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Abstract

For future Internet-of-Things based Big Data applications, data collection from ubiquitous smart

sensors with limited spectrum bandwidth is very challenging. On the other hand, to interpret the meaning

behind the collected data, it is also challenging for an edge fusion center running computing tasks

over large data sets with a limited computation capacity. To tackle these challenges, by exploiting

the superposition property of multiple-access channel and the functional decomposition, the recently

proposed technique, over-the-air computation (AirComp), enables an effective joint data collection

and computation from concurrent sensor transmissions. In this paper, we focus on a single-antenna

AirComp system consisting of K sensors and one receiver. We consider an optimization problem to

minimize the computation mean-squared error (MSE) of the K sensors’ signals at the receiver by

optimizing the transmitting-receiving (Tx-Rx) policy, under the peak power constraint of each sensor.

Although the problem is not convex, we derive the computation-optimal policy in closed form. Also,

we comprehensively investigate the ergodic performance of the AirComp system, and the scaling laws

of the average computation MSE (ACM) and the average power consumption (APC) of different Tx-Rx

policies with respect to K. For the computation-optimal policy, we show that the policy has a vanishing

ACM and a vanishing APC with the increasing K.

Index Terms

Wireless sensor networks, over-the-air computation, remote estimation, mean-squared error, optimal

power allocation, scaling-law analysis.

I. INTRODUCTION

Under the fast development of wireless communication, networking, data collection and stor-

age, the era of Big Data has arrived [1]. According to a recent DOMO technical report [2], more

than 2 quintillion bytes of data are created every day, and about 1.7 megabytes of data will be

created every second per single person on earth by 2020. Also, the Internet of Things (IoT), which

connects smart devices that interact with each other and collect all kinds of data, is exponentially

The authors are with School of Electrical and Information Engineering, The University of Sydney, Australia. Emails:

{wanchun.liu, xin.zang, yonghui.li, branka.vucetic}@sydney.edu.au.

May 8, 2020 DRAFT

ar
X

iv
:1

90
9.

00
32

9v
2 

 [
cs

.I
T

] 
 7

 M
ay

 2
02

0



2

growing from 2 billion devices in 2006 to a predicted 200 billion by 2020, and will be one of the

primary drivers of data explosion. How to effectively collect and leverage Big Data and interpret

the meaning behind it have attracted much attention in the areas of public health, manufacturing,

agriculture and farming, energy, transportation, supply chain management and logistics. In such

IoT-based Big Data applications (e.g., smart cities), wireless data collection from ubiquitous

massive smart sensors/devices with limited spectrum bandwidth is very challenging, especially

when the data needs to be dealt in a timely manner. On the other hand, due to a large number

of data sources, we do not care much about the value of each individual data source anymore,

but shift our focus on the fusion of massive data and unleash its power, which is actually a

computing problem. The computation of a large amount of data is also challenging for an edge

devices with a limited computation capacity.

To tackle these challenges, the technique, over-the-air computation (AirComp), has been devel-

oped to enable an efficient data-fusion of sensing data from many concurrent sensor transmissions

by leveraging the inherent broadcast nature of wireless communications and the application of

a beautiful mathematical tool of function representation.

A. What is AirComp?

1) Preliminaries: Assume an ideal multiple-access channel (MAC) of K sensors with the

signal-superposition property that

r =
K∑
k=1

uk, (1)

where uk is the transmitted signal of sensor k and r is the received signal at the receiver.

Consider K wireless smart sensors, each having a measurement signal sk ∈ R,∀k ∈ {1, · · · , K},
and a K-variate computing task (e.g., sum, multiplication and arithmetic/geometric mean) φ :

RK → R at a designated receiver. By using a mathematical property in the area of theoretical

computer science that every real-valued multivariate function is representable in its nomographic

form as a function of a finite sum of univariate functions [3], there always exists a set of pre-

processing functions ψk : R → R, ∀k ∈ {1, · · · , K} and a post-processing function ϕ : R → R

such that

φ(s1, · · · , sK) = ϕ

(
K∑
k=1

ψk(sk)

)
. (2)
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2) The Brief Idea: Based on (1) and (2), the overall idea of AirComp proposed in [4, 5] is to

let each sensor pre-process its own signal and send uk = ψk(sk) to the receiver simultaneously,

and the receiver processes the received sum of signals
∑K

k=1 ψk(sk) with function ϕ(·) and thus

obtains the desired computation of K sensors’ measurement signals φ(s1, · · · , sK). Therefore,

the transmission and computation of a large number of sensors’ signals of an AirComp system are

completed in one single time slot (i.e., in a symbol level) in contrast to an intuitive one-by-one-

transmit-then-compute protocol. In other words, AirComp effectively integrates communication

and computation by harnessing interference for computing [5]. Moreover, the receiver’s original

computation task φ(·) of processing K signals has been decomposed into (K + 1) small tasks

{ψ1(·), · · · , ψK(·), ϕ(·)}, and each sensor or the receiver only needs to take one lightweight task

with only one signal to be processed. In this way, the computation complexity of the receiver

is significantly reduced, especially when K is large.

3) Use Cases: In addition to smart-city applications, e.g., using unmanned aerial vehicles for

real-time data computation and collection from sensors embedded in ground vehicles, buildings

and other infrastructures, AirComp has been developed and applied in two important emerging

mobile applications with highly integrated communication and computation tasks:

• Over-the-air consensus. For example, in drone swarming and connected car platooning

applications, each node concurrently sends its current states including velocity and acceleration

in real-time, while the central controller can receive and compute the average current states of

the mobile nodes, and generate control commands to drive each node approaching a consensus

status [6].

• Wireless distributed machine learning. In wireless machine learning applications that adopt

distributed stochastic gradient descent algorithms for model training, each mobile user calculates

the gradient of its local cost function of its own data set in terms of the model parameters

and concurrently sends it to the parameter server (i.e., a base station), which then computes a

weighted average of the gradients and broadcasts it to the mobile users for further iteration until

convergence [7–9].

B. Previous Work

The research of AirComp mostly focuses on two aspects: the pre-processing and post-processing

functions design in (2), and the analysis of the impact of practical wireless MAC (rather than

the ideal one in (1)) on the performance of AirComp and the transceiver design issues for
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reducing the impact. For the former, the theoretical properties and how to design the pre- and

post-processing functions with a given multi-variable target function φ(·) (e.g. geometric mean)

have been extensively investigated in [4, 5, 10, 11]. For the latter, the computation of the sum

of pre-processed signals in (1),
∑K

k=1 uk, is not perfect due to the non-zero receiver noise

and unequal channel coefficients, and hence a key design target is to make the computation

distortion of the sum of signals as small as possible. For a multi-antenna AirComp system,

an optimization problem of transmitting and receiving beamforming design was considered to

minimize the computation distortion [12], based on which a wireless-powered AirComp system

was studied in [13]. Also, the effect of the lack of synchronization between different sensors

and the imperfect channel estimation on the distortion of the sum of signals were studied in [4]

and [14], respectively.

We would note that using the signal-superposition property of a MAC for direct information

fusion from multiple terminals is not new and it has been successfully utilized in solving the

classic central estimation officer (CEO) problem in the area of remote estimation of traditional

wireless sensor networks (WSNs) [15]. In this application, each sensor takes a noisy observation

of the same source (a deterministic parameter or a random process), and concurrently sends the

uncoded (linearly scaled) signal to the fusion center through a MAC. The fusion center receives

the superimposed signals and reconstructs the source signal of interest. The CEO problems of

deterministic parameter estimation under single and multiple antenna settings were investigated in

[16] and [17], respectively. A CEO problem for Gauss-Markov process estimation was considered

in [18]. Although both the traditional CEO and the recent AirComp systems make use of MACs

for data fusion, the former only needs to estimate a single-source signal while the latter has to

estimate a function of distributed multi-source signals. Thus, the design targets and the optimal

solutions to these two problems are fundamentally different.

