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Abstract—Large-scale distributed antenna systems with many
access points (APs) that serve the users by coherent joint trans-
mission is being considered for 5G-and-beyond networks. The
technology is called Cell-free Massive MIMO and can provide
a more uniform service level to the users than a conventional
cellular topology. For a given user set, only a subset of the APs
is likely needed to satisfy the users’ performance demands, par-
ticularly outside the peak traffic hours. To find achieve an energy-
efficient load balancing, we minimize the total downlink power
consumption at the APs, considering both the transmit powers
and hardware dissipation. APs can be temporarily turned off
to reduce the latter part. The formulated optimization problem
is non-convex but, nevertheless, a globally optimal solution is
obtained by solving a mixed-integer second-order cone program.
Since the computational complexity is prohibitive for real-time
implementation, we also propose two low-complexity algorithms
that exploit the inherent group-sparsity and the optimized
transmit powers in the problem formulation. Numerical results
manifest that our optimization algorithms can greatly reduce
the power consumption compared to keeping all APs turned on
and only minimizing the transmit powers. Moreover, the low-
complexity algorithms can effectively handle the power allocation
and AP activation for large-scale networks.

Index Terms—Cell-free Massive MIMO, sparse optimization,
total power minimization, energy efficiency.

I. INTRODUCTION

The use of mobile phones and other portable devices

is continuously increasing the demand for data in wireless

networks [2], [3]. The cellular technology has evolved over

time to cater for the increasing demand but although Massive

MIMO (multiple-input multiple-output) is now being used,

beamforming can only mitigate the large pathloss variations

in cellular deployments; cell-edge users might have a 50 dB

weaker channel than the cell-center users, and Massive MIMO

with 100 antenna can only compensate for 20 dB of that. Cell-

free Massive MIMO is a promising new technology to deal

with the mediocre cell-edge performance by distributing the

antennas over the coverage area and removing the cell edges

by joint operation [4]–[6]. Each distributed antenna location is

called an access point (AP) and the APs transmit coherently
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in the downlink and process their received signals coherently

in the uplink, leading to a higher signal-to-noise ratio (SNR)

without using more transmit power. The coherent joint trans-

mission in Cell-free Massive MIMO is inherited from the

classical coordinated multipoint (CoMP) beamforming design

with a few co-located antenna arrays [7]–[11] and gradually

extended to scenarios with many distributed APs with few

antennas. These previous network designs were mainly con-

sidering slowly fading channels where the small-scale fading

realizations can be estimated perfectly and spectral efficiency

(SE) utility metrics can be formulated as functions of one set

of small-scale fading realizations. In contrast, a key novelty in

the Cell-free Massive MIMO area is the analysis of practical

fast fading channels, for which the ergodic SE is the preferred

performance metric and the SE depends on imperfect channel

state information (CSI) and pilot contamination. In scenarios

with Rayleigh fading and some choices of linear processing,

the ergodic SE of Cell-free Massive MIMO can even be

obtained in closed form, which makes it easier to formulate

and solve practical spatial resource allocation problems.

There will be 12.3 billion wirelessly connected devices by

2022 [12], which raises concerns about the power consumption

and the corresponding energy-related pollution. Cellular net-

works have been developed to maximize the SE and coverage,

leading to the norm of transmitting at the maximum allowed

power in the downlink [13]. This results in high power

consumption at the base stations/APs, even when the traffic is

low. Upcoming technologies should be redesigned to achieve

a direct connection between power consumption and traffic

load [14], so that the power is low when the users request

low SEs. In the context of Cell-free Massive MIMO, energy

efficiency optimization has been considered in [15], [16].

These papers considered how the fronthaul power consumption

can be reduced by only serving each user by a subset of the

APs, but all APs are assumed to be turned on continuously.

As reported in [17]–[19] (and references therein), the energy

efficiency of heterogeneous or cloud radio access networks

can be substantially improved by also turning APs on and

off. However, the operating point where the energy efficiency

is maximized might not provide the service quality that the

users need. Hence, the goal of load balancing is to map the

current traffic load to the available transmission resources of

the network in a more efficient fashion. The authors [20]

instead considered that each user has an SE requirement that

the system must satisfy with minimum power consumption,

considering both the transmit power and hardware-consumed
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power of active APs. Hence, the goal of the resource al-

location under load balancing is for the system to deliver

the required SEs with as low total power consumption as

possible. These previous works considered cellular networks

with deterministic (or slowly fading) channels and perfect CSI,

where the channel takes one realization throughout the entire

transmission, and therefore the optimization problems are

formulated based on one channel realization. This modeling is

only appropriate in special cases where the users are entirely

static. In contrast, the Cell-free Massive MIMO methodology

enables analysis of realistic fast fading channels, where the

ergodic SE is the appropriate performance metric and CSI

imperfections (including pilot contamination) are unavoidable.

To the best of our knowledge, there is no previous work on

AP activation in Cell-free Massive MIMO networks.

A. Main Contributions

Motivated by the coexistence of multiple users using differ-

ent services with stringent requirements, this paper considers

that each user has a predetermined downlink ergodic SE

requirement that the network must satisfy to avoid interrupting

any of the users’ services. The users and APs are arbitrarily

distributed, thus it is likely that these SE requirements can

be fulfilled without using all the APs. When minimizing the

total power consumption in the downlink, we consider both the

transmit power and the hardware-consumed power. Bearing in

mind that each user will mainly be served by its neighboring

APs, we consider the possibility to turn off APs that are not

needed to serve the current set of users. This is an important

feature since Cell-Free Massive MIMO networks may have

many APs [4], [5], where the large number is needed to

provide consistent coverage but might not be needed at every

time instant. We formulate the new optimization problem using

rigorous closed-form ergodic SE expressions for uncorrelated

Rayleigh fading channels, linear precoding (either maximum

ratio transmission (MRT) or full-pilot zero-forcing (F-ZF)),

imperfect CSI, and pilot contamination. This allows us to

optimize large-scale networks with many APs and users. The

main contributions are:

• We formulate a total downlink power minimization prob-

lem, where the active APs and transmit power allocation

are the optimization variables. This problem is non-

convex, but we still can obtain a globally optimal solution

to both the transmit power allocation and the active APs

topology by solving a mixed-integer second order cone

(SOC) program.

• Since algorithms that solve mixed-integer SOC programs

are too complex for real-time applications, two heuristic

low-complexity algorithms are developed by exploiting

the structure of the optimization problem. The first al-

gorithm utilizes both the optimized transmit power and

sparsity, while the second algorithm only utilizes opti-

mized transmit powers to determine which APs to turn

off.

• Numerical results demonstrate that there are scenarios

where only a subset of the APs are needed to satisfy

the SE requirements for all users and large power re-

ductions can be achieved by turning off the remaining

APs. Moreover, the low-complexity algorithms give total

power consumptions close to the global minimum.

The rest of this paper is organized as follows: Section II gives

the network model together with the downlink SE analysis.

A power consumption model is introduced in Section III.

Then, we formulate and solve the total power minimization

problem to obtain the global optimum. Section IV propose two

suboptimal algorithms with low complexity. Finally, Section V

presents extensive numerical results and the main conclusions

are given in Section VI.

Notations: We use boldface lower-case and upper-case let-

ters to denote vectors and matrices, respectively. The transpose

is denoted by the superscript (·)T and the Hermitian transpose

is denoted by (·)H . The expectation operator is E{·} and

CN(·, ·) denotes a circularly symmetric complex Gaussian

distribution. The Euclidean norm, ℓ1-norm, and ℓp-norm of

a vector x is denoted as ‖x‖, ‖x‖1, and ‖x‖p , respectively.

Finally, the cardinality of the set X is denoted by |X| and

O(·) represents the big-O notation.

II. SYSTEM MODEL

We consider a Cell-free Massive MIMO network with M

APs and K users that are arbitrarily distributed over the

coverage area. A central processing unit (CPU) is connected

to all APs via unlimited fronthaul links. Each AP is equipped

with N antennas, while there is a single antenna in each user

device. We assume every user has a required SE value [b/s/Hz]

that must be satisfied. At a given time instance, the users will

be heterogeneously distributed and their SE requirements are

likely in the interior of the capacity region of the network.

