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Abstract—Intelligent reflecting surfaces (IRSs) constitute
a disruptive wireless communication technique capable of
creating a controllable propagation environment. In this
paper, we propose to invoke an IRS at the cell boundary of
multiple cells to assist the downlink transmission to cell-edge
users, whilst mitigating the inter-cell interference, which is
a crucial issue in multicell communication systems. We aim
for maximizing the weighted sum rate (WSR) of all users
through jointly optimizing the active precoding matrices at
the base stations (BSs) and the phase shifts at the IRS
subject to each BS’s power constraint and unit modulus
constraint. Both the BSs and the users are equipped with
multiple antennas, which enhances the spectral efficiency
by exploiting the spatial multiplexing gain. Due to the non-
convexity of the problem, we first reformulate it into an
equivalent one, which is solved by using the block coordinate
descent (BCD) algorithm, where the precoding matrices and
phase shifts are alternately optimized. The optimal precoding
matrices can be obtained in closed form, when fixing the
phase shifts. A pair of efficient algorithms are proposed for
solving the phase shift optimization problem, namely the
Majorization-Minimization (MM) Algorithm and the Com-
plex Circle Manifold (CCM) Method. Both algorithms are
guaranteed to converge to at least locally optimal solutions.
We also extend the proposed algorithms to the more general
multiple-IRS and network MIMO scenarios. Finally, our
simulation results confirm the advantages of introducing
IRSs in enhancing the cell-edge user performance.

Index Terms—Intelligent Reflecting Surface (IRS), Large
Intelligent Surface (LIS), Manifold Optimization, Multicell
Communications, MIMO.
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I. INTRODUCTION

Next-generation wireless communication systems are
expected to provide a 1000-fold increase in the network
capacity over the operational system for satisfying the
ever-increasing demand for higher data rates driven by
emerging applications such as augmented reality (AR)
and virtual reality (VR). To achieve this goal, promising
techniques relying on massive multiple-input multiple-
output (MIMO) solutions [1], millimeter wave (mmWave)
communications [2] and ultra-dense cloud radio access
networks (UD-CRAN) have been advocated [3]–[5]. By
deploying a massive number of antennas at the base sta-
tion (BS) for transmission over the millimeter-wave (mm-
wave) bands, significant spectral efficiency improvements
can be achieved by exploiting the joint benefits of a high
spatial multiplexing gain and high bandwidth. However,
escalating signal processing complexity, increased hard-
ware costs as well as high power consumption are incurred
by the associated high number of radio frequency (RF)
chains operating in a high frequency band. These issues
erode their practical benefits. Although the access points
(AP) can be densely deployed in UD-CRAN systems for
reducing the distance between the users and the APs,
the limited fronthaul capacity becomes their performance
bottleneck. Furthermore, these techniques have to operate
in the face of unfavourable electromagnetic wave propa-
gation, improving a high blockage probability.

As a remedy, intelligent reflecting surface (IRS) has
been proposed as a revolutional technique of facilitat-
ing both spectrum- and energy-efficient communications
through reconfiguring the wireless propagation environ-
ment [6], [7]. An IRS consists of a vast number of
low-cost passive reflecting elements, each of which can
independently adjust the phase shift of the signals inci-
dent upon it, and thus collaboratively creating favourable
wireless transmission channels by innovatively harnessing
the reflected signal. By properly tuning the phase shifts by
using an IRS controller, the reflected signals can be added
constructively at the desired receiver for enhancing the
received signal power, whilst destructively superimposing
them at the non-intended receivers for reducing the co-
channel interference. Although passive reflecting surfaces
have already been used in radar systems, the phase shifts
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Fig. 1. An IRS-assisted multicell MIMO multiuser communication
system.

of passive elements cannot be changed once they were
fabricated, and they are unable to control the wireless
propagation channels. Fortunately, due to the recent ad-
vance in micro-electromechanical systems (MEMS) and
metamaterials [8], the phase shifts can now be adjusted
in real time, which results in near-instantaneously re-
configurable IRS possible. Although an IRS resembles
the classic amplify-and-forward (AF) relay, the former
has the advantage of lower power consumption, since
it only reflects the signals passively without requiring
active RF chains, while the latter necessitates active RF
components for signal transmission. Hence, IRSs do not
impose additional thermal noise on the reflected signals.
Performance comparisons between AF relay and IRS were
performed in [9], [10]. Given the limited functionality of
IRSs, their phase shifters can be fabricated in a compact
form. Hence, each IRS accommodates a large number
of phase shifters and provides high beamforming gains.
Furthermore, IRSs have the appealing advantages of light
weight and small sizes, which can be readily installed at
buildings facades, on the room-ceilings, on lamp posts,
on road signs, etc. IRSs can also be integrated into the
existing communication systems at a modest modification.
However, to reap the aforementioned benefits promised of
IRSs, the phase shifts have to be appropriately optimized
along with the active beamforming weights at the BS.
The main difficulty in optimizing the phase shifts is the
non-convex unit modulus constraint imposed on the phase
shifts. Although this kind of constraints have been studied
both in hybrid digital/analog precoding [11], [12] and in
constant-envelope precoding in massive MIMO systems
[13], [14], these studies were only focused on the designs
at the transmitter, which are not applicable for the joint
active beamforming design of the BSs and of the passive
beamforming design at the IRS.

Most recently, some initial efforts have been devoted
to the transmitter design of IRS-assisted wireless commu-
nication systems, including the single-user case of [15]–
[18], the downlink multiuser case of [19]–[23], wireless
power transfer design of [24], mobile edge computing of
[25], multicast scenario of [26] and the physical layer se-

curity design of [27]–[31]. However, the above-mentioned
papers only studied the single-cell scenario, whilst there
is a paucity of investigations on the multicell scenario in
the existing literature. To mitigate the spectrum scarcity,
different cells will reuse the same frequency resources,
which causes severe inter-cell interference, especially for
cell-edge users [32]. Hence, in this paper, we propose
to employ an IRS at the cell boundary for assisting the
cell-edge users of multicell systems as shown in Fig. 1,
where the inter-cell interference can be alleviated with
the aid of IRSs. Specifically, by carefully adjusting the
phase shifts of the IRS’s reflective elements, the inter-
cell interference reflected by the IRS can be superim-
posed destructively on the direct interference impinging
from the adjacent BS for minimizing the interference
power at the receivers. This provides a higher degree
of freedom for designing the beamforming/precoding at
each BS for the users in its own cell. As a result, the
active beamforming/precoding applied at each BS and the
passive beamforming matrix of the IRS have to be jointly
optimized. However, the resultant optimization problem is
challenging to solve, since the optimization variables are
highly coupled. Furthermore, all the existing contributions
consider the single-antenna aided user scenario. However,
owing to the rapid developments in antenna technology
[33], the user equipment is also capable of accommodat-
ing multiple antennas for enhancing the received signal
strength. Then, multiple data streams can be transmitted
simultaneously, which boost the throughput. Therefore,
in this paper, we consider the multiple-antenna aided
user scenario. Given the complex mathematical data rate
expression, the techniques conceived in [15]–[23], [27]–
[30] cannot be directly applied. The multiple-antenna user
case further complicates the optimization.

The main contributions of this paper can be summarized
as follows:

1) To the best of our knowledge, this is the first attempt
to explore the assistance of IRSs in enhancing the
cell-edge performance in multicell MIMO commu-
nication systems. Specifically, we jointly optimize
the active transmit precoding (TPC) matrices of all
BSs and the phase shifts at the IRS for maximizing
the weighted sum rate (WSR) of all users subject
to each BS’s power constraint and to the unit
modulus constraint of the phase shifters. However,
the objective function (OF) is not jointly concave
over both the TPC matrices and the phase shifts,
which are highly coupled. To tackle this challenging
problem, we first reformulate the original problem
into an equivalent one by exploiting the equivalence
between the data rate and the weighted minimum
mean-square error (WMMSE). Then, the block co-
ordinate descent (BCD) algorithm is proposed for
alternately optimizing the TPC matrices at the BSs
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and the passive beamforming at the IRS.
2) Given the fixed phase shifts, we derive the optimal

TPC matrices in closed form by applying the classic
Lagrangian multiplier method. Since the phase shift
optimization problem is highly coupled with the
various channel matrices and TPC matrices, this
is quite a challenge. By using sophisticated matrix
manipulations and transformations, we successfully
transform the phase shift optimization problem into
a non-convex quadratically constrained quadratic
program (QCQP) subject to unit modulus constraint.
A pair of efficient iterative algorithms are pro-
posed for solving this problem. The first one is the
Majorization-Minimization (MM) Algorithm [34],
where a closed-form solution can be obtained in
each iteration. The second is based on the Com-
plex Circle Manifold (CCM) Method [35], where
we show that the unit modulus constraints of all
phase shifters constitute a complex circle manifold.
Both the MM algorithm and the CCM algorithm
are guaranteed to obtain at least a locally optimal
solution.

