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Abstract—Channel estimation is conceived for hybrid multiple-
input multiple-output (MIMO) communication systems. Both
mean square error minimization and mutual information maxi-
mization are used as our performance metrics and a pair of low-
complexity channel estimation schemes are proposed. In each
scheme, the training sequence and the analog matrices of the
transmitter and receiver are jointly optimized. We commence by
designing the optimal training sequences and analog matrices for
the first scheme. Upon relying on the resultant optimal structures,
the training optimization problems are substantially simplified
and the nonconvexity resulting from the analog matrices can
be overcome. In the second scheme, the channel estimation and
data transmission share the same analog matrices, which bene-
ficially reduces the overhead of optimizing the associated analog
matrices. Therefore, a composite channel matrix is estimated
instead of the true channel matrix. By exploiting the statistical
optimization framework advocated, the analog matrices can be
designed independently of the training sequence. Based on the
resultant analog matrices, the training sequence can then be
efficiently designed according to diverse channel statistics and
performance metrics. Finally, we conclude by quantifying the
performance benefits of the proposed estimation schemes.

Index Terms—Hybrid MIMO communications, analog matri-
ces, channel estimation, training optimization.

I. INTRODUCTION

Multiple antenna aided multiple-input multiple-output

(MIMO) techniques [1]–[4] are recognized as one of the

important pillars of next-generation wireless networks. In the

quest for increased degrees of freedom, the scale of MIMO

systems has been increasing as they have evolved. Massive

MIMO or large-scale MIMO schemes constitute an important

enabling technology, which have in fact already been widely

used in certain communication applications. For example,

on satellites the number of antennas may be as high as

300. Furthermore, ships and other large-bodied vehicles have

also used large-scale antenna arrays. However, the potential
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performance gains are critically dependent on the availability

and accuracy or the absence of channel state information

(CSI). Therefore, channel estimation becomes a critical part

of various MIMO communication systems [5]–[12].

Generally, a classic channel estimation task consists of

two components, training optimization and channel estimator

design. There is a rich body of literature on channel estimation.

When the channel statistics are unknown, the least squares

(LS) channel estimator is preferred and random training

sequences having a white spectrum constitute the optimal

choice. By contrast, when the channel statistics are known, the

maximum likelihood (ML) or the linear minimum mean square

error (LMMSE) channel estimator [12]–[14] are the natural

choices. However, in this case the training optimization is more

complicated. Moreover, when specific constraints have to be

taken into account, such as the per-antenna power constraints,

the training optimization becomes even more complex [15].

The channel estimation problem of massive MIMO systems

has been extensively studied in the literature [11], [16]–[20].

The key behind these contributions is how to exploit the

specific structure of massive MIMO channels for reducing the

escalating overhead for channel estimation [11], [20]–[25]. For

millimeter-wave (mmWave) based massive MIMO systems,

the sparsity of the mmWave channel impulse responses (CIRs)

has been exploited in [11], [22]. By reconsidering channel esti-

mation with special emphasis on the angular domain [21]–[23],

the resultant channel estimation algorithms become capable

of improving the estimation accuracy, despite their reduced

overhead.

For large-scale MIMO systems the popular family of hybrid

structure constitutes an economic way of striking a perfor-

mance vs. complexity trade-off [26], [27].Explicitly, a hybrid

MIMO structure is composed of an analog part and a digital

part [26]. In the analog part, only signal phases are adjusted

by analogue phase-shifters. Although these hybrid structures

strike a compelling performance vs. complexity trade-off for

large-scale MIMOs, they impose new challenges. In particular,

because of the nonconvex nature of optimizing the analog part

[26], the holistic optimization of hybrid MIMO systems is

more challenging than that of their fully digital counterparts

[27]. Since the knowledge of the CIR is required, channel

estimation is an essential prerequisite for hybrid transceiver

designs [27]. It is worth noting that channel estimation must

be performed in the digital domain. Explicitly, channel esti-

mation conceived for hybrid MIMO channels is much more

challenging than for its fully digital counterpart.

Moreover, many hybrid MIMO communication systems

operate at microwave frequencies [28], [29], which are lower

than mmWave carriers. The challenge is that their CIRs

are typically not sparse. In this case we have to estimate
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large-scale MIMO channels, when conceiving hybrid MIMO

systems. This is more challenging than traditional channel

estimation owing to the constantmodulus constraints imposed

on the associated analog matrices. Hence the conventional

designs are unsuitable for striking an attractive performance

vs. complexity trade-off for large-scale hybrid MIMO systems.

Against this backdrop, we conceive efficient channel esti-

mation techniques for hybrid MIMO systems in which both

the transmitter and receiver are equipped with hybrid an-

tenna arrays. Given our specific power and constant modu-

lus constraints, the training sequences and analog matrices

are optimized based on the sum-mean square error (MSE)

minimization and mutual information maximization. The main

contributions of the proposed channel estimation schemes are

as follows:

• Compared to the existing channel estimation schemes

conceived for large-scale MIMO systems, the training

optimization framework proposed in this paper is not

limited to sparse mmWave or THz CIRs. Explicitly, it can

also be readily applied to micro-wave channels in a wide

range of application scenarios. In contrast to the fully

digital systems of [30], in the current paper we investigate

a hybrid MIMO system which consists of an analog and

a digital part. Hybrid structured antenna arrays strike an

attractive tradeoff between the system performance and

hardware cost. As for the analog parts, all the elements

of the analog matrix have the same constant modulus. In

other words, only the phase of each element in the analog

matrix is adjustable. Therefore, the training optimization

of the sum-MSE minimization and mutual information

maximization conceived for hybrid MIMO systems is

much more challenging than that of their counterparts

in fully digital MIMO systems.

• Explicitly, both sum MSE minimization and mutual in-

formation maximization are considered for training op-

timization. Our performance metrics highlight the trade-

offs, when estimating the different elements of the MIMO

channel matrix. Hence this treatise fills a gap, given

the paucity of mutual information maximization based

training optimization solutions for hybrid MIMO systems.

• In order to avoid high dimensional computations, a pair of

low-complexity channel estimation schemes are proposed

for hybrid MIMO systems. In the first scheme, the opti-

mal structures of training sequence and analog matrices

are derived, based on which the joint optimization prob-

lem can be substantially simplified. In the second scheme,

in order to reduce the overheads, in the channel estimation

and data transmission the same analog matrices are used

at both the transmitter and receiver. Then a composite

channel is estimated instead of the true channel matrix.

A statistical optimization framework is proposed, based

on which the analog matrices can be designed. Then the

training sequence can be efficiently optimized according

to the different statistical parameters of the channel.

The whole paper is organized as follows. Section II gives

the signal model for channel estimation in hybrid MIMO sys-

tems. In Section III, left-right channel estimation schemes are

investigated. Then a composite channel estimation is presented

in Section IV. The simulation results are given in Section V

to assess the performance of the proposed channel estimation

algorithms. Our conclusions are drawn in Section VI.

Notation: The matrix Z
1

2 is the Hermitian square root of

positive semidefinite Z. The identity matrix of appropriate

dimension is denoted by I , and ⊗ denotes Kronecker product.

The expressions Λ ց and Λ ր represent a rectangular or

square diagonal matrix with the diagonal elements in descend-

ing order and ascending order, respectively. In addition, ‖ · ‖F
is the matrix Frobenius norm. [Y ]:,N consists of the first N
columns of Y , [Y ][1:N1;1:N2] is the sub-matrix consisting of

the first N1 rows and the first N2 columns of Y . For further

clarification, some important math definitions in the following

derivations are summarized in Table I.