Intuitively, each user will receive most of its downlink signal

power from the closest APs while more distant APs typically

have a negligible impact. Hence, it might suffice to only

utilize a subset A ⊆ {1, . . . M} of the APs to satisfy the SE

requirements. The remaining APs can be put into sleep mode

to save power. The main goal of this paper is to find a subset

A of active APs and the corresponding transmit powers that

satisfy the SE requirements while minimizing the total power

consumption, taking the power dissipation in active APs into

account.

Practical channels exhibit fast fading, which means that

the channels vary rapidly over time and frequency during

the communication. We model this using the classic block

fading model [21], where the channel is fixed within a finite-

sized time-frequency coherence interval and take independent

random realizations in each such coherence interval. A co-

herence interval encompasses τc symbols and τp of them are

dedicated to estimate the channels from uplink pilot signals.

We consider a time division duplex (TDD) protocol and focus

on the downlink performance analysis, thus the remaining

τc − τp symbols are used for downlink data transmission.

The channel response between AP m and user k is denoted

by hmk ∈ CN and is assumed to follow an independent and

identically distributed Rayleigh fading model:

hmk ∼ CN(0, βmkIN ), (1)

where βmk ≥ 0 denotes the large-scale fading coefficient

involving both path loss and shadowing. Each channel takes an
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independent realization in each coherence interval. We assume

the APs know the channel statistics, but the realizations need

to be estimated from the uplink pilots.

A. Uplink Pilot Transmission

In the uplink training phase, ΨΨΨ = [ψψψ1, . . . , ψψψτp ] ∈ Cτp×τp is

a matrix gathering a set of τp orthonormal pilot signals that

are assigned to the K users. Specifically, user k transmits the

pilot signal
√
τpψψψik ∈ Cτp with ik ∈ {1, . . . , τp} being the pilot

index. We consider a fixed and arbitrary pilot assignment but

note that many algorithms have been proposed in prior work

[22], [23]. We let Pk denote the subset of users assigned to

the same pilot signal as user k, thus it holds that

ψψψH
ik
ψψψik′ =

{
1 if k ′ ∈ Pk,

0 if k ′
< Pk .

(2)

The signal Ym ∈ CN×τp received at AP m is a superposition

of the transmitted pilot signals from all the K users:

Ym =

K∑
k=1

√
τppkhmkψψψ

H
ik
+ Nm, (3)

where pk is the transmit pilot power of user k and Nm ∈
C
N×τp is additive noise where each element is independently

distributed as CN(0, σ2
UL

). AP m computes an estimate of hmk

from the sufficient statistics ymk = Ymψψψik ∈ CN , which is

obtained as

ymk =

∑
k′∈Pk

√
τppk′hmk′ + Nmψψψik . (4)

Lemma 1. The minimum mean square error (MMSE) estimate

of the channel between user k and AP m is

ĥmk = E{hmk |ymk} =
√
τppk βmk

τp
∑

k′∈Pk
pk′βmk′ + σ

2
UL

ymk . (5)

The channel estimate is distributed as ĥmk ∼ CN (0, γmkIN ),
in which the variance γmk is

γmk =

τppk β
2
mk

τp
∑

k′∈Pk
pk′βmk′ + σ

2
UL

. (6)

Proof: The proof is adopted from the standard MMSE

estimation [24] to our notation.

Lemma 1 gives the precise expression of the estimated

channel between an arbitrary AP m and user k. If AP m is in

sleep mode, it will not estimate the channel and a convenient

way to represent that is by substituting βmk = 0 into (5), for

all k, which leads to a zero-valued channel estimate.

B. Downlink Performance Analysis

In the downlink data transmission phase, each active AP

constructs the precoding vectors based on their locally esti-

mated channels that were computed using Lemma 1. Let us

denote the precoding vector used by AP m to steer the data

signal to user k as wmk ∈ CN . Let sk denote the data symbol

that is jointly transmitted to user k by all the active APs and

assume E{|sk |2} = 1. The transmitted signal xm ∈ CN at AP m

to all K users is

xm =

K∑
k=1

√
ρmkwmk sk, (7)

where ρmk ≥ 0 is the transmit data power that AP m allocates

to user k. The received signal at user k from all the active

APs is

rk =
∑
m∈A

hH
mkxm + w̃k, (8)

where w̃k ∼ CN(0, σ2
DL

) is independent additive noise with

the zero mean and the variance σ2
DL

. By using the capacity

bounding technique described in [25, Section 2.3], [21, Sec-

tion 4.3], a lower bound on the ergodic channel capacity of

user k is

Rk =

(
1 −

τp

τc

)
×

log2

(
1 +

|DSk |2

E{|BUk |2} +
∑K

k′,k E{|UIk′k |2} + σ2
DL

)
, (9)

where DSk , BUk , and UIk′k terms denote the desired signal,

the beamforming uncertainty gain, and the inter-user interfer-

ence, respectively, which are expressed as

DSk = E

{ ∑
m∈A

√
ρmkhH

mkwmk

}
, (10)

BUk =

∑
m∈A

√
ρmkhH

mkwmk − E
{ ∑
m∈A

√
ρmkhH

mkwmk

}
, (11)

UIk′k =

∑
m∈A

√
ρmk′h

H
mkwmk′ . (12)

We stress that the lower bound on the downlink channel

capacity in (9) can be applied for any precoding scheme and

any active AP set. To obtain closed-form expressions that can

be efficiently used for optimization, we now assume the active

APs either use MRT or F-ZF precoding, which are defined for

m ∈ A as

wmk =




ĥmk√
E{ ‖ĥmk ‖2 }

if MRT,

Ĥm

(
ĤH

m Ĥm

)−1

eik√√
E

{Ĥm

(
ĤH

m Ĥm

)−1

eik


2
} if F-ZF,

(13)

where Ĥm = YmΨΨΨ ∈ CN×K and eik is the ik -th column of

identity matrix Iτp .

Lemma 2. The downlink ergodic SE of user k is

Rk({ρmk},A) =
(
1 −

τp

τc

)
log2 (1 + SINRk({ρmk},A)) , (14)

where the effective SINR is given in (15). The parameters G

and zmk depend on the selection of precoding scheme. MRT

gives G = N and zmk = βmk . For N > τp , F-ZF gives G =

N − τp and zmk = βmk − γmk .

Proof: The detailed proof aligns with [26] for MRT

precoding and with [27] for F-ZF precoding, except for the
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SINRk({ρmk },A) =
G

(∑
m∈A

√
ρmkγmk

)2

G
∑

k′∈Pk \{k }
(∑

m∈A
√
ρmk′γmk

)2
+

∑K
k′=1

∑
m∈A ρmk′ zmk + σ

2
DL

. (15)

different notation and that we only consider that a subset of

the M APs is in active mode.

In (15), the numerator is proportional to G, which is the

array gain from the multiple antennas installed at each AP.

The fact that the contributions from different APs are summed

up inside the square is typical for coherent joint transmission.

The first part in the denominator represents coherent inter-

ference from other users in the set Pk , which is caused by

pilot contamination. The remaining parts are the non-coherent

interference and noise. If F-ZF precoding is used, each AP

“sacrifices” τp antennas (i.e., τp spatial degrees of freedom)

to cancel interference between users that have different pilots.

We stress that the condition on the number of antennas N > τp
is essential for the validity of closed-form SE expression if F-

ZF precoding is utilized.

The ergodic SE in (14) will hereafter be used to establish

the SE constraint for each user in the network. Unlike the

previous work [26], [27] that considered all APs in active mode

A = {1, . . . , M}, the new closed-form SE expressions in (14)

are multivariate functions of both the transmit powers and the

set of active APs. One can observe that at least a single AP

should be activated, say 1 ≤ |A| ≤ M, when the network

serves K ≥ 1 users with the non-zero SE requirements.

We will use these expressions to formulate and solve a new

total power consumption minimization problem for Cell-free

Massive MIMO networks in the next sections.