3) The proposed algorithms are also extended to the
more general multiple-IRS and network MIMO s-
cenarios.

4) Our simulation results show that the cell-edge per-
formance can be significantly enhanced by em-
ploying IRSs compared to a conventional multicell
system operating without IRSs. Moreover, it is also
shown that the performance gain achieved by the
IRS is indeed mainly due to the improving BS-
IRS and IRS-user links. Furthermore, the location
of IRSs should be carefully chosen. It is shown
that deploying IRSs at the cell boundary achieves
the highest gains for cell-edge users. Furthermore,
simulation results also show that the IRSs should be
deployed in the vicinity of the user clusters, and dis-
tributed IRS deployment has superior performance
than the centralized deployment.

The remainder of this paper is organized as follows. In
Section II, we present the system model of IRS-assisted
multicell MIMO communication and formulate the WSR
maximization problem. In Section III, we reformulate
the original problem into a more tractable problem and
the TPC matrices and passive beamforming phases are
alternately optimized. In Section V, extensive simula-
tion results are provided for quantifying the performance
advantages of introducing IRSs into multicell systems.
Finally, our conclusions are offered in Section VI.

Notations: For a complex value a, Re{a} represents the
real part of a. Boldface lower case and upper case letters
denote vectors and matrices, respectively. CM denotes the
set of M × 1 complex vectors. E{·} denotes the expecta-
tion operation. ∥x∥2 denotes the 2-norm of vector x. For

two matrices A and B, A⊙B represents the Hadamard
product of A and B. ∥A∥F , Tr (A) and |A| denote the
Frobenius norm, trace operation and determinant of A,
respectively. ∇fx (x) denotes the gradient of the function
f with respect to (w.r.t.) the vector x. CN (0, I) represents
a random vector following the distribution of zero mean
and unit variance matrix. arg{·} means the extraction of
phase information. diag(·) denotes the diagonalization op-
eration. (·)∗, (·)T and (·)H denote the conjugate, transpose
and Hermitian operators, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an IRS-aided multicell downlink MIMO
model constituted by L macro cells, each of which has
a single base station (BS) that serves K cell-edge users.
Each BS and each user is equipped with Nt ≥ 1 and
Nr ≥ 1 transmit antennas (TAs) and receive antennas
(RAs), respectively. Each cell-edge user suffers both from
high attenuation from its serving BS and severe cochannel
interference from its neighbouring BSs. To mitigate these,
we propose to employ an IRS which has M reflection
elements at the cell edge as shown in Fig. 1, which
boost the useful signal power and mitigate the cochannel
interference by carefully designing the phase shifts of the
reflective elements.

The signal transmitted by the lth BS is given by

xl =
K∑

k=1

Fl,ksl,k, (1)

where sl,k is the (d×1)-element symbol vector transmitted
to the kth user in its cell, satisfying E

[
sl,ks

H
l,k

]
= Id

and E
[
sl,k(si,j)

H
]
= 0, for {l, k} ̸= {i, j}, and Fl,k ∈

CNt×d is the linear TPC matrix used by the lth BS
for transmitting its data vector sl,k to the kth user. The
baseband channels spanning from the nth BS to the kth
user in the lth cell, as well as those from the IRS to the kth
user in the lth cell, and the ones from the nth BS to the
IRS are denoted by Hn,l,k, Hr

l,k and Gr
n, respectively.

Let us denote the phase shift of the m-th reflection
element of the IRS by θm ∈ [0, 2π]. Thus the reflection
operator simply multiplies the incident multi-path signals
by ejθm 1 at a single physical point and then forwards
the combined signal to the users. Hence, the users will
directly receive the desired signals from the BSs, plus
the signals reflected by the IRS. However, we ignore the
signal reflected more than once due to the severe path
loss. Let us denote the diagonal phase-shifting matrix of
the IRS as Φ = diag

{
ejθ1 , · · · , ejθm , · · · , ejθM

}
. Then,

1j is the imaginary unit.
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the received signal vector at the kth user in the lth cell is
given by

yl,k =
L∑

n=1

Hn,l,kxn︸ ︷︷ ︸
Siganls from BSs

+
L∑

n=1

Hr
l,kΦGr

nxn︸ ︷︷ ︸
Signals from the IRS

+nl,k, (2)

where nl,k is the noise vector that satisfies
CN

(
0, σ2INr

)
.

We assume that the channel state information (CSI) of
all channels is perfectly known at the BS, and the BS
calculates the optimal phase shifts and sends them back
to the IRS controller. Indeed, the assumption of having
perfect CSI knowledge at the BS is idealistic because it is
challenging to obtain the CSI in IRS-assisted communi-
cation systems. However, the algorithms developed allow
us to derive the relevant performance upper bounds for
realistic scenarios in the presence of realistic CSI errors.
In addition, the proposed algorithms can provide insights
into the performance gain provided by IRSs, which can
inspire further research in this area. Recently, we have
conceived a framework for the robust transmission design
of an IRS-aided single-cell scenario [36] by considering
both the bounded CSI error model and the statistical CSI
error model associated with the cascaded channels. Its
extension to the multicell scenario will be studied in our
future research.

Let us define H̄n,l,k
∆
= Hr

l,kΦGr
n +Hn,l,k, which can

be regarded as the equivalent channel spanning from the
nth BS to the kth user in the lth cell. By substituting (1)
into (2), yl,k can be written as

yl,k = H̄l,l,kFl,ksl,k +
K∑

m=1,m̸=k

H̄l,l,kFl,msl,m︸ ︷︷ ︸
Intra−cellinterference

+
L∑

n=1,n̸=l

K∑
m=1

H̄n,l,kFn,msn,m︸ ︷︷ ︸
Inter−cellinterference

+nl,k. (3)

Then, the achievable data rate (nat/s/Hz) of the kth user
in the lth cell is given by [4]

Rl,k (F,θ) = log
∣∣∣I+ H̄l,l,kFl,kF

H
l,kH̄

H
l,l,kJ

−1
l,k

∣∣∣ , (4)

where we have F = [Fl,k, ∀l, k] ,θ = [θ1, · · · , θM ], and
Jl,k is the interference-plus-noise covariance matrix:

Jl,k =
K∑

m=1,m̸=k

H̄l,l,kFl,mFH
l,mH̄H

l,l,k

+
L∑

n=1,n̸=l

K∑
m=1

H̄n,l,kFn,mFH
n,mH̄H

n,l,k + σ2I.

B. Problem Formulation

In this paper, we aim for maximizing the WSR of all
the users by jointly optimizing the TPC matrices F at the
BSs and the phase shifts θ at the IRS, while guaranteeing
the total power constraint at each BS. Specifically, the
WSR maximization problem is formulated as:

max
F,θ

L∑
l=1

K∑
k=1

ωl,kRl,k (F,θ) (5a)

s.t.
K∑

k=1

∥Fl,k∥2F ≤ Pl,max, l = 1, · · · , L, (5b)

0 ≤ θm ≤ 2π,m = 1, · · · ,M, (5c)

where ωl,k denotes the weighting factor representing the
priority of the corresponding user. Due to the coupling
effect between the TPC matrices F and the phase shifts θ,
this optimization problem is difficult to solve. Additional-
ly, the phase shift constraints in (5c) further aggravate the
challenge. In the following, we provide a low-complexity
algorithm for solving Problem (5).

III. LOW-COMPLEXITY ALGORITHM DEVELOPMENT

In this section, we first reformulate the original problem
into a more tractable form. Then, the block coordinate
descent (BCD) method is proposed for solving the for-
mulated problem.

