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Abstract—In intelligent reflecting surface (IRS) assisted com-
munication systems, the acquisition of channel state information
is a crucial impediment for achieving the beamforming gain of
IRS because of the considerable overhead required for channel
estimation. Specifically, under the current beamforming design
for IRS-assisted communications, in total K MN + K M channel
coefficients should be estimated, where K , N and M denote the
numbers of users, IRS reflecting elements, and antennas at the
base station (BS), respectively. For the first time in the literature,
this paper points out that despite the vast number of channel
coefficients that should be estimated, significant redundancy
exists in the user-IRS-BS reflected channels of different users
arising from the fact that each IRS element reflects the signals
from all the users to the BS via the same channel. To utilize this
redundancy for reducing the channel estimation time, we propose
a novel three-phase pilot-based channel estimation framework for
IRS-assisted uplink multiuser communications, in which the user-
BS direct channels and the user-IRS-BS reflected channels of a
typical user are estimated in Phase I and Phase II, respectively,
while the user-IRS-BS reflected channels of the other users are
estimated with low overhead in Phase III via leveraging their
strong correlation with those of the typical user. Under this
framework, we analytically prove that a time duration consisting
of K +N +max(K −1, ⌈(K −1)N/M⌉) pilot symbols is sufficient for
perfectly recovering all the K MN+K M channel coefficients under
the case without receiver noise at the BS. Further, under the
case with receiver noise, the user pilot sequences, IRS reflecting
coefficients, and BS linear minimum mean-squared error channel
estimators are characterized in closed-form.

Index Terms—Intelligent reflecting surface (IRS), channel esti-
mation, multiple-input multiple-output (MIMO), massive MIMO.

I. INTRODUCTION

A. Motivation

Recently, intelligent reflecting surface (IRS) and its various

equivalents have emerged as a promising solution to enhance
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the network throughput [2]–[5], thanks to their capability of

modifying the wireless channels between the base station

(BS) and users to be more favorable to communications via

inducing phase shift to the incident signal at each reflecting

element in real-time, as illustrated in Fig. 1. Specifically, if

perfect channel state information (CSI) is available, with the

aid of a smart controller, the IRS is able to properly adjust its

reflection coefficients at different reflecting elements based on

the CSI such that the desired signals and interfering signals

are added constructively and destructively at the receivers,

respectively. Along this line, the IRS reflection coefficients

optimization with perfect CSI has been widely studied under

various setups (see, e.g., [6]–[16]), where the effectiveness of

IRS in enhancing the system throughput was verified.

However, the above throughput gain in IRS-assisted com-

munication systems is critically dependent on the availability

of CSI, the acquisition of which is quite challenging in prac-

tice. Particularly, to reduce the implementation cost, the IRS is

generally not equipped with any radio frequency (RF) chains

and thus not capable of performing any baseband processing

functionality. Therefore, the user-IRS and IRS-BS channels

cannot be separately estimated via traditional training-based

approaches in general. Instead, only the concatenated user-

IRS-BS channels can be estimated based on the training sig-

nals sent from the users/BS, and the corresponding number of

channel coefficients can be quite large in practice. Specifically,

consider a single cell consisting of a BS with M antennas, K

single-antenna users, and one IRS with N reflecting elements.

It can be shown that the number of channel coefficients

involved for designing the IRS reflection coefficients based

on the algorithms proposed in [6], [7] is K MN + K M. Con-

sidering the current paradigm shift towards massive multiple-

input multiple-output (MIMO) [17]–[20], i.e., a large M, and

massive connectivity [21], [22], i.e., a large K , it is expected

that the estimation of these channel coefficients can require

tremendous time. This motivates us to devote our endeavour

to developing efficient channel estimation strategies for IRS-

assisted multiuser communication in this paper.

B. Prior Work

Recently, several works have proposed various strategies to

efficiently estimate the channels for IRS-assisted communica-

tion [1], [23]–[29]. For the single-user system, in [23], [24],

an on-off state control based channel estimation strategy was

proposed, where only one IRS element is switched on at each

http://arxiv.org/abs/1912.11783v4
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Fig. 1. An IRS-assisted multiuser communication system: for any user k and
user j, the nth element of the IRS reflects their signals to the BS via the same
channel.

time slot such that its reflected channel for the user can be

estimated without interference from the reflected signals of

the other IRS elements. Under this strategy, N time slots are

sufficient to perfectly estimate all the reflected channels for the

user for the case without receiver noise at the BS. On the other

hand, [25], [26] proposed a novel discrete Fourier transform

(DFT) based channel estimation strategy, in which all the

IRS elements are on at each time slot, and their reflection

coefficients are determined by the DFT matrix. Under this

strategy, although still N time slots are required to perfectly

estimate all the reflected channels in the case without receiver

noise at the BS, the channel estimation mean-squared error

(MSE) in the case with receiver noise is significantly reduced

compared to the on-off state control based strategy, because the

IRS elements are always on to reflect all the signal power to

the BS. Further, [27] proposed a Lagrange-based estimation

strategy to minimize the MSE for channel estimation. Last,

[28] formulated the single-user channel estimation problem as

a combined sparse matrix factorization and matrix completion

problem and proposed to apply the compressed sensing tech-

nique to solve the problem. On the other hand, for the multi-

user case, our conference paper [1] pointed out the possibility

of reducing the channel estimation time by utilizing the fact

that the IRS reflects all users’ signals to the BS via the same

channels. However, there lacks a systematic study of this

scheme. Moreover, [29] modeled the IRS reflected channels

as sparse channels, and then applied the compressed sensing

technique to estimate the channels with reduced time duration.

However, whether the IRS reflected channels are sparse in

practice is still unknown, while this paper aims to propose a

channel estimation framework that can be applied to the more

general channel model without assuming any channel property.

C. Main Contributions

In this paper, we consider an IRS-assisted multiuser uplink

communication system where multiple single-antenna users

communicate with a multi-antenna BS with the help of an IRS.

Under this setup, we investigate the passive pilot based channel

estimation approach, where the IRS elements passively reflect

the pilot sequences sent by the users to the BS such that the

BS is able to estimate the CSI associated with the IRS. The

main contributions of this paper are summarized as follows.

First, we propose a novel three-phase channel estimation

framework for IRS-assisted multiuser uplink communications.

The foundation of this framework lies in the correlation among

the user-IRS-BS reflected channels of different users: each

IRS element reflects the signals from different users to the BS

via the same channel, as illustrated in Fig. 1. To make the

best use of this correlation, the proposed channel estimation

framework works as follows. In Phase I, the IRS is switched

off such that the BS can estimate its direct channels with the

users. In Phase II, the IRS is switched on and only one typical

user is selected to transmit non-zero pilot symbols such that

its IRS reflected channels can be estimated. In Phase III, the

other users transmit their pilot symbols and their IRS reflected

channels can be efficiently estimated by exploiting the fact

that these reflected channels are scaled versions of the typical

user’s reflected channels and thus only the scaling factors

(scalars), rather than the whole channels (vectors), need to

be estimated.

Second, for the ideal case without receiver noise at the BS,

we show that the theoretically minimal pilot sequence length

to perfectly estimate all the channel coefficients under the

proposed three-phase framework is K + N +max(K − 1, ⌈(K −
1)N/M⌉). Specifically, it is shown that K and N time slots

are sufficient to estimate the direct channels of all the users

and IRS reflected channels of the typical user in Phase I and

Phase II, respectively, while max(K − 1, ⌈(K − 1)N/M⌉) time

slots are sufficient for perfect channel estimation in Phase III.

Interestingly, the minimum pilot sequence length decreases

with M generally. Such a result is in sharp contrast to the

traditional multiuser channel estimation results without IRS,

where the minimum pilot sequence length is independent of

the number of receive antennas at the BS [30].

