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Abstract

We propose a novel randomized channel sparsifying hybrid precoding (RCSHP) design to reduce

the signaling overhead of channel estimation and the hardware cost and power consumption at the base

station (BS), in order to fully harvest benefits of frequency division duplex (FDD) massive multiple-input

multiple-output (MIMO) systems. RCSHP allows time-sharing among multiple analog precoders, each

serving a compatible user group. The analog precoder is adapted to the channel statistics to properly

sparsify the channel for the associated user group, such that the resulting effective channel (product

of channel and analog precoder) not only has enough spatial degrees of freedom (DoF) to serve this

group of users, but also can be accurately estimated under the limited pilot budget. The digital precoder

is adapted to the effective channel based on the duality theory to facilitate the power allocation and

exploit the spatial multiplexing gain. We formulate the joint optimization of the time-sharing factors

and the associated sets of analog precoders and power allocations as a general utility optimization

problem, which considers the impact of effective channel estimation error on the system performance.

Then we propose an efficient stochastic successive convex approximation algorithm to provably obtain

Karush-Kuhn-Tucker (KKT) points of this problem.
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I. INTRODUCTION

The fifth generation (5G) wireless network has been envisioned to be ultra reliable, resource-

efficient, low-latency and secure, thanks to the developments of 5G key techniques, such as

massive multiple-input multiple-output (MIMO), millimeter wave (mmWave), ultra-dense het-

erogeneous networks and mobile edge computing [1], [2]. Among these advanced techniques,

massive MIMO is considered as one of the most promising ways to improve the spectral

efficiency. Meanwhile, a well-known fact is that the frequency division duplex (FDD) protocol

dominates current wireless cellular systems [3], [4]. Also motivated by spectrum regulation

issues, there is a huge commercial interest in enabling the FDD massive MIMO to be compatible

with current wireless networks [4]. Therefore, designing practical and efficient precoding schemes

for FDD massive MIMO systems is necessary.

The traditional pure digital precoding schemes require one radio frequency (RF) chain for each

antenna, which leads to the huge hardware cost and power consumption of the massive MIMO

base station (BS). As a result, hybrid precoding, where a high-dimensional analog precoder is

connected to a reduced-dimensional digital precoder with a limited number of RF chains, has

been proposed to address this issue. Early works mainly focus on studying fast-timescale hybrid

precoding (FHP) schemes, in which both analog and digital precoders are adapted to the in-

stantaneous channel state information (CSI). For example, in [5], a low-complexity phased-zero-

forcing hybrid precoding scheme is proposed for massive MIMO systems. A sparse precoding

and combining scheme based on the concept of orthogonal matching pursuit is proposed for

single-user mmWave MIMO systems in [6]. Then in [7], a limited feedback hybrid precoding

scheme is proposed for multi-user mmWave systems. However, FHP schemes usually induce a

large CSI signaling overhead due to the acquisition of real-time CSI. Moreover, different analog

precoders need to be implemented for different subcarriers since different subcarriers may have

different real-time CSI [8].

To overcome the above disadvantages of FHP, [9] and [10] propose the two-timescale hybrid

precoding (THP) scheme, where the analog precoder is adaptive to the channel statistics to

achieve the array gain and the digital precoder is adaptive to the reduced-dimensional effective

CSI (product of channel and analog precoder) to achieve the spatial multiplexing gain. Based on

the above insights, [11] proposes an online algorithmic framework for general THP optimization

problems. A THP scheme for downlink multi-cell massive MIMO systems is proposed in
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[12] based on the two-stage stochastic optimization. THP can significantly reduce the CSI

signaling overhead because it does not require the knowledge of real-time high-dimensional

CSI. Furthermore, since the channel statistics are approximately same on different subcarriers

[8], [13], THP only needs one analog precoder to cover all subbands, which makes it more

attractive in practice due to the low implementation cost [8].

In existing works on (two-timescale) hybrid precoding, the analog precoder is designed to

optimize the downlink transmission performance by assuming the perfect knowledge of effective

CSI. However, in practice, the analog precoder can influence the downlink transmission perfor-

mance not only in directly affecting the spatial degrees of freedom (DoF) of effective CSI, but

also in directly affecting the quality of effective CSI estimation. The effect of analog precoding

on the quality of effective CSI estimation is usually ignored in existing literatures. To achieve

a better downlink transmission performance in practice, the optimization of analog precoding

should also take into account the impact of analog precoding on the effective CSI estimation

error. This issue is more challenging in a FDD massive MIMO downlink transmission scenario,

in which the channel reciprocity can not be exploited and the number of assigned pilot symbols

is limited for the consideration of reducing the amount of radio resources consumed by the CSI

signaling overhead. Some compressive sensing (CS)-based methods have been proposed [14],

[15], [16], [17] to guarantee the high-quality CSI at the BS by only utilizing a small number of

pilot symbols. However, all these works heavily rely on the assumption that propagation channels

have intrinsic sparse properties, which may not be satisfied in practice, especially for systems

operating at the sub-6GHz frequency [18].

[19] has partially addressed the above issue by proposing a two-stage digital precoding scheme,

in which a zero-forcing (ZF) precoder is connected with a sparsifying precoder and both are

implemented in the digital domain. The sparsifying precoder is designed to select beams1 of each

selected user, such that the effective channel (product of channel and sparsifying precoder in

[19]) of each selected user is sparse enough and thus enables to achieve a good effective channel

estimation quality, by utilizing a limited number of assigned pilot symbols. This beam-user

selection procedure is referred to as active channel sparsification. By applying the active channel

sparsification, the spatial DoF of effective CSI is maximized to achieve a good spectral efficiency.

1 The selected beams refer to the selected angular directions used to transmit information to users. The number of selected

beams for each user can be reflected by the rank of each user’s effective channel after channel sparsifying.
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However, there are some drawbacks in [19]: 1) The proposed sparsifying precoding scheme

implements both precoders in the digital domain. Reducing the number of RF chains is not

taken into account, and thus leads to a relatively large hardware cost and power consumption. 2)

It only considers the sum rate maximization while neglecting the fairness among users. When the

number of users is larger than the available spatial DoF, only a subset of users will be scheduled

for transmission over a large number of channel coherence intervals. There still lacks an efficient

user grouping/selection method to achieve a better tradeoff between the sum throughput and

fairness under active channel sparsification. 3) The channel sparsifying precoder is not designed

to directly optimize the throughput performance, but is designed based on a heuristic criteria.

In this paper, we consider a practical FDD massive MIMO downlink transmission scenario, in

which the channel environment may not be sparse and only a limited number of pilot symbols

is available. A randomized channel sparsifying hybrid precoding (RCSHP) design is proposed

to strike a balance between the spatial DoF and the estimation error of effective CSI, such

that the overall downlink transmission performance can be improved with the reduced hardware

cost and power consumption. Specifically, RCSHP allows time-sharing among multiple analog

precoders, each serving a compatible user group. The time-sharing factors and the associated

analog precoders and power allocations are adapted to the channel statistics to properly sparsify

the channel for each associated user group, such that the effective channel not only has enough

spatial DoF to serve this group of users, but also can be sparse enough and accurately estimated

under the limited pilot budget. The digital precoder is designed based on the uplink-downlink

duality and is adapted to the effective channel to achieve the spatial multiplexing gain. The main

contributions are summarized below.

• Randomized Analog Precoding and Power Allocation Scheme: This scheme allows a

more refined control on the analog precoders and power allocations, such that a specific

analog precoder can be used to cover a user group. By time-sharing among the multiple

analog precoders and power allocations, all users can enjoy a non-zero average data rate,

achieving a better tradeoff between the sum throughput and fairness. The user selection

and the beam (angular direction) selection for each selected user’s effective channel (active

channel sparsification) can be automatically achieved by jointly optimizing the time-sharing

factors and the associated analog precoders and power allocations, which is more robust
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with respect to various types of propagation environments 2.

