proc. IEEE MASS, 2018.

[11] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/LeD: an asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE J. Sel. Areas in Commun., vol. 36, no. 8, pp. 1857-1870, Aug.
2018.

[12] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio-temporal edge service
placement a Bandit learning approach,” IEEE Trans. Wireless Commun.,
vol. 17, no. 12, pp. 8388-8401, Dec. 2018.

[13] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE INFO-

COM, pp. 207-215, 2018.
[14] E. Jonas, J. Schleier-Smith, V. Sreekanti, et al., “Cloud programming

simplified: a Berkeley view on serverless computing,” available on-line
at arxiv.org/abs/1902.03383.

[15] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacenters,”
in Proc. OSDI, 2010.

[16] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268-4282, Oct. 2016.

[17] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-

less Commun., vol. 16, no. 3, pp. 1397-1411, Mar. 2017.
[18] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and

resource allocation for multi-user multi-task mobile cloud,” in Proc.

IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia, May 2016,
pp. 1-6.

[19] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless

Commun. Lett., vol. 7, no. 8, pp. 420-423, Jun. 2018.
[20] H. A. Alameddine, S. Sharafeddine, S. Sebbah, A. Ayoubi, and C. Assi,

“Dynamic task offloading and scheduling for low-latency IoT services in
multi-access edge computing,” IEEE J. Sel. Areas in Commun., vol. 37,
no. 3, pp. 668-682, Mar. 2019.

[21] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and
A. Ghrayeb, “Optimized provisioning of edge computing resources with
heterogeneous workload in IoT networks,” IEEE Trans. Netw. Service

Manag., vol. 16, no. 2, pp. 459-473, Jun. 2019.
[22] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learning

driven computation offloading for asymmetrically informed edge com-
puting,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, Aug. 2019.

[23] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784-1797, Mar.
2018.

[24] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177-4190, Jun.
2018.

[25] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement
learning for online computation offloading in wireless powered
mobile-edge computing networks,” IEEE Trans. Mobile Compt.,
DOI:10.1109/TMC.2019.2928811, Jul. 2019.

[26] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 235-
250, Jan. 2020.

[27] S. S. Manvi and G. K. Shyam. “Resource management for Infrastructure
as a Service (IaaS) in cloud computing: A survey,” J. Netw. Comput.

Appl., vol. 41, pp. 424-440, May 2014.
[28] A. Hall and U. Ramachandran, “An execution model for serverless

functions at the edge,” in Proc. ACM ioTDI, pp. 225-236, Apr. 2019.
[29] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity, Courier Corporation, New York, Dover,
1998.

[30] A. Freville, “The multidimensional 0-1 knapsack problem: An
overview,” Eur. J. Oper. Res., vol. 155, no. 1, pp. 1-21, 2004.

[31] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: a survey of the emerging 5G network
edge cloud architecture and orchestration,” in IEEE Commun. Surveys

Tuts., vol. 19, no. 3, Third Quater 2017.
[32] R. Kemp et al., “eyeDentify: Multimedia cyber foraging from a smart-

phone,” in Proc. 11-th IEEE Int. Symp. Multimedia, pp. 392-399, 2009.
[33] Z. Q. Jaber and M. I. Younis, “Design and implementation of real time

face recognition system (RTFRS),” Int. J. Compt. Appl., vol. 94, no. 12,
pp. 15-22, May 2014.

[34] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,” IEEE

Trans. Wireless Commun., vol. 14, no. 1, pp. 81-93, Jan. 2015.
[35] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An

efficient code partition algorithm for mobile cloud computing,” in Proc.

IEEE Intl. Conf. Cloud Networking, pp. 80-86, 2012.
[36] K. Berger and F. Galea, “An efficient parallelization strategy for dynamic

programming on GPU,” in Proc. IEEE IPDPSW, pp. 1797-1806, May
2013.

[37] Gurobi Optimization [Online]. Available: http://www.gurobi.com/
[38] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,

“Proactive retention-aware caching with multi-path routing for wireless
edge networks”, IEEE J. Sel. Areas in Commun., vol. 36, no. 6, pp. 1286-
1299, Jun. 2018.

arxiv.org/abs/1702.00606.
arxiv.org/abs/1901.08946.
arxiv.org/abs/1902.03383.
http://www.gurobi.com/

	I Introduction
	I-A Motivations and Summary of Contributions
	I-B Related works

	II System Model
	II-A Service Cache-assisted MEC System
	II-A1 Computation Model
	II-A2 Service Caching Model
	II-A3 Communication Model

	II-B Performance Metric

	III Joint Caching Placement and Computation Offloading Optimization
	III-A Problem Formulation
	III-B Optimal Resource Allocation
	III-C Equivalent ILP Formulation

	IV Optimal Service Caching Placement
	IV-A Structure of the Caching Causality
	IV-B Optimal Caching Placement: A Case Study

	V Optimal Task Offloading Decision
	V-A Reduced-Complexity Decomposition Method
	V-A1 K=1
	V-A2 K>1

	V-B Equivalent ILP Formulation
	V-C Alternating Minimization

	VI Simulation Results
	VI-A TEC Performance Evaluation
	VI-B Complexity Evaluation

	VII Conclusions and Future Works
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Lemma 1
	References