A. Reformulation of the Original Problem

In the following, we exploit the relationship between
the data rate and the mean-square error (MSE) for the
optimal decoding matrix. To reduce the decoding com-
plexity, we consider a linear decoding matrix so that the
estimated signal vector of each user is given by

ŝl,k = UH
l,kyl,k, ∀l, k, (6)

where Ul,k ∈ CNr×d is the decoding matrix for the kth
user in the lth cell. Then, the MSE matrix of each user is
given by

El,k = Es,n

[
(̂sl,k − sl,k) (̂sl,k − sl,k)

H
]

(7)

=
(
UH

l,kH̄l,l,kFl,k − I
) (

UH
l,kH̄l,l,kFl,k − I

)H
+

K∑
m=1,m ̸=k

UH
l,kH̄l,l,kFl,mFH

l,mH̄H
l,l,kUl,k

+

L∑
n=1,n̸=l

K∑
m=1

UH
l,kH̄n,l,kFn,mFH

n,mH̄H
n,l,kUl,k

+σ2UH
l,kUl,k, ∀l, k. (8)

Upon introducing a set of auxiliary matrices W =
{Wl,k ≽ 0,∀l, k} and defining U = {Ul,k, ∀l, k},
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Problem (5) can be reformulated as follows [4], [37]:

max
W,U,F,θ

L∑
l=1

K∑
k=1

ωl,khl,k (W,U,F,θ) (9a)

s.t.
K∑

k=1

∥Fl,k∥2F ≤ Pl,max, l = 1, · · · , L, (9b)

0 ≤ θm ≤ 2π,m = 1, · · · ,M, (9c)

where hl,k (W,U,F,θ) is given by

hl,k (W,U,F,θ)= log |Wl,k|−Tr (Wl,kEl,k)+d. (10)

Note that compared to the original OF of Problem (5),
the new OF in Problem (9) is in a more tractable
form, although we have introduced more optimization
variables. For a given phase shift θ, hl,k (W,U,F,θ)
is a concave function for each set of the optimization
matrices, when the other two are fixed. In the following,
we propose the BCD algorithm for solving Problem (9).
Specifically, we maximize the OF in (9) by alternate-
ly optimizing one set of optimization variables, while
keeping the other variables fixed. Note that the decoding
matrix Ul,k and the auxiliary matrix Wl,k are only related
to hl,k (W,U,F,θ). In the following, we can derive
the optimal solution for Ul,k and Wl,k, when the other
matrices are fixed. For given values of θ, W, and F, we
can set the first-order derivative of hl,k (W,U,F,θ) with
respect to Ul,k to zero, which gives the optimal Ul,k:

Ul,k =
(
Jl,k + H̄l,l,kFl,kF

H
l,kH̄

H
l,l,k

)−1
H̄l,l,kFl,k. (11)

Similarly, for given θ, U, and F, the optimal auxiliary
matrix Wl,k can be obtained as follows:

Wl,k = E−1
l,k , (12)

where El,k is given in (8).
Let us now focus our attention on optimizing the TPC

matrices F and phase shifts θ.

B. Optimizing the Precoding Matrices F

In this subsection, we focus our attention on optimizing
the TPC matrices F, while fixing W,U and θ. By
substituting El,k into (10), the optimization over F can
be decoupled among the different BSs. Specifically, by
removing the constant terms, the TPC matrix optimization
problem of the lth BS is given by

min
Fl,k,∀k

−
K∑

k=1

ωl,kTr
(
Wl,kU

H
l,kH̄l,l,kFl,k

)
+

K∑
k=1

Tr
(
FH

l,kAlFl,k

)
−

K∑
k=1

ωl,kTr
(
Wl,kF

H
l,kH̄

H
l,l,kUl,k

)
(13a)

s.t.
K∑

k=1

∥Fl,k∥2F ≤ Pl,max, (13b)

where Al is

Al=
L∑

n=1

K∑
m=1

ωn,mH̄H
l,n,mUn,mWn,mUH

n,mH̄l,n,m. (14)

It can be readily verified that the above problem is a con-
vex optimization problem, which can be transformed into
a second order cone programming (SOCP) problem that
can be efficiently solved by using standard optimization
packages, such as CVX [38]. However, the computational
complexity of solving an SOCP problem is high. To
reduce the complexity, in the following we provide a near-
optimal closed-form expression of the TPC matrices by
using the Lagrangian multiplier method.

Following some further manipulations, the Lagrangian
function of Problem (13) is written as

L (Fl,k,∀k, λl)=
K∑

k=1

Tr
(
FH

l,k (Al + λlI)Fl,k

)
−λlPl,max

−
K∑

k=1

ωl,kTr
(
Wl,kU

H
l,kH̄l,l,kFl,k

)
−

K∑
k=1

ωl,kTr
(
Wl,kF

H
l,kH̄

H
l,l,kUl,k

)
,

where λl ≥ 0 is the Lagrangian multiplier associated with
the power constraint of the lth BS.

By setting the first-order derivative of L (Fl,k, ∀k, λl)
w.r.t. Fl,k to zero, we can obtain the optimal solution of
Fl,k as follows:

Fl,k(λl) = ωl,k(Al + λlI)
†
H̄H

l,l,kUl,kWl,k, (15)

where (·)† denotes the matrix pseudoinverse. The value of
λl should be chosen for ensuring that the following com-
plementary slackness condition for the power constraint
is satisfied:

λl

(
K∑

k=1

∥Fl,k(λl)∥2F − Pl,max

)
= 0. (16)

In the following, we elaborate on how to obtain the
optimal λl, which is divided into two cases: 1) Al is full
rank; 2) Al is low rank.

1) Case I: Al is full rank: In this case, Al is a
positive definite matrix, which can be decomposed as
Al = QlΛlQ

H
l by using the singular value decomposition

(SVD), where QlQ
H
l = QH

l Ql = INt and Λl is a
diagonal matrix with positive diagonal elements. Then,
we have

fl(λl)
∆
=

K∑
k=1

Tr
(
Fl,k(λl)

HFl,k(λl)
)

= Tr
(
(Λl + λlI)

−2
Zl

)
(17)

=

Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 , (18)
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where Zl =
L∑

k=1

ω2
l,kQ

H
l H̄

H
l,l,kUl,kWl,kW

H
l,kU

H
l,kH̄l,l,kQl,

[Zl]i,i and [Λl]i,i denote the ith diagonal element of
matrix Zl and matrix Λl, respectively. It can be readily
verified that fl(λl) is a monotonically decreasing
function. Hence, if fl(0) ≤ Pl,max, then the optimal
TPC matrix is given by Fopt

l,k = Fl,k(0). Otherwise,
the optimal λl can be obtained by using the bisection
based search method to find the solution of the following
equation:

fl(λl) =

Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 = Pl,max. (19)

Since fl(∞) = 0, the solution of Equation (19) must
exist, which is denoted as λopt

l . Then, the optimal TPC
matrix can be obtained as Fopt

l,k = Fl,k(λ
opt
l ). To apply

the bisection based search method, we have to find the
upper bound of λl, which is given by

λl <

√√√√√ Nt∑
i=1

[Zl]i,i

Pl,max

∆
= λub

l . (20)

This can be proved as follows:

fl(λ
ub
l ) =

Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λub

l

)2 <

Nt∑
i=1

[Zl]i,i(
λub
l

)2 = Pl,max.

(21)
2) Case II: Al is low rank: In this case, the above

method cannot be directly applied since the Ql obtained
by SVD is not a unitary matrix, hence the step in (17)
cannot be applied. To resolve this issue, we first check
whether λl = 0 is the optimal solution or not. If

fl(0) =
K∑

k=1

Tr
(
Fl,k(0)

HFl,k(0)
)
≤ Pl,max, (22)

then the optimal TPC matrix is given by Fopt
l,k = Fl,k(0),

otherwise, the optimal λl is a positive value, which will
be obtained as follows. Upon defining the rank of Al as
rl = rank(Al) < Nt and using the SVD, we have

Al = [Ql,1,Ql,2]Λl[Ql,1,Ql,2]
H
, (23)

where Ql,1 contains the first rl singular vectors cor-
responding to the rl positive eigenvalues, and Ql,2

holds the last Nt − rl singular vectors correspond-
ing to the Nt − rl zero-valued eigenvalues, Λl =
diag

{
Λl,1,0(Nt−rl)×(Nt−rl)

}
with Λl,1 denoting the di-

agonal matrix containing the first rl positive eigenvalues.
Upon defining Ql

∆
= [Ql,1,Ql,2] and applying similar

steps to those in (17) to (18), we have

fl(λl) =
K∑

k=1

Tr
(
Fl,k(λl)

HFl,k(λl)
)

(24)

=

rl∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 +

Nt∑
i=rl+1

[Zl]i,i
λ2
l

, (25)

where Zl is the same as that in Case I. It is plausible that
fl(λl) is a monotonically decreasing function for λl > 0
and the optimal λl can be obtained by using the bisection
based search method, where the lower bound of λl is set
to a small positive value.