• Duality-based Digital Precoder: We obtain the duality-based digital precoder from a virtual

uplink reception problem based on the minimum mean square error (MMSE) rule, by

exploiting the duality that the precoding concepts designed for the downlink transmission

can carry over to the corresponding virtual uplink reception. The proposed duality-based

digital precoder has a similar complexity as that of the regularized zero forcing (RZF)

precoder, but is a smooth function of the power allocation (as will be explained in Section

II-D), leading to a tractable power allocation optimization formulation.

• General Utility Optimization: The proposed RCSHP is formulated as a general utility

optimization problem, including sum rate maximization and proportional fairness (PFS)

utility maximization as special cases, such that the proposed RCSHP can cover more

application scenarios. However, this incurs a challenging non-convex stochastic optimization

problem. To address this problem, we propose an efficient stochastic successive convex

approximation (SSCA) algorithm called SSCA-RCSHP, and also establish the convergence

of SSCA-RCSHP to KKT points of the general utility optimization problem.

The rest of the paper is organized as follows. System model is presented in Section II. We

formulate the RCSHP design as a general utility optimization problem in Section III. The

proposed SSCA-RCSHP algorithm, and the associated convergence and complexity analysis

are presented in Section IV and V, respectively. Further, simulation results are given in Section

VI, and we conclude the paper in Section VII.

Notations: Diag (a) represents a diagonal matrix whose diagonal elements form the vector

a. [M]i., [M].i and [M]ij denote the i-th row, i-th column and (i, j)-th element of matrix M,

respectively. ⊗ denotes Kronecker product and ◦ denotes Hadamard product. Tr(·), (·)∗ (·)T,

(·)H, ‖·‖1, ‖·‖2, ‖·‖F , 1 and I denote trace, conjugate, transpose, conjugate transpose, l1 norm,

l2 norm, Frobenius norm, all-one vector and identity matrix, respectively. Let Vec {M} denote

the vectorization of matrix M and < [M] denote the real part of a complex matrix M.

2 The proposed RCSHP scheme can also take advantage of the channel sparsity to achieve a better performance. When the

channel is naturally sparse, the optimized sets of analog precoder will tend to concentrate on the few active channel paths to

fully harvest the spatial multiplexing and array gain. Thus the proposed design is also suitable for the mmWave massive MIMO

system with more sparse channels, which is a promising application scenario for hybrid precoding.
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II. SYSTEM MODEL

A. FDD Massive MIMO Downlink with Hybrid Precoding

Consider a multi-user FDD massive MIMO downlink system with one BS serving K single-

antenna users. For clarity, we focus on a narrowband system with a flat block fading channel,

where the channel coefficients are assumed to be constant over a block containing T symbols,

but the proposed design can be easily extended to the wideband system 3. Assume the channel

changes over blocks according to certain distribution, e.g., hk ∼ CN (0,Ck) , ∀k, where hk ∈

CM is the channel for user k and Ck = E
{
hkh

H
k

}
∈ CM×M is the channel covariance of user k,

for the convenient design consideration as similar to [19]. The BS employs the hybrid precoding

architecture, as illustrated in Fig. 1, which is equipped with M antennas and S transmit RF

chains, where S �M . It is necessary to clarify that the proposed scheme considers fairness in

terms of the long-term average throughput. Thus the number of served users K is allowed to be

more than the number of RF chains S. However, the number of active users at each time slot is

usually less than S 4. Moreover, a two-timescale hybrid precoder is employed to transmit data

streams with limited RF chains. The transmit vector for user k is given by
√
p
k
Fgksk, where

F ∈ CM×S is the analog precoder, gk ∈ CS×1 with ‖Fgk‖2 = 1 is the k-th column vector of

the normalized digital precoder G ∈ CS×K , pk is the transmit power allocated to user k and sk

is the unity-power data symbol for user k. The analog precoder F is adaptive to the channel

statistics to exploit the array gain and sparsify the channel, and it is usually implemented using

an RF phase shifting network5 [20]. Hence, all elements of F have an equal magnitude and can

be represented by a phase vector θθθ ∈ [0, 2π]MS , i.e., [F]ij = 1√
M
e
√
−1θij , where θij is the phase

of the (i, j)-th element of F and corresponds to the ((j − 1)M + i)-th element of θθθ. The digital

precoder G is adaptive to the estimated effective CSI to achieve the spatial multiplexing gain

3 In this paper, the analog precoder is adapted to the channel statistics only, and thus the same analog precoder will be used

on different subcarriers in a wideband system. However, the digital precoders on different subcarriers can be different.
4 Actually, we do not add any explicit constraint to restrict that the number of active users must be less than S. However,

supporting more than S active users with S RF chains will cause large multi-user interference, which is usually not optimal.
5 In practice, modern implementations are possible to allow for the full analog vector modulation, which means that the

analog precoder can be adjusted on both amplitude and phase. The proposed scheme can be easily modified to cover the analog

precoder design using full vector modulators, actually just need to add the amplitude as an extra optimization variable.
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Fig. 1: Hybrid precoding architecture.

and mitigate the inter-user interference. Under this setting, the received signal for user k is

yk =
√
pkh

H
kFgksk + hH

k

∑
i 6=k

√
piFgisi + zk, (1)

where zk ∼ CN (0, 1) is the normalized additive white Gaussian noise (AWGN).

B. Randomized Analog Precoding and Power Allocation Policy

There may not always be enough spatial DoF to support the simultaneous transmission to all

users. For a fixed analog precoder, it is possible that only a subset of users can be scheduled

for transmission over a large number of time slots, when the number of users is larger than the

available spatial DoF. Hence, for the fairness consideration, we consider a randomized analog

precoding and power allocation policy as defined below, which realizes time-sharing among

several analog precoders and power allocations. The analog precoder and power allocation are

together referred to as the control variable for conciseness.

Definition 1. (Randomized Control Policy): A randomized control policy Ω = {Γ,q} consists

of an aggregated vector of L control variables Γ ,
[
Γ (1)T , . . . ,Γ (L)T

]T
and a probability

vector (time-sharing factors) q , [q1, . . . , qL]T, where the l-th control variable in Γ is Γ (l) =[
θθθ (l)T ,p (l)T

]T
and Γ satisfies G =

{
θθθ (l) ∈ [0, 2π]MS ,p (l) ∈ RK

+ ,1
Tp (l) ≤ Pmax, ∀l

}
, and q

satisfies Q =
{

q ∈ [0, 1]L ,1Tq = 1
}

. Pmax is the power budget at the BS. At any time slot,

the control variable Γ (l) is applied with probability ql, i.e., the analog precoder and power

allocation are respectively given by θθθ (l) and p (l) with probability ql.

In the proposed RCSHP, the time-sharing factors and the associated control variables are

first jointly optimized according to the channel statistics information at the beginning of each
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Fig. 2: An illustration of the randomized analog precoding and power allocation scheme at two time slots. (a) An

example at time slot 1. (b) An example at time slot 2.

coherence time of channel statistics. Coherence time of channel statistics refers to the time

interval that the channel statistics remains unchanged. Then the optimized control policy is

applied to time slots of the current coherence time of channel statistics to realize time-sharing

among different control variables. Clearly, choosing a larger L can lead to a better performance

or at least as good as that of a smaller L, since a control policy with a larger L includes that

with a smaller L as a special case. However, the complexity of the optimization algorithm will

also increase with L. As such, we can use L to control the tradeoff between the performance

and complexity. In simulations, we find that a moderately large L (4 or 5) can already achieve

a good performance.