II. SIGNAL MODEL FOR CHANNEL ESTIMATION

In the system, the transmitter and the receiver are both

equipped with hybrid structured antenna arrays. At both the

transmitter and the receiver, the number of radio frequency

(RF) chains is smaller than that of antennas. Due to the hybrid

structure, it is impossible to estimate the channel matrix using

a constant analog matrix at the transmitter or receiver. To

clarify this fact, a brief discussion is first given.

Consider that a training sequence X1 is multiplied by an

analog matrix FA,1 before being transmitted to the destination.

At the destination, the received signal YF,1 is given by

YF,1 =HFA,1X1 +N1, (1)

where H is the channel matrix to be estimated and N1 is the

additive noise matrix at the destination. The channel matrix

satisfies the following Kronecker product structure [31]

H =Σ
1

2

HHWΨ
1

2

H, (2)

where each element of HW is an independently identically

distributed (i.i.d.) Gaussian variable with zero mean and unit

variate. The matrices ΣH and ΨH are the receive and transmit

correlation matrices of the MIMO channel, respectively. Since

channel estimation is performed in digital domain, the received

training signal is first multiplied by an analog matrix GA,1

before being processed by the fully digital channel estimator.

Therefore, for channel estimation, the received signal in the

digital domain is given by

YD,1 =GA,1HFA,1X1 +GA,1N1. (3)

Naturally, channel estimation aims to recover the desired chan-

nel matrix H from the received signal YD,1. Unfortunately,

as illustrated by Scheme 1 in Fig. 1, this task is impossible

based on (3). This is because for hybrid MIMO systems,

GA,1 is a fat matrix and FA,1 is a tall matrix. Thus based

on the previous signal model, no matter how long the column

of X1, the matrix FA,1X1 is usually a matrix that is rank

deficient, and thus it is impossible to estimate the channel

matrix accurately. It is worth noting that in some special cases,

there may exist some special structures that can be exploited

so that channel estimation based on (3) is achievable. For

example, for mmWave channels, the channel matrices exhibit
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TABLE I
THE LIST OF MATH NOTATIONS

Variable Definition

ΣH, ΨH The receive and transmit correlation matrices of the MIMO channel H .
ΣN, ΨN The receive and time-domain correlation matrices of the additive noise N .
X The training sequence to be optimized at the transmitter.
GA, FA The receive and transmit analog matrices.
GD,L, GD,R The left and right channel estimators in Section III.
UDFT, The DFT matrix.
α1, β1 The auxiliary variables in the channel estimation MSE matrix ΦMSE(FA,X).
P The maximum transmit power
GD The MMSE channel estimator in Section IV.
α2 The auxiliary variable in the composite channel estimation MSE matrix ΦMSE(FA,X,GA,GD).
vec(Y ) The vectorization operation which stacks the columns of Y to construct a bigger column vector.
Tr(Y ) The trace of Y .
E{·} The mathematical expectation.
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Fig. 1. Two potential approaches for channel estimation for hybrid MIMO systems.

sparsity structures, which means that the number of parameters

to estimate, i.e., the true dimension of the MIMO channel

matrix, is much smaller than the size of the channel matrix.

Then with aid of compressed sensing techniques, channel

estimation is achievable. However, this result does not hold for

the general channel matrix, e.g., macro-wave channels. In this

work, we focus on the channel estimation for a general large

dimensional channel matrix, where sparsity property does not

exist.

Thus to overcome the problem imposed by dimension

constraints, in the training transmission, the analog matrices

at both the transmitter and receiver should be adjusted. The

idea is similar to beam scan algorithms. Based on this idea

as shown by Scheme 2 in Fig. 1 for channel estimation, the

corresponding signal model is expressed by

YD =GAHFAX +GAN , (4)

where N is the corresponding noise matrix, and

GA =
[
GT

A,1 · · ·G
T
A,K

]T
,

FA =
[
FA,1 · · ·FA,K

]
,

X =
[
XT

1 · · ·XT
K

]T
. (5)

FA should be row full rank and GA should be column full

rank. The composite noise term N in (4) also satisfies the

following Kronecker product structure [35]

N =Σ
1

2

NNWΨ
1

2

N, (6)

where each element of NW is an i.i.d. Gaussian random

variable with zero mean and unit variance. It is worth high-

lighting that within the coherence time the channel matrix is

considered to be time-invariant. Based on (4), the estimation

of the channel matrix H becomes achievable.

The remaining task of is to recover H from YD. Following

the idea in traditional full digital MIMO channel estimation,

the signal model (4) may first be transferred into a vector form

vec(YD)=
((
XTFT

A

)
⊗GA

)
vec(H)+

(
I ⊗GA

)
vec(N).

(7)

In the full digital MIMO case without the analog matrices FA

and GA, this model is of course extensively used. In hybrid

MIMO, however, the existence of the analog matrices FA and

GA makes the channel estimation more challenging.

Moreover, when H is a very large matrix, the widely used

channel estimators, such as the LS and LMMSE estimators,
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suffer from prohibitively high complexity. To see why vector-

ization based channel estimation is not preferred in practical

implementations, we examinze its complexity. It is well-known

that the computation complexity of matrix inverse is on the

order of N3, denoted as O
(
N3
)
, where N is the matrix

dimension. Then for a channel matrix of dimension 128×128,

the complexity of the LS or LMMSE channel estimator is

O
(
(128× 128)3

)
, which is excessive at the time of writing.

Therefore, the key task of training optimization for hybrid

MIMO systems is how to design a low-complexity channel

estimator under various physical constraints, such as power

constraints at the transmitter and the constant modulus con-

straints on the analog matrices, while maintaining excellent

estimation accuracy. This motivates our work.

Remark: We would like to point out that deep learning (DL)

algorithms can also be chosen for estimating the channel

matrix of the hybrid massive MIMO systems. This approach

is different from our signal processing based perspective. Gen-

erally speaking, DL algorithms view the estimation procedure

as a black box, while signal processing techniques usually aim

for revealing some physical insights. DL algorithms are more

suited to the problems having no signal models. This impedi-

ment may be circumvented at the cost of high computational

complexity and a large amount of training overhead.

III. LEFT-RIGHT CHANNEL ESTIMATION

Based on the signal model (4), in order to control the di-

mension of channel estimator, the following channel estimator

is proposed, in which the channel matrix is estimated as

Ĥ =GD,LYDGD,R, (8)

where GD,L and GD,R are the left and right channel estima-

tors, respectively. Different from the traditional vectorization

based channel estimator, here the high dimensional channel

estimator is replaced by two low-dimensional channel estima-

tors, and the corresponding channel estimation complexity is

significantly reduced. We now investigate in depth how to find

the left and right channel estimators in the both scenarios of

with and without channel statistical information.

A. Without Channel Statistics

We may recover H using the idea of ‘zero-forcing’, that is,

using the following GD,L and GD,R

GD,L =
(
GH

AGA

)−1
GH

A,

GD,R =XHFH
A

(
FAXXHFH

A

)−1
. (9)

Clearly, if the following two equalities hold

GH
AGA ∝ I, FAXXHFH

A ∝ I, (10)

then channel estimation is greatly simplified. By using the

white sequence, we have XXH ∝ I , and (10) becomes

FAF
H
A ∝ I. (11)

Therefore, we can design the analog matrices FA and GA

appropriately to achieve (11). Each element of GA and FA

has constant modulus. To satisfy these constraints, the most

natural choice is to construct GA and FA based on discrete

Fourier transform (DFT) matrix.