Third, for the practical case with receiver noise at the BS,

we design the linear minimum mean-squared error (LMMSE)

channel estimation solutions in all the three phases. In each

phase, the user transmit pilot, the IRS reflection coefficients,

and the BS LMMSE channel estimators are characterized in

closed-form. Moreover, the corresponding MSE for channel

estimation is also derived to evaluate the performance of our

proposed three-phase framework.

Last but not least, this paper reveals the significant role of

massive MIMO in channel estimation for IRS-assisted uplink

communications. Especially, in the massive MIMO regime

with M > N , the minimum pilot sequence length under our

framework is 2K+N−1, which is scalable with the number of

users: if there is one more user in the system, only 2 additional

pilot symbols are sufficient to estimate the new MN + M

channel coefficients associated with this user.

D. Organization

The rest of this paper is organized as follows. Section II

describes the system model for our considered IRS-assisted

multiuser communication system. Section III introduces the

three-phase channel estimation protocol. Section IV presents

the minimum pilot sequence length for perfect channel es-

timation in closed-form for the case without noise at the
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BS. Section V proposes a closed-form solution of user pilot

sequences, IRS reflecting coefficients and BS LMMSE channel

estimators for the case with noise at the BS. Numerical results

are provided in Section VI. Finally, Section VII concludes the

paper and outlines the future research directions.

Notation: I and 0 denote an identity matrix and an all-zero

matrix, respectively, with appropriate dimensions. For a square

full-rank matrix S, S−1 denotes its inverse. For a matrix M of

arbitrary size, MH , MT and M∗ denote the conjugate trans-

pose, transpose and conjugate of M, respectively. Moreover,

diag(x1, · · · , xK ) denotes a diagonal matrix with the diagonal

elements given by x1, · · · , xK . ⌈x⌉ and ⌊x⌋ denote the smallest

integer that is no smaller than x and the largest integer that is

no larger than x, respectively.

II. SYSTEM MODEL

We consider a narrow-band wireless system with K single-

antenna users simultaneously communicating with a BS in the

uplink, where the BS is equipped with M antennas. An IRS

equipped with N passive reflecting elements is deployed for

enhancing the users’ communication performance, as shown in

Fig. 1. We assume quasi-static block-fading channels, where

all the channels remain approximately constant in each fading

block. Moreover, the length of each fading block is denoted

by T symbols. Let hk ∈ CM×1, k = 1, · · · ,K , denote the direct

channel from the kth user to the BS. Further, let rn ∈ CM×1

and tk,n ∈ C denote the channels from the nth IRS element

to the BS and from the kth user to the nth IRS element,

respectively, k = 1, · · · ,K , n = 1, . . . , N .

In this paper, hk’s are modeled as

hk = (CB
k )

1
2 h̃k, ∀k, (1)

where CB
k

∈ CM×M with CB
k

≻ 0 denotes the BS receive

correlation matrix for user k, and h̃k ∼ CN(0, βBU
k

I ) follows

the independent and identically distributed (i.i.d.) Rayleigh

fading channel model, with βBU
k

denoting the path loss of hk .

Further, define R = [r1, · · · , rN ] as the overall channel from

the IRS to the BS. Then, R is modeled by

R = (CB) 1
2 R̃(CI) 1

2 , (2)

where CB ∈ CM×M with CB ≻ 0 and CI ∈ CN×N with CI ≻
0 denote the BS receive correlation matrix and IRS transmit

correlation matrix for R, respectively, and R̃ ∼ CN(0, βBINI )
is the i.i.d. Rayleigh fading component, with βBI denoting the

path loss of R. At last, define tk = [tk,1, · · · , tk,N ]T as the

overall channel from user k to the IRS, ∀k. Then, tk’s are

modeled as follows:

tk = (CI
k)

1
2 t̃k, ∀k, (3)

where CI
k

∈ CN×N with CI
k

≻ 0 denotes the IRS receive

correlation matrix for tk , and t̃k ∼ CN(0, βIU
k
I ) denotes the

i.i.d. Rayleigh fading component, with βIU
k

denoting the pass

loss of tk .

Thanks to the IRS controller, each element on IRS is able

to dynamically adjust its reflection coefficient for re-scattering

the electromagnetic waves from the users to the BS such that

the useful signal and harmful interference can be added at the

BS in constructive and destructive manners, respectively [2]–

[4]. Specifically, let φn,i denote the reflection coefficient of

the nth IRS element at the ith time instant over the considered

coherence block, n = 1, · · · , N , i = 1, · · · ,T , which satisfies

|φn,i | =
{

1, if element n is on at time instant i,

0, otherwise.
(4)

Thus, if an IRS element is on, it can only change the phase

of its incident signal [6], [7].

With the existence of the IRS, the received signal of the

BS at time instant i, i = 1, · · · ,T , is the superposition of the

signals from the users’ direct communication links and the

reflected links via the IRS, which is expressed as

y(i) =
K∑

k=1

hk

√
px

(i)
k
+

K∑

k=1

N∑

n=1

φn,i tk,nrn
√

px
(i)
k
+ z(i)

=

K∑

k=1

(

hk +

N∑

n=1

φn,igk,n

)
√

px
(i)
k
+ z(i), (5)

where x
(i)
k

and z(i) ∼ CN
(
0, σ2I

)
denote the transmit signal of

user k and additive white Gaussian noise (AWGN) at the BS

at time instant i, respectively, p denotes the identical transmit

power of the users, and

gk,n = tk,nrn, ∀n, k, (6)

denotes the user-IRS-BS reflected channel from the kth user

to the BS via the nth IRS element.

In this paper, we consider the legacy two-stage transmis-

sion protocol for the uplink communications, in which each

coherence block of length T symbols is divided into the

channel estimation stage consisting of τ < T symbols and data

transmission stage consisting of T − τ symbols. Specifically,

in the channel estimation stage, each user k is assigned with

a pilot sequence consisting of τ symbols:

ak = [ak,1, · · · , ak,τ]T, k = 1, · · · ,K, (7)

where the norm of ak,i is either zero or one, ∀k, i. At time

instant i ≤ τ, user k transmits xk,i = ak,i to the BS, and the

received signal at the BS is

y(i) =
K∑

k=1

(

hk +

N∑

n=1

φn,igk,n

)
√

pak,i + z(i), i ≤ τ. (8)

Define Y = [y(1), · · · , y(τ)] ∈ CM×τ as the overall received

signal at the BS across all the τ time instants of the channel

estimation stage. We should properly design user pilot symbols

ak,i’s and IRS reflection coefficients φn,i’s such that the BS is

able to estimate the CSI that is useful for the data transmission

stage (will be introduced later) based on the received signal

Y as well as its knowledge of ak,i’s and φn,i’s.

In the data transmission stage, the reflection coefficient of

each IRS element n is fixed over different time instants, i.e.,

φn,i = φn, i = τ + 1, · · · ,T [6], [7]. Moreover, to convey

the information, the transmit symbol of user k in the ith time

instant is modeled as a circularly symmetric complex Gaussian

(CSCG) random variable with zero mean and unit variance,

i.e., x
(i)
k

∼ CN(0, 1), k = 1, · · · ,K , i = τ + 1, · · · ,T . Then,
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Fig. 2. A flow graph for the proposed three-phase channel estimation framework.

at each time instant i = τ + 1, · · · ,T , the BS applies the

beamforming vector wk to decode the message of user k, i.e.,

ỹ
(i)
k
=

K∑

j=1

wH
k

(

h j+

N∑

n=1

φng j,n

)
√

px
(i)
j
+wH

k z(i) . (9)

Therefore, the achievable rate of user k, k = 1, · · · ,K , is

Rk =
T − τ

T
log2(1 + γk), (10)

where T−τ
T

denotes the fraction of time for data transmission,

and

γk =

p

����w
H
k

(
hk+

N∑
n=1

φngk,n

)����
2

∑
j,k

p

����w
H
k

(
h j+

N∑
n=1

φng j,n

)����
2

+σ2‖wk ‖2

. (11)

It is observed from (10) and (11) that to improve the user

rate by jointly optimizing the receive beamforming vectors

wk’s at the BS and reflection coefficients φn’s at the IRS, in

the channel training stage, the BS has to estimate MK+MKN

channel coefficients in hk’s, k = 1, · · · ,K , and gk,n’s, k =

1, · · · ,K , n = 1, · · · , N . Note that MK + MKN is generally a

very large number in next-generation cellular networks with

large-scale antenna arrays at the BSs (i.e., a large M) and a

massive number of connecting users (i.e., a large K). Further,

to increase the time duration for data transmission in (10),

very few pilot symbols can be utilized for estimating such

a large number of channel coefficients. To tackle the above

challenge, in the rest of this paper, we mainly focus on the

channel training stage in our considered system, and propose

an innovative scheme to estimate hk’s and gk,n’s accurately

with low training overhead. The robust beamforming design

for data transmission given the estimated channels with errors

will be left to our future work.