C. Contributions and Paper Organization

In this paper, we focus on a baseline single-antenna AirComp system with non-zero receiver

noise and unequal channel coefficients, where the sensors send linearly scaled pre-processed

signals simultaneously to the receiver, which then linearly scales the received signal as the
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computing output of the sum of the pre-processed signals.2 The main contributions of the paper

are summarized as follows.

• We consider an optimization problem to minimize the computation mean-squared error

(MSE) of the sum of the pre-processed signals at the receiver by optimizing the transmitting-

receiving (Tx-Rx) scaling policy of a single-antenna AirComp system, where each sensor has a

peak power limit for transmission. We note that such a type of problem was originally proposed

under a more complicated setting of multi-antenna multi-modal sensing in [12], which, however,

only gave a suboptimal solution due to the non-convexity of the problem. Under the single-

antenna setting, although the problem is still non-convex, we derive the optimal solution in closed

form.3 Actually, when considering the single-antenna and single-modal setting, the solution

in [12] degrades to a Tx-Rx scaling policy of a channel-inversion type, which leads to a much

larger computation MSE than that of the optimal policy obtained in our paper. Furthermore, we

extend our optimal solution of the single-antenna case to a more practical case of AirComp,

where each sensor with simple hardware components has one antenna and the receiver has N

antennas. Our results show that the solution provides a significant reduction of computation MSE

compared to the existing work [12].

•We also investigate a MAC system for distributed remote estimation, which is closely related

to the AirComp system. In this system, each sensor sends its scaled measurement signal to the

receiver simultaneously and the receiver needs to recover each sensor’s signal as accurately as

possible. We formulate and solve an optimization problem to minimize the sum of the estimation

MSE of each sensor’s signal at the receiver by optimizing the Tx-Rx scaling policy, under

the peak power constraint of each sensor.4 Interestingly, such an estimation problem of the

2Such the AirComp system actually uses an analog (or coding-free) transmission method. Note that in the area of WSNs

and wireless remote estimation/control systems, extensive research has focused on the fusion of analog data instead of encoded

digital data (see [16–18], [19, 20] and references therein). This is mainly because digital transmission achieves an exponentially

worse performance than analog signaling in terms of distortion between the source signal and the recovered signal, which has

been proved by the pioneer work in [21].
3We note that the same solution has independently arrived in a parallel work [22], which will be discussed in the latter part

of the introduction.
4Note that the research of traditional MAC is mostly focused on rate-centric systems, where the design target is commonly to

maximize the achievable sum rate of the K users [23]. For estimation-centric MAC, the optimization problem for minimizing

the sum of estimation MSEs has not been considered in the open literature. Only its dual system, i.e., an estimation-centric

broadcast channel (BC) system, was investigated in [24], under a sum power constraint.
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MAC system is a sum-of-MSE problem, while the AirComp system introduces an MSE-of-sum

problem. We also prove the condition under which the optimal Tx-Rx scaling policies of the

MAC and AirComp systems are equivalent to each other.

• We investigate the ergodic performance of AirComp systems in terms of the average

computation MSE and the average power consumption under Rayleigh fading channels. We

comprehensively study the scaling laws of the average computation MSE and the average power

consumption of different Tx-Rx scaling policies with respect to the number of sensors K.

Also, we define two types of policies: the computation-effective policy, which has a vanishing

average computation MSE, and the energy-efficient policy, which has a vanishing average power

consumption, with the increasing number of sensors K. Since there is a tradeoff in policy design

between the computation effectiveness and the energy efficiency of the AirComp system, it is not

clear whether there exists a policy that is both computation-effective and energy-efficient. We

rigorously prove the existence of such the type of policy. Moreover, for the computation-optimal

policy, we prove that the policy is a computation-effective one and its average computation MSE

has a decay rate of O(1/
√
K). Our numerical results show that the policy is also energy-efficient.

Note that this paper is conducted in parallel and independent of [22], which has also obtained

the same computation-optimal policy in the single-antenna case but with a different proof

structure. Recall that the scaling-law analysis, the tradeoff between the computation effectiveness

and the energy efficiency, and the comparison study between the sum-of-MSE (MAC) and the

MSE-of-sum (AirComp) problems in our paper have not been considered in the open literature

of AirComp including [12] and [22].

The remainder of the paper is organized as follows: Sec. II describes the AirComp system

and formulates a computation-MSE-minimization problem. In Sec. III, we solve the optimization

problem and obtain the computation-optimal Tx-Rx scaling policy. In Sec. IV, we study a

MAC-based remote estimation problem which is closely related to the AirComp problem, and

then compare the optimal policies of the two problems. In Sec. V, the ergodic performance

of the AirComp system with different Tx-Rx scaling policies are investigated in terms of the

average computation MSE and the average power consumption. Sec. VI numerically evaluates

the performance of AirComp systems with different policies. Finally, Sec. VII concludes this

work.

Notations: For two functions g(x) and f(x), the notations g(x) = O(f(x)) and g(x) =

o(f(x)), x→∞, mean that lim supx→∞ g(x)/f(x) <∞ and lim
x→∞

g(x)/f(x) = 0, respectively.
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Fig. 1: Illustration of the AirComp system.

We denote f(x) ∼ g(x) if g(x) = O(f(x)) and f(x) = O(g(x)). R and R0 denote the set of

real number and the set of non-negative real number, respectively. N and C denotes the set of

positive integers and complex numbers, respectively.

II. SYSTEM MODEL

We consider a K-sensor single-antenna AirComp system as illustrated in Fig. 1. Each sensor’s

pre-processed signal xk ∈ R, ∀k ∈ {1, · · · , K}, is scaled by its Tx-scaling factor bk ∈ C and

sent to the receiver simultaneously through a MAC. The receiver applies a Rx-scaling factor a

to the received signal as the computing output of the sum of the K sensors’ signals as

r = a

(
K∑
k=1

hkbkxk + n

)
, (3)

where hk ∈ C is the channel coefficient between sensor k to the receiver and n is the receiver’s

additive white Gaussian noise (AWGN). Note that the Rx-scaling factor applied to both the

signal and the noise is for the estimation of the computation output
∑K

k=1 xk, rather than the

improvement of signal-to-noise ratio (SNR). It is assumed that the channel coefficients are known

by both the sensors and the receiver, and the sensors’ transmissions are well synchronized [7–

10, 12].5 We assume that the pre-processed signal xk ∈ [−v, v] ⊂ R, ∀k ∈ {1, · · · , K}, is

zero-mean with normalized variance, and is independent with the others [12, 13].

The computation distortion of the ideal sum of the signals
∑K

k=1 xk is measured by its MSE as

MSE = E

[
|r −

K∑
k=1

xk|2
]
, (4)

5The effects of imperfect channel estimation and synchronization have been discussed in [4, 5, 14].
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where the expectation is taken with respect to the randomness of the original signals {xk} and

the receiver noise n. Substituting (3) into (4), the computation MSE of the AirComp system is

rewritten as

MSE =
K∑
k=1

|ahkbk − 1|2 + σ2|a|2. (5)

Note that the Rx-scaling factor is operated on the digital domain, i.e., the received signal(∑K
k=1 hkbkxk + n

)
is sampled and quantized before scaling by a, and there is no constraint

on the Rx-scaling factor. Considering a peak power constraint of each sensor’s transmission, P ′,

we have

max
xk∈[−v,v]

|bkxk|2 = |bk|2v2 ≤ P ′ ⇐⇒ |bk|2 ≤ P, ∀k,

where P , P ′/v2.

Since the pre-processed signal xk has a normalized variance, the average transmission power of

sensor k is E[|bkxk|2] = |bk|2. Thus, the power consumption of the K-sensor AirComp system is

PW ,
K∑
k=1

|bk|2. (6)

Given the channel coefficients {hk}, the MSE-minimization problem in terms of the Tx-Rx

scaling policy under the peak power constraint is formulated as

min
a,{bk}

MSE (7a)

subject to |bk|2 ≤ P, ∀k. (7b)

From the target function definition in (5), given the complex Rx-scaling factor a and the channel

coefficient hk, sensor k is always able to adjust the phase of its Tx-scaling factor bk for phase

compensation without changing its magnitude such that the term ahkbk is real and non-negative

and thus minimizes |ahkbk − 1| in (5). In this sense, only the magnitudes of a, {hk} and {bk}
have effect on achieving the minimum MSE in problem (7). Therefore, without loss of generality,

we set a, hk ∈ R0, and bk ∈ [0,
√
P ],∀k, in the rest of the paper.