III. TOTAL POWER MINIMIZATION PROBLEM

To maximize the energy efficiency of the network, we

can minimize the power consumption while satisfying the

SE requirements of the users. This section formulates a new

total power consumption minimization problem subject to

transmit power constraints at the APs and the required SEs

of the K users. The optimization variables are the active AP

set and the transmit powers. The global optimum can be

found by an exhaustive search, but it is extremely costly, in

particular for large networks, since the problem contains both

the continuous transmit power variables and discrete variables

representing the active APs. We reduce the computational

complexity by transforming this non-convex problem into a

mixed-integer SOC program, which is solved by the branch-

and-bound approach.

A. Problem Formulation

The power consumption of the network consists of both

the transmit power and power dissipation in the transceiver

hardware of the active APs. Similar to [15], [28], we model

the total power consumption from the all active APs in the

network as

Ptotal({ρmk },A) =
∑
m∈A

K∑
k=1

∆mρmk +

∑
m∈A

Pm

+ B
∑
m∈A

K∑
k=1

Pbt,mRk({ρmk},A),
(16)

where the first term in (16) is the total transmit power

consumed by every active AP. The transmit power at AP m

is computed as ∆mE{‖xm‖2} = ∆m
∑K

k=1 ρmk , where the

scaling factor ∆m ≥ 1 determines the inefficiency of the

power amplifiers. In the second term in (16), Pm, models

the power consumption of the transceiver chain connected to

active APs and the traffic-independent power of the fronthaul

connections and baseband processing. In the last part of (16),

Pbt,m (measured in Watt per bit/s) is the traffic-varying power

consumption (of the fronthaul and baseband processing) that is

proportional to the SE and system bandwidth B Hz. When we

activate an AP to improve the service, the power dissipation

in the transceiver hardware in (16) will increase, but the

total transmit power might decrease thanks to the coherent

combination of signals from multiple APs. If the latter effect

does not outweigh the former effect, it is better from an

energy-efficiency perspective to keep the AP turned off, at

least if it is still possible to satisfy the SE requirements of all

users.

The total power consumption minimization problem that we

want to solve is

minimize
{ρmk ≥0},A

Ptotal({ρmk},A)

subject to Rk({ρmk},A) ≥ ξk,∀k,

K∑
k=1

ρmk ≤ Pmax,m,∀m ∈ A,

(17)

where Pmax,m is the maximum downlink power of AP m. The

SE requirement of user k is denoted as ξk [b/s/Hz] and thus

the SE in (14) must be larger or equal to this number. Note

that all the transmit power variables affect all the SEs due to

mutual interference.

Remark 1. Similar optimization problems have been consid-

ered in [18], [29], but under less practical conditions. The

previous optimization problems are formulated for determin-

istic (or slowly fading) narrowband channels with perfect CSI

, which require the transmitters, receivers, and propagation

environment to be entirely static throughout the transmission

of (infinitely) long codewords. The methods developed with

such models are highly nontrivial to extend to practical fading

wideband channels, where there will be channel estimation

errors and the decisions of which APs to turn off must be

done jointly over many narrowband subcarriers. In contrast,

we formulate problem (17) based on the ergodic SE of fast
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fading channels, which is relevant in practical networks where

the channels are rapidly changing and there is channel coding

over multiple coherence intervals (spanning both over time

and frequency). Since the optimization problems are formu-

lated as a function of the large-scale fading coefficients, we

find a solution that is appropriate for the entire wideband

channel and for infinitely many small-scale fading realizations.

We stress that we are utilizing the specific features of Cell-free

Massive MIMO to compute SE expressions that take channel

hardening, channel estimation errors, pilot contamination, and

low-complexity linear precoding into account.

In many scenarios, the network only needs to activate a

subset of the M APs to deliver the required SE to the K users,

meaning that A ⊆ {1, . . . , M}. In order to study how many

elements in A are needed, we set νk = 2ξkτc/(τc−τp) − 1,∀k

and rewrite problem (17) with SINR constraints as

minimize
{ρmk ≥0},A

∑
m∈A

K∑
k=1

∆mρmk +

∑
m∈A

Phw,m

subject to SINRk({ρmk},A) ≥ νk, ∀k,

K∑
k=1

ρmk ≤ Pmax,m,∀m ∈ A,

(18)

where the total hardware power consumption at AP m, Phw,m,

is simplified from (16) based on the fact that all the SINR

constraints will be achieved with equality at an optimal

solution [30]:

Phw,m = Pm + B

K∑
k=1

Pbt,mξk . (19)

We have reduced the computational complexity of prob-

lem (18) compared to (17) since the hardware power consump-

tion (19) is now a constant, which transforms the objective

function of problem (18) from a nonlinear to a linear function.

To further simplify the problem, we introduce the notations

rA =

[√
∆m1′ ρm1′1, . . . ,

√
∆m|A| ρm|A|K,

√ ∑
m∈A

Phw,m

]T

∈ C |A |K+1, (20)

zkA =
[√

zm1′k, . . . ,
√

zm|A|k

]T
∈ C |A |, (21)

gkA =
[√

g1k, . . . ,
√
gmAk

]T ∈ C |A |, (22)

UA =[u1, . . . , uK ]T ∈ C |A |×K, (23)

skA =
[√
νk

(
gTkAut′

1
, . . . , gTkAut′|Pk \{k}|

, ‖zkA ◦ u1‖, . . . ,

‖zkA ◦ uK ‖, σDL

) ]T
∈ CK+ |Pk |, (24)

where m1′, . . . ,m |A | are the members of the active AP set A
(i.e., the indices of the active APs). In (22), gmk is defined as

gmk = Nγmk for MRT precoding and gmk = (N − τp)γmk for

F-ZF precoding. The matrix UA in (23) has the k-th column

uk = [√ρ1k, . . . ,
√
ρmAk

]T and the m-th row is denoted as u′
m.

In (24), t ′
1
, . . . , t ′|Pk \{k } | are the indices of the users belonging

to the set Pk \ {k}, and |Pk | is the cardinality of the set Pk .

The operator ◦ denotes the Hadamard product. We can now

obtain an equivalent epigraph representation of problem (18)

as

minimize
{ρmk ≥0},A,sA

sA (25a)

subject to ‖rA ‖ ≤ sA, (25b)

‖skA ‖ ≤ gTkAukA, ∀k = 1, . . . ,K, (25c)

| |u′
m | | ≤

√
Pmax,m, ∀m ∈ A. (25d)

The auxiliary variable sA moves the objective function of

problem (18) to the first constraint in (25b). We observe that

for a given A, problem (18) reduces to an SOC program, as

previously shown in [4], [5]. Hence, although (25) is non-

convex, it can be solved by making an exhaustive search over

all possible selections of A and solving each subproblem using

convex optimization. Since at least one AP needs to be active

if there is K ≥ 1 users with non-zero SE requirements, there

are 2M − 1 different selections of the APs that need to be

considered in an exhaustive search. This naive approach to

solving (18) will be very computationally costly even in a

relatively small network.

B. Globally Optimal Solution to the Total Power Minimization

Problem

Instead of making an exhaustive search, a global optimum

to (25) can be achieved in a structured way by utilizing, for ex-

ample, using the branch-and-bound approach [31]. That would

result in a more efficient implementation but the computational

complexity will still grow exponentially with the number of

APs. However, it enables offline benchmarking in problems

with up to tens of APs and users, as will be demonstrated

numerically in Section V.

Let the binary optimization variable αm ∈ {0, 1} mathe-

matically characterize the on/off activity of AP m. Instead of

explicitly forcing the AP’s transmit powers {ρm1, . . . , ρmK } to

zero when αm = 0, we can do it implicitly by replacing its

maximum transmit power by α2
mPmax,m. This gives the original

value Pmax,m when the AP is active and is zero when the AP

is turned off. This feature is exploited to formulate a mixed-

integer SOC program as in Lemma 3.