III. THREE-PHASE CHANNEL ESTIMATION PROTOCOL

In this section, we propose a novel three-phase channel es-

timation protocol for IRS-assisted multiuser communications.

The main idea is that although K MN unknowns need to be

estimated in gk,n’s, the degrees-of-freedom (DoF) for all these

channel coefficients is much smaller than K MN . Specifically,

each rn appears in all gk,n’s, k = 1, · · · ,K , according to (6),

since each IRS element n reflects the signals from all the K

users to the BS via the same channel rn. It is thus theoretically

feasible to employ much fewer pilot symbols to estimate

the K MN correlated unknowns in gk,n’s. Nevertheless, it is

challenging to practically exploit the correlations among the

channel coefficients arising from rn’s, since the IRS cannot

estimate rn’s due to the lack of RF chains.

In the following, we propose a novel three-phase channel

estimation protocol, as depicted in Fig. 2, which can exploit the

channel correlations arising from rn’s to reduce the estimation

time even without knowing rn’s. Specifically, in Phase I

consisting of τ1 symbols, define

aI
k = [ak,1, · · · , ak,τ1

]T, k = 1, · · · ,K, (12)

as the pilot sequence sent by user k. In this phase, all the IRS

elements are switched off, i.e.,

φn,i = 0, n = 1, · · · , N, i = 1, · · · , τ1 . (13)

Then, the received signal at the BS at time slot i of Phase I is

y(i) =
K∑

k=1

hk

√
pak,i + z(i), i = 1, · · · , τ1. (14)

The BS thus needs to estimate the direct channels hk’s based

on the above received signals.

In Phase II consisting of τ2 symbols, define

aII
k = [ak,τ1+1, · · · , ak,τ1+τ2

]T, k = 1, · · · ,K, (15)

as the pilot sequence of user k. In this phase, all the IRS

reflection elements are switched on, and merely one typical

user, denoted by user 1 for convenience, transmits non-zero

pilot symbols to the BS, i.e.,

aII
k = 0, k = 2, · · · ,K . (16)

Then, the received signal at the BS in time slot i (i = τ1 +

1, · · · , τ1 + τ2) of Phase II is

y(i) =
N∑

n=1

φn,ig1,n

√
pa1,i + h1

√
pa1,i + z(i). (17)

Based on its received signals in Phase II as well as knowledge

of h1 after Phase I, the BS estimates the IRS reflected channels

of this typical user, i.e., g1,n’s, ∀n.

In Phase III consisting of τ3 = τ − τ1 − τ2 symbols, define

aIII
k = [ak,τ1+τ2+1, · · · , ak,τ1+τ2+τ3

]T, k = 1, · · · ,K, (18)

as the pilot sequence of user k. In this phase, merely user 2

to user K transmit the non-zero pilot symbols to the BS, i.e.,

aIII
1 = 0. (19)

As a result, the received signal at the BS in time slot i (i =

τ1 + τ2 + 1, · · · , τ1 + τ2 + τ3) of Phase III is

y(i) =
K∑

k=2

N∑

n=1

φn,igk,n
√

pak,i +

K∑

k=2

hk

√
pak,i + z(i) . (20)

Intuitively, there are (K − 1)MN unknowns to be estimated

in gk,n’s, k ≥ 2. However, this number can be significantly
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reduced based on the following relationship between the user-

IRS-BS reflected channels of user 1 and the other users:

gk,n = λk,ng1,n, k = 2, · · · ,K, n = 1, · · · , N, (21)

where

λk,n =
tk,n

t1,n
, k = 2, · · · ,K, n = 1, · · · , N . (22)

By taking (21) into (20), the received signal at the BS in the

ith time slot of Phase III reduces to

y(i)=
K∑

k=2

N∑

n=1

φn,ig1,n

√
pak,iλk,n+

K∑

k=2

hk

√
pak,i+z

(i) . (23)

With known g1,n’s, n = 1, · · · , N , after Phase II, (23) reveals

that each channel vector gk,n with M unknowns, k ≥ 2, can

be efficiently recovered via merely estimating a scalar λk,n.

As a result, the number of unknowns to be estimated in Phase

III is significantly reduced.

For the purpose of drawing essential insights, in the rest of

this paper, we first introduce this protocol for the ideal case

without noise at the BS, i.e., z(i) = 0, ∀i, and characterize the

minimum pilot sequence length to estimate all the channels

perfectly. Such a result can theoretically demonstrate the

performance gain brought by this new protocol for channel

estimation in our considered system. Then, we will illustrate

how to implement our proposed three-phase channel estima-

tion framework in the practical case with noise at the BS and

characterize the MSE for estimating the channels.

IV. PERFORMANCE LIMITS FOR CASE WITHOUT NOISE

In this section, we consider the ideal case without noise

at the BS. In this scenario, the proposed three-phase channel

estimation protocol works as follows.

A. Phase I: Direct Channel Estimation

In the case without noise, i.e., z(i) = 0, ∀i, according to

[30], each user k can send

τ1 ≥ τ̃1 = K, (24)

pilot symbols to the BS for channel estimation. Then, based

on (14), the received signal at the BS over the whole phase is

Y I
= [y(1), · · · , y(τ1)]
=

√
p[h1, · · · , hK ][(aI

1), · · · , (aI
K )]T . (25)

As a result, the direct channels hk’s can be estimated perfectly

by solving (25) if the pilot sequences of different users are

orthogonal to each other, i.e.,

[(aI
1), · · · , (a

I
K )]T [(aI

1)
∗, · · · , (aI

K )∗] = τ1I . (26)

Since each pilot sequence consists of τ1 ≥ K symbols, it is

feasible to design aI
k
’s to satisfy (26). Then, according to (25),

hk’s can be perfected estimated as

[h1, · · · , hK ] =
1

τ1
√

p
Y I[(aI

1)∗, · · · , (aI
K )∗]. (27)

B. Phase II: Reflecting Channel Estimation for Typical User

In the second phase, to estimate g1,n’s, we only allow the

typical user, denoted by user 1, to transmit its pilot, as shown

in (16). Note that hk’s have already been perfectly estimated

by (27) in Phase I. Therefore, their interference for estimating

g1,n’s can be canceled from the received signal at the BS in

Phase II. According to (17), after interference cancellation,

the effective received signal at the BS at time instant i (i =

τ1 + 1, · · · , τ1 + τ2) in Phase II is

ȳ(i) = y(i) −
K∑

k=1

hk

√
pak,i =

N∑

n=1

φn,ig1,n

√
pa1,i . (28)

The overall effective received signal at the BS in the second

phase is then expressed as

Ȳ
II
= [ ȳ(τ1+1), · · · , ȳ(τ1+τ2)]
=

√
p[g1,1, · · · , g1,N ]ΦIIdiag(aII

1 ), (29)

where

Φ
II
=



φ1,τ1+1 · · · φ1,τ1+τ2

...
. . .

...