Problem (7) is non-convex as the target function (7a) is not a convex function of a and {bk}.
However, the problem is convex when a or {bk} is fixed. Thus, an intuitive method for solving

the problem can be the alternating-direction method, i.e., fixing {bk} that satisfies (7b) and

solving the optimal a, and then in turn solving the optimal {bk} with the optimal a, and so on.

However, such the algorithm may not guarantee the convergence to a global optimal solution.
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In the following section, we derive the closed-form Tx-Rx scaling policy of problem (7),

which is named as the computation-optimal policy.

III. COMPUTATION-OPTIMAL AIRCOMP SYSTEM

A. Computation-Optimal Policy

Without loss of generality, we assume the channel coefficients have the property that 0 ,

h0 < h1 ≤ h2 ≤ · · · ≤ hK < hK+1 , ∞. We then introduce a sequence of (K + 1) disjoint

intervals {Sk} that covers R0 as

Sk ,



(
1

h1
√
P
,∞
)
, k = 0,(

1

hk+1

√
P
,

1

hk
√
P

]
, k = 1, · · · , K − 1,[

0,
1

hK
√
P

]
, k = K.

From (5), it is clear that if a ∈ Si, where i is named as the critical number of the Tx-Rx

scaling policy, |ahkbk − 1|2 monotonically decreases with the increasing of bk ∈ [0,
√
P ],∀k ∈

{1, · · · , i}; while |ahkbk − 1|2 is minimized and equal to zero when bk = 1/(ahk) <
√
P ,∀k ∈

{i+ 1, · · · , K}. Thus, we have the following result.

Lemma 1a. If the Rx-scaling factor a ∈ Si, i = 0, 1, · · · , K, the optimal Tx-scaling factors

{bk} are given as

bk =


√
P , 1 ≤ k ≤ i

1

ahk
, i < k ≤ K.

(8)

Remark 1. Lemma 1a shows that the critical number i indicates the number of sensors using

the maximum power for transmission. Also, the Tx-scaling factors of the computation-optimal

policy has a switching structure, i.e., i sensors with the smallest channel coefficients have to use

the maximum power for transmission, while the power consumption of any of the rest (K − i)
sensors is of a channel-inversion type. Also, more sensors have to use the maximum power for

transmission if the Rx-scaling factor is small.

Using Lemma 1a, since
∑K

k=i+1 |ahkbk − 1|2 = 0, the target function of problem (7) can be

rewritten as

MSE =
i∑

k=1

∣∣∣ahk√P − 1
∣∣∣2 + σ2|a|2, a ∈ Si, (9)
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which is a quadratic function of the Rx-scaling factor a. Then, we can directly obtain the

following result.

Lemma 1b. Given the constraint that the Rx-scaling factor belongs to Si, i = 0, 1, · · · , K, the

optimal Rx-scaling factor ai ∈ Si is given as

ai ,



(
1

hi+1

√
P

)+

, if gi < Si

gi, if gi ∈ Si
1

hi
√
P
, if gi > Si

(10)

where the operator (u)+ indicates approaching to the real number u from right side, and with

a bit abuse of notation, gi > Si and gi < Si denote gi > 1
hi
√
P

and gi ≤ 1
hi+1

√
P

, respectively,

where gi is the optimal solution of (9) without the constraint a ∈ Si and is given as

gi ,

0, i = 0
√
P
∑i

k=1 hk

σ2+P
∑i

k=1 h
2
k

, i = 1, · · · , K.
(11)

Based on Lemma 1b, if gi /∈ Si, i.e., the first and the last cases in (10), the following property

reveals how to find a better Rx-scaling factor a leading to a smaller MSE.

Lemma 1c. If gi < Si and i < K, there exists a ∈ Si+1 that achieves a smaller MSE than ai.

If gi > Si and i > 0, there exists a ∈ Si−1 that achieves a smaller MSE than ai.

Proof. For the first case, it is not hard to see a = 1
hi+1

√
P
∈ Si+1 leads to a smaller MSE due

to the continuity of the target function (9). For the second case, assuming that gi ∈ Si′ and

i′ < i, since the quadratic function (9) monotonically decreases and then increases, there exists

a′ ∈ Si−1 such that
i−1∑
k=1

∣∣∣a′hk√P − 1
∣∣∣2 + σ2|a′|2 ≤

i∑
k=1

∣∣∣a′hk√P − 1
∣∣∣2 + σ2|a′|2 <

i∑
k=1

∣∣∣ahk√P − 1
∣∣∣2 + σ2|a|2,

(12)

where the first term in (12) is the minimum MSE achieved by a′ ∈ Si−1 from Lemma 1a,

completing the proof. �

Jointly using Lemma 1b and Lemma 1c, it can be obtained that

Corollary 1. The optimal Rx-scaling factor a /∈ S0, i.e., in order to achieve the minimum MSE,

at least one sensor needs to transmit with the maximum power.
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Based on Lemma 1a and Lemma 1b, to find the optimal Rx-scaling factor a?, we only need

to know the optimal critical number i?, i.e., a? = ai? ∈ Si? , which is the most important part

for solving the problem. Thus, problem (7) is reformulated as

min
1≤i≤K

MSEi ,
i∑

k=1

∣∣∣aihk√P − 1
∣∣∣2 + σ2|ai|2 (13)

subject to (10).

From Lemma 1b, since ai depends on gi,∀i ∈ {1, · · · , K}, the optimal a, a? ∈ {a1, · · · , aK},
depends on the sequence {gi}. In what follows, we introduce the technical lemmas of the

properties of {gi}, which will be utilized for finding a?.

Lemma 2a (Switching structure). If gi ∈ Si, then gi+1 > Si+1, if i < K,

gi−1 < Si−1, if i > 0.
(14)

Proof. (14) can be verified by using the definition of gi in (11) and the property that a
b
≥ c

d
⇐⇒

a+c
b+d
≥ c

d
, where a, b, c, d > 0. The following lemmas can be verified using the similar steps, and

the proofs are omitted for brevity. �

Lemma 2b (Consistency). If gi < Si and i > 0, then gi−1 < Si−1. If gi > Si and i < K, then

gi+1 > Si+1.

Lemma 2c (Monotonicity). If gi < Si and i < K, then gi ≤ gi+1. If gi > Si and i > 0, then

gi ≤ gi−1.

Jointly using Lemma 2a, Lemma 2b and Lemma 2c, it shows the unimodality of the sequence

{gi}, i.e., there exists i? such that gi monotonically increases and decreases with i for all i ≤ i?

and i ≥ i?, respectively. Then, using Lemma 2a and Lemma 2b together with Lemma 1c, the

unimodality of the sequence {−MSEi} in (13) can be easily verified, as MSEi monotonically

decreases and increases with i for i ≤ i? and i ≥ i?, respectively. Therefore, the optimal Tx-Rx

scaling policy is given below.

Theorem 1 (Computation-optimal policy). The optimal critical number of problem (7) is

i? = arg max
1≤i≤K

gi.
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The optimal Rx-scaling factor a? is ai? by taking i? into (10). The optimal Tx-scaling factors

{b?k} are obtained by taking i? into (8).

We note that this result is independently arrived at [22] with a different proof.

As a consequence of Theorem 1, the computation MSE and the power consumption induced

by the computation-optimal policy are obtained below.