We use a toy example shown in Fig. 2 and Fig. 3 to illustrate the proposed RCSHP, which is

specified by a set of L = 2 control variables Γ =
[
Γ (1)T ,Γ (2)T

]T
and a time-sharing vector

q = [0.4, 0.6]T. Specifically, at time slot 1 (Fig. 2a), the associated analog precoder and power

allocation at the BS is Γ (1) and is compatible with a group of users (user 1,2,5 and user 6),

which can be simultaneously scheduled for transmission. The other “incompatible” users (user 3

and user 4) can not be scheduled due to the strong inter-user interference. However, at time slot

2 (Fig. 2b), the associated analog precoder and power allocation is Γ (2) and is compatible with

user 1, 2, 3 and user 4. Therefore, it can be observed from this example that all users can enjoy

a non-zero average data rate by time-sharing between these two control variables, achieving a

better tradeoff between the sum throughput and fairness. For convenience, we assume that the

current coherence time of channel statistics consists of 5 time slots. One possible realization of
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Fig. 3: A toy example of RCSHP.

RCSHP is illustrated in Fig. 3, where Γ (1) and Γ (2) are used in 40% and 60% of time slots,

respectively.

C. Instantaneous Effective CSI Estimation

The effective CSI estimation quality has a significant impact on the downlink transmission

performance. We consider a closed-loop scheme to estimate the instantaneous effective CSI, in

which the BS sends a sequence of Tp pilot symbols through the S inputs of the analog precoder

F to all users and each user feeds back its unquantized pilot observation. The estimation of

effective CSI for each user is then implemented at the BS. Denote the aggregated common

transmit pilot symbols as Ψ ∈ CTp×S . The corresponding pilot observation at the user k is

ypilot
k = Ψ

(
hH
kF
)T

+ nk = Ψh̃∗k + nk, (2)

where h̃k = FHhk is the effective channel of user k and the aggregated effective channel matrix

is given by H̃ = HF =
[
h̃1, . . . , h̃K

]H
, and the channel estimation noise is normalized AWGN

with distribution nk ∼ CN (0, I).

Similar to [19], we assume the noiseless analog feedback for clarity consideration, but the

proposed scheme can be easily modified to consider the noisy feedback. The BS implements

linear minimum mean square error (LMMSE) estimation to estimate the effective CSI, since the

estimation quality using LMMSE is already good enough when the number of selected beams

of the effective CSI is less than the number of pilot symbols. The LMMSE estimation of the

effective channel for user k is

ˆ̃
hk = FHCkFΨT (Ψ∗FHCkFΨT + I

)−1
(
ypilot
k

)∗
. (3)

In our scheme, the channel covariances Ck,∀k are assumed to be known at the BS. It is

reasonable since there are many efficient channel covariance estimation methods in the hybrid
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Fig. 4: An illustration of the downlink and virtual uplink system model. (a) Downlink system model. (b) Virtual

uplink system model.

precoding architecture. Please refer to [21], [22] and references therein. Moreover, by exploiting

the downlink/uplink angle reciprocity, the downlink channel covariance can be obtained from

uplink training pilots even in FDD systems. Please refer to [19], [23] and references therein.

D. Duality-based Digital Precoder

We propose a duality-based digital precoder by exploiting the duality between the multi-user

downlink system and the corresponding virtual uplink system [24]. Specifically, for a given analog

precoder F, the downlink system is illustrated in Fig. 4a. Define the downlink power allocation

as pdl = [pdl,1, . . . , pdl,K ]T, where pdl,i = E
{
‖si‖2

2

}
and si is the data symbol for user i. Then the

sum power satisfies that E
{

(FGs)H FGs
}

=
∑K

i=1 pdl,i

[
GHFHFG

]
ii

= ‖pdl‖1 ≤ Pmax, where

the last equality holds since G is designed to normalize the columns of FG, which can be justified

by (5). The corresponding virtual uplink model is obtained by switching the role of transmitter

and receiver. The data symbol vector s is transmitted from K independent users through the

channel H̃H. GH now behaves as a normalized multi-user receiver. The quantities G, H̃ remain

the same as the downlink system. The uplink power allocation pul = [pul,1, . . . , pul,K ]T satisfies

the same sum power constraint as the downlink, i.e., ‖pul‖1 ≤ Pmax. The duality theory

established in [25], [24] shows that the downlink and virtual uplink can achieve the same data

rate region. Moreover, the Pareto-optimal precoder that achieves a boundary point of the data

rate region in the downlink is given by the MMSE receiver in the virtual uplink corresponding

to the same Pareto-optimal rate point. Motivated by this duality theory, we obtain the digital

precoder (called duality-based precoder) from the virtual uplink MMSE receiver.

In particular, for a given power allocation p, the MMSE receiver in the virtual uplink is given
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by

Gmmse =
(
H̃HPH̃ + I

)−1

H̃HP. (4)

where P = Diag (p). Then the baseband digital precoder G in the downlink is given by

G =
(
H̃HPH̃ + I

)−1

H̃HPΛ
1
2 , (5)

where Λ
1
2 = Diag

([
‖ḡ1‖−1 , . . . , ‖ḡK‖−1]) is used to normalize the precoding vectors Fgk’s,

and ḡk is the k-th column of Ḡ , F
(
H̃HPH̃ + I

)−1

H̃HP.

As a comparison, the RZF digital precoder [26] is given by

GRZF = H̃H
(
H̃H̃H + αI

)−1

Υ
1
2 , (6)

where Υ
1
2 = Diag

([
‖g̃1‖−1 , . . . , ‖g̃K‖−1]) is used to normalize the column vectors of FGRZF,

g̃k is the k-th column of G̃ , FH̃H
(
H̃H̃H + αI

)−1

and α is the regularization factor. In (6),

the RZF precoder is obtained by assuming that all K users are scheduled for transmission.

A well-known fact is that the RZF precoder requires an explicit user-selection to achieve a

good spatial multiplexing gain. The set of scheduled users can essentially be expressed as an

indicator function of power allocation 6. Thus, the RZF precoder is not a smooth function of

power allocation, making the direct optimization of power allocation intractable. In contrast, the

duality-based precoder G in (5) is obviously a smooth function of power allocation, leading to a

tractable power allocation optimization 7, which can do an implicit user-selection by optimizing

the power allocation. Moreover, the complexity of duality-based precoder G in (5) is similar

with that of the RZF precoder GRZF.

Another interesting observation is that the RZF precoder is a special case of the duality-based

precoder for a certain choice of power allocation. For example, apply an equal power allocation,

i.e., pk = p = Pmax

K
,∀k, to the duality-based precoder G in (5). Then from the matrix inverse

lemma, it can be verified that G (unnormalized form) degrades to the RZF precoder GRZF

(unnormalized form) with α = 1
p

as

G = GRZF = H̃H
(

H̃H̃H +
1

p
I

)−1

.

6 Specifically, the power allocated to user k under the RZF precoder is given by pk1 (k ∈ U), where U is the scheduled user

set after an explicit user selection.
7 The tractable power allocation optimization in this paper means that we can develop an efficient algorithm to find a “good”

KKT point without having to deal with the more complicated combinatorial optimization of user selection. The power allocation

optimization problem may still be non-convex.
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Since α = 1
p

is the asymptotic optimal regularization factor for the RZF precoder under the

perfect CSI [26], [27], this further indicates that the performance of duality-based precoder after

the power allocation optimization will be better than that of the RZF precoder.

Considering the impact of effective CSI estimation error, the final digital precoder G is given

by

G =

(
ˆ̃
H

H
P

ˆ̃
H + I

)−1
ˆ̃
H

H
PΛ

1
2 . (7)

where ˆ̃
H =

[
ˆ̃
h1, . . . ,

ˆ̃
hK

]H

is the estimated effective CSI matrix and Λ
1
2 is the corresponding

normalization matrix.