Lemma 3. Consider the mixed-integer SOC program

minimize
{ρmk ≥0}, {αm },s

s (26a)

subject to ‖r‖ ≤ s, (26b)

‖sk ‖ ≤ gTk uk, ∀k = 1, . . . ,K, (26c)

‖ũ′
m‖ ≤ αm

√
Pmax,m, ∀m = 1, . . . , M, (26d)

αm ∈ {0, 1},∀m = 1, . . . , M, (26e)

where ũ′
m is the m-th row of matrix Ũ = [ũ1, . . . , ũK ] ∈ CM×K

and ũk = [√ρ1k, . . . ,
√
ρMk]T ∈ CM, k = 1 . . . ,K. Moreover,
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the vectors r and sk are defined as

r =
[√
∆1ρ11, . . . ,

√
∆M ρMK, α1

√
Phw,1, . . . , αM

√
Phw,M

]T
∈ CMK+M, (27)

sk =
[√
νk

(
gTk ut′

1
, . . . , gTk ut′|Pk \{k}|

, ‖zk ◦ u1‖, . . . , ‖zk ◦ uK ‖,

σDL

)]T
∈ CK+ |Pk |, (28)

zk =
[√

z1k, . . . ,
√

zMk

]T ∈ CM, (29)

gk =
[√

g1k, . . . ,
√
gMk

]T ∈ CM . (30)

Problems (25) and (26) are equivalent in the sense that they

have the same optimal transmit powers. If we denote by {α∗
m}

an optimal solution to the binary variables {αm}, which is

obtained by solving problem (26), the optimal set of active

APs in problem (25) is

A =
{
m : α∗

m = 1,m ∈ {1, . . . , M}
}
. (31)

Proof: The binary variable αm behaves as an indicator

function which uniquely determines the activity of AP m.

When αm = 0, the related constraint (26d) is
∑K

k=1 ρmk = 0.

Since ρmk ≥ 0, we obtain ρmk = 0,∀k = 1, . . . ,K . Alter-

natively, AP m will be turned off and it does not have any

contribution to the total power consumption of the network as

well as all terms that would have contained ρmk in the SINR

expression are missing in (26c). By contrast, when αm = 1,

the related constraint (26d) becomes ‖ũ′
m‖ ≤

√
Pmax,m, which

is a total transmit power constraint when AP m is in active

mode as shown in (25). For that reason, finding {α∗
m} results is

the same as optimizing the active APs set A in problem (25)

by utilizing (31).

The new binary variables provide the explicit link between

the hardware and transmit power consumption, which is an

important factor to obtain the global optimum to problem (26).

A key reason that we can preserve the SOC structure, despite

adding the new binary variables, is that the binary variables are

not involved in the SINR constraints (26c). Instead there is an

implicit connection via the zero maximum transmit power for

inactive APs. This is different from the previous approaches,

e.g., [17], which also defined the on/off activity using αm
but then included it in the SINR expressions, leading to non-

convex SINR constraints.

Problem (26) is a mixed-integer SOC program on standard

form, thus a globally optimal solution can be obtained using

standard algorithms, for example, by using CVX [32] in con-

junction with the MOSEK solver [33]. This software applies

the branch-and-bound approach [31] to deal with the binary

variables. It is implemented in an iterative manner where the

main cost of each iteration consisting three steps: finding a

box, which gives a lower bound on the total power consump-

tion, and splitting that box into the two new boxes; computing

upper and lower bounds for the new generated boxes; and

pruning boxes which cannot contain the optimum solution. The

second step dominates the computational complexity of each

iteration, while the third step decides the required number of

iterations to reach the optimal solution. The following lemma

provides an estimate of the computational complexity when

solving problem (26).

Lemma 4. By utilizing the standard interior-point method to

solve a series of SOC programs, the computational complexity

of the branch-and-bound approach to obtain a global optimum

to problem (25) is in the order of

ln(ε−1)
N1∑
n=1

∑
i∈{0,1}

O
(
C
(n),ub

i

)
+ O

(
C
(n),lb
i

)
, (32)

where ε > 0 is the accuracy of solving SOC programs along

the iterations.1 N1 (N1 ≤ 2M − 1) denotes the number of

iterations needed for the branch-and-bound approach to reach

an optimal solution. Moreover C
(n),ub

i
and C

(n),lb
i

denote the

cost of computing the lower and upper bounds (see Appendix A

for the definitions of these bounds), which are given by:

C
(n),lb
i

=

√
L
(n)
i2
+ K2

+ L
(n)
i1

K + Z (n)×((
L
(n)
i2

)3

+ L
(n)
i2

K∑
k=1

|Pk | + L
(n)
i2

L
(n)
i1

K2
+ Z (n)K

)
,

(33)

C
(n),ub

i
=

(
U

(n)
i

)3
K3

√
U

(n)
i

K + K2. (34)

Here, M
(n−1)
0

and M
(n−1)
1

denote the number of APs already in

active and sleep modes, respectively, which are obtained from

the previous iteration. The initial values are M
(1)
0
= M

(1)
1
= 0.

Moreover, T (n)
= M − M

(n−1)
0

, Q(n)
= M − M

(n−1)
0

− M
(n−1)
1

,

Z (n)
= K

(
Q(n) − 1

)
and the other parameters depend on the

binary indices as

Parameter i = 0 i = 1

L
(n)
i1

M
(n−1)
1

M
(n−1)
1

+ 1

L
(n)
i2

(
T (n) − 1

)
K + Q(n) T (n)K +Q(n)

U
(n)
i

T (n) − 1 T (n)

Proof: The proof computes the computational complexity

for solving SOC programs to achieve the upper and lower

bounds that the branch-and-bound approach spends along

iterations. A detailed derivation is provided in Appendix A.

Lemma 4 shows that the computational complexity is the

total cost of computing upper and lower bounds until reaching

the global optimum. Even though the computational complex-

ity per iteration varies as the change in both the optimization

variables and the procedure needed in each iteration, (33) and

(34) can exhibit such features by using the big-O notation. In

the worst case, the branch-and-bound approach has the same

computational complexity as an exhaustive search over all

2M−1 boxes with possible subsets of active APs. With a proper

bounding rule, the average computational complexity can be

significantly reduced by pruning many boxes. Nevertheless,

an exponential growth with M is expected. In Section V, we

show that the branch-and-bound approach can find a globally

optimal solution to a moderate-size network with 20 APs.

1For a given ε, the set of optimized variables is called ε-solution to an
optimization problem if the objective function at this point is at most ε away
from the global optimum.
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IV. TWO SUBOPTIMAL ALGORITHMS WITH LOWER

COMPLEXITY

Motivated by the high computational complexity of solving

the total power minimization problem using Lemma 3, we

will now propose two algorithms that find good suboptimal

solutions to problem (25) with a tolerable computational

complexity and enabling implementation in large Cell-free

Massive MIMO networks.

A. Utilizing Sparsity to Turn Off APs

If the network does not need to turn on all the M APs

to provide the requested services from all the K users, we

know that many of the power variables will be zero. Hence,

we can try to find the optimum AP subset by expressing

(18) as a sparse reconstruction problem where we try to push

many of the transmit power variables to become zero. To this

end, we first reformulate problem (18) as a mixed ℓ2/ℓ0-norm

optimization problem.

Lemma 5. The original problem (18) has the same optimal

transmit powers as the following problem

minimize
{ρmk ≥0}

M∑
m=1

∆m‖ρρρm‖2
+ 1m(ρρρm)Phw,m

subject to ‖skAM
‖ ≤ gTkAM

ukAM
, ∀k = 1, . . . ,K,

| |u′
m | | ≤ 1m(ρρρm)

√
Pmax,m, ∀m = 1, . . . , M,

(35)

where ρρρm = [√ρm1, . . . ,
√
ρmK ]T ∈ CK and each function

1m(ρρρm) is defined based on the transmit powers of AP m as

1m(ρρρm) =
{

1, if ‖ρρρm‖ > 0,

0, if ‖ρρρm‖ = 0.
(36)

Moreover, if we denote by {ρ∗
mk

} the optimal set of all transmit

powers to (35), then the set

A =
{
m : ‖ρρρ∗m‖ > 0,m ∈ {1, . . . , M}

}
(37)

is the optimal set of active APs to problem (18).

Proof: When AP m is in sleep mode, it assigns zero

transmit power to all users (i.e., ρmk = 0,∀k = 1, . . . ,K).