It can be seen that for large-scale MIMO channel estimation

without any channel statistic information, the traditional white

sequence is still an effective candidate. It is worth highlighting

that this ‘zero-forcing’ channel estimation algorithm suffers

from a serious performance loss in low signal-to-noise ratio

(SNR) regime. Specifically, the noise power may be signifi-

cantly enhanced by this channel estimator [36].

B. LMMSE Channel Estimator

Given the channel statistics, specifically, the second order

statistics of the channel matrix and the noise covariance

matrix, the LMMSE estimator generally offers much better

estimation accuracy than the previous ‘zero-forcing’ design.

Hence we focus on the LMMSE channel estimation for hybrid

MIMO systems with the aid of channel statistics. It is worth

emphasizing that because of GA, it is challenging to directly

estimate H in a linear form. In our work, we adopt two steps

to realize channel estimation. At the first step, GD,LGAH is

estimated instead of H . The corresponding estimation MSE

matrix is derived to be (12) as shown at the top of the next

page.

In the signal model, the training sequence is on the right-

hand side of the channel matrix and hence the right digital

channel estimator will play a more important role in the

channel estimation. Note that there is no constraint imposed

on the digital estimator GD,R at the destination. The sum MSE

Tr (ΦMSE(FA,X,GA,GD,L,GD,R)) is a quadratic function

with respect to GD,R Then based on complex matrix deriva-

tives the optimal GD,R can be derived in closed-form as

G
opt
D,R =

(
Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
XHFH

AΨHFAX

+ΨNTr
(
GH

AG
H
D,LGD,LGAΣN

))−1

XHFH
AΨH

× Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
. (13)

Based on the properties of positive semi-definite matrices, the

following matrix inequality holds for the right digital channel

estimator [36]

ΦMSE

(
FA,X,GA,GD,L,G

opt
D,R

)

� ΦMSE

(
FA,X,GA,GD,L,GD,R

)
. (14)

In other words, the optimal right digital channel estimator

minimizes the channel estimation MSE matrix in the positive

semi-definite matrix domain.

Substituting G
opt
D,R into (12), the channel estimation MSE

matrix (12) is reformulated as (15) (shown at the top of

the next page). It is worth highlighting that from (15), the

term Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
can be interpreted as a scaling

factor which does not affect the system performance. If the

scaling factor is taken into account in optimization, there will

be a trivial conclusion that the optimal GD,L should be an

all-zero matrix as in this case the channel estimation MSE

will be zero. This is definitely wrong because when GD,L is

zero, the task for GD,R becomes to estimate a channel matrix

with zero covariance matrix. In this case, the corresponding
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ΦMSE(FA,X,GA,GD,L,GD,R)

=E
{
(GD,LYDGD,R −GD,LGAH)H(GD,LYDGD,R −GD,LGAH)

}

=(FAXGD,R − I)HΨHTr
(
ΣHG

H
AG

H
D,LGD,LGA

)
(FAXGD,R − I) +GH

D,RΨNGD,RTr
(
GH

AG
H
D,LGD,LGAΣN

)
. (12)

ΦMSE(FA,X,GA,GD,L,G
opt
D,R)

=ΨHTr
(
ΣHG

H
AG

H
D,LGD,LGA

)
−ΨHTr

(
ΣHG

H
AG

H
D,LGD,LGA

)
FAX

×
(
Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
XHFH

AΨHFAX +ΨNTr
(
GH

AG
H
D,LGD,LGAΣN

))−1
XHFH

AΨHTr
(
ΣHG

H
AG

H
D,LGD,LGA

)

=Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
(
Ψ

−1
H +

Tr
(
ΣHG

H
AG

H
D,LGD,LGA)FAXΨ

−1
N XHFH

A

Tr
(
ΣNG

H
AG

H
D,LGD,LGA

)
)−1

. (15)

MSE is zero but this result is meaningless. If we focus on the

normalized MSE, this term will be removed directly.

The optimal GA and GD,L should minimize the following

cost function to ensure that the estimation is accurate

min E
{
‖GD,LGAH −H‖2F

}
, (16)

based on which the optimal GD,L is given by

G
opt
D,L =

(
GH

AGA

)−1
GH

A. (17)

In order to guarantee the channel estimation is feasible the

analog estimator GA should be column full rank. The simplest

method is to choose corresponding columns of the DFT

matrix UDFE to construct GA. Therefore, the optimal analog

equalizer at the destination is

GA =[UDFT]:,N , (18)

where N is the number of data streams. In addition, GD,L

equals to the left inverse of GA, i.e.,

GD,L =[UDFT]
H
:,N . (19)

Based on the results given above, a simplified channel

estimation MSE matrix is defined as

ΦMSE(FA,X,GA,G
opt
D,L,G

opt
D,R)

=β1

(
Ψ

−1
H +α1FAXΨ

−1
N XHFH

A

)−1
, ΦMSE(FA,X), (20)

where β1 and α1 are defined respectively as

β1 =Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)
= Tr

(
ΣH

)
,

α1 =
Tr
(
ΣHG

H
AG

H
D,LGD,LGA

)

Tr
(
ΣNG

H
AG

H
D,LGD,LGA

) =
Tr
(
ΣH

)

Tr
(
ΣN

) . (21)

Generally speaking, the training optimization for hybrid

MIMO systems aims at optimizing a matrix monotonic func-

tion with respect to ΦMSE(FA,X) [31], formulated as

min
FA,X

f
(
ΦMSE(FA,X)

)

s.t. Tr
(
FAXXHFH

A

)
≤ P, FA ∈ F , (22)

where f(·) is a matrix monotonically increasing function with

respect to ΦMSE(FA,X), and P is the maximum transmit

power constraint for the training design, while the set F
denotes the analog matrix set with proper dimensions, in which

each element of a analog matrix has constant modulus.

In the following, we investigate in depth the two training

optimizations with specific performance metrics, namely, the

MSE minimization and mutual information maximization.

C. Sum MSE Minimization

First, we focus on sum MSE minimization and the corre-

sponding objective is the sum of the MSE of each channel

matrix element. In other words, it is the sum of the diagonal

elements of the MSE matrix. For the sum MSE minimization,

the training optimization problem is equivalent to

min
FA,X

Tr

((
Ψ

−1
H + α1FAXΨ

−1
N XHFH

A

)−1
)

s.t. Tr
(
FAXXHFH

A

)
≤ P, FA ∈ F , (23)

where FA is the analog matrix at the source, which has row

full rank. In other words, FAF
H
A is full rank.

Defining the following matrix variable

X̃ =
(
FAF

H
A

) 1

2X, (24)

the optimization problem (23) is equivalent to the optimization

problem (25) as shown at the top of the next page. Given the

optimal solution of FA and based on the following singular

value decomposition (SVD)

FA =UFA
ΛFA

V H
FA

with ΛFA
ց, (26)

the optimization problem (25) can be transferred into the

optimization problem (27) as shown at the top of the next

page. Where NR is the number of rows in FA.

In order to derive the optimal solution, we first quote the

following inequality [37]

Tr(A+B)−1 ≥
∑

i

1/(λA,i + λB,N−i+1), (28)

where λZ,i denotes the ith largest eigenvalue of Z. The

equality holds when the unitary matrices of the eigenvalue
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min
FA,X

Tr

((
Ψ

−1
H + α1FA

(
FAF

H
A

)− 1

2 X̃Ψ
−1
N X̃H

(
FAF

H
A

)− 1

2FH
A

)−1
)

s.t. Tr
(
FA

(
FAF

H
A

)− 1

2 X̃X̃H
(
FAF

H
A

)− 1

2FH
A

)
≤ P, FA ∈ F .