E. Achievable Data Rate

In the proposed RCSHP, we consider the randomized control policy as elaborated in section

II-B. Under a given realization of control state l, the control variable is given by Γ (l) =[
θθθ (l)T ,p (l)T

]T
, where θθθ (l) and p (l) are the phase shifting vector of the analog precoder and

the power allocation vector at the control state l, respectively. For a given channel realization H

and channel estimation noise realization N = [n1, . . . ,nK ]H, the instantaneous achievable data

rate of the user k at the control state l is

rk (Γ (l) ; H,N, l) = log

(
1 +

pk
∣∣hH

kFgk
∣∣2∑

i 6=k pi |hH
kFgi|2 + 1

)
, (8)

where the control state l is dropped off in the specific expression of rk for conciseness. Note

that F is a function of θθθ (l) and G is a function of θθθ (l) ,p (l) ,H,N. Thus we can explicitly

express rk as a function of Γ (l) which depends on the random states H,N, l. Then for a given

control policy Ω = {Γ,q}, the average achievable data rate of user k is given by

r̄k =
L∑
l=1

ql EH,N [rk (Γ (l) ; H,N, l)] . (9)

Define r̄ , [r̄1, . . . , r̄K ]T as the average data rate vector.

III. PROBLEM FORMULATION

The joint optimization of the randomized control policy, i.e., the time-sharing factors and the

associated analog precoders and power allocations, can be formulated as the following general

utility maximization problem:

P : max
Γ∈G,q∈Q

f (Γ,q) , U (r̄) (10)
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where U (·) is a general utility function, which is assumed to be continuously differentiable,

concave and nondecreasing for all r̄ ≥ 0, and the gradient of U (r̄) with respect to (w.r.t.) r̄

is Lipschitz continuous. This general utility function U (r̄) includes many important network

utilities as special cases, such as α-fair utility [28], sum rate (U (r̄) =
∑K

k=1 r̄k, a special case of

α-fair when α = 0 ) and proportional fairness utility (U (r̄) =
∑K

k=1 log (r̄k + ε) , where ε > 0

is a small number to avoid the singularity at r̄k = 0, also a special case of α-fair when α = 1).

In our design, the randomized control policy is assumed to be adaptive to the channel statistics,

since we consider a practical scenario where the pilot resource is limited. In this case, it is

infeasible to obtain the instantaneous CSI and thus it is more practical to adapt the randomized

control policy according to the channel statistics. At the beginning of each coherence time of

channel statistics, we firstly generate an appropriate number of channel samples and channel

estimation noise samples according to the statistical CSI (channel distribution) H, e.g., hk ∼

CN (0,Ck) ,∀k, for Gaussian channel distribution, and the channel estimation noise distribution

nk ∼ CN (0, I) , ∀k, to solve the problem P in order to obtain the optimized randomized control

policy Ω? = {Γ?,q?}.

During the maximization of utility, the number of the selected beams of each user’s effective

channel in each compatible user group tends to be smaller than the number of assigned pilot

symbols Tp, so that the channel sparsifying is implicitly realized by jointly optimizing the

time-sharing factors and the associated control variables, leading to an improved effective CSI

estimation quality. Note that there is no need to explicitly carry out the user grouping as it is

automatically realized by the optimization of control variables. Each optimized control variable

corresponds to a compatible group of users, such that the effective CSI in each compatible user

group not only has enough spatial DoF to support the simultaneous transmission to these users,

but also is sparse enough to achieve a good effective CSI estimation quality by the limited

number of pilots. Each optimized time-sharing factor corresponds to the proportion of time that

serves one compatible user group. As such, the active channel sparsification can be implicitly

realized by maximizing the utility function over the randomized control policy, and thus the

expected long-term utility can be achieved.

After the optimized randomized control policy Ω? has been calculated, we simply apply it at

each time slot during the current coherence time of channel statistics, and the digital precoder

G is adaptive to the instantaneous effective CSI to support the downlink transmission. A toy
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example has been elaborated in section II-B and the illustrations are shown in Fig. 2 and Fig. 3.

However, there are several challenges in finding KKT solutions of the problem P , as elaborated

below. First, the objective function is nether convex nor concave, and it contains an expectation

operator, which causes that the objective function usually does not have a closed-form expression.

Moreover, there are three random system states H,N and l, and the probability measure of the

control state l depends on the time-sharing vector q. To address these challenges, we propose

an efficient SSCA-RCSHP algorithm to find KKT points 8 of the problem P .

IV. ALGORITHM DESIGN

In this section, we propose an efficient stochastic successive convex approximation algorithm

called SSCA-RCSHP to solve the problem P . Algorithm 1 summarizes the key steps of the

SSCA-RCSHP. At each iteration t, the randomized control policy Ω = {Γ,q} is updated by

solving a convex surrogate problem obtained by replacing the objective function f (Γ,q) with

its convex surrogate function f̄ t (Γ,q).

Specifically, at the t-th iteration, THN channel and channel estimation noise realizations

{Ht (i) ,Nt (i)}i=1,...,THN
are firstly generated according to the statistical CSI H in Step 1. Then

the surrogate function f̄ t (Γ,q) is updated based on {Ht (i) ,Nt (i)}i=1,...,THN
and the current

iterate Γt,qt in Step 2 as

f̄ t (Γ,q) = U
(
ˆ̄r
t
(q)
)
− τq

∥∥q− qt
∥∥2

2
+
(
f tΓ
)T (

Γ− Γt
)
− τΓ

∥∥Γ− Γt
∥∥2

2
, (11)

where τq, τΓ > 0 are two constants, ˆ̄r
t
(q) =

[∑L
l=1 qlr̂

t
1 (l) , . . . ,

∑L
l=1 qlr̂

t
K (l)

]T
is an approxi-

mation of the average data rate vector and r̂tk (l) is the approximate conditional average data rate

of the user k under the l-th analog precoding and power allocation state, which is recursively

updated as

r̂tk (l) = (1− ρt) r̂t−1
k (l) + ρt

THN∑
i=1

rk (Γt (l) ; Ht (i) ,Nt (i))

THN
,∀k,∀l, (12)

with r̂−1
k = 0, ∀k,∀l. f tΓ is an approximation of the partial derivative ∇ΓU (r̄), which is updated

recursively as

f tΓ = (1− ρt) f t−1
Γ + ρt

THN∑
i=1

JΓ (Γt,qt; Ht (i) ,Nt (i))∇r̄U
(
ˆ̄r
t
(qt)

)
THN

, (13)

8 In practice, the probability of converging to a non-locally optimal KKT point (e.g., saddle point) is very small because these

KKT points are not stable. Therefore, the KKT points found by the algorithm are usually locally optimal.
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with f−1
Γ = 0, where f tΓ =

[(
f tΓ(1)

)T
, . . . ,

(
f tΓ(l)

)T
, . . . ,

(
f tΓ(L)

)T
]T

, ρt ∈ (0, 1] is a sequence to

be properly chosen, JΓ (Γ,q; H,N) is the Jacobian matrix of the data rate vector r̃ (Γ,q; H,N) =[∑L
l=1 qlr1 (l) , . . . ,

∑L
l=1 qlrK (l)

]T
w.r.t. Γ and its detailed expression is given by Appendix A.

Note that U
(
ˆ̄r
t
(q)
)

is a concave function over q, since ˆ̄r
t
(q) is a linear function w.r.t. q, U (·)

is assumed to be a concave function and linear mapping preserves concavity of functions [29].

We intuitively explain the need for each of the terms in (11). The reason we directly capture the

dependence on q by the utility function U (·) is that the original problem (10) is a convex problem

w.r.t. q if Γ is given. Thus at each iteration, we can directly solve a convex subproblem over

q without any convex approximation. However, the original problem (10) is still a non-convex

problem w.r.t. Γ even if q is given. As such, at each iteration, we employ a local gradient

f tΓ, which is an approximation of the partial derivative ∇ΓU (r̄), to first-order approximate

the objective function U (r̄) over Γ, such that the corresponding subproblem is computational

tractable. Notice that we drop off the constant term for conciseness. In addition, the two

quadratic terms are introduced to guarantee that the surrogate problem is strongly convex, thereby

augmenting the convergence stability.