This AP has no contribution to the objective function of

problem (35) due to ‖ρρρm‖ = 0 and thus we can make the

definition of 1m(ρρρm) as in (36). The optimal set of active APs

is defined based on the group-sparsity structure as in (37).

Lemma 5 shows that we do not need to define separate

variables for optimizing the active APs set A, but we can

implicitly determine if AP m is active or not by checking

if ‖ρρρm‖ > 0 or ‖ρρρm‖ = 0. The reformulated problem (35)

reduces the number of optimization variables compared with

(26), and in particular, all the optimization variables are now

continuous. Nevertheless, problem (35) is still non-convex

due to ℓ0-norm in the second part of the objective function.

However, we can relax ℓ0-norm to an ℓp-norm for some

0 < p < 1. This is a standard relaxation technique that retains

sparsity and we stress that it also gives better sparsity than an

ℓ1-norm relaxation (cf. Figs. 2 and 3 in [34] for illustrations).2

Therefore, we adopt the ℓp-norm optimization to obtain a

relaxation of problem (35) as3

minimize
{ρmk ≥0}

(
M∑
m=1

(
∆

2/p̃
m ‖ρρρm‖2

) p̃/2
+ P

p̃/2
hw,m

)2/p̃

subject to ‖skAM
‖ ≤ gTkAM

ukAM
, ∀k = 1, . . . ,K,

| |u′
m | | ≤

√
Pmax,m, ∀m = 1, . . . , M .

(38)

The objective function of problem (38) treats every vector ρρρm
as an entity in ∆

2/p̃
m ‖ρρρm‖2 when seeking a sparse solution.

We will utilize this group-sparse property of the transmit

power coefficients ρρρm to solve problem (38) in a novel way,

which differs from previous works that considered element-

based [36] or beamforming-vector-based sparsity [20]. Even

though problem (38) remains non-convex after the norm

relaxation, we can find a stationary point by adapting the

iteratively reweighted least squares approach from [37], that

was originally developed for problems with component-wise

sparsity. Specifically, after removing the exponent 2/p̃ and

the hardware power consumption in the objective function,

problem (38) can be recast as

minimize
{ρmk ≥0}

M∑
m=1

∆m‖ρρρm‖ p̃

subject to ‖skAM
‖ ≤ gTkAM

ukAM
, ∀k = 1, . . . ,K,

| |u′
m | | ≤

√
Pmax,m, ∀m = 1, . . . , M .

(39)

By noting that the group-sparse property implies the support

of vector ρρρm is the empty set, we can provide an iterative

algorithm obtaining a stationary solution to problem (39).

Theorem 1. Since the feasible set is convex, we can construct

an iterative algorithm that starts with the given initial weight

values a
(0)
m = 1,∀m = 1, . . . , M, and in iteration n = 1, 2, . . .

solves the SOC program

minimize
{ρmk ≥0}

M∑
m=1

a
(n−1)
m ‖ρρρm‖2

subject to ‖skAM
‖ ≤ gTkAM

ukAM
, ∀k = 1, . . . ,K,

| |u′
m | | ≤

√
Pmax,m, ∀m = 1, . . . , M,

(40)

to yield the solution {ρρρ∗,(n)m }, for which

ρρρ
∗,(n)
m =

[√
ρ
∗,(n)
m1

, . . . ,

√
ρ
∗,(n)
mK

]T
∈ CK, (41)

is the optimal transmit powers for AP m at iteration n. After

that, the weight values are updated for the next iteration as

a
(n)
m =

∆m p̃

2

(
‖ρρρ∗,(n)m ‖2

+ ǫ2
n

) p̃

2
−1

, (42)

where ǫn is a sufficiently small positive damping constant with

ǫn ≤ ǫn−1. When limn→∞ ǫn = 0, the proposed iterative process

exhibits the properties below:

2Strictly speaking, a value p ∈ [0, 1) does not lead to norm since the
subadditive property is not satisfied [35], but the “norm” terminology has
anyway been used for many years and we adopt this convention.

3From the range of the considered ℓp-norms, the condition 0 < p̃/2 < 1
as in (38) leads to 0 < p̃ < 2.
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1) The objective function of problem (39) reduces after each

iteration until reaching a fixed point, which is a stationary

point of problem (39).

2) If an arbitrary AP m has zero transmit power at the

optimum of iteration n, this AP will have zero transmit

power in all the following iterations.

Proof: The proof is based on the convergence property of

the iteratively weighted least squares approach that has been

adapted to our framework. The detailed proof is available in

Appendix B.

Theorem 1 guarantees a monotonically decreasing objective

function and the main computational cost is to solve (40) in

each iteration. The iterative process reaches a stationary point

to problem (39). The second property supports turning off APs

along iterations. The damping constant ǫn > 0 is introduced to

cope with a numerical issue that can appear when updating the

weight values (42), i.e., a
(n)
m → ∞ when ‖ρρρ∗,(n)m ‖ → 0. Even

though the convergence properties in Theorem 1 are proved

by the descending of ǫn along iterations, a sufficiently small

constant value also works well in the simulations as reported

in [38]. The stopping criterion can be selected by comparing

two consecutive iterations. For a given accuracy ε > 0, we

can verify if δ ≤ ε, where δ is the difference of the objective

function to problem (40):

δ =

�����
M∑
m=1

∆m‖ρρρ∗,(n−1)
mk

‖ p̃ −
M∑
m=1

∆m‖ρρρ∗,(n)mk
‖ p̃

����� . (43)

The stationary point achieved by Theorem 1 may not be a

globally optimal solution to problem (35) due to the norm

relaxation and the inherent non-convexity. Consequently, we

will not use the solution from Theorem 1 as the final solution

but instead as an indication of which APs to further turn off.

More precisely, we compute the transmit power that the APs

utilize at the solution from Theorem 1 and reorder the APs in

increasing power order.4

Let us denote by {ρ∗
mk

},∀m = 1, . . . M, k = 1, . . . ,K, the

optimized transmit powers obtained by Theorem 1, for which

a new parameter θm standing for the contribution of AP m is

defined. Specifically, θm is the total received power of the K

users that is transmitted by AP m as:

θm =

K∑
k=1

ρ∗mk

��E{hH
mkwmk}

��2 = N

K∑
k=1

ρ∗mk βmk . (44)

In order to classify the contribution of each AP in A∗ to

provide the required SINRs, we define a heuristic ascending

order as5

θ1′ ≤ θ2′ ≤ . . . ≤ θM′, (45)

where {1′, . . . , M ′} is a permutation of {1, . . . , M}. We will

now decide how many APs to utilize and keep only those

4We have implemented other possible orderings, for example, based on the
total transmit power per AP or the relative maximum received power allocated
to the users. For brevity, we are only considering the one that gave the best
results.

5Note that APs that were inactive at the solution obtained from Theorem 1
are still considered. Since the numerical precision is limited, these APs will
be assigned extremely small but non-zero power, which leads to a unique
ordering in (45).

with the largest θ-values using the ordering in (45). We further

compute an auxiliary variable

s∗ =

√
Ptotal

(
{ρ∗

mk
},A∗

)
. (46)

We begin by defining a range [Mlow, Mup], with the condition

Mup − Mlow ≥ 1. Specifically, the initial values are Mlow = 1

and Mup = M , then we compute the middle point at iteration

ñ as

m̃(ñ)
=

⌊
(Mlow + Mup)/2

⌋
, (47)

where ⌊·⌋ denotes the floor function. We now reorder the AP

indices according to (45) and consider setting the first m̃(ñ)−1

APs into sleep mode. Then, the active APs set is given by

A = Añ = {m̃(ñ), . . . , M}, which has the cardinality |Añ | =
M − m̃(ñ)

+ 1. We now solve the following SOC program:

minimize
{ρmk ≥0},sA

m̃(ñ)

sA
m̃(ñ)

subject to ‖rA
m̃(ñ) ‖ ≤ sA

m̃(ñ) ,

‖skA
m̃(ñ) ‖ ≤ gTkA

m̃(ñ)
ukA

m̃(ñ) , ∀k = 1, . . . ,K,

| |u′
m | | ≤

√
Pmax,m, ∀m = m̃(ñ), . . . M ′,

(48)

where sA
m̃(ñ) is an upper bound defined by the sublevel

set in the epigraph representation of problem (18) when the

M − m̃(ñ)
+ 1 APs are in active mode. From the solution to

problem (48), the new upper or lower bounds on the number

of inactive APs are updated as{
Mlow = m̃(ñ), if (48) is feasible and s∗A

m̃(ñ)
< s∗,

Mup = m̃(ñ), otherwise,
(49)

where s∗A
m̃(ñ)

is the solution to (48) at iteration ñ. Notice from

(49) that when Mlow is updated, the current optimal transmit

powers and active APs set will be stored. Moreover, we update

s∗ = s∗A
m̃(ñ)

. This iterative process will be executed until

Mup − Mlow = 1 as summarized in Algorithm 1. If we assume

problem (25) has an optimal solution, then Algorithm 1 can

always keep track of the best feasible point among those

that are observed when running this algorithm, thanks to the

condition s∗A
m̃(ñ)

< s∗. We further obtain the computational

complexity of Algorithm 1 as in Lemma 6.