The overall algorithm to solve Problem (13) is summa-
rized in Algorithm 1.

Algorithm 1 Bisection Search Method to Solve Problem
(13)

1: Initialize the accuracy ε, the bounds λlb
l and λub

l ;
2: If fl(0) ≤ Pl,max holds, the optimal TPC matrix is

given by Fopt
l,k = Fl,k(0),∀k and terminate; Other-

wise, go to step 3;
3: Calculate λl =

(
λlb
l + λub

l

)
/2;

4: If fl(λl) ≤ Pl,max, set λub
l = λl. Otherwise, set λlb

l =
λl;

5: If
∣∣λlb

l − λub
l

∣∣ ≤ ε, terminate. Otherwise, go to step
2.

C. Optimizing the Phase Shifts θ

In this subsection, we focus our attention on optimiz-
ing the phase shifts θ, while fixing W,U and F. By
substituting El,k into (10) and ignoring the terms that are
not related to the channels, the phase shift optimization
problem is formulated as:

min
θ

−
L∑

l=1

K∑
k=1

Tr
(
ωl,kWl,kU

H
l,kH̄l,l,kFl,k

)
+

L∑
l=1

L∑
n=1

K∑
m=1

Tr
(
ωn,mWn,mUH

n,mH̄l,n,mFlH̄
H
l,n,mUn,m

)
−

L∑
l=1

K∑
k=1

Tr
(
ωl,kWl,kF

H
l,kH̄

H
l,l,kUl,k

)
(26a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (26b)

where Fl =
∑K

k=1 Fl,kF
H
l,k.

By using H̄l,n,m = Hr
n,mΦGr

l +Hl,n,m, we have

ωn,mWn,mUH
n,mH̄l,n,mFlH̄

H
l,n,mUn,m

= ωn,mWn,mUH
n,mHr

n,mΦGr
lFlG

rH
l ΦHHrH

n,mUn,m

+ωn,mWn,mUH
n,mHl,n,mFlG

rH
l ΦHHrH

n,mUn,m

+ωn,mWn,mUH
n,mHr

n,mΦGr
lFlH

H
l,n,mUn,m

+ωn,mWn,mUH
n,mHl,n,mFlH

H
l,n,mUn,m

(27)

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 14,2020 at 09:28:08 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.2990766, IEEE
Transactions on Wireless Communications

7

and

ωl,kWl,kU
H
l,kH̄l,l,kFl,k = ωl,kWl,kU

H
l,kHl,l,kFl,k

+ωl,kWl,kU
H
l,kH

r
l,kΦGr

lFl,k. (28)

By defining

Bn,m
∆
= ωn,mHrH

n,mUn,mWn,mUH
n,mHr

n,m,Cl
∆
= Gr

lFlG
rH
l

and

Dl,n,m
∆
= ωn,mGr

lF
H
l H

H
l,n,mUn,mWn,mUH

n,mHr
n,m,

from (27) we have

Tr
(
ωn,mWn,mUH

n,mH̄l,n,mFlH̄
H
l,n,mUn,m

)
= Tr

(
ΦHBn,mΦCl

)
+Tr

(
ΦHDH

l,n,m

)
+Tr (ΦDl,n,m) + const1,

(29)

where const1 is a constant term that does not depend on
Φ.

Similarly, by defining Tl,k
∆
=

ωl,kG
r
lFl,kWl,kU

H
l,kH

r
l,k, from (28) we have

Tr
(
ωl,kWl,kU

H
l,kH̄l,l,kFl,k

)
=Tr (ΦTl,k)+const2, (30)

where const2 is a constant term that is independent of Φ.
By substituting (29) and (30) into the OF of Problem

(26) and ignoring the constant terms, we have

min
θ

Tr
(
ΦHBΦC

)
+Tr

(
ΦHVH

)
+Tr (ΦV) (31a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (31b)

where B, C and V are respectively given by

B =

L∑
n=1

K∑
m=1

Bn,m,C =

L∑
l=1

Cl,

V =
L∑

l=1

L∑
n=1

K∑
m=1

Dl,n,m −
L∑

l=1

K∑
k=1

Tl,k.

Upon denoting the collection of diagonal elements of
Φ by ϕ

∆
=
[
ejθ1 , · · · , ejθm , · · · , ejθM

]T
and using the

matrix identity of [39, Eq. (1.10.6)], we arrive at

Tr
(
ΦHBΦC

)
= ϕH

(
B⊙CT

)
ϕ. (32)

Let v be the collection of diagonal elements of matrix V,

given by v =
[
[V]1,1, · · · , [V]M,M

]T
. Then, we have

Tr (ΦV) = ϕTv,Tr
(
ΦHVH

)
= vHϕ∗. (33)

Hence, Problem (31) can be rewritten as

min
θ

ϕHΞϕ+ ϕTv + vHϕ∗ (34a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (34b)

where Ξ = B⊙CT. It can be readily verified that B and
CT are semidefinite matrices. Then, according to Property
(9) on Page 104 of [39], the Hadamard product B⊙CT

(or equivalently Ξ) is also a semidefinite matrix.

Recall that ϕm = ejθm ,∀m, and that ϕ =
[ϕ1, · · · , ϕM ]

T. Then, Problem (34) can be equivalently
rewritten as

min
ϕ

f(ϕ)
∆
= ϕHΞϕ+ 2Re

{
ϕHv∗} (35a)

s.t. |ϕm| = 1,m = 1, · · · ,M. (35b)

Due to the unit modulus constraint in (35b), Problem
(35) is a non-convex optimization problem. In the follow-
ing, we provide a pair of efficient algorithms for solving
this problem.

1) Majorization-Minimization (MM) Algorithm: We
adopt the MM algorithm [34] to solve Problem (35),
which was originally introduced in [40]. Then, this
method has been widely in resource allocation for wireless
communication networks [41]–[43]. The main idea is to
solve a difficult problem by constructing a series of more
tractable approximate subproblems. Specifically, let us
denote the solution of the subproblem at the tth iteration
by ϕt, and the OF value of Problem (35) at the tth
iteration by f(ϕt). Then, at the (t+1)st iteration, we have
to introduce an upper bound 2 of the OF function based
on the previous solution, which is denoted as g(ϕ|ϕt). We
solve the approximate subproblem with the aid of the new
OF g(ϕ|ϕt) at the (t+ 1)st iteration. If the OF g(ϕ|ϕt)
satisfies the following three conditions:

1) g(ϕt|ϕt) = f(ϕt),
2) ∇ϕg(ϕ|ϕt)|ϕ=ϕt = ∇ϕf(ϕ

t)|ϕ=ϕt ,
3) g(ϕ|ϕt) ≥ f(ϕ),

then the sequence of the solutions obtained in each
iteration will result in a monotonically decreasing OF
{f(ϕt), t = 1, 2, · · · } and finally converge. The con-
verged solution satisfies the Karush-Kuhn-Tucker (KKT)
optimality conditions of Problem (35) [44]. The first two
conditions represent that the OF g(ϕ|ϕt) introduced and
its first-order gradient should be the same as the original
OF and its first-order gradient at point ϕt. The third
condition means that the OF g(ϕ|ϕt) constructed should
represent the upper bound of the original OF. To make
this algorithm work, the most important task is to find the
OF g(ϕ|ϕt), which should satisfy these three conditions
and should be much more tractable than f(ϕ).

To this end, we first introduce the following lemma
proposed in [45].

Lemma 1: For any given solution ϕt at the tth iteration
and for any feasible ϕ, we have

ϕHΞϕ ≤ ϕHXϕ− 2Re
{
ϕH (X−Ξ)ϕt

}
+
(
ϕt
)H

(X−Ξ)ϕt ∆
= y(ϕ|ϕt), (36)

where X = λmaxIM and λmax is the maximum eigenval-
ue of Ξ. �

2Please note that we consider the minimization problem here.
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Upon constructing the surrogate OF g(ϕ|ϕt) as follows:

g(ϕ|ϕt) = y(ϕ|ϕt) + 2Re
{
ϕHv∗} , (37)

where y(ϕ|ϕt) is defined in (36), it can be readily verified
that g(ϕ|ϕt) given in (37) satisfies the three conditions.
Additionally, the OF g(ϕ|ϕt) is more tractable than the
original OF f(ϕ). Specifically, the subproblem to be
solved at the tth iteration is given by

min
ϕ

g(ϕ|ϕt) (38a)

s.t. |ϕm| = 1,m = 1, · · · ,M. (38b)

Since ϕHϕ = M , we have ϕHXϕ = Mλmax, which is a
constant. By removing the other constants, Problem (38)
can be rewritten as follows:

max
ϕ

2Re
{
ϕHq

t
}

(39a)

s.t. |ϕm| = 1,m = 1, · · · ,M, (39b)

where qt = (λmaxIM −Ξ)ϕt−v∗. The optimal solution
of Problem (39) is given by

ϕt+1 = ej arg(q
t). (40)

Based on the above discussions, we provide the details
of the MM algorithm in Algorithm 2. When the algorithm
converges, we can obtain the optimal phase shift as θ⋆ =
arg(qt).