φN,τ1+1 · · · φN,τ1+τ2



. (30)

To solve (29), we can simply set

a1,i = 1, i = τ1 + 1, · · · , τ1 + τ2. (31)

In this case, it can be shown that as long as

τ2 ≥ τ̃2 = N, (32)

we can always construct a ΦII such that rank(ΦII) = N under

the constraint given in (4). The construction of such a ΦII can

be based on the DFT matrix

Φ
II
=



1 1 1 · · · 1

1 ω ω2 · · · ωτ2−1

1 ω2 ω4 · · · ω2(τ2−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(τ2−1)



, (33)

where ω = e−2πq/τ2 with q2
= −1. In this case, it follows that

Φ
II(ΦII)H = τ2I . As a result, the reflected channels of user 1

can be perfectly estimated as

[g1,1, · · · , g1,N ] =
1

τ2
√

p
Ȳ

II(ΦII)H . (34)

C. Phase III: Reflecting Channel Estimation for Other Users

To estimate the channels in Phase III, one straightforward

approach is to allow only one user k ≥ 2 to transmit τ2 ≥
N pilot symbols each time such that its reflected channels

gk,n’s, ∀n, can be directly estimated based on the approach

for estimating g1,n’s. Under such a scheme, we need to use

at least τ3 = (K − 1)N time instants in total to estimate the

reflecting channels of the remaining K−1 users. However, with

a large number of users, the estimation of gk,n’s will take quite

a long time, which leads to reduced user transmission rate due

to the limited time left for data transmission as shown in (10).
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V=



φ1,θ+1a2,θ+1g1,1 · · · φN,θ+1a2,θ+1g1,N · · · φ1,θ+1aK,θ+1g1,1 · · · φN,θ+1aK,θ+1g1,N

...
. . .

...
. . .

...
. . .

...

φ1,θ+τ3
a2,θ+τ3

g1,1 · · · φN,θ+τ3
a2,θ+τ3

g1,N · · · φ1,θ+τ3
aK,θ+τ3

g1,1 · · · φN,θ+τ3
aK,θ+τ3

g1,N



, (37)

with θ = τ1 + τ2.

We propose to exploit the channel correlations among gk,n’s

to reduce the channel estimation time in Phase III. Specifically,

similar to (28), after cancelling the interference caused by the

direct channels hk’s from (23), the effective received signal at

the BS at each time instant i, i = τ1 + τ2 + 1, · · · , τ1 + τ2 + τ3,

in Phase III is

ȳ(i)= y(i)−
K∑

k=2

hk

√
pak,i=

K∑

k=2

N∑

n=1

φn,i
√

pak,iλk,ng1,n . (35)

The overall effective received signal at the BS in Phase III is

ȳIII
=

[(
ȳ(τ1+τ2+1)

)T
, · · · ,

(
ȳ(τ1+τ2+τ3)

)T ]T
=

√
pVλ, (36)

where λ = [λT2 , · · · , λTK ]T ∈ C
(K−1)N×1 with λk =

[λk,1 · · · λk,N ]T , k = 2, · · · ,K , and V ∈ CMτ3×(K−1)N is given

in (37) on the top of this page.

Mathematically, (36) defines an equivalent linear channel

estimation model consisting of (K − 1)N users, where each

column of V denotes the pilot sequence sent by each of

these effective users. One interesting observation of V here

is that thanks to the multiple antennas at the BS, the effective

channel estimation time is increased from τ3 to Mτ3. In other

words, it is possible to leverage the multi-antenna technology

to significantly reduce the channel training time in Phase III

under our proposed strategy.

In the following, via a proper design of aIII
k

=

[ak,τ1+τ2+1, · · · , ak,τ1+τ2+τ3
]T ’s, k = 2, · · · ,K , and φn,i’s, n =

1, · · · , N , i = τ1 + τ2 + 1, · · · , τ1 + τ2 + τ3, we aim to find the

minimum value of τ3 to satisfy rank(V ) = (K − 1)N such that

λ can be perfectly estimated based on (36). We start with the

case of M ≥ N .

Theorem 1: In the case of M ≥ N , the minimum value of

τ3 to guarantee perfect estimation of λ according to (36) is

given by

τ̃3 = K − 1. (38)

To achieve perfect estimation of λ given the above minimum

value of τ3, in the case of M ≥ N , we can set

ak,i =

{
1, if k − 1 = i − τ1 − τ2,
0, otherwise,

2 ≤ k ≤ K, (39)

φn,i = 1, 1 ≤ n ≤ N, τ1+τ2+1 ≤ i ≤ τ1+τ2+K−1. (40)

Then, λ can be perfectly estimated as

λk = [g1,1, · · · , g1,N ]†
ȳ(τ1+τ2+k−1)

√
p

, k = 2, · · · ,K, (41)

where for any matrix B ∈ Cx×y with x ≥ y, B†
= (BHB)−1BH

denotes its pseudo-inverse matrix.

Proof: Please refer to Appendix A.

Next, we consider the case of M < N . In this case, define

ρ = ⌊ N
M
⌋, υ = N − Mρ, and N = {1, · · · , N}. For each user

k ≥ 2, define two sets Λk,1 ⊂ N with cardinality |Λk,1 | =
N − υ and Λk,2 ⊂ N with cardinality |Λk,2 | = υ, which are

constructed as follows. First, define

Tk = {(k − 2)υ + 1, · · · , (k − 1)υ}, k = 2, · · · ,K . (42)

Then, we construct Λk,1’s and Λk,2’s as

Λk,2 = {m − (⌈m

N
⌉ − 1)N : ∀m ∈ Tk}, (43)

Λk,1 = N \ Λk,2, k = 2, · · · ,K . (44)

Moreover, for any i = 1, · · · , (K − 1)ρ, define κi = (i − (⌈ i
ρ
⌉ −

1)ρ − 1)M and

Ωi = {Λ ⌈ i
ρ
⌉+1,1(κi + 1), · · · ,Λ ⌈ i

ρ
⌉+1,1(κi + M)}, (45)

where given any set B, B(i) denotes its ith element. While for

any i = (K − 1)ρ + 1, (K − 1)ρ + 2, · · · , define

Ji ={(i−(K−1)ρ−1)M+1, · · · ,
min((i−(K−1)ρ)M, (K−1)N−(K −1)Mρ)}. (46)

Based on Ji , given any i > (K − 1)ρ, we define

Ki = {⌈ j

υ
⌉ + 1 : ∀ j ∈ Ji}, (47)

Ni = {Λ ⌈ j

υ
⌉+1,2

( j − (⌈ j

υ
⌉ − 1)υ) : ∀ j ∈ Ji}. (48)

Then, we have the following theorem.

Theorem 2: In the case of M < N , the minimum value of

τ3 to guarantee perfect estimation of λ according to (36) is

given by

τ̃3 =

⌈
(K − 1)N

M

⌉
. (49)

To perfectly estimate λ given the above minimum value of τ3,

at time slot τ1 + τ2 + i with 1 ≤ i ≤ (K − 1)ρ, we can set

ak,τ1+τ2+i=

{
1, if k =

⌈
i
ρ

⌉
+ 1,

0, otherwise,
(50)

φn,τ1+τ2+i=

{
1, if n ∈ Ωi,

0, otherwise,
1≤ i≤(K − 1)ρ. (51)

With the above solution, at each time instant τ1 + τ2 + i, we

can perfectly estimate the following λk,n’s

[λ ⌈ i
ρ
⌉+1,Ωi (1), · · · , λ ⌈ i

ρ
⌉+1,Ωi (M)]T

=[g1,Ωi (1),· · ·, g1,Ωi (M)]−1 ȳ
(τ1+τ2+i)
√

p
, 1≤ i≤(K−1)ρ. (52)
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Further, at time slot τ1 + τ2 + i with (K − 1)ρ+ 1 ≤ i ≤ τ̃3, we

can set

ak,τ1+τ2+i=

{
1, if k ∈ Ki,

0, otherwise,
(53)

φn,τ1+τ2+i=

{
1, if n ∈ Ni,

0, otherwise,
(K − 1)ρ + 1≤ i≤ τ̃3 . (54)

With the above solution, at each time instant τ1 + τ2 + i, we

can perfectly estimate the following λk,n’s

[λ ⌈ Ji (1)
υ

⌉+1,Ni (1)
, · · · , λ ⌈ Ji (Mi )

υ
⌉+1,Ni (Mi )

]T

=[g1,Ni (1), · · · , g1,Ni (Mi )]
† ỹ

(τ1+τ2+i)
√

p
, (K−1)ρ+1 ≤ i≤ τ̃3, (55)

where

Mi = |Ni |, (56)

ỹ(τ1+τ2+i)
= ȳ(τ1+τ2+i)−

∑

k∈Ki

∑

n∈Ni∩Λk,1

√
pλk,ng1,n . (57)

Proof: Please refer to Appendix B.