(25)

min
FA,X

Tr

((
Ψ

−1
H + α1UFA

[
V H
FA

X̃Ψ
−1
N X̃HVFA

]
[1:NR;1:NR]

UH
FA

)−1
)

s.t. Tr

([
V H
FA

X̃X̃HVFA

]
[1:NR;1:NR]

)
≤ P, FA ∈ F ,

(27)

decompositions (EVDs) of A and B satisfy the following

relationship

UA =ŪB, (29)

where the unitary matrices UA and ŪB are defined based on

the following EVDs

A = UAΛAUH
A with ΛA ց,

B = ŪBΛ̄BŪH
B with Λ̄B ր . (30)

From (28) and (27), the following conclusion can be obtained

using the matrix-monotonic optimization framework [31].

Conclusion 1 The optimal X̃ for the optimization problem

(25) satisfies the following optimal structure

X̃ =VFA
diag

{
UH

FA
UΨH

ΛX ,0
}
ŪH

ΨN
, (31)

where ΛX is a diagonal matrix, while the unitary matrices

UΨH
and ŪΨN

are defined based on the following EVDs

ΨH =UΨH
ΛΨH

UH
ΨH

with ΛΨH
ց,

ΨN =ŪΨN
Λ̄ΨN

ŪH
ΨN

with Λ̄ΨN
ր . (32)

Using (31) in (25), FA can be removed, i.e., it does not

affect the optimization, and we have the following conclusion.

Conclusion 2 For the optimization problem (25), the optimal

analog matrix FA is an arbitrary row full rank matrix with

constant modulus elements.

Based on the optimal structure given in Conclusion 1, the

original sum-MSE minimization problem can be simplified

into the following optimization problem

min
{f2

i
}

∑

i

1

1
λΨH,i

+
α1f2

i

λΨN,i

s.t.
∑

i

f2
i ≤ P, (33)

where fi = [ΛX ]i,i, λΨH,i = [ΛΨH
]i,i, and λΨN,i =

[Λ̄ΨN
]i,i. The optimal solution of (33) is a standard water-

filling solution given by [38]

f2
i =

(√
λΨN,i

α1µ
−

λΨN,i

α1λΨH,i

)+

, (34)

where µ is the Lagrange multiplier for the power constraint

in (33).

D. Mutual Information Maximization

The mutual information between the true channel and the

estimated channel is another important performance metric for

training optimization [14]. Specifically, the mutual information

maximization based training optimization for hybrid MIMO

communications is equivalent to

max
FA,X

log
∣∣Ψ−1

H + α1FAXΨ
−1
N XHFH

A

∣∣

s.t. Tr(FAXXHFH
A ) ≤ P, FA ∈ F . (35)

Similarly, by defining the following auxiliary variable

X̃ =
(
FAF

H
A

) 1

2X, (36)

the training optimization (35) is equivalent to (37) as shown

at the top of the next page. Similar to the MSE minimization,

the optimization (37) can be transferred to (38) as shown at

the top of the next page. Further consider the inequality [37]

log |A+B| ≤
∑

i
log(λA,i + λB,N−i+1). (39)

The equality holds when the unitary matrices UA and ŪB ,

defined in (30), satisfy UA = ŪB . Based on (38) and (39),

we have the following two conclusions using the matrix-

monotonic optimization framework [31].

Conclusion 3 The optimal X̃ of the problem (37) satisfies the

following structure

X̃ =VFA
diag

{
UH

FA
UΨH

ΛX ,0
}
UH

ΨN
. (40)

Conclusion 4 For the optimization problem (37), the optimal

analog matrix FA is an arbitrary row full rank matrix with

constant modulus elements.

Based on Conclusions 1, 2, 3 and 4, it can be stated that

for our training optimization conceived for the sum-MSE and

for the mutual information metrics, the analog matrices and

training sequences have the same optimal structure. However

it will be shown later in this section that for the sum-MSE

and for the mutual information metrics, the optimal diagonal

matrices in Conclusion 1 and 3 are different.
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max
FA,X

log
∣∣∣Ψ−1

H + α1FA

(
FAF

H
A

)− 1

2 X̃Ψ
−1
N X̃H

(
FAF

H
A

)− 1

2FH
A

∣∣∣

s.t. Tr
(
FA

(
FAF

H
A

)− 1

2 X̃X̃H
(
FAF

H
A

)− 1

2FH
A

)
≤ P, FA ∈ F .

(37)

max
FA,X

log

∣∣∣∣Ψ
−1
H + α1UFA

[
V H
FA

X̃Ψ
−1
N X̃HVFA

]
1:NR,1:NR

UH
FA

∣∣∣∣

s.t. Tr

([
V H
FA

X̃X̃HVFA

]
1:NR,1:NR

)
≤ P, FA ∈ F .

(38)

max
GA,FA,FD

E

{
log
∣∣∣FH

DFH
AHHGH

A

(
GAΣNG

H
A

)−1
GAHFAFD + I

∣∣∣
}

s.t. Tr
(
FAFDF

H
DFH

A ) ≤ PT.
(44)

Exploiting the optimal structure given in Conclusion 3, the

mutual information maximization problem is transferred into

the following optimization problem

max
{f2

i
}

∑

i

log

(
1

λΨH,i

+
α1f

2
i

λΨN,i

)

s.t.
∑

i

f2
i ≤ P. (41)

The optimal water-filling solution of (41) is given by [38]

f2
i =

(
1

µ
−

λΨN,i

α1λΨH,i

)+

. (42)

IV. COMPOSITE CHANNEL ESTIMATION

The idea of composite channel estimation is to estimate

GAHFA rather than H . The advantage is that only a much

smaller matrix is to be estimated. For this to work, however,

the analog matrices used in channel estimation and data

transmission must be the same. Generally, the analog matrices

may be different in channel estimation and data transmission.

Sometimes, however, the analog matrices are designed based

on channel statistics instead of instantaneous CSI [32]–[34].

Therefore, the analog matrices used in data transmission are

also available in channel estimation. Consequently, in these

cases, composite channel estimation is applicable, and the

premise of this kind of channel estimation is how to choose

the analog matrices GA and FA.

A. Analog Matrix Optimization

In data transmission phase, the signal model is

ỹ =GAHFAFDx+GAn, (43)

based on which the optimization problem of average capacity

maximization is given in (44), where PT is the maximum

transmit power in data transmission. It is worth highlighting

that different from the channel estimation procedure, in data

transmission, FA is column full rank and GA is row full rank.

Based on (2) and defining

F̃D =
(
FH
A FA

) 1

2FD, (45)

the average capacity maximization (44) can be rewritten as

(46).

As proved in Appendix , the optimal GA is the optimal

solution of the following optimization problem

max
GA

λ
(
Σ

1

2

HG
H
A

(
GAΣNG

H
A

)−1
GAΣ

1

2

H

)
, (47)

where λ(Z) =
[
λZ,1 · · ·λZ,N

]T
, which is equivalent to the

following optimization problem

max
GA

λ
((
GAΣNG

H
A

)−1/2
GAΣHG

H
A

(
GAΣNG

H
A

)−1/2
)
.