Algorithm 2 MM Algorithm
1: Initial the iteration number t = 1, the accuracy ε.

Input the feasible solution ϕ0. Calculate the value of
the objective function in Problem (35) as f(ϕ1);

2: Calculate qt = (λmaxIM −Ξ)ϕt − v∗;
3: Update ϕt+1 in (40);
4: Calculate the objective function f(ϕt+1), if∣∣f(ϕt+1)− f(ϕt)

∣∣/f(ϕt+1) ≤ ε holds, terminate;
Otherwise, set t← t+ 1 and go to step 2.

2) Complex Circle Manifold (CCM) Method: In this
subsection, we adopt the CCM method proposed in [35]
for directly solving Problem (35). We first transform
Problem (35) into the following equivalent problem

min
ϕ

f̄(ϕ)
∆
= ϕH(Ξ+ αIM )ϕ+ 2Re

{
ϕHv∗} (41a)

s.t. |ϕm| = 1,m = 1, · · · ,M, (41b)

where α > 0 is a positive constant parameter, the value
of which will be given in Theorem 1. Problem (35) is
equivalent to Problem (41), since we have αϕHϕ = αM .
The parameter α can control the convergence of the CCM
method, which will be discussed in Theorem 1.

The search space in Problem (41) can be regarded as the
product of M complex circles3, which is a sub-manifold

3Each complex circle is given by S ∆
={

x ∈ C : x∗x = Re{x}2 + Im{x}2 = 1
}

, which is a sub-manifold
of C [35].
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Fig. 2. Geometric interpretation of the CCM algorithm.

of CM given by

SM ∆
=
{
x ∈ CM : |xl| = 1, l = 1, 2, · · · ,M

}
, (42)

where xl is the lth element of vector x.
The main idea of the CCM algorithm is to derive a

gradient descent algorithm based on the manifold space
defined in (42), which is similar to the concept of the
gradient descent technique developed for the conventional
optimization over the Euclidean space. The main steps of
the CCM algorithm is composed of four main steps in
each iteration t:

1) Gradient in Euclidean Space: We first have to find
the search direction and the most common search direction
for a minimization problem is to move in the direction
opposite to the gradient of f̄(ϕt), which is given by

ηt = −∇ϕf̄(ϕ
t) = −2(Ξ+ αIM )ϕt − 2v∗. (43)

2) Riemannian gradients: Since we optimize over the
manifold space, we have to find the Riemannian gradient
[12]. The Riemannian gradient of f̄(ϕt) at the current
point ϕt ∈ SM is in the tangent space TϕtSM 4.
Specifically, the Riemannian gradient of f̄(ϕt) at ϕt can
be obtained by projecting the search direction ηt in the
Euclidean space onto TϕtSM by using the projection
operator, which can be calculated as follows [12]:

PTϕtSM (ηt) = ηt − Re{ηt∗ ⊙ ϕt} ⊙ ϕt. (44)

3) Update over the tangent space: Update the current
point ϕt on the tangent space TϕtSM :

ϕ̄t = ϕt + βPTϕtSM (ηt), (45)

where β is a constant step size that will be discussed in
Theorem 1.

4) Retraction operator: In general, the ϕ̄t obtained is
not in SM , i.e. we have ϕ̄t /∈ SM . Hence, it has to be
mapped into the manifold SM by using the retraction

4The tangent space of S at point zm is defined as TzmS = {x ∈ C :
Re{x∗zm} = 0}. Then, the tangent space TzSM is the product of these
M tangent space TzmS given by TzSM = Tz1S×Tz2S · · ·×TzMS.
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operator5 as follows

ϕt+1 = ϕ̄t ⊙ 1∣∣ϕ̄t
∣∣ . (46)

Note that both ϕt+1 and ϕt belongs to SM , which
satisfies the unit constant modulus constraints. The details
of the CCM algorithm are presented in Algorithm 3. The
CCM algorithm is also illustrated geometrically in Fig. 2.

Algorithm 3 CCM Algorithm
1: Initial the iteration number t = 1, the accuracy ε.

Input the feasible solution ϕ1. Calculate the value of
the objective function in Problem (41) as f̄(ϕ1);

2: Calculate the Euclidean gradient ηt in (43);
3: Calculate the Riemannian gradient PTϕtSM (ηt) in

(44);
4: Update over the tangent space according to (45);
5: Update ϕt+1 by retracting ϕ̄t to the complex circle

manifold SM according to (46);
6: Calculate the objective function f̄(ϕt+1), if∣∣f̄(ϕt+1)− f̄(ϕt)

∣∣/f̄(ϕt+1) ≤ ε holds, terminate;
Otherwise, set t← t+ 1 and go to step 2.

The following theorem provides guidance for the choic-
es of parameters α and β to guarantee the convergence of
the CCM algorithm.

Theorem 1 [35]: Let λΞ and λΞ+αIM be the largest
eigenvalue of matrices Ξ and Ξ + αIM , respectively. If
α and β are chosen to satisfy the following conditions,

α ≥ M

8
λΞ + ∥v∥2, 0 < β <

1

λΞ+αI
, (47)

then the CCM algorithm generates a non-increasing se-
quence {f̄(ϕt), t = 1, 2, · · · }, and finally converges to a
finite value. �

3) Complexity Analysis: In this part, we analyze the
complexity of both proposed methods in solving Problem
(35).

Let us now analyze the complexity of the MM algo-
rithm. At the beginning of the MM algorithm, we have
to calculate λmax, i.e. the maximum eigenvalue of Ξ.
The associated complexity is given by O(M3). For each
iteration of the MM algorithm, the main complexity lies
in the calculation of qt in Step 2, the complexity of
which is O(M2). Let us denote the number of iterations
required for the MM algorithm to converge by TMM .
Then, the total complexity of the MM algorithm is given
by CMM = O(M3 + TMMM2).

We then analyze the complexity of the CCM algorithm.
At the start of the CCM algorithm, we have to find the
range of α and β to guarantee the convergence of the
CCM algorithm, which relies on calculating the largest
eigenvalue of the matrices Ξ (λΞ), as shown in Theorem

5The retraction operator normalizes each element of ϕ̄t to be unit.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON FOR TWO DIFFERENT

ALGORITHMS TO FIND THE PHASE SHIFTS

Algorithms MM Alg. CCM Alg.
Complexity O(M3 + TMMM2) O(M3 + TCCMM2)

1. Its complexity order is given by O(M3). For each
iteration of the CCM algorithm, the complexity mainly
depends on the calculation of the Euclidean gradient ηt,
which is given by O(M2). Let us denote the total number
of iterations required by the CCM algorithm to converge
by TCCM . Then, the total complexity of the CCM algo-
rithm is given by CCCM = O(M3 + TCCMM2).

The complexity of these algorithms is summarized in
Table I. It can be observed that the complexity mainly
depends on the number of iterations required for conver-
gence. The simulation results of Section V will compare
their convergence speed.

D. Overall Algorithm to Solve Problem (5)

Based on the above analysis, we provide the detailed
description of the BCD algorithm conceived for solving
Problem (5) in Algorithm 4. In Step 5, we have to
apply two algorithms for solving Problem (35) to find
the phase shifts θ(n+1). Both the MM algorithm and the
CCM algorithm can guarantee to yield a monotonically
decreasing OF value of Problem (35) compared to the
previous phase solution, i.e., f(ϕ(n+1)) < f(ϕ(n)). It
can be readily verified that the OF value of Problem
(9) monotonically increases in each step of Algorithm 4.
Additionally, due to the power constraints, the OF value
has an upper bound. Hence, Algorithm 4 is guaranteed to
converge.