After updating the surrogate function, the following surrogate problem is solved:

P̂ : max
Γ∈G,q∈Q

f̄ t (Γ,q) (14)

Then the control policy is updated based on the solution of P̂ , as summarized in Step 3 and 4.

Specifically, the problem P̂ can be decomposed into L + 1 convex subproblems w.r.t. q and

Γ (l) ,∀l, respectively. Thus in Step 3a, the optimal solution q̄t for P̂ is obtained by solving the

following subproblem:

Pq : q̄t = arg max
q∈Q

U
(
ˆ̄r
t
(q)
)
− τq

∥∥q− qt
∥∥2

2
. (15)

This subproblem is convex as explained above and thus can be solved by standard convex

optimization methods [29]. Then the time-sharing vector q is updated in Step 3b as

qt+1 = (1− γt) qt + γtq̄
t, (16)

where γt ∈ (0, 1] is a sequence to be properly chosen. In Step 4a , the optimal solution

Γ̄t =
[(

Γ̄t (1)
)T
, . . . ,

(
Γ̄t (L)

)T
]T

for P̂ is obtained by independently solving the following

L subproblems:

PΓl
: Γ̄t (l) = arg max

Γ(l)∈Gl

(
f tΓ(l)

)T (
Γ (l)− Γt (l)

)
− τΓ

∥∥Γ (l)− Γt (l)
∥∥2

2
, (17)
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Algorithm 1 SSCA-RCSHP Algorithm

Initialize: Γ0,q0, r̂−1
k = 0,∀k, f−1

Γ = 0, THN , t = 0.

Step 1: Generate THN new channel and channel estimation noise realizations

{Ht (i) ,Nt (i)}i=1,...,THN
according to the statistical CSI H at the t-th iteration.

Step 2: Update the surrogate function by (11).

Step 3a: Solve (15) to obtain the optimal solution q̄t.

Step 3b: Update qt+1 according to (16).

Step 4a: Distributedly solve L subproblems (17) to obtain the optimal solution Γ̄t.

Step 4b: Update Γt+1 according to (18).

Step 5: Let t = t+ 1 and return to Step 1.

for l = 1, . . . , L, where Gl =
{
θθθ (l) ∈ [0, 2π]MS ,p (l) ∈ RK

+ ,1
Tp (l) ≤ Pmax

}
.

Problem PΓl
is a convex quadratic problem, which has a closed-form solution Γ̄t (l) =

PGl
[
Γt (l) +

f t
Γ(l)

2τΓ

]
, where PGl [·] denotes the projection onto the convex set Gl. Subsequently,

the aggregated vector of control variables Γ is updated in Step 4b according to

Γt+1 = (1− γt) Γt + γtΓ̄
t, (18)

Then the above steps (Step 1 to Step 4) are carried out until convergence.

V. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Convergence Analysis

We establish the convergence of SSCA-RCSHP to KKT solutions. Notice that the limiting

point is obtained by averaging over all the previous solutions from the surrogate problem (14),

which makes it difficult to show that the limiting point is a KKT point of the original Problem

(10). To address this challenge, we need to make some assumptions on the sequence of parameters

{ρt} and {γt}.

Assumption 1. (Assumptions on {ρt}, {γt}):

1) ρt → 0, 1
ρt
≤ O

(
tβ
)

for some β ∈ (0, 1),
∑

t (ρt)
2 <∞,

∑
t ρtt

− 1
2 <∞.

2) γt → 0,
∑

t γt =∞,
∑

t (γt)
2 <∞

3) limt→∞
γt
ρt

= 0
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Note that the condition 1
ρt
≤ O

(
tβ
)

for some β ∈ (0, 1) is almost the same as
∑

t ρt = ∞,

which is a common assumption in stochastic optimization algorithms [30]. With Assumption 1,

we first prove a key lemma that will support the final convergence. The following lemma proves

the convergence of the surrogate objective function.

Lemma 1. (Convergence of the surrogate objective function): Suppose Assumption 1 is satisfied.

Consider a subsequence {Γtj ,qtj}∞j=1 converging to a limiting point {Γ∗,q∗}, and define a

function

f̂ (Γ,q) , U (r̄ (Γ∗,q))− τq ‖q− q∗‖2
2

+∇T
Γf (Γ∗,q∗) (Γ− Γ∗)− τΓ ‖Γ− Γ∗‖2

2 ,

which satisfies f̂ (Γ∗,q∗) = f (Γ∗,q∗), ∇Γf̂ (Γ∗,q∗) = ∇Γf (Γ∗,q∗) and ∇qf̂ (Γ∗,q∗) =

∇qf (Γ∗,q∗). Then almost surely, we have

lim
j→∞

f̄ tj (Γ,q) = f̂ (Γ,q) ,∀q ∈ Q,∀Γ ∈ G,

Please refer to Appendix B for the proof. With Lemma 1, the following convergence theorem

can be proved.

Theorem 1. (Convergence of Algorithm 1): Suppose Assumption 1 is satisfied. For any subse-

quence {Γtj ,qtj}∞j=1 converging to a limiting point {Γ∗,q∗}, {Γ∗,q∗} is a KKT point of Problem

(10) almost surely.

Please refer to Appendix C for the proof.

B. Complexity Analysis

We analyze the computational complexity of the proposed RCSHP scheme, which is dominated

by computing the f tΓ and solving (L + 1) convex problems ( problem (15) and (17) ) at each

iteration of the proposed SSCA-RCSHP algorithm. The per-iteration computational complexity

of the former is Cf = max {O (LM3S3K2) , O (LM2S3K3Tp)} + O (LM3S2KTHN) and the

latter is Cs = O (L) + O (L (MS +K)). Therefore, the per-iteration computational complexity

of the proposed method is Ct = Cf +Cs. Note that the computational complexity we provide is

the worst-case situation. Actually, the computation of f tΓ includes many sparse matrix operations,

such as the calculations of Ā and D̄h in the Appendix A, which can be significantly accelerated

in practice.
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VI. SIMULATION RESULTS

We adopt the active channel sparsification (ACS) scheme in [19] and the two-timescale hybrid

precoding (THP) scheme in [11] as baselines to compare with the proposed RCSHP. As in [11]

and [19], we adopt a geometry-based channel model and a COST 2100 channel model, both with

a half-wavelength spaced uniform linear array (ULA) for simulations. For the geometry-based

channel, the channel vector of user k can be expressed as hk =
∑Np

i=1 αk,ia (ϕk,i), where a (ϕ) =[
1, ejπ sin(ϕ), . . . , ej(M−1)π sin(ϕ)

]T is the array response vector, Np is the number of scattering

paths, ϕk,i’s are angles of departure (AoD) which are Laplacian distributed with an angular

spread σAS = 10 and αk,i ∼ CN
(
0, σ2

k,i

)
, σ2

k,i’s are randomly generated from an exponential

distribution and normalized such that
∑Np

i=1 σ
2
k,i = gk, and gk represents the path gain of user

k. The path gains gk’s are uniformly generated between -10 dB and 10 dB and the number

of scattering paths for each user is Np = 8. For the COST 2100 channel, same with [19], we

consider three scattering clusters which are randomly located within the angular range [−1, 1)

(parameterized by ξ = sin θ
sin θmax

, where θ ∈ [−θmax, θmax) is the AoD). The size of the angular

interval for each scattering cluster is 0.2. The channel angular scattering function (ASF) for each

user is obtained by randomly selecting two from these three clusters. The ranks of users’ channel

covariance matrices generated from the geometry-based and COST 2100 channel in this setting

are 8 and 36, respectively. This indicates that in our simulations the geometry-based channel is

relatively sparse and the COST 2100 channel is relatively rich-scattering.