The basic idea to achieve the minimum pilot sequence

length (49) under the case of M < N is as follows. First,

at time slot τ1 + τ2 + i, 1 ≤ i ≤ (K − 1)ρ, only one user, i.e.,

user ⌈i/p⌉+1, transmits a pilot symbol 1, and M IRS elements

in the set of Ωi are switched on such that the corresponding

reflected channels can be perfectly estimated based on (52).

After (K − 1)ρ time slots, for each user k ≥ 2, still υ < M

λk,n’s with n ∈ Λk,2 are unknown. Therefore, to guarantee

that at each time slot τ1 + τ2 + i, i > (K − 1)ρ (unless the last

time slot), again M λk,n’s can be estimated such that (49) is

achievable, more than one user should transmit their pilots at

the same time. The challenge is that if M IRS elements are

switched on and more than one user transmits the pilots at

one time slot, the number of λk,n’s involved in the received

signal is larger than M, as shown in (96). Interestingly, we

can show that if the user pilot and IRS reflection coefficients

are designed based on (53) and (54), at each time slot only

M λk,n’s are unknown in (96), while the other λk,n’s have

already been estimated before. As a result, after interference

cancellation as shown in (57), still M λk,n’s can be perfectly

estimated based on (55) at each time slot.

To further explain the above procedure for channel estima-

tion, we provide a simple example as follows.

Example 1: Consider the case when M = 2, K = 3, and N =

3. In this case, we have τ̃3 = 3, and ρ = υ = 1. According to

(43) and (44), we set Λ2,1 = {2, 3}, Λ2,2 = {1}, Λ3,1 = {1, 3},
and Λ3,2 = {2}. Then, it follows from (45), (47), and (48) that

Ω1 = {2, 3}, Ω2 = {1, 3}, K3 = {2, 3}, and N3 = {1, 2}. Based

on Theorem 2, the pilot sequence assigned to users 2 and 3

are aIII
2
= [1, 0, 1]T and aIII

3
= [0, 1, 1]T , and the IRS reflecting

coefficients are φ2,1 = φ3,1 = φ1,2 = φ3,2 = φ1,3 = φ2,3 = 1

and φn,i = 0 otherwise. According to (52), in time instants

τ1 + τ2 + 1 and τ1 + τ2 + 2, we have

[λ2,2, λ2,3]T = [g1,2, g1,3]−1 ȳτ1+τ2+1/√p, (58)

[λ3,1, λ3,3]T = [g1,1, g1,3]−1 ȳτ1+τ2+2/√p. (59)

In time instant τ1 + τ2 + 3, since λ2,2, λ2,3, λ3,1, λ3,3 are already

known, their interference to estimate λ2,1 and λ3,2 can be

canceled from the received signal ȳ(τ1+τ2+2) as shown in (57)

to get ỹ(τ1+τ2+2). Then, based on (57), we have

[λ2,1, λ3,2]T = [g1,1, g1,2](−1) ỹ(τ1+τ2+3)/√p. (60)

Thereby, using τ̃3 = 3 time instants, λk,n’s, k = 2, 3, n = 1, 2, 3,

are all perfectly estimated based on Theorem 2.

According to Theorems 1 and 2, we manage to reduce the

channel estimation time duration in Phase III from (K − 1)N
symbols to

τ̃3 = max

(
K − 1,

⌈
(K − 1)N

M

⌉)
, (61)

symbols thanks to the hidden relation shown in (21). Further,

the designs of user pilot and IRS reflecting coefficients shown

in Theorems 1 and 2 are independent of g1,n’s. Thereby,

channel estimation in Phase III does not require any channel

feedback from the BS to the users and IRS.

D. Overall Channel Estimation Overhead

To summarize, for perfectly estimating all the direct chan-

nels hk’s and reflected channels gk,n’s in the case without

noise at the BS, the minimum pilot sequence length is

τ̃= τ̃1+τ̃2+τ̃3=K+N+max

(
K−1,

⌈
(K−1)N

M

⌉)
. (62)

Interestingly, in the massive MIMO regime [17], i.e., M →
∞, τ̃ reduces to

τ̃ = K + N + K − 1 = 2K + N − 1, (63)

which is linear with K and N . Thereby, under the three-phase

channel estimation protocol for IRS-assisted uplink commu-

nications, massive MIMO makes it possible to effectively

estimate K MN + K M unknown channel coefficients using a

scalable number of pilot symbols. Such a result is in sharp

contrast to the traditional channel estimation scenario without

IRS, where the minimum channel estimation time does not

depend on the number of receive antennas [30].

V. CHANNEL ESTIMATION FOR CASE WITH NOISE

In the previous section, we have shown how to perfectly

estimate all the channels using at least τ̃ time instants for the

ideal case without noise at the BS, where τ̃ is given in (62). In

this section, we introduce how to estimate the channels under

our proposed three-phase channel estimation protocol for the

case with noise at the BS, using τ1 ≥ τ̃1, τ2 ≥ τ̃2, and τ3 ≥ τ̃3
time slots in Phases I, II, and III, respectively.

A. Phase I: Direct Channel Estimation

With noise at the BS, the received signal in Phase I given

in (25) is re-expressed as

Y I
=

√
p[h1, · · · , hK ][aI

1, . . . , a
I
K ]T + Z I, (64)

where Z I
= [z(1), · · · , z(τ1)]. According to [30], the optimal

pilot design should guarantee that the pilot sequences of dif-

ferent users are orthogonal with each other, i.e., (aI
k
)T aI

j
= 0,
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∀k , j. With τ1 ≥ K , we can set the pilot sequence of user k

as

aI
k = [1, e

−2(k−1)πq
τ1 , · · · , e

−2(k−1)(τ1−1)πq
τ1 ]T, ∀k, (65)

where q2
= −1. In this case, the minimum mean-squared error

(MMSE) channel estimator is

ĥk =

βBU
k

√
p

βBU
k

pτ1 + σ2
Y Ia∗k, ∀k. (66)

Further, the MSE for estimating hk is denoted by

εI
k=Ehk

[(ĥk−hk)H (ĥk−hk)] =
MβBU

k
σ2

βBU
k

pτ1+σ2
, ∀k. (67)

B. Phase II: Reflecting Channel Estimation for Typical User

In Phase II, the typical user 1 transmits the pilot symbols to

the BS, which will cancel the interference caused by hk’s for

estimating g1,n’s. In the case with noise the BS, the effective

received signal at the BS after interference cancellation given

in (28) is re-expressed as

ȳ(i) = y(i) − ĥ1
√

pa1,i

=

N∑

n=1

φn,ig1,n

√
pa1,i + (h1 − ĥ1)

√
pa1,i + z(i). (68)