Proposition 1. The minimum computation MSE of the AirComp system under the peak power

constraint is

MSE? =
i?∑
k=1

(
ai?hk

√
P − 1

)2
+ σ2(ai?)2. (15)

The power consumption of the AirComp system induced by the computation-optimal policy is

PW =
K∑
k=1

b?k
2 = Pi? +

1

(ai?)2

K∑
k=i?+1

1

h2k
. (16)

B. Extension to Multi-Antenna Receiver Case

We extend our solution of the single-antenna AirComp system to a more practical multi-

antenna receiver case, where each sensor with simple hardware components has one antenna

and the receiver has N antennas. The computation MSE is rewritten as

MSE =
K∑
k=1

|a>hkbk − 1|2 + σ2|a|2, (17)

where a ∈ CN×1 is the Rx-scaling vector at the receiver, and hk ∈ CN×1 is the channel-

coefficient vector between sensor k and the receiver. (·)> is the matrix-transpose operator. Taking

(17) into (7), such an computation-MSE-minimization problem in the multi-antenna receiver case

is intractable and NP-hard [12]. Thus, we develop algorithms to find the near optimal solutions

based on the single-antenna solution in Theorem 1.

By denoting a , |a|v, where v is a unit vector, and from the discussion below (7), (17) is

equivalent to

MSE =
K∑
k=1

∣∣∣∣|a|∣∣v>hk∣∣bk − 1

∣∣∣∣2 + σ2|a|2. (18)

It is clear that if v is given, the optimal |a| and {bk} can be solved directly by replacing hk with

|v>hk| in Theorem 1. Although finding the optimal v is not tractable, two easy-to-computation

algorithms can find the suboptimal unit vectors: one is the optimal antenna selection, which

finds the optimal v that belongs to the set of {[1, 0, · · · , 0]>, [0, 1, 0, · · · , 0]>, · · · , [0, · · · , 0, 1]>};
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the other is to randomly generate a sequence of v and find the optimal one that induces the

minimum MSE in (18). In Sec. VI, we will show that these two methods can achieve much

better computation MSEs than the method in [12].

C. Benchmark Policies

The computation-optimal policy in Theorem 1 needs to first sort the K channel coefficients

(e.g., using an insertion-sort algorithm), which has a computation complexity of O(K2), and then

compute the largest parameter gi, which is a non-linear function of i channel coefficients. Thus,

we also present two intuitive and easy-to-compute benchmark policies of AirComp systems for

comparison.

Definition 1 (Channel-inversion policy [12, 13]). The channel-inversion policy has the critical

number i = 1, i.e., the Rx-scaling factor a ∈ S1, and the Tx and Rx-scaling factors are given as

bk =
√
P
h1
hk
,∀k, a =

1√
Ph1

. (19)

The channel-inversion policy is commonly considered in the literature of AirComp [12, 13],

which guarantees that the computing output r in (3) is an unbiased estimation of the sum of the

original signals, i.e.,

E

[
r −

K∑
k=1

xk

∣∣∣∣x1, · · · , xK
]

= aE[n] = 0.

Definition 2 (Energy-greedy policy). The energy-greedy policy always chooses the critical

number i = K, i.e., the Rx-scaling factor a ∈ SK , and the Tx- and Rx-scaling factors according

to Lemma 1a and Lemma 1b are given as

bk =
√
P ,∀k, (20a)

a = min

{
1√
PhK

,

√
P
∑K

k=1 hk

σ2 + P
∑K

k=1 h
2
k

}
. (20b)

The energy-greedy policy requires all the sensors to always transmit with the maximum power

regardless of the channel conditions. Since the optimal critical number of an AirComp system,

i?, usually takes a value between 1 and K, the channel-inversion policy and the energy-greedy

policy can be treated as two extreme cases.
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IV. AIRCOMP SYSTEM VERSUS TRADITIONAL MAC SYSTEM

In this section, we consider a remote estimation problem based on a MAC system, which

is closely related to the AirComp problem since both the systems leverage the superposition

property of the MAC channel. The MAC system consists of K sensors and one receiver, where

the receiver has to recover every sensor’s signal xk, ∀k ∈ {1, · · · , K}. The sensors adopt the

coding-free transmission method same as the AirComp system, i.e., each of the K sensors scales

its measurement signal by the Tx-scaling factor b̃k and simultaneously sends it to the receiver.

Then, the receiver estimates each of the original signals by linearly scaling the received signal

with the Rx-scaling factor ãk,∀k ∈ {1, · · · , K}. The estimated sensor k’s signal is given as

rk = ãk

(
K∑
k=1

hkb̃kxk + n

)
,∀k ∈ {1, · · · , K}.

With a bit abuse of notation, the estimation MSE of sensor k is denoted and obtained as

MSEk , E
[
|rk − xk|2

]
= (ãkhkb̃k − 1)2 + ã2k

∑
j∈{1,··· ,K}\k

(hj b̃j)
2 + ã2kσ

2. (21)

A. Optimal Sum of MSE

We aim to design the optimal Tx-Rx scaling policy to minimize the sum of the estimation

MSEs of the K sensors’ signals under the individual power constraint, and have the following

problem:

min
{ãk},{b̃k}

K∑
k=1

MSEk (22a)

subject to |b̃k|2 ≤ P, ∀k. (22b)

Remark 2. This optimal estimation problem of the MAC system is a sum-of-MSE problem, while

the optimization problem of the AirComp system in Sec. III-A can be treated as an MSE-of-sum

(signal) problem. Thus, the optimal Tx-Rx scaling policies of the two problems are different in

general.

When {b̃k} are given and satisfy the constraint (22b), the target function (22a) is a quadratic

function of {ãk}, and it is clear that the variable ãk only has an effect on MSEk rather than the

other MSE objects. The optimal Rx-scaling factor for sensor k is obtained directly as

ãk =
hkb̃k

σ2 +
∑K

j=1(hj b̃j)
2
. (23)
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Taking (23) into (21), which does not change the optimality compared to the original prob-

lem (22), we have

MSEk = 1− (hkb̃k)
2

σ2 +
∑K

j=1(hj b̃j)
2
, (24)

and thus
K∑
k=1

MSEk = K −
∑K

j=1(hj b̃j)
2

σ2 +
∑K

j=1(hj b̃j)
2
,

which is a monotonic decreasing function of {b̃2k}.
Therefore, the optimal solution of problem (22) is given below.

Theorem 2 (Optimal sum-of-MSE policy). The optimal Tx-Rx scaling policy of problem (22)

of the MAC system is given as

ã?k =
hk
√
P

σ2 + P
∑K

j=1(hj)
2
, b̃?k =

√
P ,∀k.

Remark 3 (When the sum-of-MSE problem is equivalent to the MSE-of-sum problem?). Differ-

ent from the computation-optimal policy of the AirComp system in Theorem 1, where the optimal

Tx-scaling factor of each sensor depends on K channel coefficients, the optimal policy of the

MAC system has the identical Tx-scaling factor
√
P , i.e., a type of energy-greedy policy that

requires each sensor to use the maximum power for transmission.

However, from Theorems 1 and 2, if the sequence {gi} defined in (11) satisfies the condition

gK = max1≤k≤K gk, the optimal Tx-scaling factors of the AirComp system are identical to that

of the MAC system, i.e., b?k = b̃?k =
√
P ,∀k. Also the optimal Rx-scaling factor of the AirComp

system a? =
∑K

k=1 hk
√
P

σ2+P
∑K

j=1(hj)
2

is equal to the sum of the optimal Rx-scaling factors of the MAC

system
∑K

k=1 ã
?
k, and thus the estimation of the sum of the signals is equal to the sum of the

estimation of each individual signal, i.e., r =
∑K

k=1 rk. In this sense, the optimal sum-of-MSE

policy is equivalent to the optimal MSE-of-sum policy.

Such a comparison study between the recently proposed AirComp system and the conventional

MAC system is very important for having a better understanding of AirComp. In particular,

when the condition mentioned earlier is satisfied, the AirComp system simply degrades to the

conventional MAC system (i.e., one can estimate the individual signals first and then calculate

the sum of all the estimates); otherwise, the AirComp system is distinguished from the MAC

system.
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B. Achievable MSE Region and the Pareto Front

In addition to the sum of the estimation MSEs of K sensors’ signals, we also care about the

capability of the MAC system in providing the estimation quality of the K sensors, which is

captured by the achievable MSE region defined below.