Let us now analyze the complexity of the BCD algorith-
m. In Step 2, the complexity of computing the decoding
matrices U(n) is O(LKN3

r ). In Step 3, the complexity
of calculating the auxiliary matrices W(n) is given by
O(LKd3). In Step 4, we have to calculate the TPC ma-
trices F(n+1). The detailed analysis is provided as follows.
For any pair of complex matrices X ∈ Cm×n,Y ∈ Cn×p,
the complexity of computing XY is O (mnp) [46]. We
assume that Nt > Nr > d. Hence, the complexity of
computing the matrices {Al,k, ∀l, k} in (14) is given by
O(LKN2

t d). The complexity of calculating Fl,k in (15) is
given byO(LKN3

t ). The SVD decomposition of {Al, ∀l}
is given by O(LN3

t ). The complexity of calculating {Zl}
is given by O(L2N2

t Nr). The complexity of evaluating
the Lagrangian multipliers {λl,∀l} can be ignored. Hence,
the overall complexity of calculating the TPC matrices
F(n+1) is given by O(max{LKN3

t , L
2N2

t Nr}). The
complexity of calculating the optimal θ(n+1) is given in
Table I, while the complexity of each algorithm is denoted
by Ci, i = MM,CCM. Then, the overall complexity of
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Algorithm 4 Block Coordinate Descent Algorithm
1: Initialize iterative number n = 1, maximum number

of iterations nmax, feasible F(1), θ(1), error tolerance
ε, calculate the OF value of Problem (5), denoted as
Obj(F(1),θ(1));

2: Given F(n) and θ(n), calculate the optimal decoding
matrices U(n) in (11);

3: Given F(n), U(n) and θ(n), calculate the optimal
auxiliary matrices W(n);

4: Given U(n), W(n) and θ(n), calculate the optimal
precoding matrices F(n+1) by solving Problem (13)
with the Lagrangian multiplier method in Subsection
III-B;

5: Given U(n), W(n) and F(n+1), calculate the optimal
θ(n+1) by solving Problem (35) with the algorithms
developed in Subsection III-C;

6: If n ≥ nmax or∣∣Obj(F(n+1),θ(n+1))−Obj(F(n),θ(n))
∣∣

Obj(F(n),θ(n))
< ε,

terminate. Otherwise, set n ← n + 1 and go to step
2.

the BCD algorithm is given by

CBCD,i=O(max{LKN3
t , L

2N2
t Nr, Ci}), i=MM,CCM,

(48)
where CBCD,i denotes the overall complexity of the BCD
algorithm, when the phase shifts are obtained by using
method i, i = MM,CCM.

IV. EXTENSION TO OTHER SCENARIOS

A. Network MIMO

In network MIMO, multiple BSs in different cells
cooperate with each other and send the same data to each
user. In this scenario, the antennas of all BSs form a
giant antenna array and jointly serve each user, where the
inter-cell interference can be effectively mitigated [3]–[5].
It should be emphasized that compared to the model in
Section II, the data should be shared among multiple BSs,
which incurs increased information exchange overhead.

Let Fi,l,k be the precoding matrix of the ith BS for

the kth user in the lth cell, and Fl,k =
[
FH

i,l,k,∀i
]H
∈

CLNt×d be the overall precoding matrix from all BSs
to the user. Define Gr = [Gr

i , ∀i] ∈ CM×LNt be
the overall channel from all the BSs to the IRS, and
Hl,k = [Hi,l,k, ∀i] ∈ CNr×LNt the direct channel from
all the BSs to the kth user in the lth cell. Let H̄l,k

∆
=

Hr,l,kΦGr + Hl,k be the equivalent channel spanning
from all the BSs to the kth user in the lth cell.

Then, the signal received at the kth user in the lth cell

is given by

yl,k = H̄l,kFl,ksl,k +

K∑
m=1,m̸=k

H̄l,kFl,msl,m

+
L∑

i=1,i̸=l

K∑
m=1

H̄l,kFi,msi,m + nl,k. (49)

The data rate of the kth user in the lth cell is given by

Rl,k (F,θ) = log
∣∣∣I+ H̄l,kFl,kF

H
l,kH̄

H
l,kJ

−1
l,k

∣∣∣ , (50)

where Jl,k is given by

Jl,k =
K∑

m=1,m ̸=k

H̄l,kFl,mFH
l,mH̄H

l,k

+
L∑

i=1,i̸=l

K∑
m=1

H̄l,kFi,mFH
i,mH̄H

l,k + σ2I.

The weighted sum rate problem is the same as in (5),
except that the power constraint for each BS is formulated
as follows:

L∑
l=1

K∑
k=1

∥Fi,l,k∥2F ≤ Pi,max, i = 1, · · · , L. (51)

The optimization problem formulated for the case of
Network MIMO can be similarly solved by using the
methods of Section III, details of which are omitted for
simplicity.

B. Multiple-IRS Scenario

Assume that the system has A IRSs, each of which has
M reflection elements. The baseband channels spanning
from the ath IRS to the kth user in the lth cell, and
the ones from the ith BS to the ath IRS are denoted
by Hr

a,l,k and Gr
i,a, respectively. The diagonal phase-

shifting matrix of the ath IRS is denoted by Φa =
diag

{
ejθa,1 , · · · , ejθa,m , · · · , ejθa,M

}
. Then, the received

signal vector at the kth user in the lth cell is given by

yl,k =

L∑
n=1

Hn,l,kxn +

L∑
n=1

A∑
a=1

Hr
a,l,kΦaG

r
n,axn + nl,k,

(52)
where Hn,l,k, xn and nl,k are defined in Section II.

By defining Hr
l,k =

[
Hr

1,l,k, · · · ,Hr
A,l,k

]
, Φ =

diag {Φ1, · · · ,ΦA} and Gr
n =

[
GrH

n,1, · · · ,GrH
n,A

]H
, (52)

can be rewritten as

yl,k =
L∑

n=1

Hn,l,kxn +
L∑

n=1

Hr
l,kΦGr

nxn + nl,k, (53)

which is the same as (2). Hence, the derivations for the
single-IRS scenario are directly applicable.
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V. SIMULATION RESULTS

In this section, simulation results are provided for
validating the benefits of employing IRSs for improving
WSR of multicell systems. The large-scale path loss in
dB is given by

PL =PL0 − 10αlog10

(
d

d0

)
, (54)

where PL0 is the path-loss at the reference distance d0,
d is the link distance, α is the path-loss exponent. In our
simulations, we set PL0 = −30 dB and d0 = 1 m. Due to
extensive obstacles and scatterers, the path-loss exponent
between the BS and the users is given by αBU = 3.75.
The heights of BSs, IRSs, and users are assumed to be 30
m, 10 m, and 1.5 m, respectively. By carefully choosing
the location of the IRS, the IRS-aided link has a higher
probability of experiencing nearly free-space path loss.
Then, we set the path-loss exponents of the BS-IRS link
and of the IRS-user link to αBI = αIU

∆
= αIRS = 2.2. For

the direct channel from the BSs to users, the small-scale
fading is assumed to be Rayleigh fading due to extensive
scatters. However, for the IRS-related channels, the small-
scale fading is assumed to be Rician fading. In specific,
the small-scale channel can be modeled as

H̃ =

√
β

β + 1
H̃LoS +

√
1

β + 1
H̃NLoS, (55)

where β is the Rician factor, H̃LoS is the deterministic
line of sight (LoS), and H̃NLoS is the non-LoS (NLoS)
component that is Rayleigh fading. The LoS component
H̃LoS is given by H̃LoS = aDr

(
ϑAoA

)
aHDt

(
ϑAoD

)
,

where aDr

(
ϑAoA

)
is defined as

aDr

(
ϑAoA

)
=
[
1, ej

2πd
λ sinϑAoA

, · · · , ej 2πd
λ (Dr−1) sinϑAoA

]T
(56)

and

aDt

(
ϑAoD

)
=
[
1, ej

2πd
λ sinϑAoD

, · · · , ej 2πd
λ (Dt−1) sinϑAoD

]T
.