Note that due to the imperfect channel estimation in Phase I,

h1 − ĥ1 , 0 in general. Then, the overall effective received

signals over Phase II is given by

Ȳ
II
=

√
p[g1,1, · · · , g1,N ]ΦIIdiag(aII

1 )
+

√
p(h1 − ĥ1)(aII

1 )
T
+ Z II, (69)

where Z II
= [z(τ1+1), · · · , z(τ1+τ2)]. For convenience, de-

fine CBI
1 = E[[g1,1, · · · , g1,N ]H [g1,1, · · · , g1,N ]], and Z̄

II
=√

p(h1 − ĥ1)(aII
1
)T + Z II as the overall noise consisting of

channel estimation error in Phase I and AWGN. Then, we

have

ΨII=E[(Z̄ II)H Z̄
II]=

pMβBU
1
σ2

βBU
1

pτ1+σ2
(aII

1 )
∗(aII

1 )
T
+Mσ2I . (70)

Since g1,n’s do not follow the Rayleigh fading channel

model, it is difficult to design the MMSE estimator based on

(69). In this paper, we consider the LMMSE estimator in Phase

II. By setting the pilot sequence of user 1 as

aII
1 = [1, · · · , 1]T, (71)

and the IRS reflection coefficients ΦII as (33) similar to [25],

[26], the LMMSE channel estimator in Phase II is

[ĝ1,1, · · · , ĝ1,N ]

=

√
pȲ

II
Ψ

−1
II (ΦII)H

(
pΦII
Ψ

−1
II (ΦII)H+(CBI

1 )−1
)−1

. (72)

The MSE of the above LMMSE channel estimator is

εII
= tr

((
pΦII
Ψ

−1
II (ΦII)H + (CBI

1 )−1
)−1

)
. (73)

C. Phase III: Reflecting Channel Estimation for Other Users

In Phase III, with the imperfect estimation of hk’s and

g1,n’s, the effective received signal at time slot i, i = τ1 +

τ2 + 1, · · · , τ1 + τ2 + τ3, given in (35) can be expressed as

ȳ(i) =
K∑

k=2

N∑

n=1

φn,i ĝ1,n

√
pak,iλk,n+

K∑

k=2

(hk−ĥk)
√

pak,i+z
(i)

+

K∑

k=2

N∑

n=1

φn,i(g1,n − ĝ1,n)
√

pak,iλk,n. (74)

However, it is difficult to design the LMMSE channel estima-

tor based on (74) due to the fact that λk,n’s also contribute to

the noise for estimating themselves with imperfect estimation

of g1,n’s.

To tackle the above challenge, in the following we assume

that the channel estimation error g1,n − ĝ1,n = 0, ∀n, such that

there is no self-interference generated by λk,n’s. In practice, we

can increase the pilot sequence length in Phase II, i.e., τ2, such

that the estimation of g1,n’s is sufficiently accurate. Under the

above assumption, the effective received signal given in (74)

reduces to

ỹ(i)=
K∑

k=2

N∑

n=1

φn,ig1,n

√
pak,iλk,n+

K∑

k=2

(hk−ĥk)
√

pak,i+z
(i) .

(75)

Moreover, we assume an orthogonal transmission and re-

flection strategy: at each time slot i, only one user, denoted

by user ki , transmits its pilot symbol to the BS, and only

Mi ≤ M out of N IRS elements, denoted by the set ∆i with

Mi = |∆i | ≤ M, are switched on to reflect the pilot symbol,

such that the BS can estimate gki,n’s, ∀n ∈ ∆i . Specifically,

with i ≥ τ1 + τ2 + 1, we define

ki =

⌈
i − τ1 − τ2
⌈N/M⌉

⌉
+ 1, (76)

∆i =

{
{ϕi + 1, · · · , ϕi + M}, if

⌊
i−τ1−τ2

⌈N/M ⌉

⌋
,

i−τ1−τ2

⌈N/M ⌉ ,

{(⌈ N
M
⌉−1)M+1, · · · , N}, otherwise.

(77)

where

ϕi =

(
i − τ1 − τ2 −

⌊
i − τ1 − τ2
⌈N/M⌉

⌋
⌈N/M⌉ − 1

)
M . (78)

As a result, for user ki , ⌈N/M⌉ time slots are allocated to

estimate its reflected channels. In each of the first ⌈N/M⌉ − 1

time slots, M IRS elements are switched on, while in the last

time slot, the remaining N − (⌈N/M⌉ − 1)M IRS elements are

switched on. In total, under this orthogonal transmission and

reflection strategy, τ3 = (K − 1)⌈N/M⌉ time slots are needed

to estimate gk,n’s, ∀k ≥ 2, ∀n.

Next, we show how to estimate gk,n’s based on the above

orthogonal transmission and reflection strategy. At time slot i,

i = τ1 + τ2 + 1, · · · , τ1 + τ2 + (K − 1)⌈N/M⌉, we set

ak,i =

{
1, if k = ki,

0, otherwise,
∀k ≥ 2, (79)

φn,i =

{
1, if n ∈ ∆i,
0, otherwise,

∀n. (80)
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Then, the effective received signal at time slot i given in (75)

reduces to

ỹ(i) =
∑

n∈∆i
g1,n

√
pλki,n + (hki − ĥki )

√
p + z(i)

=

√
pG1,iλki,i + z̃(i), (81)

where

G1,i = [g1,∆i (1), · · · , g1,∆i ( |∆i |)], (82)

λki,i = [λki,∆i (1), · · · , λki,∆i ( |∆i |)]T , (83)

z̃(i) =
√

p(hki − ĥki ) + z(i), (84)

with ∆i( j) denoting the jth element of ∆i . Next, define Cλ
i =

E[λki,iλ
H
ki,i

], and

ΨIII =E[ z̃(i)( z̃(i))H ]

=

βBU
ki

pσ4

βBU
ki

pτ1 + σ2
CB

ki
+

(βBU
ki

p)2τ1σ2

βBU
ki

pτ1 + σ2
I + σ2I . (85)

Given any realization of G1,i that is assumed to be perfectly

estimated in Phase II, the LMMSE channel estimator in Phase

III is then given by

λ̂ki,i(G1,i)=
√

p
(
pGH

1,iΨ
−1
III G1,i+(Cλ

i )−1
)−1

GH
1,iΨ

−1
III ỹ

(i) . (86)

The corresponding MSE for estimating λki,i given G1,i is

εIII
ki,i

(G1,i) =E[‖λ̂ki,i(G1,i) − λki,i ‖2 |G1,i]

=tr

((
pGH

1,iΨ
−1
III G1,i + (Cλ

i )−1
)−1

)
. (87)

By averaging all the channel realizations of G1,i’s, the MSE

for estimating λki,i is

εIII
ki,i
=EG1, i

[
tr

((
pGH

1,iΨ
−1
III G1,i+(Cλ

i )−1
)−1

)]
. (88)

At last, the overall MSE for estimating λki,i’s ∀i is given

by εIII
=

∑τ3

i=1
εIII
ki,i

.

D. Overall Channel Estimation Strategy

For the case with noise at the BS, the overall channel

estimation strategy is summarized in Table I.

TABLE I
ALGORITHM I: OVERALL CHANNEL ESTIMATION STRATEGY

1. Phase I (i = 1, · · · , τ1): The users transmit pilot symbols aI
k

’s based
on (65). The IRS is switched off, i.e., φn, i’s are set to be zero. The BS
estimates the direct channels hk ’s according to (66);

2. Phase II (i = τ1+1, · · · , τ1+τ2): Only user 1 transmits non-zero pilot
symbols aII

1
based on (71). The IRS is switched on, and φn, i’s are set

based on (33). The BS removes the interference caused by hk ’s based
on (69) and estimates g1,n’s based on (72);

3. Phase III (i = τ1 +τ2 +1, · · · , τ1 +τ2 +τ3): User 2 to user K transmit
pilot symbols aIII

k
’s,, k ≥ 2, based on (79). The IRS is switched on,

and φn, i’s are set as (80). The BS removes the interference caused by
hk ’s based on (75) and estimates λ based on (86).