Lemma 6. By using the standard interior-point method, the

complexity order of Algorithm 1 to obtain the given ε-accuracy

is

ln
(
ε−1

) (
O

(
N2M3K3

√
MK + K2

)
+

N3∑
ñ1=1

N3∑
ñ2=1

O
(√(

M − m̃(ñ1)
)
K + K2

(
M − m̃(ñ2))3

K3
))
, (50)

where N2 is the number of iterations needed for finding the

group sparsity support. N3 is the number of iterations needed

for the turnoff APs which satisfies N3 ≤ ⌈log2(M + 1)⌉.

Proof: The computational complexity order is obtained as

in (50) by determining the costs of computing the two main

iterative tasks: The optimal transmit powers when the M APs

are in active mode and a better local optimum by turning off



9

Algorithm 1 Selecting how many APs to turn off with sparsity

support

Input: Large-scale fading coefficients βmk, ∀,m, k; Maximum

power levels Pl,,∀l, k; Initial weight values a
(0)
m = 1,∀m; Set

iteration index n = 0 and δ = ∞; Set Mlow = 1 and Mup = M.

1. while δ > ǫ do

1.1. Set n = n + 1.

1.2. Solve problem (40) by using the previous weight

values a
(n−1)
m , ∀m, to obtain the optimal transmit powers

ρ
∗,(n)
mk

, ∀m, k.

1.3. Update the weight values a
(n)
m by using (42).

1.4. Compute the stopping value δ in (43).

2. End while

3. Set ρ∗
mk
= ρ

∗,(n)
mk

, ∀l, k, define A∗, and compute s∗ as in

(46); Compute θm, ∀m, as in (44); Define the ascending

order in (45). Set ñ = 1.

4. while Mup − Mlow > 1 do

4.2. Compute m̃(ñ) as in (47) and then solve problem (48).

4.3. If problem (48) is feasible and s∗A
m̃(ñ)

< s∗, then:

Set Mlow = m̃(ñ); Update the current optimal solution

ρ∗
mk
= ρ

∗,(ñ)
mk

,∀m, k,A∗
= A∗

m̃(ñ), and s∗ = s∗A
m̃(ñ)

.

Otherwise, Set Mup = m̃(ñ).
4.4. Set ñ = ñ + 1.

5. End while

Output: The optimized transmit powers: ρ
opt

mk
= ρ∗

mk
, ∀m, k,

and active APs set A∗.

APs. The main computational complexity in each task lies in

solving SOC programs with the similar algebra in the proof

of Lemma 4, but we are now only considering the transmit

powers as optimization variables.

For the second task, an upper bound on the number of

iterations needed for the turnoff APs stage is obtained by

taking the lower and upper bound on the number of inactive

APs, and dividing it in half, we will take the largest of those

two intervals. The following inequality holds at iteration ñ:

Mup − Mlow ≤ M − 1

2ñ
+

1

2ñ−1
. (51)

In the right hand-side of (51), the first part stands for the error

bound of splitting intervals, while the other is for rounding the

middle point of each interval. Algorithm 1 terminates when

Mup − Mlow = 1, so (51) becomes 2ñ ≤ M + 1 and therefore

an upper bound of the number of iterations is obtained as in

the lemma.

Algorithm 1 has a computational complexity in the order of

O ©
«
N2M3.5K3.5

+ N2
3

(
M − argmax

m̃(ñ)
m̃(ñ)

)3.5

K3.5ª®¬
. (52)

In comparison to the branch-and-bound approach, the com-

putational complexity per iteration reduces since only one

SOC program is solved in each iteration. Moreover, for large-

scale networks, the number of iterations (N2 +N3) required in

Algorithm 1 is expected to be much less than with the branch-

and-bound approach.

Algorithm 2 Total transmit power minimization and turnoff

APs

Input: Large-scale fading coefficients βmk,∀m, k; Maximum

power levels Pmax,m, ∀m; Set up Mlow = 0 and Mup = M; Set

A = AM = {1, . . . , M}.
1. Solve problem (53) to obtain ρ∗

mk
,∀m, k.

2. Compute θm,∀m,= 1, . . . , M, and sort them in the as-

cending order as (45); Set ñ = 1.

3. Perform the turnoff APs similar to Algorithm 1.

Output: The optimized transmit powers: ρ
opt

mk
= ρ∗

mk
,∀m, k,

and active APs set A∗.

B. Total Transmit Power Minimization and Turnoff APs

The second low-complexity algorithm is obtained by opti-

mizing the transmit powers only once for the case when all

APs are turned on (i.e., A = AM = {1, . . . , M}) and then

use this solution to decide in which order that APs should be

turned off. Then problem (25) becomes

minimize
{ρmk ≥0},sAM

sAM

subject to ‖rAM
‖ ≤ sAM

,

‖skAM
‖ ≤ gTkAM

ukAM
, ∀k = 1, . . . ,K,

| |u′
m | | ≤

√
Pmax,m, ∀m = 1, . . . M,

(53)

which is an SOC program and we can obtain the optimal

solution in polynomial time. We use the solution to this

problem to order the APs according to (44) and (45), and then

follow the same procedure as in Algorithm 1 to determine how

many APs should be active. This results in Algorithm 2 and the

computational complexity order is obtained from Lemma 6 by

setting N2 = 1. It means that Algorithm 2 has lower complexity

than Algorithm 1 since it only solves one SOC program to

determine the AP ordering. In more detail, the computational

complexity of Algorithm 2 increases roughly as a polynomial

of the optimization variables, i.e., O(M3.5K3.5).

V. NUMERICAL RESULTS

This section provides extensive numerical results to com-

pare the power consumption of the different algorithms pre-

sented in the previous sections. We consider a Cell-free Mas-

sive MIMO network where the M APs each having N = 20

antennas and K users are randomly distributed within a square

of 1 km2. The distance between two APs should not be less

than 50 m. The requested SE of each user is 2 b/s/Hz.6 We

apply wrap-around to get rid of edge effects. The coherence

intervals have τc = 200 symbols. There are τp = 5 orthogonal

pilot signals and each is assigned to K/τp randomly selected

users. We use the large-scale fading formulation in [39],

that matches well with 3GPP Urban Microcell model with a

carrier frequency 2 GHz. In particular, the large-scale fading

coefficient between user k and AP m is defined in dB-scale

as

βmk = −30.5 − 36.7 log10(dmk/1m) + zmk, (54)

6This value can be compared with the IMT-2020 requirement for 5G
systems where the 5-th percentile SE is 0.225 b/s/Hz in dense urban scenarios.
We demonstrate that one can achieve roughly 10 times more than that using
Cell-free Massive MIMO.
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Fig. 1. The CDF of the total transmit power [W] with M = 20, K = 20,
and MRT precoding.
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Fig. 2. The CDF of the total transmit power [W] with M = 20, K = 20,
and F-ZF precoding.
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Fig. 3. The CDF of the total power consumption [W] with M = 20, K = 20,
and MRT precoding.
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Fig. 4. The CDF of the total power consumption [W] with M = 20, K = 20,
and F-ZF precoding.

where dmk is the distance which takes into account that APs

are deployed 10 m above the users. The shadow fading term

zmk follows a Gaussian distribution with zmk ∼ N(0, 16). We

assume the shadow fading coefficients from one AP to all users

correlated as

E{zmk zm′k′} =
{

16 × 2−δkk′/9m, for m = m′,

0, for m , m′,
(55)

where δkk′ is the distance between two users k and k ′.
The power consumption model parameters are borrowed

from [15]: The power amplifier inefficiency factor is ∆m = 2.5.