(48)

Moreover, the optimization problem (48) can further be

rewritten as (49) at the top of the next page. It is

worth noting that the nonzero singular values of the ma-

trix term Σ
1

2

NG
H
A

(
GAΣNG

H
A

)−1/2
are all ones. Then, based

on the SVD it may be concluded that in (51) the term

Σ
1

2

NG
H
A

(
GAΣNG

H
A

)−1/2
aims for selecting the first N maxi-

mum eigenvalues of the inner matrix term Σ
− 1

2

N ΣHΣ
− 1

2

N . The

solution of (48) is computed by solving the problem

min
Λ,Q,GA

∥∥[UNHN]:,Nr
ΛQ−Σ

1

2

NG
H
A

∥∥2
F

s.t. QQH = I, GA ∈ F , (50)

which can be transferred into

min
Λ,Q,GA

∥∥Σ− 1

2

N [UNHN]:,Nr
ΛQ−GH

A

∥∥2
F

s.t. QQH = I, GA ∈ F , (51)

where the unitary matrix UNHN is defined in the EVD:

Σ
− 1

2

N ΣHΣ
− 1

2

N =UNHNΛNHNU
H
NHN. (52)

The problem (51) can be solved by alternatively optimizing

Λ, Q and GA. When Q and GA are fixed, the cost function

in (51) is quadratic in Λ, and the optimal Λ is derived in

closed-form by setting the derivative of the cost function to

zero. When Q and Λ are fixed, the optimal GA is given by

[
GH

A

]
i,j

=e
 arg

([
Σ

−

1

2

N
[UNHN]:,NrΛQ

]
i,j

)

. (53)

When GA and Λ are fixed, the optimal unitary matrix Q is

Q =UV H, (54)

with V and U defined by the following SVD

GAΣ
− 1

2

N [UNHN]:,Nr
Λ =V Λ3U

H with Λ3 ց . (55)
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max
GA,FA,F̃D

E{log |F̃H
D

(
FH
A FA

)− 1

2FH
AΨ

1

2

HH
H
WΣ

1

2

HG
H
A

(
GAΣNG

H
A

)−1
GAΣ

1

2

HHWΨ
1

2

HFA

(
FH
A FA

)− 1

2 F̃D + I|}

s.t. Tr
(
F̃DF̃

H
D

)
≤ PT. (46)

max
GA

λ
((
GAΣNG

H
A

)−1/2
GAΣ

1

2

NΣ
− 1

2

N ΣHΣ
− 1

2

N Σ
1

2

NG
H
A

(
GAΣNG

H
A

)−1/2
)
. (49)

As proved in Appendix , the analog matrix FA of (46) is

the solution of the following optimization problem

max
FA

λ
((

FH
A FA

)− 1

2FH
AΨHFA

(
FH
A FA

)− 1

2

)
. (56)

The optimal FA can be computed by solving the following

optimization problem

min
Λ,Q,FA

∥∥[UΨH
]:,Nr

ΛQ− FA

∥∥2
F

s.t. QQH = I, FA ∈ F , (57)

where UΨH
is defined in the EVD in (32). Similarly, an

iterative optimization can be used to solve the optimization

problem (57).

Since the objective function in (57) is quadratic in Λ, the

optimal Λ is readily derived in closed-form when Q and FA

are fixed. When Q and Λ are fixed, the optimal FA is

[FA]i,j =e
 arg

([
[UΨH

]:,NrΛQ

]
i,j

)

. (58)

When FA and Λ are fixed, the optimal unitary matrix Q is

Q = UV H, with V and U defined in the following SVD

FH
A

[
UΨH

]
:,Nt

Λ =V Λ4U
H with Λ4 ց . (59)

B. Sum MSE Minimization Based Training Optimization

Given the known analog matrices GA and FA, the signal

model in channel estimation is given by

Ỹ =GAHFAX +GAN , (60)

where GA and FA are both full rank squared matrices.

Based on (60), we estimate the composite channel matrix

H = GAHFA, instead of H , as

Ĥ =Ỹ GD, (61)

with GD as the channel estimator. It is worth recapping that for

this scheme to work, the analog matrices in channel estimation

must be the same as in data transmission. The corresponding

channel estimation MSE matrix is given by

ΦMSE(FA,X,GA,GD)

=E
{(

Ỹ GD−GAHFA

)H(
Ỹ GD−GAHFA

)}

=GAΣHG
H
ATr

(
FA(XGD−I)(XGD−I)HFH

AΨH

)

+GAΣNG
H
ATr

(
GDG

H
DΨN

)
, (62)

based on which the sum MSE can be expressed as

Tr
(
ΦMSE(FA,X,GA,GD)

)

=Tr
(
GAΣHG

H
A

)
Tr
(
FA(XGD−I)(XGD−I)HFH

AΨH

)

+Tr
(
GAΣNG

H
A

)
Tr
(
GDG

H
DΨN

)
. (63)

The term Tr
(
ΦMSE(FA,X,GA,GD)

)
is a quadratic function

for GD. Thus the optimal GD satisfies the following equality

Tr
(
GAΣHG

H
A

)
XHFH

AΨHFAXGD+Tr
(
GAΣNG

H
A

)
ΨNGD

= Tr
(
GAΣHG

H
A

)
XHFH

AΨHFA, (64)

and it can be derived as

GD =
(
Tr
(
GAΣHG

H
A

)
XHFH

AΨHFAX

+Tr
(
GAΣNG

H
A

)
ΨN

)−1

Tr
(
GAΣHG

H
A

)
XHFH

AΨHFA.

(65)

With the computed analog matrices GA and FA, in the

following we will investigate the corresponding training op-

timizations for different performance metrics and different

available channel statistics.

1) General Case of ΨN 6∝ I: When GD is fixed, the sum

MSE minimization based training optimization becomes

min
X

Tr
(
FA(XGD − I)(XGD − I)HFH

AΨH

)

s.t. Tr
(
FAXXHFH

A

)
≤ P. (66)

The corresponding Lagrange function is given by

L(X, µ) =Tr
(
FA(XGD − I)(XGD − I)HFH

AΨH

)

+ µ
(
Tr
(
FAXXHFH

A

)
− P

)
, (67)

based on which the corresponding Karush-Kuhn-Tucker

(KKT) conditions are given by [38]





FH
AΨHFAXGDG

H
D + µFH

A FAX = FH
AΨHFAG

H
D,

µ
(
Tr
(
FAXXHFH

A

)
− P

)
= 0,

µ ≥ 0, Tr
(
FAXXHFH

A

)
≤ P.

(68)

Based on the KKT conditions, the optimal training sequence

X satisfies the following equality

vec(X) =
((

GDG
H
D

)T
⊗ FH

AΨHFA + µI ⊗ FH
A FA

)−1

× vec
(
FH
AΨHFAG

H
D

)
. (69)

As the optimization problem (66) is convex for X , the KKT

conditions (68) are the necessary and sufficient conditions for

the optimal solutions. Then µ can be computed using one

dimension search, e.g., bisection search, to guarantee that the

KKT conditions hold [38].
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min
FA,X̃

Tr

(((
FH
AΨHFA

)−1
+ α2

(
FH
A FA

)− 1

2 X̃X̃H
(
FH
A FA

)− 1

2

)−1
)

s.t. Tr
(
X̃X̃H

)
≤ P. (73)

min
M ,Q

Tr(M)

s.t. M �

((
FH
AΨHFA

)−1
+ α2

(
FH
A FA

)− 1

2Q
(
FH
A FA

)− 1

2

)−1

M � 0, Q � 0, Tr(Q) ≤ P.