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to verify the

effectiveness of our proposed three-phase channel estimation

protocol in the IRS-assisted multiuser communications. We

assume that the IRS is equipped with N = 32 reflecting

elements. Moreover, the path loss of hk’s, tk,n’s, and rn’s

is modeled as βBU
k
= β0(dBU

k
/d0)−α1 , βIU

k
= β0(dIU

k
/d0)−α2 ,

and βBI
= β0(dBI/d0)−α3 , respectively, where d0 = 1 meter

(m) denotes the reference distance, β0 = −20 dB denotes the

path loss at the reference distance, dBU
k

, dIU
k

, and dBI denote

the distance between the BS and user k, between the IRS

and user k, as well as between the BS and the IRS, while

α1, α2, and α3 denote the path loss factors for hk’s, tk,n’s, and

rn’s, respectively. In the numerical examples, we set α1 = 4.2,

α2 = 2.1, and α3 = 2.2. The distance between the BS and IRS

is set to be dBI
= 100 m, and all the users are assumed to

be located in a circular regime, whose center is 10 m away

from the IRS and 105 m away from the BS, and radius is 5

m. For the correlation matrix CB
k

, we adopt the exponential

correlation matrix model [31], where the element in the ith

row and jth column is denoted by [CB
k ]i, j = (cB

k
)i−j if i ≥ j,

and [CB
k
]i, j = [CB

k
]∗
j,i

, if i < j, with |cB
k
| < 1. Similarly, the

correlation matrices CB, CI, and CI
k

follow the exponential

correlation matrix model as well. The identical transmit power

of users is 33 dBm. The channel bandwidth is assumed to be 1

MHz, and the power spectrum density of the AWGN at the BS

is −169 dBm/Hz. Moreover, to illustrate the performance gain

of our proposed channel estimation framework, we consider

the following benchmark scheme.

Benchmark Scheme: In Phases I and II, the estimation

of hk’s and g1,n’s is the same as the proposed framework.

However, in Phase III, from time slots τ1 + τ2 + (k − 2)τ2 + 1

to τ1+ τ2 + (k −1)τ2, ∀k ≥ 2, only user k transmits its τ2 pilot

symbols to the BS, while the estimation of gk,n, ∀n, is the

same as that of g1,n, ∀n, for both cases without and with noise

at the BS. In other words, the channel correlations in (21) is

not exploited to improve the channel estimation performance.

In the following, we provide numerical examples to eval-

uate the performance of the proposed channel estimation

framework for the cases without and with noise at the BS,

respectively.

A. The Case without Noise at the BS

First, we illustrate the minimum estimation time perfor-

mance of the proposed framework in the case without noise

at the BS. Fig. 3 shows the minimum pilot sequence length

for perfect channel estimation as given in (62) versus the

number of users when the number of antennas at the BS is

M = 8 and M = 32, respectively. Moreover, the minimum pilot

sequence length required by the benchmark scheme, which is

characterized as K + KN , is also shown. It is observed that

thanks to the exploitation of the channel correlation (21), the

minimum pilot sequence length under our proposed framework

increases much more slowly with the number of users than

that under the benchmark scheme. Moreover, by comparing

the cases when M = 8 and M = 32, it is observed that under

our proposed framework, the minimum pilot sequence length
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Fig. 3. Minimum pilot sequence length versus number of users.

decreases very fast as the number of BS antennas increases;

while that under the benchmark strategy is independent of the

number of BS antennas.

B. The Case with Noise at the BS

Next, we show the MSE performance of the proposed

framework in the case with noise at the BS. In the following,

we assume that the number of users is 8, and the BS is

equipped with 32 antennas. First, we consider the performance

of Phase II for estimating g1,n’s, ∀n. Besides the proposed

DFT-based solution shown in (33), we also consider two more

schemes for performance comparison. Specifically, in the first

scheme, only one IRS element is switched on at each time slot,

and all the IRS elements take turns to be in the “on” state. In

the second scheme, the phase shifter of each IRS element at

each time slot is randomly chosen in the range of [0, 2π). Fig.

4 shows the normalized MSE in Phase II achieved by different

schemes, which is defined as

eII
=

N∑
n=1

E[‖ ĝ1,n − g1,n‖2]

N∑
n=1

E[‖g1,n‖2]
. (89)

First, it is observed that our theoretical characterization of

channel estimation MSE, i.e., (73), matches the Monte Carlo

simulation perfectly. Second, it is observed that the normalized

MSE under the DFT-based solution is much smaller than that

under the other two schemes.

Next, we evaluate the performance for estimating λk,n’s in

Phase III. Similar to Phase II, we define the normalized MSE

for estimating λk,n’s in Phase III as

eIII
=

K∑
k=2

N∑
n=1

E[|λ̂k,n − λk,n |2]

K∑
k=2

N∑
n=1

E[|λk,n |2]
. (90)

Fig. 5 shows the normalized MSE for estimating λk,n’s versus

the channel training time in Phase II. It is observed that if the

channel estimation of g1,n’s is perfect, then our theoretical

32 36 40 44 48 52 56 60 64

Pilot Sequence Length in Phase II

10-6

10-5

10-4

10-3

10-2

N
or

m
al

iz
ed

 M
S

E

DFT-based Solution: Theoretical Performance
DFT-based Solution: Monte Carlo Simulation
On/Off State Control Solution
Random Phase based Solution

Fig. 4. Normalized MSE comparison in Phase II.
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Fig. 5. Normalized MSE in Phase III: theoretical results versus Monte Carlo
simulations.

characterization of the MSE for estimating λk,n’s matches the

Monte Carlo simulation perfectly. In practice, the estimation

of g1,n’s is imperfect. In this case, a small level of mismatch

exists between our theoretical result under the assumption of

perfect estimation of g1,n’s and the Monte Carlo simulation.

Nevertheless, this gap can be reduced by increasing the

channel estimation time in Phase II such that the estimation

of g1,n’s is more accurate.

Fig. 6 shows the MSE performance in Phase III achieved

by the proposed scheme and the benchmark scheme described

at the beginning of this section versus the channel estimation

time in Phase III. It is observed that under the benchmark

scheme, the normalized MSE is above 0.3 when τ3 ranges

from 7 to 32. This indicates that the channel estimation error

is almost as strong as the channel power. This is because the

minimum pilot sequence length for perfect channel estimation

in the case without noise at the base is 224 under the

benchmark strategy. As a result, when τ3 ranges from 7 to

32, the benchmark scheme cannot estimate the channels very

well even without noise at the BS. On the other hand, under

our proposed framework, the normalized MSE for estimating
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all the channels is below 10−2 when τ3 ≥ 12.

At last, we consider the overall MSE performance for

estimating both hk’s and gk,n’s. In this case, the normalized

MSE is defined as

e =

K∑
k=1

E[‖ĥk − hk ‖2] +
K∑
k=1

N∑
n=1

E[‖ ĝk,n − gk,n‖2]

K∑
k=1

E[‖hk ‖2] +
K∑
k=1

N∑
n=1

E[‖gk,n‖2]
. (91)

Fig. 7 shows the normalized MSE for estimating hk’s and

gk,n’s achieved by various strategies. It is observed that similar

to Fig. 6, the proposed scheme significantly improves the

overall channel estimation MSE performance compared to the

benchmark scheme. Moreover, under the proposed framework,

we also consider three schemes to allocate the extra time slots

among the three phases if the overall channel estimation time

is larger than (62). Under these three schemes, the extra time

slots are all allocated to Phase I, all allocated to Phase II,

and evenly allocated to Phases I, II, and III, respectively. It is

observed in Fig. 7 that the best way is to allocate more time

slots to Phase II such that the error propagation to Phase III

is reduced.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an innovative three-phase frame-

work to estimate a large number of channel coefficients in

the IRS-assisted uplink multiuser communications accurately

using merely a small number of pilot symbols. Such an

interesting result is enabled by exploiting the correlations

among the IRS reflected channels: each IRS reflecting element

reflects the signals from different users to the BS via the same

channel. Under the proposed framework, the minimum pilot

sequence length for perfect channel estimation in the case

without noise at the BS was characterized, and the LMMSE

channel estimators in the case with noise at the BS were

derived. Numerical examples were provided to verify the

effectiveness of our framework compared to the benchmark

scheme without taking advantage of channel correlation.
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Fig. 7. Overall normalized MSE comparison between the proposed framework
and the benchmark scheme.