Consider M = 64 antennas and S = 8 RF chains. We provide the sum rate and PFS utility

as two main performance metrics, and the corresponding number of served users is K = 8 and

K = 12, respectively. In order to compare with the performance of the original version of ACS

in [19], we also plot the performance of RCSHP and ACS with a full set of RF chains, denoted

by ‘RCSHP-free’ and ‘ACS-free’, respectively. Define the signal-to-noise ratio SNR = Pmax

N0
,

where Pmax is the transmit power budget at the BS and N0 is the noise power in the channel

estimation phase. Note that N0 is normalized to one for simplicity in this paper. SNR is 10

dB for all simulations unless otherwise stated. The number of time-sharing factors is L = 4,

each time slot contains T = 20 symbols and each coherence time of channel statistics consists

of 200 time slots. For both RCSHP and THP, the number of channel samples generated at each

iteration is THN = 9 and the maximum number of iterations is 100. These two parameters can

be flexibly adjusted according to the practical needs.
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Fig. 5: Convergence of SSCA-RCSHP.

A. Convergence of the proposed SSCA-RCSHP

We use the sum rate in the geometry-based channel environment to illustrate the convergence

of SSCA-RCSHP. The number of pilots is Tp = 8. We set the number of samples generated

at each iteration and the number of iterations to be 20 and 200, respectively. It can be seen in

Fig. 5 that the proposed SSCA-RCSHP can converge to a KKT point within about 50 iterations.

B. Sum Rate Maximization

1) Sum rate versus the number of pilots: According to Fig. 6a and Fig. 6b, we can observe that

the proposed RCSHP achieves a larger sum rate than other schemes in both channel environments,

and can also attain a good performance with a smaller number of pilots. This indicates that the

RCSHP design is robust w.r.t. both non-sparse and sparse channel environments and enables to

more “efficiently” realize the active channel sparsification as well.

2) Sum rate versus the SNR: The number of pilot symbols is chosen to be a moderate size

Tp = 9. It can be observed in Fig. 7a and Fig. 7b that the sum rate of the proposed RCSHP

scheme increases (almost) linearly as the SNR grows and RCSHP achieves a better performance

than those of other precoding schemes, which indicates that the RCSHP design enables to realize

a better beam (angular direction)-user selection, such that the transmission performance can be

significantly improved.
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Fig. 6: (a) Sum rate versus the number of pilots in the COST 2100 channel. (b) Sum rate versus the number of

pilots in the geometry-based channel.
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Fig. 7: (a) Sum rate versus the SNR in the COST 2100 channel. (b) Sum rate versus the SNR in the geometry-

based channel.

C. Proportional Fairness

In Fig. 8a and Fig. 8b, it can be seen that the performance gap between the RCSHP and

other schemes becomes larger than that when considering the sum rate, because the randomized

control policy employed in the RCSHP can realize a better fairness among users.
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Fig. 8: (a) PFS utility versus the number of pilots in the COST 2100 channel. (b) PFS utility versus the number

of pilots in the geometry-based channel.

D. Gains from CSI Errors

We provide the RCSHP scheme with perfect effective CSI as a baseline to show the gains from

CSI errors. The sum rate and PFS utility simulated in the two channel models are given in Fig. 9

and Fig. 10, respectively. Note that we do not calculate the impact of pilot cost on the data rate

for precoding schemes with imperfect CSI in these simulations, in order to more clearly show

the effect of CSI errors. The RCSHP scheme with perfect CSI is denoted as ‘RCSHP-Perfect’.

It can be observed from these simulations that the gains from CSI errors are significant and of

value to consider. Moreover, The performance of RCSHP can significantly approach that with

perfect CSI when the number of assigned pilots is enough, which indicates that the proposed

scheme has a strong ability to alleviate the performance loss due to the CSI errors.

E. Energy Efficiency

We provide the energy efficiency that changes with the number of pilots in the COST 2100

and geometry-based channel, respectively. As in [31], we model the total power consumption at

the BS as Ptot = MSPPS +S (PLNA + PRF + PADC)+PBB +PTX, where PPS denotes the power

consumed per phase shifter, PLNA denotes the power consumed per low noise amplifier (LNA),

PRF denotes the power consumed per RF chain, PADC is the power consumed by a single analog-

to-digital converter (ADC), PBB denotes the power consumption of the baseband precoder and

PTX is the consumed transmission power. Following the pioneering works on massive MIMO

21



2 4 6 8 10 12 14 16 18

6

8

10

12

14

16

18

20

22

24

26

S
u

m
 R

a
te

 (
b

p
s
/H

z
)

(a)

2 4 6 8 10 12 14 16 18

5

10

15

20

25

30

35

S
u

m
 R

a
te

 (
b

p
s
/H

z
)

(b)

Fig. 9: (a) Sum rate versus the number of pilots in the COST 2100 channel (with perfect CSI as a baseline). (b)

Sum rate versus the number of pilots in the geometry-based channel (with perfect CSI as a baseline).
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Fig. 10: (a) PFS utility versus the number of pilots in the COST 2100 channel (with perfect CSI as a baseline).

(b) PFS utility versus the number of pilots in the geometry-based channel (with perfect CSI as a baseline).

systems, we also model the power consumption of a baseband precoder as PBB = Sξ+ ς , where

ξ denotes the circuit power that scales with the number of RF chains, and ς is a static circuit

power term. According to [31], [32], [33], we have PLNA = 20 mW, PPS = 6.6 mW, PRF = 120

mW, PADC = 240 mW, ξ = 10 mW/RF chain, and ς = 136 mW. According to Fig. 11a and

Fig. 11b, we can observe that the proposed RCSHP scheme enables to achieve a better energy

efficiency over other precoding schemes, which indicates that the RCSHP design can effectively

reduce the power consumption.
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Fig. 11: (a) Energy efficiency in the COST 2100 channel. (b) Energy efficiency in the geometry-based channel.

VII. CONCLUSION

We propose a novel RCSHP design for a practical FDD massive MIMO downlink transmission

scenario, in which the channel environment may not be sparse and the number of assigned pilots

is limited. The design is formulated as a general utility optimization problem over a randomized

control policy, which is solved at the beginning of each coherence time of channel statistics,

by using the proposed SSCA-RCSHP algorithm with the knowledge of channel statistics of

users. Then we apply the optimized randomized control policy to the current coherence time of

channel statistics. At each time slot, the BS only needs to estimate the effective CSI of scheduled

users to exploit the spatial multiplexing gain by utilizing a duality-based digital precoder. The

RCSHP design can automatically group users such that in each user group, the effective CSI is

sparse enough to be well estimated by using the limited number of pilots, and also has enough

spatial DoF to support the simultaneous transmission to these users. Finally, extensive simulations

verify that the RCSHP scheme enables to effectively realize the active channel sparsification

and achieve a significant performance gain over other baselines.