(76)

2) Special Case of ΨN = αNI: Substituting GD of (65)

into (63) yields

Tr
(
ΦMSE(FA,X,GA,GD)

)

=Tr



((

FH
AΨHFA

)−1

Tr
(
GH

AΣHGA

) + XΨ
−1
N XH

Tr
(
GH

AΣNGA

)
)−1


, (70)

where for composite channel estimation, both GA and FA are

full rank squared matrices. Similar to the previous discussion,

based on the MSE matrix formulation, the optimization for

the hybrid MIMO system is given by

min
FA,X

Tr



((

FH
AΨHFA

)−1

Tr
(
GH

AΣHGA

) + XΨ
−1
N XH

Tr
(
GH

AΣNGA

)
)−1




s.t. Tr
(
FAXXHFH

A

)
≤ P. (71)

Similarly, by defining the following auxiliary variable X̃

X̃ =
(
FH
A FA

) 1

2X, (72)

the optimization problem (71) is rewritten as (73), where

α2 =Tr(GH
AΣHGA)/[αNTr(G

H
AΣNGA)]. (74)

To transfer this optimization problem into a convex one that

can be efficiently solved, we introduce a new variable Q as

Q =X̃X̃H. (75)

Since X̃ is a fat matrix, to guarantee that the channel matrix

can be estimated, Q is a full rank matrix. Thus, in the

optimization we do not need to consider the rank constraint

on Q. With the definition of Q, (73) is equivalent to (76)

[38], where M is a positive semidefinite matrix. Then using

Schur-complement, the first constraint can be replaced by the

following linear matrix inequality equivalently,

[
M I

I
(
FH
AΨHFA

)−1
+α2

(
FH
A FA

)− 1

2Q
(
FH
A FA

)− 1

2

]
� 0.

(77)

As a result, the optimization (73) can be transferred into the

standard semidefinite programming (SDP) problem given as

(78), which can be solved efficiently using for example the

CVX software toolbox [40].

C. Mutual Information Maximization Based Training Opti-

mization

For the composite channel estimation, the training optimiza-

tion problem based on mutual information maximization can

be formulated in the following form

max
X,GD

− log |ΦMSE(FA,X,GA,GD)|

s.t. Tr
(
FAXXHFH

A

)
≤ P. (79)

Substituting (65) into (62) and using the resultant (62) in (79),

we have the following equivalent optimization problem

max
X

log
∣∣∣
(
FH
AΨHFA

)−1
+ α2XXH

∣∣∣
s.t. Tr

(
FAXXHFH

A

)
≤ P. (80)

In contrast to the sum MSE minimization, the mutual informa-

tion maximization in nature minimizes the geometric mean of

the diagonal elements of the channel estimation MSE matrix.

Similarly after defining X̃ =
(
FH
A FA

) 1

2X , we have

max
X̃

log
∣∣∣
(
FH
AΨHFA

)−1
+α2

(
FH
A FA

)− 1

2 X̃X̃H
(
FH
A FA

)− 1

2

∣∣∣

s.t. Tr
(
X̃X̃H

)
≤ P, (81)

which is equivalent to the following optimization problem

max
X̃

log
∣∣∣
(
FH
A FA

) 1

2

(
FH
AΨHFA

)−1(
FH
A FA

) 1

2 +α2X̃X̃H
∣∣∣

s.t. Tr
(
X̃X̃H

)
≤ P. (82)

It is obvious that the optimization (82) has closed-form opti-

mal solutions. Specifically, based on the inequality (39), the

optimal X̃ satisfies

X̃ =QFΛX̃
UH

Arb, (83)

where Λ
X̃

is a diagonal matrix, and UArb is an arbitrary

unitary matrix with proper dimension, while the unitary matrix

QF is defined based on the following EVD

(
FH
A FA

) 1

2

(
FH
AΨHFA

)−1(
FH
A FA

) 1

2 = QFΛFΨFQ
H
F

with ΛFΨF ց . (84)

Based on the optimal structure (83), the original optimization

problem is simplified into the following one

max
{x2

i
}

∑

i

log(λi + α2x
2
i )

s.t.
∑

i

x2
i ≤ P. (85)
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min
M ,Q

Tr(M)

s.t.

[
M I

I
(
FH
AΨHFA

)−1
+ α2

(
FH
A FA

)− 1

2Q
(
FH
A FA

)− 1

2

]
� 0, Q � 0.

(78)

whose optimal solution is the water-filling solution [38]

x2
i =(1/µ− λi/α2)

+
(86)

where λi = [ΛFΨF ]i,i.

D. Complexity Analysis

Firstly, it may be readily observed that both benchmarks

have the same complexity order as the proposed LS estimator

of Section III-A, since the same DFT based training sequence

is adopted, which is dominated by the matrix inversion opera-

tion having a complexity order of O(N3
t + N3

r ), where Nt

and Nr denote the numbers of antennas at the transmitter

and the receiver, respectively. However, in practice, both

benchmarks have more complex signal processing operations

than the LS estimator, since they need either partial or com-

plete channel statistics for channel estimation. Additionally,

considering that both the matrix inversion and eigenvalue

decomposition (EVD) operations are involved in deriving the

optimal training sequence for the proposed MMSE estimator

of Section III-B, the complexity order is also O(N3
t + N3

r ),
whilst achieving a better MSE performance than the proposed

LS estimator. In Section IV, where the composite channel esti-

mation having drastically reduced dimensions of NRF ×NRF

(NRF ≪ min(Nt, Nr)) is studied, the complexity order of

the proposed MMSE-ITE estimator detailed in Section IV-B1

is O[I(NRFL)
3], where NRF and L denote the number of RF

chains and the training sequence length, respectively, while I
represents the number of iterations required for solving the

problem (66). Moreover, the proposed MMSE estimator of

Section IV-B2 is obtained by solving the SDP problem (78),

whose complexity order is O(N3.5
t ) log(1/ǫ) with ǫ being the

precision factor [A4]. Note that the above complexity analysis

of all the proposed channel estimators is also applicable to the

associated mutual information maximization counterparts.

V. SIMULATION RESULTS

In this section, without loss of generality the widely used

Raleigh fading channel model is adopted. We numerically

evaluate the normalized MSE with respect to the effective

channel statistics Tr(RH) and the mutual information (MI)

performance of the LS estimator in Section III-A, the MMSE,

i.e., LMMSE, estimator in Section III-B and the MMSE,

i.e., LMMSE, estimator in Section IV, respectively, under

a wide range of SNRs, antenna setups, the number of RF

chains, and different channel correlations. Note that the chan-

nel covariance matrix RH is different for different channel

estimators. Specifically, for the LS estimator of Section III-A,

RH=E
{
HHH

}
=Tr(ΨH)ΣH. For the MMSE estimator of

Section III-B, RH=E
{
GAHHHGH

A

}
=Tr(ΨH)GAΣHG

H
A,

while for the MMSE estimator of Section IV, RH =
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Fig. 2. Normalized MSE performance of the proposed LS and benchmark SLS
estimators as functions of SNR under different antenna setups of Nt×Nr=
16×16, 32×16 and 64×16.

E
{
GAHFAF

H
AHHGH

A

}
=Tr

(
FH
AΨHFA

)
GAΣHG

H
A. More-

over, the scaled LS (SLS) estimator [14] and the MMSE esti-

mator with orthogonal probing based on DFT (MMSE-DFT)

[13], [14] are adopted as two comparisons. Note that except the

LS estimator, all the other estimators require the second-order

statistics of the channel and noise at the receiver. Furthermore,

for the optimal training design, the eigenspace of the channel

and noise second-order statistics is assumed to be known at

the transmitter. Unfortunately, these two requirements impose

large computational cost and high feedback overhead.