(57)
In (56) and (57), Dr and Dt are the number of anten-
nas/elements at the receiver side and transmitter side,
respectively, d is the antenna separation distance, λ is the
wavelength, ϑAoD is the angle of departure and ϑAoA is
the angle of arrival. It is assumed that ϑAoD and ϑAoA are
randomly distributed within [0, 2π]. For simplicity, we set
d/λ = 1/2. Unless otherwise stated, we set the simulation
parameters as follows: Channel bandwidth of 10 MHz,
noise power density of −174 dBm/Hz, number of transmit
antennas of Nt = 4, number of receive antennas of
Nr = 2, number of data streams of d = 2, number of
reflection elements of M = 50, maximum BS power of
Pl,max = 1 W, ∀l, Rician factor of β = 3, error tolerance
of ε = 10−6, and weighting factor of ωl,k = 1, ∀l, k. The
x coordinate of the center point of the first circle is given

BS 1

(0,0)
(m)x

(m)y

BS 2

(600,0)

Boundary Point

(300,0)
( ,0)
u
x (600 ,0)

u
x-

IRS

Fig. 3. The simulated two-cell IRS-aided MIMO communication
scenario.

by xu = 280 m, which means that the users are located
at the edge of their corresponding cells. The following
results are obtained by averaging over 200 independent
channel generations. In Step 5 of the BCD algorithm, if
the MM method is used, the BCD algorithm is denoted as
BCD-MM. Similar definition holds for BCD-CCM. The
step parameters α and β in the CCM algorithm are set
based on Theorem 1.

A. Two-cell Scenario

In order to obtain more insights about the benefits of de-
ploying IRS, we first consider a two-cell communication
network with a single IRS shown in Fig. 3, in which there
are two BSs located at (0, 0) and (600, 0)6, respectively.
By default, the IRS is deployed at the boundary point be-
tween two cells, the coordinate of which is (300, 0). Two
users in the first cell are uniformly and randomly placed
in a circle centered at (xu, 0) with radius 20 m, while two
users in the second cell are also uniformly and randomly
distributed in a circle centered at (600−xu, 0) with radius
20 m. Note that these two circles are symmetric w.r.t. the
boundary point.

1) Convergence Behaviour of BCD Algorithm: We first
study the convergence behaviour of the BCD algorithm in
Algorithm 4. Fig. 4 shows the WSR versus the number
of iterations for various number of phase shifts, i.e., for
M = 10, 20 and 40. Both the BCD-MM and BCD-
CCM algorithms are tested. It can be observed from this
figure that both the BCD-MM and BCD-CCM have a very
similar convergence speed and converged value. Having
more phase shifts leads to a slightly slower convergence
speed. This is due to the fact that more optimization
variables are involved, and more iterations are required
for convergence. However, for different values of M , the
proposed algorithms converge within 200 iterations, which
confirm the practical benefits of our algorithms.

2) Convergence behaviour of the MM and CCM al-
gorithms: In each iteration of the BCD algorithm, we
have to use the MM or CCM algorithm for finding the
phase shifts of the IRS. Fig. 5 shows the convergence
performance of the MM and CCM algorithms for the
first iteration of the BCD algorithm. It can be seen from
Fig. 5 that the MM algorithm converges a little faster
than the CCM algorithm, which implies having a lower
computational complexity for the MM algorithm based

6We only illustrate the horizontal plane of the system, where the height
of various devices are not shown.
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Fig. 4. Convergence behaviour of the BCD algorithm.
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Fig. 5. Convergence behaviour of the MM and CCM algorithm.

on the complexity analysis of Table I. As expected, the
number of iterations required for the convergence of the
two algorithms increase with the number of phase shifts,
since more variables have to be optimized. For different
values of M , the MM algorithm and CCM algorithm may
converge to different values. However, as seen from Fig. 4,
the final WSR value obtained by the BCD algorithm by
using different algorithms to update the phase shifts is
almost the same.

We then compare our proposed algorithms to the fol-
lowing benchmark schemes:

1) RandPhase: We assume that the phase for each
reflection element is uniformly and independently
generated from [0, 2π]. We only have to optimize the
TPC matrices, which can be obtained by skipping
Step 5 of the BCD algorithm.

2) No-IRS: Set the IRS related channel matrices to
zero matrices, i.e., Hr,l,k = 0, Gn,r = 0, ∀n, l, k.
Then, use the BCD algorithm to find the optimal
TPC matrices by removing Step 5 for the phase shift
update.

3) Impact of the Number of Phase Shifts: Fig. 6
compares the WSR performance of various algorithms
versus the number of phase shifts M . The performance
of Network MIMO scheme (with legend ‘Net-MIMO’)
proposed in Section IV-A is also compared. We can
observe that both the BCD-MM algorithm and BCD-CCM
algorithm have similar performances over the entire range
of M , and both of them significantly outperform the other
two benchmark schemes. The performance gain becomes
quite pronounced upon increasing M . Specifically, when
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Fig. 6. Achievable WSR versus the number of phase shifts M .
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Fig. 7. Achievable WSR versus IRS-related path loss exponent.

M = 10, the performance gain over the No-IRS is only
2 bit/s/Hz, while the performance gain increases up to
13 bit/s/Hz when M = 80. This is mainly attributed to
two reasons. Firstly, the signal power received at the IRS
can be enhanced by increasing M , leading to a higher
array gain. On the other hand, by appropriately designing
the phase shifts, the reflected signal power received by
the users increases with M . Hence, the proposed IRS-
assisted system can exploit not only the array gain, but
also the reflecting beamforming gain at the IRS. More
importantly, the IRS is a passive reflection device, hence
installing more passive reflecting elements is both energy-
efficient and economical since the IRS does not require
active radio frequency chains and power amplifiers as in
conventional transmitters. These results demonstrate that
introducing IRSs into wireless communications enhances
the system performance, and it is a promising technique
for future networks. It is seen that the performance of the
RandPhase algorithm is slightly better than that of the No-
IRS scheme. This is because the reflected signals have not
been carefully beamed towards the receivers. By contrast,
for the proposed algorithms, both the direct signals and
reflected signals are superposed more constructively, while
the multicell interference signals are added destructively.
As expected, the WSR achieved by the Network MIMO
is significantly higher than that of the system studied
in Section II (denoted as ‘Coordinated beamforming’).
However, this performance gain is attained at the cost of
the heavy information exchange associated with Network
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Fig. 8. Achievable WSR versus the location of the IRS xIRS.

MIMO, where the data streams of all the users should be
exchanged. By contrast, only the CSI has to be shared
among the BSs, the amount of which is much lower than
that of the data.

4) Impact of the IRS-related Path Loss Exponent: In
the above examples, the path loss exponents of the IRS-
related links is set as αIRS = 2.2, since we assume that
the location of the IRS can be appropriately chosen for
ensuring that a free space BS-IRS link and IRS-user link
can be established. However, in some practical scenarios,
it may not be feasible to find such ideal places. Hence, it is
intriguing to investigate the performance gain that can be
achieved by our proposed algorithms when the IRS-related
links experience rich scattering fading with higher value
of αIRS. To this end, we plot Fig. 7 to show the impact
of the IRS-related path-loss exponent. As expected, the
WSR achieved by the proposed algorithms decreases upon
increasing αIRS, and finally converges to the same WSR
as achieved by the No-IRS scheme. This is because upon
increasing αIRS, the signal attenuation associated with the
IRS-related links becomes larger, and the signal received
from the IRS is weaker, hence more negligible. However,
when αIRS is very small, significant performance gains
can be achieved by our proposed algorithms over the
No-IRS scheme. For example, for a free-space channel
associated with αIRS = 2, the performance gain is up
to 14.5 bit/s/Hz. Hence, for multicell systems, the per-
formance gain of IRS-assisted systems may be attributed
to the favourable channel conditions of the BS-IRS link
and IRS-user link. This provides an important engineering
design insight, where the IRS should be deployed in an
obstacle-free scenario, such as the ceiling for indoor use
or advertisement panels for outdoor use. Otherwise, the
performance gain brought about by the IRS is marginal.
Fig. 7 also shows that if the phase shifts are not optimized,
the performance of an IRS-aided system may even be
worse than that operating without the IRS, i.e. the WSR
achieved by the RandPhase algorithm is equal to or lower
than that of the No-IRS scheme. This emphasizes the
importance of jointly optimizing the TPC matrices and
the phase shifts at the IRS.
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Fig. 9. Achievable WSR versus the location of the UE xu.