APPENDIX A

JACOBIAN MATRIX OF INSTANTANEOUS RATE

First we define some useful notations: IN denotes a N ×N identity matrix. Eii ∈ RK×K is a

matrix whose (i, i)-th element is one and all other elements are zero. E
Tp
i ∈ RKTp×Tp is a matrix

whose (i− 1)Tp + 1-th row to iTp-th row is stacked into an identity matrix ITp . Similarly,
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E
Tp
ii ∈ RKTp×KTp is a matrix whose (i− 1)Tp + 1-th row to iTp-th row and (i− 1)Tp + 1-

th column to iTp-th column is put into an identity matrix ITp . EM
i ∈ RKM×M is a ma-

trix whose (i− 1)M + 1-th row to iM -th row is put into an identity matrix IM . Define

an aggregated covariance matrix C = [C1, . . . ,CK ] ∈ CM×KM and an aggregated channel

estimation noise matrix N = [n1, . . . ,nK ]T ∈ CK×Tp , we have A = FHC
(
IK ⊗ FΨT

)
, B =∑K

i=1 E
Tp
i

(
Ψ∗A + 1T

K ⊗ ITp
)
E
Tp
ii , Y =

∑K
i=1 E

Tp
i

(
HFΨT + N

)H
Eii, Ĝ =

∑K
i=1 EM

i ḠEii,

where 1K ∈ RK×1 is an all-one vector. Furthermore, denote (Z)Blk as a block matrix whose all

M × S blocks are matrix Z, then define (Znm)Blk to represent a block matrix whose (m,n)-th

block is matrix Znm, where m = 1, . . . ,M and n = 1, . . . , S. Denote Jmn ∈ RM×S is a matrix

whose (m,n)-th element is one and all other elements are zero, and J̄nm = JT
mn. Then we have

Ēh =
(
J̄nm

)
Blk
∈ RMS×MS , F̄h =

(
FH
)

Blk
∈ CMS×MS , F̃ =

(
IK ⊗

√
−1 [F]mn Jmn

)
Blk
∈

CKM2×KS2 . Denote BlkTran (A1,m, n) as a operator that evenly divide a matrix A1 ∈ CM1×N1

into mn blocks, then treat each block as an element and transpose the divided matrix into a new

one. The size of each block is M1

m
× N1

n
. Then we introduce some notations:

Ā = −
√
−1
(
F̄h ◦ Ēh

) (
IS ⊗C

(
IK ⊗ FΨT))+

(
IM ⊗ FHC

)
F̃
(
ISK ⊗ΨT) ,

H̄h = Ā
(
IS ⊗B−1Y

)
+

K∑
i=1

(
IM ⊗AB−1E

Tp
i Ψ∗

)
(
−
√
−1
(
F̄h ◦ Ēh

) (
IS ⊗HHEii

)
− Ā

(
IS ⊗ E

Tp
ii B−1Y

))
.

Further, define H̄ = BlkTran
(
H̄H
h , S,M

)
, V =

ˆ̃
H

H
P

ˆ̃
H + I and G̃ = V−1 ˆ̃

H
H
P, we have

D̄h =
(
IM ⊗

(
P−P

ˆ̃
HG̃

))
H̄
(
IS ⊗V−1FH)− (IM ⊗ G̃H

) (√
−1
(
F̄h ◦ Ēh

)
+ H̄h

(
IS ⊗ ḠH)) ,

AF =
K∑
i=1

− (IM ⊗ΛEii) D̄h

(
IS ⊗

1

2

(
Λ

1
2 ĜHEM

i

)H
)
−
(
IM ⊗ΛĜHEM

i

)
D̄

(
IS ⊗

1

2
EiiΛ

1
2

)
,

GF =
(
IM ⊗V−1

)
H̄h

(
IS ⊗

(
PΛ

1
2 −P

ˆ̃
HG

))
+
(
IM ⊗ G̃

) (
AF − H̄ (IS ⊗G)

)
,

where D̄ = BlkTran
(
D̄H
h , S,M

)
. According to the matrix calculus, the gradient of instantaneous

data rate rk (θθθ (l) ,p (l) ; H,N, l) w.r.t. θθθ (l) is given by

∇θθθ(l)rk =

∑K
i=1 aθlk,i
Γk

−
∑

i 6=k aθlk,i
Γ−k

, (19)

where Γk =
∑K

i=1 pi
∣∣hH

kFgi
∣∣2 + 1, Γ−k =

∑
i 6=k pi

∣∣hH
kFgi

∣∣2 + 1,

aθlk,i = Vec

{
2pi<

[
[HFG]∗ki

(
(IM ⊗ [H]k.)

(√
−1F̄ ◦ Ē

)
(IS ⊗ [G].i)+(IM ⊗ [HF]k.) GF (IS ⊗ ei)

)]}
,
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where ei ∈ RK×1 is a vector whose i-th element is one and all other elements are zero.

Note that we have omitted the control state l and (θθθ (l) ,p (l) ; H,N, l) in the gradient expres-

sion for simplicity, and we also keep this habit for the gradient of rk (θθθ (l) ,p (l) ; H,N, l) over

p (l). P̄ ∈ RK2×K is a matrix whose (i− 1)K + 1-th row to iK-th row is put into Eii, where

i = 1, . . . , K. Then we introduce some notations:

Dp =

(
IK ⊗ FV−1 ˆ̃

H
H
)(

P̄− P̄
ˆ̃
HG̃

)
,

Ap =
K∑
i=1

−1

2
(IK ⊗ΛEii) D̄p

(
ĜHEM

i

)H
Λ

1
2 − 1

2

(
IK ⊗ΛĜHEM

i

)
DpEiiΛ

1
2 ,

Gp =

(
IK ⊗V−1 ˆ̃

H
H
)

P̄
(
Λ

1
2 − ˆ̃

HG
)

+
(
IK ⊗ G̃

)
Ap,

where D̄p = BlkTran
(
DH
p , 1, K

)
. Thus using matrix calculus, the gradient of instantaneous data

rate rk (θθθ (l) ,p (l) ; H,N, l) w.r.t p (l) is given by

∇p(l)rk =

∑K
i=1 aplk,i
Γk

−
∑

i 6=k aplk,i
Γ−k

, (20)

where

aplk,i = 2pi<
[

[HFG]∗ki (IK ⊗ [HF]k.) [Gp].i

]
+ ei |[HFG]ki|

2 .

Therefore, for given channel state H and channel estimation noise state N, the Jacobian matrix

of the data rate vector r̃ (Γ,q; H,N) w.r.t. Γ is

JΓ (Γ,q; H,N) =



q1∇θθθ(1)r1 · · · q1∇θθθ(1)rK

q1∇p(1)r1 · · · q1∇p(1)rK
...

...

qL∇θθθ(L)r1 · · · qL∇θθθ(L)rK

qL∇p(L)r1 · · · qL∇p(L)rK


. (21)

APPENDIX B

PROOF OF LEMMA 1

The proof relies on the following lemma.

Lemma 2. Define ˘̄rtk (l) = EH,N [rk (Γt (l) ; H,N, l)], then under Assumption 1, we have

lim
t→∞

∣∣r̂tk (l)− ˘̄rtk (l)
∣∣ = 0,∀k,∀l, (22)

lim
t→∞

∥∥f tΓ −∇Γf
(
Γt,qt

)∥∥ = 0. (23)
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Proof. For (22), it is a consequence of [34], Lemma 1. It is easy to verify that the technical

conditions (a), (b), (c) and (d) therein are satisfied. Moreover, it follows from the Lipschitz

continuity of rk (Γt (l) ; H,N, l) that

lim
t→∞

∣∣˘̄rt+1
k (l)− ˘̄rtk (l)

∣∣
ρt

≤ lim
t→∞

LΓ ‖Γt+1 (l)− Γt (l)‖
ρt

= lim
t→∞

O

(
γt
ρt

)
= 0,

where LΓ is the Lipschitz constant. Therefore, the technical condition (e) in [34] is also satisfied

and (22) is proved.

The proof of (23) consists of two steps. For the consideration of simplicity, let r̄t = r̄ (Γt,qt),

ˆ̄r
t

= ˆ̄r
t
(qt) and ∇t

Γf = ∇Γf (Γt,qt).