Unless otherwise stated, the numbers of transmit and receive

antennas are set to Nt=32 and Nr=16, respectively, and the

number of RF chains at both the transmitter and receiver is

NRF =4. Moreover, the training length is set to L=Nt=32
for both the LS estimator of Section III-A and the MMSE

estimator of Section III-B, and L=NRF =4 for the MMSE

estimator of Section IV, respectively. The received noise power

is assumed to be unity and hence the training SNR is defined

as SNR=P . We also utilize the exponential model to construct

the correlation matrices of the channel and noise as follows



[
ΣH

]
n1,m1

= |ζt|
|n1−m1|,

[
ΣN]n1,m1

= |ζr|
|n1−m1|,[

ΨH

]
n2,m2

= |ǫt|
|n2−m2|,

[
ΨN]n2,m2

= |ǫr|
|n2−m2|,

|ζt| ≤ 1, |ζr| ≤ 1, |ǫt| ≤ 1, |ǫr| ≤ 1,

(87)

where ζt, ζr, ǫt and ǫr are the correlation coefficients. Unless

otherwise stated, we set ζt = ǫt = 0.5 and ζr = ǫr = 0.4.

A. Normalized MSE Performance

Fig. 2 shows the normalized MSE performance of the LS

and SLS estimators as functions of the SNR, where three

different antenna setups of Nt×Nr=16×16, 32×16 and 64×16
are considered. As expected, the normalized MSE performance
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Fig. 3. Normalized MSE performance of the proposed LS, and MMSE of
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different antenna setups of Nt×Nr=16×16 and 32×16.
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Fig. 4. Normalized MSE performance of the proposed MMSE of Section III-B
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channel correlation ǫt=0.3, and (b) strong channel correlation ǫt = 0.8.

of the both estimators improve as the SNR increases. In

addition, the SLS estimator with the aid of the channel and

noise second-order statistics naturally performs better than the

LS estimator, especially at low-SNR region. However, this

performance gain is realized at the expense of significantly

higher computational cost.

Fig. 3 illustrates the normalized MSE performance of the

LS, SLS, and MMSE of Section III-B estimators as func-

tions of the SNR, under two different antenna setups of

Nt×Nr = 16×16 and 32×16. Observe that for both these

two antenna setups, the proposed MMSE estimator achieves

better MSE performance than the benchmark SLS, since it

directly minimize the channel estimation error by utilizing

more channel and noise second-order statistics compared to the

SLS estimator. The performance of the proposed LS estimator

is the worst, as it does not utilize any seconder-statistics of

the channel and noise and imposes the lowest complexity.

Fig. 4 depicts the normalized MSEs as functions of the SNR

achieved by the MMSE estimator with optimal training of Sec-

tion III-B, and the benchmark MMSE-DFT with orthogonal

training, under three different antenna setups together with

two different channel correlations of ǫt = 0.3 and ǫt = 0.8,

respectively. It can be seen from Fig. 4 (a) that with a weakly

correlated channel of ǫt=0.3, the performance of the MMSE-

DFT is almost identical to that of our optimal MMSE estima-
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Fig. 5. Normalized MSE performance of the proposed MMSE (of Sec-
tion IV-B1) and benchmark MMSE-DFT estimators as functions of SNR under
different antenna setups of Nt×Nr = 16×16 and 32×16 with (a) weak
channel correlation ǫt=0.3, and (b) strong channel correlation ǫt=0.8.
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Fig. 6. Normalized MSE performance of the proposed MMSE-ITE estimator
of Section IV-B1 and MMSE estimator of Section IV-B2 as well as benchmark
MMSE-DFT as functions of SNR under different antenna setups of Nt×Nr=
16×16 and 32×16 as well as different channel correlations of ǫt=0.3, ǫt=0.8
and ǫr=0.

tor. This is because the orthogonal training is nearly optimal

when the channel is asymptotically uncorrelated. However,

observe from Fig. 4 (b) that with ǫt=0.8, the performance gap

between the MMSE-DFT benchmark and our optimal MMSE

estimator is clearly visible, particularly at low SNR region.

Similarly to Fig. 4, Fig. 5 compares the normalized MSEs

of the proposed MMSE estimator of Section IV-B1 and the

MMSE-DFT benchmark by varying SNR, where two antenna

setups and two cases of channel correlation are considered.

Different from Section III-B, since the dimension of the

estimated composite channel GAHFA in Section IV does

not depend on the number of transmit antennas, increasing Nt

actually provides the gain in the received SNR. Consequently

with the increase of Nt, it can be seen from Fig. 5 that the

MSEs of the two estimators become better. In addition, the

performance gap between the two estimators for the strong

channel correlation is larger than that for the weak counterpart.

Fig. 6 further depicts the normalized MSEs achieved by

the iterative MMSE (MMSE-ITE) estimator of Section IV-B1,

MMSE estimator of Section IV-B2 and benchmark MMSE-
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4 5 6 7 8 9 10
N

RF

10
-2

10
-1

10
0

N
o

rm
al

iz
ed

 M
S

E

MMSE with N
t
xN

r
=16x16

MMSE-DFTwith N
t
xN

r
=16x16

MMSE with N
t
xN

r
=32x16

MMSE-DFT with N
t
xN

r
=32x16
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DFT under the same conditions of Fig. 6 but with ǫr =0. In

particular, we find that the proposed MMSE-ITE estimator of

Section IV-B1 can achieve nearly the same performance as the

optimal MMSE estimator of Section IV-B2 for both weak and

strong channel correlations. As expected, the two proposed

MMSE estimators outperform the MMSE-DFT benchmark,

especially for the case of Nt=16 and low SNR.

It is readily observed from Section III-B that the number

of RF chains NRF actually has no influence on the proposed

MMSE estimator, since the analog matrix GA is assumed to

be column full rank and thus the corresponding sum-MSE

minimization in (23) is irrelevant to NRF . However, we readily

find that by setting GD,R = INRF
, the proposed MMSE

estimator of Section III-B can also be applied to estimate the

effective channel GAH with much reduced channel dimension

NRF × Nt. In this context, we can reexpress α1 in (21) as

α1 = Tr
(
GAΣHG

H
A

)
/Tr
(
GAΣNG

H
A

)
. Based on this setting,

in Fig. 7, the normalized MSEs of the optimal training based

MMSE estimator derived in Section III-B and the benchmark

MMSE-DFT are compared by varying NRF , given SNR =
15 dB and different channel and noise correlations. It is easily

inferred from (21) that the influence of NRF on the MSE is
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Fig. 9. Achievable MI performance of the MMSE estimator of Section III-B
and benchmark MMSE-DFT versus the SNR, under different antenna setups
of Nt×Nr=16×16, 32×16 and 64×16 with (a) weak channel correlation
of ǫt=0.3, and (b) strong channel correlation of ǫt=0.8.
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Fig. 10. Achievable MI performance of the MMSE estimator of Section IV-B1
and benchmark MMSE-DFT versus the SNR, under different antenna setups
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and (b) strong channel correlation of ǫt=0.8.

mainly dominated by the parameter α1. We consider three

typical cases of α1 as: 1) ζt = ζr = 0, 2) ζt = 0 and

ζr=0.8 and 3) ζt=0.8 and ζr=0. In the first case, NRF has

no influence on the achievable MSEs of the two estimators,

due to the fixed α1 = 1 when varying NRF . In the second

case, the performances of the two estimators become better

for large NRF , since it can be inferred that the value of α1

increases for a large NRF . Conversely, in the third case, the

MSEs of the two estimators become poorer for large NRF , due

to the decreased value of α1 corresponding to a large NRF .