There are a number of directions along which the channel

estimation framework proposed in this paper can be further

enriched. First, in Phase II of our proposed protocol, N time

slots are required for channel estimation of the typical user,

which can be long in practice if the IRS is equipped with a

large number of IRS elements. It is thus interesting to study

how to make use of the channel property in IRS-assisted com-

munication systems to reduce the channel estimation time in

Phase II. Second, the channel estimation error in Phases I and

II under the proposed framework will affect channel estimation

in Phase III. Intuitively, if more time slots are allocated to

Phase I and Phase II, the error propagation to Phase III will

be reduced, while less time is left for channel estimation.

As a result, how to allocate the available time slots among

the three channel estimation phases is also an open problem.

Similarly, it is crucial to study the pilot power allocation

strategy among the three phases of our proposed framework

to improve the channel estimation performance. Moreover, it

is interesting to extend our channel estimation protocol to a

multi-cell communication system and study the effect of pilot

contamination on the system performance. Another important

direction is to study whether the channel reciprocity holds in

the IRS-assisted communications. If not, new approach should

be proposed to utilize the channel redundancy for reducing the

channel estimation time in the downlink. Last but not least, it is

crucial to characterize the user achievable rate with imperfect

CSI under the proposed framework.

APPENDIX

A. Proof of Theorem 1

In the case of M ≥ N , we first prove that there exists a

unique solution to (36) only if τ3 ≥ K − 1. Define

ηn,i =

K∑

k=2

λk,nφn,i+τ1+τ2
ak,i+τ1+τ2

, 1 ≤ n ≤ N, 1 ≤ i ≤ τ3 .

(92)
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Then, it can be shown that (36) can be expressed as

N∑

n=1

ηn,ig1,n = ȳ(τ1+τ2+i), i = 1, · · · , τ3. (93)

Under the channel model of rn’s and tk,n’s shown in (2) and

(3), in the case of M ≥ N , g1,n’s are linearly independent

with each other with probability one. As a result, ηn,i ’s, n =

1, · · · , N , i = 1, · · · , τ3, can be perfectly estimated based on

(93). Next, we intend to solve the equations given in (92). With

known ηn,i’s, (92) characterizes a linear system with (K −1)N
variables and Nτ3 equations. Therefore, a unique solution to

(92) exists only when the number of equations is no smaller

than the number of variables, i.e., τ3 ≥ K − 1.

Next, we show that if τ3 = K − 1, there always exists a

unique solution to (36) in the case of M ≥ N . Specifically, if

τ3 = K − 1, we can set ak,i’s and φn,i’s as given in (39) and

(40), respectively. It then follows from (36) that

ȳ(τ1+τ2+k−1)
= [g1,1, · · · , g1,N ]λk, k = 2, · · · ,K . (94)

Since g1,n’s are linearly independent with each other with

probability one in the case M ≥ N , the pseudo-inverse matrix

of [g1,1, · · · , g1,N ] exists. As a result, if τ3 = K−1, there exists

a unique solution to (36), which is given in (41).

To summarize, in the case of M ≥ N , there exists a unique

solution to (36) only if τ3 ≥ K − 1. Moreover, τ3 = K − 1 is

sufficient to guarantee the existence of a unique solution to

(36) by setting ak,i’s and φn,i’s according to (39) and (40). As

a result, if M ≥ N , τ3 = K − 1 is the minimum value of τ3 for

perfectly estimating λ according to (36).

B. Proof of Theorem 2

Similar to the case with M ≥ N , we first prove that in the

case of M < N , there exists a unique solution to (36) only

if τ3 ≥ ⌈ (K−1)N
M

⌉. Note that in (36), the number of variables

and the number of linear equations are (K − 1)N and τ3M,

respectively. As a result, there exists a unique solution to (36)

only if the number of equations is no smaller than that of

variables, i.e., τ3 ≥ ⌈ (K−1)N
M

⌉.
Next, we show that when τ3 = ⌈ (K−1)N

M
⌉, there always exists

a solution to (36) in the case of M < N . The basic idea is

that in each time instant τ1 + τ2 + i with i ≤ (K − 1)ρ, only

one user k ≥ 2 sends a non-zero pilot symbol for estimating

λk,n’s with n ∈ Λk,1 without any interference from other users’

pilot symbols, while in each time instant τ1 + τ2 + i with

(K − 1)ρ + 1 ≤ i ≤ τ̃3, multiple users transmit non-zero pilot

symbols simultaneously for estimating λk,n’s with n ∈ Λk,2’s

by eliminating the interference caused by λk,n’s with n ∈ Λk,1.

Specifically, at time instant τ1 + τ2 + i with i ≤ (K − 1)ρ,
we schedule user k = ⌈ i

ρ
⌉ + 1 to transmit a pilot symbol 1,

and each of the other users to transmits a pilot symbol 0, as

shown in (50). Moreover, only M IRS elements in the set of

Ωi are switched on and their reflecting coefficients are set to

be 1 as shown in (51). In this case, it can be shown that (36)

reduces to

ȳ(τ1+τ2+i)
=

√
p[g1,Ωi (1),· · ·, g1,Ωi (M)]

[λ ⌈ i
ρ
⌉+1,Ωi (1), · · · , λ ⌈ i

ρ
⌉+1,Ωi (M)]T . (95)

Under the channel model of rn’s and tk,n’s shown in (2) and

(3), in the case of M < N , any M out of N g1,n’s are linearly

independent of each other with probability 1. Therefore, there

exists a unique solution to the above equation, which is given

by (52).

Next, we estimate λk,n’s with n ∈ Λk,2. In time instant

τ1 + τ2 + i with i ≥ (K − 1)ρ + 1, all the users in the set Ki

will transmit pilot symbols 1, while each of the other users

transmits a pilot symbol 0, as shown in (53). Moreover, all

the Mi ≤ M IRS elements in the set Ni are switched on and

their reflecting coefficients are set to be 1 as shown in (54).

In this case, the effective received signal at this time instant

given in (35) reduces to

ȳ(τ1+τ2+i)
=

∑

k∈Ki

∑

n∈Ni

√
pλk,ng1,n . (96)

Further, for each user k ∈ Ki , λk,n’s with n ∈ Λk,1 have

already been perfectly estimated based on (52). As a result,

their interference can be canceled from (96) to get ỹ(τ1+τ2+i)

shown in (57). Moreover, under our construction of Λk,1’s

and Λk,2’s presented prior to Theorem 2, for any two users

k1, k2 ∈ Ki , we have Λk1,2∩Λk2,2 = ∅ and thus Λk1,2 ⊂ Λk2,1

and Λk2,2 ⊂ Λk1,1. It can then be shown that ỹ(τ1+τ2+i) reduces

to

ỹ(τ1+τ2+i)
=

√
p[g1,Ni (1), · · · , g1,Ni (Mi )][
λ ⌈ Ji (1)

υ
⌉+1,Ni (1)

, · · · , λ ⌈ Ji (M )
υ

⌉+1,Ni (M)

]T
, (97)

where the Mi elements in the set Ni can be shown to be

different if Λk,2’s are constructed based on (43). As a result,

there exists a unique solution to the above equation which is

given by (55).

To summarize, in the case of M < N , except for the last

time instant, we are able to perfectly estimate M unique λk,n’s

either via (52) or (55) at each time instant, while at the last

time instant, the remaining λk,n’s are estimated. As a result,

the minimum τ3 for perfect channel estimation is characterized

by (49). Theorem 2 is thus proved.
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