Step 1 of proving (23): Define a sequence

řtk =
L∑
l=1

qtl

t∑
i=1

rk
(
Γt (l) ; H (i) ,N (i) , l

)
,∀k. (24)

Denote řt = [řt1, . . . , ř
t
K ]

T. According to the law of large numbers, the central limit theorem and

the Berry-Esseen theorem, we have limt→∞ ‖řt − r̄t‖ = 0 and E ‖řt − r̄t‖ = O
(

1√
t

)
. Further

we define a sequence

f̂ tΓ = (1− ρt) f̂ t−1
Γ + ρt

THN∑
i=1

JΓ (Γt,qt; Ht (i) ,Nt (i))∇r̄U (řt)

THN
. (25)

It can be seen that the update term in (25), which is denoted by f̃ tΓ, is only different from (13)

by et =

∣∣∣∣∣∣∑THN

i=1

JΓ (Γt,qt; Ht (i) ,Nt (i))
(
∇r̄U (řt)−∇r̄U

(
ˆ̄r
t
))

THN

∣∣∣∣∣∣.
Further we have

lim
t→∞

∥∥∥f̂ tΓ −∇t
Γf
∥∥∥ = 0. (26)

This is a consequence of [34], Lemma 1. It is easy to verify that the technical conditions (a),

(b), (d) and (e) in [34], Lemma 1 are satisfied. Moreover, follow from that ∇r̄U is Lipschitz

continuous and JtΓ is bounded w.p.1., we have∥∥∥E [f̃ tΓ]−∇t
Γf
∥∥∥ ≤ E

∥∥JtΓ (∇r̄U
(
řt
)
−∇r̄U

(
r̄t
))∥∥ = O

(∥∥řt − r̄t
∥∥) = O

(
1√
t

)
.

From Assumption 1-1), we have
∑

t ρt

∥∥∥E [f̃ tΓ]−∇t
Γf
∥∥∥ < ∞, which implies the technical

condition (c) in [34], Lemma 1 is satisfied.
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Step 2 of proving (23): From the definitions of f̂ tΓ and f tΓ, we have∥∥∥f̂ tΓ − f tΓ

∥∥∥ ≤ t∑
t′=1

(1− ρt)t−t
′

ρt′et′ =
nt∑
t′=1

(1− ρt)t−t
′

ρt′et′ +
t∑

t′=nt+1

(1− ρt)t−t
′

ρt′et′

≤ ρ1eta
(1− ρt)t−nt

ρt
+
ρnt+1

ρt
etb , (27)

where nt = (1− β − ε) t with ε ∈ (0, 1− β), eta = maxt′∈{1,...,nt} et′ and etb = maxt′∈{nt+1,...,t} et′ .

From Assumption 1-1), we have limt→∞ ρ1eta
(1−ρt)t−nt

ρt
= 0 and ρnt+1

ρt
< ∞. Then it follows

from the above analysis that

lim
t→∞

∥∥∥f̂ tΓ − f tΓ

∥∥∥ = lim
tb→∞

O (etb)
a
= lim

tb→∞
O
(∥∥∥řtb − ˆ̄r

tb
∥∥∥) b

= 0, (28)

where (28)-a holds because ∇r̄U is Lipschitz continuous and JtΓ is bounded w.p.1., and (28)-b

holds because limt→∞ =
∥∥∥ˆ̄rt − r̄t

∥∥∥ = 0 and limt→∞ ‖řt − r̄t‖ = 0. Together with (26), it follows

that (23) holds.

From Lemma 2, we can immediately have that f̄ tj (Γ,q) converges to f̂ (Γ,q) almost surely.

This completes the proof.

APPENDIX C

PROOF OF THEOREM 1

Denote φφφ =
[
ΓT,qT

]T as the composite variable and φ̄φφ =
[
Γ̄T, q̄T

]T as the optimal solution of

the surrogate problem (14), respectively. Then we simply define f (Γ,q) as f (φφφ) and f̄ t (Γ,q)

as f̄ t (φφφ), respectively. The proof of Theorem 1 can be split into three steps.

1. We first prove that lim inft→∞
∥∥φ̄φφt − φφφt∥∥ = 0 w.p.1.

Since f̄ t (φφφ) is strongly concave over φφφ, we have

∇T
φφφf̄

t
(
φφφt
)
dt ≥ η

∥∥dt∥∥2
+ f̄ t

(
φ̄φφt
)
− f̄ t

(
φφφt
)
≥ η

∥∥dt∥∥2 (29)

for some η > 0, where dt = φ̄φφt − φφφt. Moreover, the gradient ∇φφφf (φφφ) is Lipschitz continuous,

and thus there exists a constant L0 > 0 such that

f
(
φφφt+1

)
≥ f

(
φφφt
)

+ γt∇T
φφφf
(
φφφt
)
dt − L0 (γt)

2
∥∥dt∥∥2

= f
(
φφφt
)
− L0 (γt)

2
∥∥dt∥∥2

+ γt
(
∇T
φφφf
(
φφφt
)
−∇T

φφφf̄
t
(
φφφt
)

+∇T
φφφf̄

t
(
φφφt
))

dt

≥ f
(
φφφt
)

+ γtη
∥∥dt∥∥2 − o (γt) ,
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where the last inequality follows from equation (29) and limt→∞
∥∥∇φφφf (φφφt)−∇φφφf̄ t (φφφt)

∥∥ = 0,

which is a result of Lemma 1. Next, we show by contradiction that lim inft→∞
∥∥φ̄φφt − φφφt∥∥ = 0

w.p.1. Suppose lim inft→∞
∥∥φ̄φφt − φφφt∥∥ ≥ χ > 0 with a positive probability. Then we can find

a realization such that ‖dt‖ ≥ χ, ∀t. We focus on such a realization. By choosing a sufficient

large t0, then there exists a constant η̄ > 0, such that

f
(
φφφt+1

)
− f

(
φφφt
)
≥ γtη̄

∥∥dt∥∥2
,∀t ≥ t0. (30)

Then it follows from (30) that

f
(
φφφt
)
− f

(
φφφt0
)
≥ η̄χ2

t−1∑
j=t0

γj,

which, in view of
∑∞

j=t0
γj = ∞, contradicts the boundness of {f (φφφt)}. Therefore, it must be

lim inft→∞
∥∥φ̄φφt − φφφt∥∥ = 0 w.p.1.

2. Then we prove that lim supt→∞
∥∥φ̄φφt − φφφt∥∥ = 0 w.p.1.

We first prove a useful lemma.

Lemma 3. There exists a constant L > 0 such that∥∥∥φ̄φφt1 − φ̄φφt2∥∥∥ ≤ L
∥∥φφφt1 − φφφt2∥∥+ e (t1, t2) ,

where limt1,t2→∞ e (t1, t2) = 0.

From Lemma 2 and the Lipschitz continuity of f (φφφ), we have∣∣f̄ t1 (φφφ)− f̄ t2 (φφφ)
∣∣ ≤ C

∥∥φφφt1 − φφφt2∥∥+ e
′
(t1, t2) , (31)

where limt1,t2→∞ e
′
(t1, t2) = 0 and C > 0 is a constant. Obviously, the problem (14) is strictly

convex, when the objective function is changed by some amount e (φφφ), the optimal solution φ̄φφt

will be changed by the same order, i.e., the change is within the range ±O (|e (φφφ)|). Thus it

follows from (31) and the strong convexity of f̄ t (φφφ) that∥∥∥φ̄φφt1 − φ̄φφt2∥∥∥ ≤ C1C
∥∥φφφt1 − φφφt2∥∥+ C1e

′
(t1, t2) (32)

for some constant C1 > 0. Finally, Lemma 3 follows from (32) immediately.

Using Lemma 3 and the fact that lim inft→∞
∥∥φ̄φφt − φφφt∥∥ = 0 w.p.1., and following the same

analysis as that in [30], Proof of Theorem 1, it can be shown that lim supt→∞
∥∥φ̄φφt − φφφt∥∥ = 0

w.p.1. Therefore, we have

lim
t→∞

∥∥φ̄φφt − φφφt∥∥ = 0,w. p. 1 . (33)
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3. We are finally ready for the proof of Theorem 1.

According to Lemma 1 and equation (33), the limiting point {Γ∗,q∗} is the optimal solution

of the following convex problem almost surely:

max
Γ∈G,q∈Q

f̂ (Γ,q) (34)

Thus the limiting point {Γ∗,q∗} satisfies the KKT conditions of (34), which are also KKT

conditions of the original problem (10). This completes the proof.
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