Naturally, the proposed MMSE estimator always outperforms

the MMSE-DFT benchmark in terms of MSE performance.

Fig. 8 compares the normalized MSEs of the MMSE estima-

tor of Section IV-B1 and benchmark MMSE-DFT by varying

NRF , under two antenna setups and given SNR = 15 dB.

Observe from Fig. 8 that as NRF increases, the both estimators

have worse performance, due to the increased dimension of

the composite channel GAHFA. In particular, the MMSE-

DFT estimator achieves a comparable performance to the

MMSE estimator at low NRF , since in this case the optimal

training with the decreased design freedom is asymptotically

orthogonal. Like Fig. 6, increasing Nt also leads to better

performance.

B. Mutual Information Performance

Fig. 9 shows the MI performance of the MMSE estimator

of Section III-B and benchmark MMSE-DFT versus the SNR,
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under three different antenna setups and two cases of channel

correlation. Firstly, we observe that increasing Nt leads to

better MI performance for the two estimator. Moreover, the

MI performance of the two estimators are almost identical

at low Nt value and/or high SNR. Comparing Fig. 9 (a) and

Fig. 9 (b), the MI performance gap between the two estimators

for the weak channel correlation is clearly narrower than that

for the strong counterpart, especially for large Nt value.

We also extend this simulation to the composite channel

estimation and compare the MI performance of the MMSE

estimator proposed in Section IV-B1 with the benchmark

MMSE-DFT in Fig. 10. It is readily seen that the conclusions

obtained in Fig. 9 are still applicable to Fig. 10. Furthermore,

considering the much reduced channel dimensions to be es-

timated in Section IV, the achievable MI values of the two

estimators are evidently lower than those of Fig. 9.

In summary, the proposed LS estimator requiring no channel

statistics performs close to the proposed MMSE estimator of

Section III-B relying on the second-order statistics of channel

and noise for both weak and strong channel correlations.

This is particularly so at high SNR. By contrast in the low-

SNR regime, it can be concluded that for the case of weak

channel correlation, all the proposed MMSE estimators of

Sections III-B, IV-B1 and IV-B2 exhibit a similar performance

to the corresponding MMSE-DFT estimator. In this case, it

would be preferable to apply the low-complexity MMSE-

DFT estimator. In the case of strong channel correlation,

all the proposed MMSE estimators notably outperform the

MMSE-DFT estimator and thus are preferred. Conversely,

the proposed MMSE estimator of Section IV-B1 used for

estimating the composite channel GAHFA is recommended

in case of a large number of RF chains. Similarly, all the above

conclusions for our proposed MMSE estimators still hold for

the mutual information criterion.

VI. CONCLUSIONS

In this paper, the training optimizations for hybrid MIMO

communications has been investigated. Different from most of

the existing works which rely on the existence of some special

structures in the channel matrix to simplify channel estimation,

we have considered a more general channel matrix without

any special structures. Two channel estimation schemes have

been proposed for hybrid MIMO systems. In each scheme,

the training sequence and the analog matrices at the receiver

and transmitter have been optimized for both sum MSE mini-

mization and MI maximization. In the first scheme, the optimal

structures of the analog matrices have been derived rigorously,

which can overcome the nonconvex nature of analog matrix

optimizations and simplify the joint optimizations of training

sequence and analog matrices simultaneously. For the second

scheme, the analog matrices have been optimized based on the

statistical optimization framework, and the training sequence

have been effectively optimized according to different channel

statistical information. Simulation results have been used to

demonstrate the effectiveness of the proposed designs.

STATISTICAL OPTIMIZATION

Consider the following statistical optimization

max E
{
f
(
Ψ

HHH
WΣ

H
ΣHWΨ

)}
, (88)

where the elements of HW are i.i.d. Gaussian distributed

random variables. The objective function is expressed by

E
{
f
(
Ψ

HHH
WΣ

H
ΣHWΨ

)}

=

∫
f
(
Ψ

HHH
WΣ

H
ΣHWΨ

)
p(HW)dHW, (89)

where p(HW) is the probability density function of HW, and

f(·) is a unitary invariant function, i.e.,

f
(
ULΨ

HHH
WΣ

H
ΣHWΨUH

L

)

=f
(
Ψ

HHH
WΣ

H
ΣHWΨ

)
, (90)

for any unitary matrix UL of appropriate dimension. In addi-

tion, f(·) is a matrix-monotone increasing function, i.e., for

two positive semidefinite matrices A�B, f(A)≥f(B).

Conclusion 5 The optimization problem (88) in nature aims

to maximize λ
(
Σ

H
Σ
)

and λ
(
ΨΨ

H
)
.

For ΣH
1 Σ1 � Σ

H
2 Σ2, we have

f
(
Ψ

HHH
WΣ

H
1 Σ1HWΨ

)
p
(
HW

)
dHW

≥f
(
Ψ

HHH
WΣ

H
2 Σ2HWΨ

)
p
(
HW

)
dHW (91)

based on which the following inequality holds

E
{
f
(
Ψ

HHH
WΣ

H
1 Σ1HWΨ

)}
≥E
{
f
(
Ψ

HHH
WΣ

H
1 Σ1HWΨ

)}
.

(92)

Moreover, for λ
(
Σ

H
1 Σ1

)
�λ

(
Σ

H
2 Σ2

)
, there always exists a

unitary matrix U that makes UΣ
H
1 Σ1U

H�Σ
H
2 Σ2. Therefore,

∫
f
(
Ψ

HHH
WΣ

H
1 Σ1HWΨ

)
p
(
HW

)
dHW

=

∫
f
(
Ψ

HHH
WUHUΣ

H
1 Σ1U

HUHWΨ
)
p
(
HW

)
dHW

=

∫
f
(
Ψ

HHH
WUHUΣ

H
1 Σ1U

HUHWΨ
)
p
(
UHW

)
dUHW

=

∫
f
(
Ψ

HHH
WUΣ

H
1 Σ1U

HHWΨ
)
p
(
HW

)
dHW

≥

∫
f
(
Ψ

HHH
WΣ

H
2 Σ2HWΨ

)
p
(
HW

)
dHW, (93)

where the second and the third equalities are due to the

facts that the elements of HW are i.i.d. Gaussian distributed

and HW and UHW have the same distribution. The final

inequality is derived based on (91).

Note that Ψ
HHH

WΣ
H
ΣHWΨ and ΣHWΨΨ

HHH
WΣ

H

have the same nonzero eigenvalues. As a result, the following

two optimization problems are equivalent

maxλ
(
Ψ

HHH
WΣ

H
ΣHWΨ

)
⇔ maxλ

(
ΣHWΨΨ

HHH
WΣ

H
)
.

(94)
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Based on the unitary invariant property in (90) and (93), it can

be proved that when λ
(
Ψ1Ψ

H
1

)
� λ

(
Ψ2Ψ

H
2

)
, the following

inequality holds
∫

f
(
Ψ

H
1 H

H
WΣ

H
1 Σ1HWΨ1

)
p
(
HW

)
dHW

≥

∫
f
(
Ψ

H
2 H

H
WΣ

H
1 Σ1HWΨ2

)
p
(
HW

)
dHW. (95)

This completes the proof.
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