Definition 3 (Achievable MSE region). Given the channel coefficients {hk} and the individual

power constraint P , the achievable MSE region of a K-sensor MAC, M, is defined by the

set of all tuples (MSE1, · · · ,MSEK), where MSEk is defined in (21), ãk is given in (23), and

b̃k ∈ [0,
√
P ],∀k ∈ {1, · · · , K}.

Using (24), b2k can be represented by {MSEj} as

b2k =
σ2

h2k

1−MSEk∑K
j=1 MSEj − (K − 1)

,∀k.

Since b2k ≤ P and MSEk ≤ 1 in (24), the achievable MSE region can be derived as below.

Proposition 2. The achievable MSE region of a K-sensor MAC, M, satisfies

MSEk +
Ph2k
σ2

(
K∑
j=1

MSEj − (K − 1)

)
≥ 1,∀k (25a)

MSEk ≤ 1,∀k. (25b)

Remark 4. It can be verified that the achievable MSE region (25) is convex, and (25a) and

(25b) define the inner and outer boundaries of the region, respectively, as illustrated in Fig. 2.

Specifically, the inner boundary (25a) is achieved by letting the kth sensor transmit with the

maximum power, i.e., b2k = P .

Remark 5. It can be observed that the Pareto front of the problem (22) locates on the boundary of

M, where it is not possible to reduce an MSE object without increasing the others. In particular,

we see that the inner boundaries (25a) bound {MSEk} away from zero. When the equality in

(25a) holds, to reduce MSEk,∀k = 1, · · · , K, one needs to increase at lease one of the others.

Therefore, by defining the sets

Bk =

{
(MSE1, · · · ,MSEK) : MSEk +

Ph2k
σ2

(
K∑
j=1

MSEj − (K − 1)

)
= 1

}
,∀k,
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MSE1

MSE2

(0, 0) (1, 0)

(0, 1)

Optimal MSE-of-sum policy

Optimal sum-of-MSE policy

M

Fig. 2: Achievable MSE region of a two-sensor MAC system, where the red broken line is the Pareto front of

the sum-of-MSE minimization problem, and the dashed diagonal line indicates that the sum of MSE is larger than

(K − 1) = 1, which can be obtained from (25a) and (25b), and the horizontal and vertical dashed lines indicate

the outer boundaries of the achievable MSE region, i.e., MSEk ≤ 1.

the Pareto front of problem (22) is P , (B1 ∪ B2 ∪ · · · ∪ BK) ∩M, which is illustrated by the

red broken line in Fig. 2. Furthermore, it can be verified that the MSE tuple induced by the

optimal sum-of-MSE solution, i.e., MSEk = 1 − (hk)
2P

σ2+
∑K

j=1(hj)
2P

, locates at the intersection of

the inner boundaries (25a), i.e., (B1 ∩ B2 ∩ · · · ∩ BK), which belongs to the Pareto front P and

hence verifies the correctness of the solution.

From Corollary 1, the computation-optimal policy of the AirComp system assigns at least

one sensor using the maximum power for information transmission. Thus, applying the optimal

Tx-scaling factors of the AirComp system {b?k} to the MAC system, i.e., letting b̃k = b?k,∀k, the

achievable MSE tuple (MSE1, · · · ,MSEK) falls on the inner boundaries of the achievable MSE

region M as illustrated in Fig. 2. Recall that for the optimal Tx-scaling factors of the MAC

system, i.e., b̃?k =
√
P , the equalities of the K constraints (25a) hold, thus the optimal achievable

MSE tuple (MSE1, · · · ,MSEK) is the intersection of the inner boundaries as illustrated in Fig. 2.

V. ERGODIC PERFORMANCE OF AIRCOMP: COMPUTATION EFFECTIVENESS VERSUS

ENERGY EFFICIENCY

In Sec. III, the performance of the AirComp system under instantaneous channel conditions has

been investigated. In this section, we focus on the ergodic performance of AirComp systems with

different Tx-Rx scaling policies under Rayleigh fading channels, where each channel coefficient

hk,∀k ∈ {1, · · · , K}, independently varies with time and has the standard Rayleigh stationary
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distribution [25]. In particular, we investigate the average computation MSE and the average

power consumption of the AirComp system defined below.6

Definition 4. The average computation MSE and the average power consumption of an AirComp

system are defined respectively as E[MSE]/K and E[PW]/K, where MSE and PW are given

in (5) and (6), respectively, and the expectation is taken with respect to K random channel

coefficients.

Thus, the average computation MSE and the average power consumption indicate how the

computation accuracy/performance and the total power consumption of the AirComp system

scale with the increasing computation load, i.e., the increasing K.

Definition 5. A Tx-Rx scaling policy of the AirComp system is a computation-effective policy iff

lim
K→∞

E[MSE]

K
= 0.

The policy is an energy-efficient policy iff

lim
K→∞

E[PW]

K
= 0.

For a computation-effective policy, the average computation MSE approaches to zero, while for

an energy-efficient policy, the average power consumption approaches to zero, with the increasing

computation load. Therefore, it is interesting to see whether the benchmark policies (including

the channel-inversion policy and the energy-greedy policy), and the computation-optimal policy

in Sec. III are computation-effective or energy-efficient or both.

In the following analysis, we denote the channel power gains as Uk , h2k, where Uk1 ≤
Uk2 ,∀1 ≤ k1 ≤ k2 ≤ K. In other words, {Uk} are the order statistics of K independent random

samples from the standard exponential distributions.

A. Benchmark Policy 1: Channel-Inversion Policy

1) Average Computation MSE: Taking (19) into (5), the average computation MSE can be

derived as
E[MSE]

K
=

1

K
E

[
σ2

PU1

]
. (26)

6Although the following analysis are for AirComp systems with Rayleigh-distributed channel coefficients, the analysis

framework can be applied to the cases with other channel-coefficient distributions.
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Using the property of order statistics [26], the probability density function (pdf) of the

minimum value of K sample from the standard exponential distribution is given as

fU1(u1) =

Ke−Ku1 , u1 ≥ 0

0, u1 < 0
(27)

Thus, U1 follows an exponential distribution and 1/U1 follows an inverse exponential distribution

with the pdf

f1/U1(y) = exp

(
−K
y

)
K

y2
. (28)

Taking (28) into (26), the average computation MSE is calculated as

E[MSE]

K
=
σ2

P

1

K

∫ ∞
0

y exp

(
−K
y

)
K

y2
dy =∞.

Therefore, the channel-inversion method actually leads to a poor computation performance, and

we have the following result.

Corollary 2. The average computation MSE of the channel-inversion policy is infinite. The

policy is not a computation-effective one.

2) Average Power Consumption: From (19), the average power consumption is derived as

E[PW]

K
=
P

K

(
1 + E

[
K∑
k=2

U1

Uk

])
, (29)

where

E

[
K∑
k=2

U1

Uk

]
=

∫
u1,··· ,uK

(
K∑
k=2

u1
uk

)
f(u1, u2, · · · , uK)du1, · · · , duK ,

and f(u1, u2, · · · , uK) is the joint distribution of U1, · · · , UK . Then, we have the following result.

Corollary 3. The average power consumption of the channel-inversion policy is

E[PW]

K
=
P lnK

K − 1
,

which has the scaling law as
E[PW]

K
∼ lnK

K
,K →∞.

The policy is an energy-efficient one.

Proof. See Appendix A �
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B. Benchmark Policy 2: Energy-Greedy Policy

1) Average Computation MSE: From (20), the Rx-scaling factor of the energy-greedy policy

may have the sum of channel coefficients and the sum of channel power gains in the numerator

and the denominator, respectively, which makes the analysis of average computation MSE

difficult. Thus, we analyze an upper bound of the average computation MSE. From Lemma 1b,

letting a = 1√
PhK

always results in an MSE no smaller than that in (20b), and thus we have

E[MSE]

K
≤ 1

K
E

[
K∑
k=1

∣∣∣∣1− hk
hK

∣∣∣∣2 +
σ2

Ph2K

]
≤ 1 + E

[
σ2

PKUK

]
, (30)

where the last inequality in (30) is due to the fact that hk ≤ hK ,∀k.