5) Impact of the IRS Location: Denote the coordinate
of the IRS as (xIRS, 0). In Fig. 8, we study the impact of
the IRS location by moving the IRS from xIRS = 50
m (cell center of the first cell) to xIRS = 300 m
(cell boundary). It may be observed again that both the
proposed algorithms achieve the similar performance, and
drastically improves the WSR performance over the other
benchmark schemes. It is interesting to observe that the
WSR achieved by the proposed algorithms first decreases
with xIRS (50 m< xIRS < 150 m), and then increases for
xIRS > 150 m. This becomes plausible upon considering
a special case, where the IRS lies on the line between the
BS and the user central point. Let us denote the distance
between the BS and the IRS by d, and that between the
BS and the user central point by D. By ignoring the small-
scale fading, the large-scale channel gain of the combined
channel from the IRS may be approximated by

PLIRS = 2PL0−10αIRSlog10 (d)−10αIRSlog10 (D − d) ,
(58)

which achieves its minimum value at d⋆ = D/2. Hence,
the combined channel gain achieves its minimum value
when the IRS is located at the middle point, which is
consistent with the simulation results of Fig. 8. Due to the
strong BS-IRS link, the WSR performance gain achieved
by our proposed algorithms over the No-IRS is 4 bit/s/Hz
at xIRS = 50 m. However, this performance gain doubles
when the IRS moves to the boundary of these two cells.
This performance is partly due to the favourable IRS-
user channel link. The other important reason is that we
can optimize the phase shifts of the IRS to make the
equivalent channel spanning from the inter-cell BS to
the users approach zero matrices. Specifically, we can
optimize Φ to let H̄n,l,k, n ̸= l approach zero matrices.
This alleviates the severe inter-cell interference for the
cell-edge users, which significantly enhances the system
performance. Additionally, deploying the IRS at the cell
center for Cell 1 is only beneficial for the users in Cell
1, while all the users will benefit from the IRS, when
positioning it at the cell boundary. This means that for
multicell communication systems, significant performance
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Fig. 10. Achievable WSR versus the reflection amplitude η.
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Fig. 11. Individual data rate under two sets of weights.

gains can be obtained when the IRS is employed at the cell
boundary, which mitigates the inter-cell interference. Fur-
thermore, the phase shifts should be carefully designed.
Otherwise, the performance may in fact become inferior
to that without IRS, e.g., xIRS = 150 m.

6) Impact of the User Location: In Fig. 9, we compare
the WSR achieved by all schemes versus the horizontal
distance between BS 1 and the first circle central point,
i.e., xu. Since the users are randomly positioned in this
circle, this is equivalent to varying the locations of the
users. It is again observed that the proposed algorithms
achieve almost the same performance and achieve superior
performance over the other two benchmark schemes. Ad-
ditionally, the performance gap increases with xu, because
the users receive strong reflected signals from the IRS,
when the users approach the cell edge. This means that
the IRS mitigates the inter-cell interference.

7) Impact of the Reflection Amplitude : Due to the
absorption and parasitic reflection of the phase shifters,
there may be a signal power loss at the IRS. Then,
in Fig. 10, we study the impact of the reflection am-
plitude on the system performance. Specifically, the
phase-shift matrix of the IRS is rewritten as Φ =
ηdiag

{
ejθ1 , · · · , ejθm , · · · , ejθM

}
, where the reflection

amplitudes of all the elements are the same as η. As
expected, the WSR achieved by the IRS-aided scheme
increases with η due to the reduced power loss. The
reflection amplitude has a substantial impact on the system
performance. Specifically, when η increases from 0.2 to
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Fig. 12. The simulated four-cell IRS-aided MIMO communication
scenario.

1, the WSR increases by about 6 bit/s/Hz.
8) Impact of the Weights : As mentioned in our prob-

lem formulation, the weights can be used for controlling
the fairness among the users. To be more explicit, we
provide an example for illustrating this point. For clarity,
the index of the jth user in the ith cell is denoted as
2(i − 1) + j. For example, the index of the second
user in the second cell is 4. The coordinates for the
four users (two in each cell) are respectively given by
(100, 0), (250, 0), (350, 0) and (500, 0), which indicate
that the first user is closer to BS 1 than the second user,
and the third user is closer to BS 2 than the fourth user.
Two sets of weights are tested: 1) ωk = 0.5, ∀k; 2)
ω1 = 0.15, ω2 = 0.85, ω3 = 0.3, ω4 = 0.7. In Fig. 11, the
individual data rates achieved under two sets of weights
are illustrated. For the case of the equal weights, the first
user and the third user have higher data rate than the other
two users, since they are closer to the BSs. To guarantee
rate-fairness amongst the users, for the case of unequal
weights, a more balanced data rate distribution can be
achieved by assigning higher weights to the users having
low channel gains.

B. Four-cell Scenario

Finally, in order to study the beneficial impact of IRS
deployment on the system’s performance, we consider
the four-cell scenario of Fig. 12, where the coordinates
of the four BSs are given by (0, 0), (600, 0), (0, 600)
and (600, 600), respectively. Additionally, the coordinates
of the user distribution center in the four cells are
(280, 0), (320, 0), (280, 600) and (320, 600), respectively.
The circle radius is also 20 m. Four points (i.e., A,B,C,D)
are located at the middle of the corresponding two BSs.
The number of antennas at each BS is set to 2, and each
cell has three users.

v
1) Single-IRS Case: We first study the single-IRS

scenario, when the number of phase shifts at the IRS
is 50. Three IRS schemes are considered: 1) Scheme-
1: As in the case of two-cell scenario, the IRS moves
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Fig. 13. Achievable WSR versus various IRS deployment schemes for
single-IRS case.
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Fig. 14. Achievable WSR versus various IRS deployment schemes for
two-IRS case.

from BS 1 to BS 2; 2) Scheme-2: The IRS moves from
point B to point D; 3) Scheme-3: The IRS moves from
BS 3 to BS 2. The WSR achieved by various schemes is
shown in Fig. 13. It is seen from this figure that Scheme
1 achieves its maximum WSR at the cell boundary point
with xIRS = 300m, which implies that the IRS should be
deployed at the cell edge to benefit the users in the first
and second cells. This conclusion is consistent with that
of the two-cell scenario shown in Fig. 8. It is also shown
that Scheme-1 has the best performance for any locations
of the IRS. The reason may be that the IRS in Scheme-
1 is more close to the first and second users. However,
the users in the third and fourth cells are far away from
the IRS in Scheme-1, thus the benefits of the IRS for
these users are marginal. This motivates the deployment
of more IRSs in the system. Again, the WSR achieved by
the various schemes is higher than that without IRS, which
demonstrates the benefits of installing IRSs in multicell
networks.

2) Two-IRS Case : In this case, two IRSs are deployed,
each of which has 25 phase shifts. Hence, the total number
of phase shifters is equal to that of the single-IRS case.
Three schemes are considered: 1) Scheme-1: IRS 1 moves
from BS 1 to BS 2, and IRS moves from BS 3 to BS 4;
2) Scheme-2: IRS 1 moves from BS 1 to BS 4, and IRS
2 moves from BS 3 to BS 2; 3) Scheme-3: IRS 1 moves
from point B to point D, and IRS 2 moves from point

C to point A. The WSR achieved by various schemes
is shown in Fig. 14. Similar trends have been observed
to the single-IRS case. For example, Scheme-1 performs
the best, and achieves its highest WSR when the IRS is
located at points A and C, respectively. The reason is that
the IRSs are closer to the users in these two points. By
comparing Fig. 13 and Fig. 14, when XIRS = 300m, the
WSR of the Scheme-1 in the two-IRS scenario is higher
than that in the single-IRS scenario, which means that
the distributed IRS deployment is more beneficial than
centralized deployment. In general, the number of IRSs
depends on the number of user clusters. It is expected
that in the vicinity of each user cluster, there is at least
one IRS.

VI. CONCLUSIONS

In this paper, we have enhanced the cell-edge user
performance of multicell communication systems by em-
ploying an IRS at the cell boundary. Specifically, by
carefully tuning the phase shifts, the inter-cell interference
reflected by IRS can be added destructively to that directly
received from the adjacent BSs, which alleviates the
inter-cell interference received by the cell-edge users.
We studied the WSR maximization problem by jointly
optimizing the active TPC matrices at the BSs and passive
shifts at the IRSs, while guaranteeing each BS’s power
constraint and unit-modulus constraint at the IRS. To
tackle this non-convex problem, the BCD algorithm was
used for optimizing them in an alternating manner. The
optimal TPC matrices were obtained in closed form, and
a pair of efficient algorithms were provided for solving
the challenging phase shift optimization problem. Our
simulation results verified that the proposed algorithms
achieve significant performance gains over their conven-
tional counterpart operating without incorporating an IRS.
Furthermore, the location of IRS should be carefully
chosen to guarantee a favourable BS-IRS link and IRS-
user link. When the IRSs are deployed in the vicinity of
user clusters, distributed IRS deployment is shown to be
advantageous over the centralized deployment.
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