The hardware power consumption per antenna is 0.2 W and

a fixed power consumption of each fronthaul link is setup

to 0.825 W, thus Pm = 4.825 W, ∀m. The traffic-dependent

fronthaul power is 0.25 W/(Gbits/s). The maximum transmit

power budget per AP is 1 W and pilot symbols have equal

power 0.2 W.

The following methods will be compared for either MRT

or F-ZF precoding:7

(i) Total transmit power minimization only: The network

turns on all M APs and optimizes the transmit powers

for the given SE constraints. This case was considered in

7There are heuristic methods to turn off APs for energy-efficient purposes,
but without any guarantee of satisfying the SE requirements [40]. There
is no trivial benchmark that minimizes the total power consumption (both
transmit and hardware powers) with respect to the SINR constraints.

[15], [16]. We name this benchmark as Transmit power

only in the figures.

(ii) Algorithm 1: This algorithm first utilizes group-sparsity to

order the APs and then selects how many APs to turnoff

based on this ordering. We use p̃/2 = 0.5.

(iii) Algorithm 2: This algorithm uses the solution from

“Transmit power only” to order the APs and then selects

how many APs to turnoff based on this ordering.

(iv) Disjoint sparsity: This is a method from [20], [41] that

treats the selection of APs to turnoff and the transmit

power minimization separately. We use p̃/2 = 0.5 and

call this benchmark Disjoint sparsity in the figures.

(v) Optimal solution: This benchmark computes the optimal

solution to both the transmit power allocation and active

APs, as described in Lemma 3. We name this benchmark

as Mixed-integer SOC in the figures.

Fig. 1 shows the cumulative distribution function (CDF) of

the total transmit power attained by the five different methods

when using MRT precoding. When all APs are active, the

average total transmit power is 1.8 W. The mixed-integer SOC

program needs an average transmit power of around 6.4 W,

which is 3.6× higher. Both the heuristic algorithms provide

almost an equal average total transmit power of about 7 W,

while the disjoint sparsity benchmark uses the highest transmit

power level: about 11.8 W. At the 95%-likely point, the total

transmit power is only 0.3 W. Compared with this baseline,
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Fig. 5. The average number of active APs by using different benchmarks
for a network with M = 20, K = 20, and MRT precoding.
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Fig. 6. The average number of active APs by using different benchmarks
for a network with M = 20, K = 20, and F-ZF precoding.
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Fig. 7. The convergence of the group sparsity approach in Theorem 1 for a
network with the different number of APs serving K = 20 users.

the mixed-integer SOC and the other methods require 8.5×
and 4× higher total transmit power.

We provide the CDFs of the total transmit power when using

F-ZF precoding in Fig. 2. F-ZF precoding reduces the total

transmit power up to 12% compared with MRT precoding.

However, the minimum transmit power provided by F-ZF

precoding is only 3% lower than MRT precoding on the

average. These gains by F-ZF precoding come from mitigating

mutual interference as aforementioned in Sec. II-B. Moreover,

the disjoint sparsity still consumes the highest transmit power

with 10.2 W on the average.

The proposed methods are not minimizing the transmit

power but the total power consumption. Figs. 3 and 4 show the

CDF of the total power consumption [W] of a network utiliz-

ing either MRT or F-ZF precoding. Contrary to the previous

figures, “Transmit power only” now requires the highest total

power consumption among all the considered methods for both

MRT and F-ZF precoding: about 102 W on the average. By

solving the proposed mixed-integer SOC program, we find the

global minimum total power consumption, which saves about

49% or 55% compared with the baseline by utilizing either

MRT or F-ZF precoding, respectively. The proposed sparsity-

based method in Algorithm 1 requires around 17% and 20%

more power than the corresponding global minimum with

MRT and F-ZF precoding, respectively. Since Algorithm 2

is not exploiting sparsity when selecting which APs to turn

off, it requires 27% extra power than the global minimum

to serve all the users. Figs. 3 and 4 therefore confirm the

improvements that can be made by exploiting the sparsity

structure. Our proposed suboptimal algorithms give lower total

power consumption than the disjoint sparsity benchmark with

the improvement up to 59% when MRT precoding is used.

The average number of active APs is plotted in Figs. 5

and 6. The network only needs to activate a small subset

of the APs to provide the required SEs. The mixed-integer

SOC program requires around 9.1 APs if MRT precoding is

used, thus more than 55% of the APs are in sleep mode.

Algorithm 1 gives around 10.8 active APs, while Algorithm 2

activates 11.3 APs on average. The disjoint sparsity needs the

number of active APs similar to Algorithm 2, thus it proves the

benefits of group sparsity in reducing the total transmit power

consumption. If F-ZF precoding is applied, the network can

turn off more APs compared with MRT, while still satisfying

the SE requirements. For instance, the mixed-integer SOC

program only needs 7.8 active APs on the average.

Fig. 7 shows the convergence of the proposed sparsity

approach in Theorem 1 for a network with 20 or 40 APs

serving 20 users, which is averaged over the 5000 different

realizations of user locations. The objective function on the

vertical axis is defined as in (39). The results confirm the

monotonically decreasing property, which was stated in Theo-

rem 1. Compared with the initial point, the stationary point has

a 20% lower objective function value when the network has

20 APs. The corresponding reduction is about 32% when the

network has 40 APs. The proposed group sparsity approach

converges to the stationary point in less than 15 iterations,

relatively irrespective of the number of APs. This shows an

increasing cost of Algorithm 1 compared with Algorithm 2.

Figs. 8 and 9 show CDFs of the total power consumption for

a network with 50 APs serving 40 users by utilizing MRT or F-

ZF precoding, respectively. The mixed-integer SOC program is

excluded in this case because of its extremely high complexity

for large networks. “Transmit power only” has the highest total

power consumption with up to around 261 W for both MRT or

F-ZF precoding in use. Compared to this baseline, Algorithm 1
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Fig. 8. The CDF of the total power consumption [W] with M = 50, K = 40,
and MRT precoding.

80 100 120 140 160 180 200 220 240 260 280
0

0.2

0.4

0.6

0.8

1

Fig. 9. The CDF of the total power consumption [W] with M = 50, K = 40,
and F-ZF precoding.

reduces the power consumption by 2.3× if each AP uses

MRT precoding and 2.5× for the case of F-ZF precoding.

Moreover, the group-sparsity structure provides at most 10%

lower power consumption than only deploying the optimized

transmit powers as side information. We also confirm that

jointly optimizing both transmit and hardware power gives

better energy-efficiency than previous works, which treated the

two classes of optimization variables in the disjoint sparsity

approaches.

Figs. 10 and 11 consider a similar setup as in the two

previous figures, but each user asks for a different SE that

is drawn from a uniform distribution between 1 and 2 b/s/Hz.

The case where only the transmit power is optimized is still

requiring the highest power, followed by the disjoint sparsity

method. Algorithm 1 requires a 3× lower average total power

consumption than when only the transmit power is minimized.

Moreover, the effectiveness of Algorithm 2 is observed from

the fact that it substantially reduces the complexity compared

to Algorithm 1, but only requires 2% more power. Besides,

Figs. 10 and 11 show that the total power consumption is

always less than those of Figs. 8 and 9 when all users request

the same SE of 2 b/s/Hz.

VI. CONCLUSION

This paper has minimized the total power consumption

optimization in Cell-free Massive MIMO networks by jointly

optimizing the downlink transmit powers and the number of

active APs, while satisfying the SEs requested by all the

users. A globally optimal solution can be found by formulating

the considered problem as a mixed-integer SOC program

then utilizing the branch-and-bound approach. From this joint

optimization framework, we observe a considerable reduction

of the total power consumption (up to more than 50%)

compared with only minimizing the transmit power as in

previous work. Due to the high computational complexity of

solving the mixed-integer SOC program, we developed two

suboptimal algorithms that have a complexity that make them

applicable also in large cell-free networks. These algorithms

only require roughly 20% higher power consumption than the

global optimum.