Again, using the property of order statistics [26], the largest sample of K standard exponential

distribution UK has the pdf as

fUK
(uK) =

Ke
−uK (1− e−uK )K−1, uK ≥ 0

0, uK < 0
(31)

Applying (31) onto (30), it is obtained as

E[MSE]

K
≤ 1 +

∫ ∞
0

e−x(1− e−x)K−1
x

dx ≤ 1 +

∫ ∞
0

e−x(1− e−x)
x

dx = 1 + ln 2 <∞.

Also, it can be directly proved that lim supK→∞ E[MSE]/K is greater than a positive constant

by using Theorem 3 from the latter part of the paper. We have the following result.

Corollary 4. The average computation MSE of the energy-greedy policy is upper bounded by

1 + ln 2, and the scaling law of the average computation MSE can be written as

E[MSE]

K
∼ 1, K →∞.

This policy is not a computation-effective one.

2) Average Power Consumption: From (20a), each sensor uses the same power P for infor-

mation transmission, and we have the result below.

Corollary 5. The average power consumption of the energy-greedy policy is

E[PW]

K
= lim

K→∞

E[PW]

K
= P 6= 0.

This policy is not an energy-efficient one.
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Comparing Corollaries 4 and 5 with Corollaries 2 and 3, the energy-greedy policy provides

a better computation performance but has a lower energy efficiency than the channel-inversion

policy when K is large. Therefore, there exists a design tradeoff between the computation

effectiveness and the energy efficiency, and it is important to see whether there exists a Tx-Rx

scaling policy that is both computation-effective and energy-efficient.

C. The Existence of Computation-Effective and Energy-Efficient Policies

We introduce a new type of policy and study its scaling laws in terms of average compu-

tation MSE and average power consumption, which will further shed lights on the existence

of computation-effective and energy-efficient policies and the scaling laws of the computation-

optimal policy.

1) Construction of A New Policy:

Definition 6 (First-ı policy). A Tx-Rx scaling policy of the AirComp system is a first-ı policy

if it satisfies:

i) the critical number is determined by a function, i.e., i = ı(K), where ı : N→ N and ı(K) ≤ K,

ii) the Rx-scaling factor a ∈ Si, and

iii) the Tx-scaling factor bk is given by (8), ∀k ∈ {1, · · · , K}.

Remark 6. Different from the optimal policy, where the critical number depends on all the

values of the channel coefficients, a first-ı policy simply determines its critical number based on

the total number of sensors K. The first i = ı(K) sensors with the smallest channel coefficients

use the maximum power for transmission.

2) Scaling Law of Average Computation MSE: For a first-ı policy, using Definition 6, it is

clear that
1

hı(K)+1

√
P
< a ≤ 1

hı(K)

√
P
. (32)

Taking the inequality (32) into (9), an upper bound of MSE is obtained as

MSE ≤
ı(K)∑
k=1

(
hk

hı(K)+1

− 1

)2

+
σ2

P

1

h2ı(K)

≤ ı(K) +
σ2

P

1

Uı(K)

. (33)

and a lower bound of MSE is obtained as

MSE >

ı(K)∑
k=1

(
hk
hı(K)

− 1

)2

+
σ2

P

1

Uı(K)+1

. (34)
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Then, we have the following result.

Theorem 3. For a first-ı policy, the average computation MSE of the AirComp system has the

following properties that

1) if lim infK→∞ ı(K) ≤ 2,

lim sup
K→∞

E[MSE]

K
≥ σ2

3P
, (35)

2) if lim infK→∞ ı(K) > 2 and lim supK→∞ ı(K)/K = c > 0,

lim sup
K→∞

E[MSE]

K
≥ 1

c
µ

(
c

1 + c

)
, (36)

where

µ(x) ,
x

1− x − log(1− x)− 2

√
x

1− x sin−1
(√

x
)
, (37)

3) if lim infK→∞ ı(K) > 2 and limK→∞ ı(K)/K = 0,

E[MSE]

K
∼ ı(K)

K
+

1

ı(K)
, K →∞. (38)

Proof. See Appendix B. �

For case 1) in (35), the average computation MSE does not converge to zero and such the first-ı

policy is not computation-effective. From case 2) in (36), interestingly, we see that the energy-

greedy policy in Definition 2, which has lim supK→∞ ı(K)/K = 1, is not computation-effective,

since lim supK→∞ E[MSE]/K ≥ µ(1/2) ≈ 0.12 > 0. For case 3), from (38), E[MSE]/K

converges to zero iff ı(K) = o(K) and lim infK→∞ ı(K) → ∞. Moreover, the average com-

putation MSE has the decay rate of 1/
√
K when ı(K) ∼

√
K, while if ı(K) = o(

√
K) or

1/ı(K) = o(1/
√
K), we have 1/ı(K) � ı(K)/K or 1/ı(K) � ı(K)/K in (38), respectively,

and the decay rate of the average computation MSE is larger than 1/
√
K. Therefore, we have

the following result.

Proposition 3. A first-ı policy is computation-effective iff ı(K) = o(K) and lim infK→∞ ı(K)→
∞. The largest decay rate of the average computation MSE achieved by first-ı policies is

E[MSE]

K
∼ 1√

K
,K →∞,

when the critical-number function ı(K) ∼
√
K.

From (15), the computation-optimal policy surely results in an average computation MSE no

larger than that of a first-ı policy, we have the following result.
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Proposition 4. The computation-optimal policy is a computation-effective one, and its average

computation MSE has at least a decay rate of O(1/
√
K) when K →∞.

3) Scaling Law of Average Power Consumption: From Definition 6, the power consumption

of a first-ı policy is

PW = ı(K)P +
1

a2

K∑
k=ı(K)+1

1

Uk
, a ∈ Sı(K). (39)

We have the following result of its average power consumption.

Theorem 4. For a first-ı policy, the average power consumption of the AirComp system has the

following properties that

1) if lim infK→∞ ı(K)/K = 1,

lim sup
K→∞

E[PW]

K
= P, (40)

2) if lim supK→∞ ı(K)/K = c′ > 0,

lim sup
K→∞

E[PW]

K
≥ c′P, (41)

3) if limK→∞ ı(K)/K = 0,

O

(
ı(K)

K

)
≤ lim sup

K→∞

E[PW]

K
≤ O

(
ı(K) log(K)

K

)
. (42)

Proof. See Appendix C. �

From (42), a first-ı policy is energy-efficient as long as the critical number function ı(K) has

a lower divergence rate of K/ log(K), and the decay rate of the average power consumption is

no larger than O (ı(K)/K). Using Proposition 3 and Theorem 4, the following result can be

obtained directly.

Proposition 5. The computation-effective first-ı policy achieving the minimum average compu-

tation MSE, i.e., ı(K) ∼
√
K when K → ∞, is also energy-efficient, and its average power

consumption has a decay rate between O
(

1/
√
K
)

and O
(

log(K)/
√
K
)

.

Note that the scaling-law results of first-ı policies for average power consumption cannot

provide insights directly into that of the computation-optimal policy. This is because the power

consumption of the computation-optimal policy in (16) relies on the optimal critical number,

which is determined by the sequence {gi} in (11), and the statistics of the optimal critical number
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TABLE I: Computation effectiveness and energy efficiency of AirComp Policies.
Computation-Effective Policy Energy-Efficient Policy

Benchmark Policy 1 [12, 13] 7 3

Benchmark Policy 2 7 7

Computation-Optimal Policy 3 3

First-ı Policy with ı(K) =
√
K 3 3

First-ı Policy with ı(K) = K/2 7 7

is difficult to analyze. Nevertheless, we numerically show that this policy is also an energy-

efficient one in the following section. Therefore, by using the results obtained in this section,

the computation effectiveness and energy efficiency of benchmark policies 1 and 2, computation-

optimal policy, and two first-ı policies, i.e., ı(K) = max{1, b
√
Kc} and ı(K) = max{1, bK/2c}

are summarized in Table I.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the average computation MSE and the average power

consumption of the five Tx-Rx scaling policies of the AirComp system in Table I. Recall

that benchmark policy 1 is the channel-inversion policy which has been commonly considered

in the literature of AirComp [12, 13], and benchmark policy 2 is the energy-greedy policy

defined in Sec. III-C. Note that for the first-ı policies, the Rx-scaling factor is chosen as

a =
(
1/hı(K)+1 + 1/hı(K)

)
/(2
√
P ) ∈ Sı(K). Unless otherwise stated, we set the number of

sensors K = 10, the sensor’s transmission power limit P = 10, the receiving noise power

σ2 = 1, and the channel coefficients between the sensors and the receiver follow the i.i.d.

Rayleigh distribution with unit variance, i.e., if a sensor transmits signal with peak power, the

average received SNR is 10 dB. The average computation MSE, E[MSE]/K, and the average

power consumption, E[PW]/K, induced by different policies are evaluated by using Monte Carlo

simulation with 106 random channel realizations for calculating the average of MSE/K and

PW/K based on (5) and (6), respectively. Also, the standard deviations of MSE/K and PW/K

are evaluated as the confidence intervals of the average computation MSE and the average power

consumption, respectively. For the computation-optimal policy, we also evaluate the average and

the standard deviation of its critical number using Monte Carlo simulation with 106 points.

In Fig. 3, using Theorem 1, we plot the average critical number of the computation-optimal

policy, E[i?], and the confidence region of i? with different number of sensors K. We see both

the average and the standard deviation of the critical number monotonically increase with K.
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Fig. 3: The average critical number of the computation-optimal policy versus the number of sensors.

Fig. 4: The average computation MSE versus K. Fig. 5: The standard deviation of MSE/K versus K.

Also, we plot the critical number of two first-ı policies with ı(K) =
√
K and K1/3, respectively.

It shows that the scaling law of the average critical number of the computation-optimal policy

has the properties that E[i?] > K1/3 and E[i?] <
√
K, when K > 10.

In Figs. 4 and 5, we plot the average computation MSE of the AirComp system and the stan-

dard deviation of MSE/K, respectively, with different policies in Table I, excluding benchmark

policy 1, which has an infinite average computation MSE. We see that the computation-optimal

policy has a remarkably lower average computation MSE than the other policies, and the policy

with ı(K) =
√
K is better than the one with ı(K) = K/2, which is better than benchmark

policy 2. Also, it can be observed that both the policy with ı(K) =
√
K and the computation-

optimal policy have average computation MSEs approaching to zero with the increasing K,

which verifies Propositions 3 and 4, respectively. However, benchmark policy 2 and the policy
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Fig. 6: The average power consumption versus K. Fig. 7: The standard deviation of PW/K versus K, where

benchmark policy 2 which has zero standard deviation of

PW/K, is not included in the logarithmic-scale plot.

with ı(K) = K/2 have average computation MSEs bounded away from zero and converge to

0.35 and 0.15, respectively, which are in line with Corollary 4 and Theorem 3. Nevertheless, all

these four policies have diminishing standard deviations of MSE/K with the increasing K, which

means that MSE/K convergences to average computation MSE in probability when K → ∞.

Also, it is interesting to see that the policy with a lower average computation MSE has a smaller

standard deviation when K > 10.

In Figs. 6 and 7, we plot the average power consumption of the AirComp system, E[PW]/K

and the standard deviation of PW/K, respectively, with different policies in Table I. Note that

the confidence regions (standard derivations) of the first-ı policies (i.e., the red and black lines) in

Fig. 6 is too narrow to be visible, and the standard derivations have been clearly illustrated as the

red and black dashed lines in Fig. 7. We see that benchmark policies 1 and 2 have the lowest and

the highest power consumption, respectively. The policy with ı(K) =
√
K and the computation-

optimal policy both have average power consumption approaching to zero with the increasing

K, which is in line with Propositions 5, and the former has a lower power consumption than the

latter. Comparing Fig. 6 with Fig. 4, the computation-optimal policy has a better computation

performance but a higher power consumption than the policy with ı(K) =
√
K, which again

shows the design tradeoff between computation effectiveness and energy efficiency. Also, we

see the average power consumption of the policy with ı(K) = K/2 converges to 5, which is

greater than P/3 = 3.3, which is in line with Theorem 4.

From Fig. 7, it can be observed that all the polices have diminished standard deviations
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Fig. 8: The average critical number of the computation-

optimal policy versus the number of sensors.
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Fig. 9: Multi-antenna receiver case: the average power

consumption versus K, where N = 8.

of PW/K with the increasing K, which means that PW/K convergences to average power

consumption in probability when K →∞. It is interesting to see that the standard deviations of

the first-ı policies are much smaller than that of the computation-optimal policy. This is mainly

because the critical number is deterministic for the former and is stochastic for the latter. Recall

that for a first-ı policy, the critical number does not rely on the random channel realizations, while

the critical number of the computation-optimal policy heavily relies on the channel realizations,

and thus has a large variance as shown in Fig. 3.

Fig. 8 shows the average power consumption of the computation-optimal policy with different

transmission-power limits. We see that the average power consumption in all different cases

decays to zero with the increasing number of sensors, which verifies that the policy is an energy-

efficient one.

In Fig. 9, we evaluate the average computation MSE achieved in the multi-antenna receiver

case with different policies, including the policy given in [12], the optimal antenna-selection

policy and the random search of unit vector policy given in Sec. III-B. The number of receiver

antenna is N = 8. We see that the proposed optimal antenna-selection policy can achieve at

least a 40 times lower MSE than that of the method in [12]. As expected, the MSE reduces with

the increasing random search trials. It is important to see that similar to the single-antenna case,

the the average computation MSEs achieved by the optimal antenna selection and the random

search policies monotonically decrease with the increasing number of sensors in the multi-

antenna receiver case. The fluctuations of the policy [12] imply that the average computation

MSE of the policy does not exist in the Rayleigh fading scenario.
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VII. CONCLUDING REMARKS

In this work, we have derived the computation-optimal policy of the AirComp system, com-

pared the AirComp system with the traditional MAC system, and investigated the ergodic

performance of the AirComp system with different Tx-Rx scaling policies in terms of the number

of sensors. Our results have shown that the computation-optimal policy has a vanishing average

computation MSE and a vanishing average power consumption with the increasing number

of sensors. By comparing the performance of the computation-optimal policy with that of the

proposed first-ı policies, it reveals a design tradeoff between computation effectiveness and

energy efficiency, which is very important for AirComp-system implementation with practical

constraints of computation accuracy and energy consumption. Inspired by such a tradeoff in

AirComp, we will investigate energy-efficiency optimization problems in our future work.

APPENDIX A: PROOF OF COROLLARY 3

The joint distribution function f(u1, u2, · · · , uK) can be rewritten as

f(u1, u2, · · · , uK) = f(u2, · · · , uK |u1)f(u1). (A.1)

Since the average power in (29) does not rely on the order of the largest K − 1 channel power

gains, Uk, k > 1, in the rest of the proof, we treat {Uk} as K independent exponential random

variables that Uk,∀k > 1, is no smaller than U1. In this sense, the conditional joint distribution

in (A.1) can be rewritten as

f(u2, · · · , uK |u1,Ξ1)= f(u2|u1,Ξ1) · · · f(uK |u1,Ξ1)=

 e(K−1)u1−(u2+···+uK), u2, · · · , uK > u1

0, else,

where Ξ1 is the event that U1 ≤ U2, · · · , UK , and f(u1) given in (27) can be denoted as f(u1|Ξ1).

Then, it can be obtained that

E

[
K∑
k=2

U1

Uk

∣∣∣∣Ξ1

]
=
K lnK − (K − 1)

K − 1
. (A.2)

Corollary 3 is obtained by taking (A.2) into (29).

APPENDIX B: PROOF OF THEOREM 3

From (33), an upper bound of the average computation MSE is derived as

E[MSE]

K
≤ ı(K)

K
+

σ2

PK
E

[
1

Uı(K)

]
=
ı(K)

K
+

σ2

PK
E

[
1∑ı(K)

j=1
Zj

K−j+1

]
(A.3)

≤ ı(K)

K
+

σ2

PK
E

[
K∑ı(K)
j=1 Zj

]
=
ı(K)

K
+
σ2

P

1

ı(K)− 1
, (A.4)
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where the equality in (A.3) is due to the property that for K random samples from an expo-

nential distribution with parameter 1, the order statistics Ui for i = 1, 2, 3, · · · , K each has the

distribution Ui
d
=
∑i

j=1
Zj

K−j+1
[26], and Zj, j = 1, · · · , i are i.i.d. standard exponential random

variables. The equality in (A.4) is due to the fact that 1∑ı(K)
j=1 Zj

follows inverse gamma distribution

with mean 1
ı(K)−1 .

From (34), a lower bound of the average computation MSE is derived as

E[MSE]

K
≥ 1

K

ı(K)∑
k=1

E

[(
hk
hı(K)

− 1

)2
]

+ E

[
σ2

PK

1

Uı(K)+1

]
. (A.5)

Then, we derive the lower bounds of the first and second terms on the right-hand side (RHS)

of (A.5) using the following technical lemma.

Lemma 3a. Let X1, X2, · · · , XK be a random sample from the standard exponential distribution,

and let X(1), X(2), · · · , X(K) denote the order statistics obtained from this sample. The expectation

of the ratio X(i)

X(j)
has the inequality E

[
X(i)

X(j)

]
< (i+1)

(K−i+1)
K

(j−2) , ∀j > 2.

Proof. It can be derived that

E

[
X(i)

X(j)

]
≤
√

E
[
X(i)

]
E

[
1

X(j)

]
≤
√

(i2 + i)

(K − i+ 1)2
K2

(j − 1)(j − 2)
<

(i+ 1)

(K − i+ 1)

K

(j − 2)
,∀j > 2,

(A.6)

where the first inequality in (A.6) is due to the Cauchy-Schwarz inequality, i.e., E[|XY |] ≤√
E[X2]E[Y 2], and the second inequality in (A.6) is obtained by using the inequalities

1

K

i∑
j=1

Zj � Xi
d
=

i∑
j=1

Zj
K − j + 1

� 1

K − i+ 1

i∑
j=1

Zj,∀i, (A.7)

and the property that
∑i

j=1 Zj and 1∑i
j=1 Zj

follows the gamma distribution Gamma(i, 1) and the

inverse gamma distribution Inv −Gamma(i, 1), respectively. �

For the second term on the RHS of (A.5), using the Jensen’s inequality and (A.7), we have

E

[
σ2

PK

1

Uı(K)+1

]
≥ σ2

PK

K − ı(K)

ı(K) + 1
. (A.8)

Thus, if lim inf
K→∞

ı(K) ≤ 2, lim sup
K→∞

E[MSE]
K
≥ σ2

PK

K−lim inf
K→∞

ı(K)

lim inf
K→∞

ı(K)+1
≥ σ2

3P
, K →∞, completing the proof

of (35). In the following, we assume that lim inf
K→∞

ı(K) > 2.
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For the first term on the RHS of (A.5), we have the following inequality

E

[(
hk
hı(K)

− 1

)2
]
≥
(

1−
√
E

[
Uk
Uı(K)

])2

≥

[1−√ K

K − k + 1

k + 1

ı(K)− 2

]+2

,∀ı(K)>2, k≤ ı(K).

where the first inequality is due to the Jensen’s inequality and the convexity of the function

(1−√x)2, the second inequality is obtained by Lemma 3a, and [x]+ , max{x, 0}.
Therefore, it can be obtained that

1

K

ı(K)∑
k=1

E

[(
hk
hı(K)

− 1

)2
]
≥ 1

K

ı(K)∑
k=1

[1−
√

K

K − k + 1

k + 1

ı(K)− 2

]+2

,∀ı(K)>2 (A.9)

≥ 1

K

ı(K)∑
k=2

[1−
√

K

K − k
k

ı(K)− 2

]+2

(A.10)

≥ 1
ı(K)−2
K

g(K)∑
k=2


√√√√ g(K)

K

1− g(K)
K

−
√

k
K

1− k
K

2

1

K
=

1
ı(K)−2
K

∫ g(K)
K

0


√√√√ g(K)

K

1− g(K)
K

−
√

x

1− x

2

dx+o(
1

K
)


(A.11)

=
1

ı(K)−2
K

(
µ

(
g(K)

K

))
+ o(

1

ı(K)
), (A.12)

where g(K) =
⌊

ı(K)−2
1+(ı(K)−2)/K

⌋
, and µ(x) is defined in (37) and it can be proved that µ(x) =

1
6
x2 + o(x3), x → 0. (A.10) is due to K − k + 1 > K − k − 17 and is obtained by replacing

(k + 1) with k, (A.11) is due to the facts that g(K)/K < 1/2 and the function
√
x/(1− x) is

monotonic and bounded in [0, 1/2], and is obtained by using Riemann integral to approximate

Riemann sum when K is large.

Assuming that lim sup
K→∞

ı(K)
K

= c 6= 0, from (A.12), we have lim sup
K→∞

E[MSE]
K
≥ lim sup

K→∞

1
K
×∑ı(K)

k=1 E

[(
hk
hı(K)

− 1
)2]
≥ 1

c
µ( c

1+c
), completing the proof of (36).

7Note that here we assume that ı(K) + 1 < K in (A.9). For the case that ı(K) + 1 ≥ K, the summation in (A.9) can be

rewritten as
∑ı(K)−2

k=1

([
1−

√
K

K−k+1
k+1

ı(K)−2

]+)2

+
∑ı(K)

k=ı(K)−1

([
1−

√
K

K−k+1
k+1

ı(K)−2

]+)2

. Following the similar steps

of the ı(K) + 1 < K case, this one has the same asymptotic results as the ı(K) + 1 < K case and the detailed analysis is

omitted for brevity.
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Assuming that lim
K→∞

ı(K)
K

= 0, we have µ(g(K)/K) = 1
6

(
ı(K)
K

)2
+ o

((
ı(K)
K

)3)
+ o( 1

ı(K)
).

Taking it into (A.12) and jointly using (A.8) in (A.5), it can be obtained that

E[MSE]

K
≥ 1

6

ı(K)

K
+
σ2

P

1

ı(K)
+ o

(
ı(K)

K

)
+ o(

1

ı(K)
),K→∞. (A.13)

From the upper and lower bounds (A.4) and (A.13), (38) can be obtained.

APPENDIX C: PROOF OF THEOREM 4

From (39), an upper bound and a lower bound of the average power consumption can be

obtained as

E[PW]

K
≤ P

K

ı(K) +
K∑

k=ı(K)+1

E

[
h2ı(K)+1

h2k

] ,
E[PW]

K
≥ P

K
ı(K). (A.14)

For the case that lim infK→∞ ı(K) = K, using the lower bound in (A.14) and the fact

that PW/K ≤ P , we have lim supK→∞
E[PW]
K

= P , which completes the proof of (40). For

the case that lim supK→∞ ı(K)/K = c′ 6= 0, using the lower bound in (A.14), we have

lim supK→∞
E[PW]
K
≥ c′P , which completes the proof of (41).

For the case that lim supK→∞ ı(K)/K = 0, using (A.14), we further have

E[PW]

K
<
P

K

ı(K)+
K∑

k=ı(K)+1

(ı(K) + 2)

(K − ı(K))

K

(k − 2)

 ,∀i(K)<K (A.15)

<
P

K

(
ı(K)+

(ı(K) + 2)K

(K − ı(K))

K∑
k=1

1

k

)
=P

(
ı(K)

K
+
ı(K) + 2

K − ı(K)
O(log(K))

)
, K →∞(A.16)

= O

(
ı(K) log(K)

K

)
, K →∞,

and E[PW]
K
≥ P

K
ı(K) = O

(
ı(K)
K

)
, K → ∞, where (A.15) is a consequence of Lemma 3a, and

the equality in (A.16) is due to the property of the harmonic series, which completes the proof

of (42).
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