APPENDIX

A. Proof of Lemma 4

The proof is based on formulating and computing the

computational complexity of every SOC program for the use in

the branch-and-bound approach. Iteration n selects a box B(n)

with the M
(n−1)
0

zeros, the M
(n−1)
1

ones, and the Q(n) unfixed

binary variables. The new two boxes B(n)
0

and B(n)
1

are further

generated from B(n) by fixing one of the Q(n) binary variables,

say αm′ , as:

B(n)
i
=

{
B(n) |αm′ = i, i ∈ {0, 1}

}
. (56)

Let us denote B(n)
i1

⊆ B(n)
i

the subset containing all “known”

active APs and B(n)
iu

⊆ B(n)
i

the subset containing the unfixed

APs (i.e., B(n)
i1

∪ B(n)
iu
= B(n)

i
). Based on the new box B(n)

i
, a

lower bound on the global optimum is computed by solving

the following SOC program:

lb(B(n)
i

) : minimize
{ρmk ≥0}, {αm },s

s

subject to ‖r‖ ≤ s,

‖sk ‖ ≤ gTk uk, ∀k = 1, . . . ,K,

‖ũ′
m‖ ≤

√
Pmax,m, ∀m ∈ B(n)

i1
,

‖ũ′
m‖ ≤ αm

√
Pmax,m, ∀m ∈ B(n)

iu
,

0 ≤ αm ≤ 1,∀m ∈ B(n)
iu
.

(57)

The SOC program (57) includes L
(n)
i2

optimization variables,

one SOC constraint of dimension L
(n)
i2

, the K SOC constraints

of dimension with the k-th one being of dimension K̃k , the

L
(n)
i1

constraints of dimension K , and the Q(n)−1 constraints of

dimension K + 1. By following similar steps as in [42], [43],

we can compute the per-iteration computation costs to solve

an SOC program and the order of the number of iterations to

reach ε-accuracy as

O
( (

L
(n)
i2

)3

+ L
(n)
i2

K∑
k=1

|Pk | + L
(n)
i2

L
(n)
i1

K2
+ Z (n)K

)
, (58)

√
L
(n)
i2
+ K2

+ L
(n)
i1

K + Z (n) ln
(
ε−1

)
. (59)
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Fig. 10. The CDF of the total power consumption [W] with M = 50, K =
40, and MRT precoding. Users has the different requested SEs.

Fig. 11. The CDF of the total power consumption [W] with M = 50, K =
40, and F-ZF precoding. Users has the different requested SEs.

Taking the product of (58) and (59), the computational com-

plexity to obtain lb(B(n)
i

) is ln
(
ε−1

)
O

(
C
(n),lb
i

)
.

If we denote α∗
m the optimal solution to αm in problem (57),

then α̃m ∈ {0, 1},∀m, will be the binary number obtained by

using the rounding operator to each element in the set {α∗
m}.

An upper bound based on a new box B(n)
i

is obtained by

solving this SOC program:

ub(B(n)
i

) : minimize
{ρmk ≥0},s

s

subject to ‖r‖ ≤ s,

‖sk ‖ ≤ gTk uk, ∀k = 1, . . . ,K,

‖ũ′
m‖ ≤

√
Pmax,m, ∀m ∈ B(n)

i1
,

‖ũ′
m‖ ≤ α̃m

√
Pmax,m, ∀m ∈ B(n)

iu
.
(60)

The SOC program (60) has U
(n)
i

K + 1 optimization variables,

one SOC constraint of dimension U
(n)
i

K + 1, the K SOC

constraints with the k-th one of dimension K̃k , and the U
(n)
i

constraints of dimension K . The computation cost to reach

ε-accuracy is computed as

O
( (

U
(n)
i

)3
K3

√
U

(n)
i

K + K2

)
ln

(
ε−1

)
, (61)

which is the computational complexity order to obtain

ub(B(n)
i

) as denoted by ln
(
ε−1

)
C
(n),ub

i
in the lemma. The com-

putational complexity order of the branch-and-bound approach

is obtained by summing up the costs over N1 iterations.

B. Proof of Theorem 1

We first prove that the iterative process in Theorem 1

produces a non-increasing objective function of problem (39),

mathematically expressed as

M∑
m=1

∆m‖ρρρ∗,(n)m ‖ p̃ ≤
M∑
m=1

∆m‖ρρρ∗,(n−1)
m ‖ p̃ . (62)

Indeed, the following series of inequalities holds

M∑
m=1

∆m p̃

2
‖ρρρ∗,(n)m ‖ p̃ (a)

= min
ρρρ
(n)
m �0

M∑
m=1

a
(n−1)
m ‖ρρρ(n)m ‖2

(b)
= min

ρρρ
(n)
m �0

M∑
m=1

∆m p̃

2

(
‖ρρρ∗,(n−1)

m ‖2
+ ǫ2

n−1

) p̃

2
−1

‖ρρρ(n)m ‖2

(c)
≤

M∑
m=1

∆m p̃

2

(
‖ρρρ∗,(n−1)

m ‖2
+ ǫ2

n−1

) p̃

2
−1

‖ρρρ∗,(n−1)
m ‖2

(d)
≤

M∑
m=1

∆m p̃

2
‖ρρρ∗,(n−1)

m ‖ p̃,

(63)

where (a) and (c) are obtained from solving problem (40),

while (b) and (d) are due to the definition of the weight

values in (42). Therefore, the iteratively weighted least squares

approach, which is applied in this paper, converges to a fixed

point. Let f =
∑M

m=1 ∆m‖ρρρm‖ p̃ denote the objective function

of problem (39), then taking the first derivative of f with

respect to ρmk = ρ
∗,(n)
mk

yields

∂ f

∂
√
ρmk

���
ρmk=ρ

∗,(n)
mk

=

∆m p̃

2
‖ρρρ∗,(n)m ‖2

(
p̃

2
−1

)
2

√
ρ
∗,(n)
mk

(a)→ a
(n)
m 2

√
ρ
∗,(n)
mk

,

(64)

where (a) is obtained with a sufficiently large number of

iterations such that ǫn → 0. According to [44, Proposition

2.1.2], if the fixed point holds at iteration n, then the following

optimality condition is obtained

M∑
m=1

K∑
k=1

a
(n)
m

√
ρ
∗,(n)
mk

(
√
ρmk −

√
ρ
∗,(n)
mk

)
≥ 0. (65)

Substituting (64) into (65), the local minimum of f is estab-

lished as

M∑
m=1

K∑
k=1

∂ f

∂
√
ρmk

���
ρmk=ρ

∗,(n)
mk

(
√
ρmk −

√
ρ
∗,(n)
mk

)
≥ 0, (66)

which confirms that {ρ∗,(n)
mk

} is a stationary point to prob-

lem (39) by virtue of [37, Definition 1]. To prove the second
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property, we observe the following inequality

M∑
m=1

a
(n−1)
m ‖ρρρ∗,(n)m ‖2 ≥ a

(n−1)
m′ ‖ρρρ∗,(n)

m′ ‖2

=

∆m′ p̃

2

(
‖ρρρ∗,(n−1)

m′ ‖2
+ ǫ2

n−1

) p̃

2
−1

‖ρρρ∗,(n)
m′ ‖2,

(67)

with m′ ∈ {1, . . . , M}. Moreover, the feasibility domain of

problem (40) at iteration n gives the relationship

M∑
m=1

a
(n−1)
m ‖ρρρ∗,(n)m ‖2 ≤

M∑
m=1

∆m p̃

2
‖ρρρ∗,(n−1)

m ‖ p̃ . (68)

Combining (67) and (68), we obtain the following inequality:

∆m′

(
‖ρρρ∗,(n−1)

m′ ‖2
+ ε2

n−1

) p̃

2
−1

‖ρρρ∗,(n)
m′ ‖2 ≤

M∑
m=1

∆m‖ρρρ∗,(n−1)
m ‖ p̃,

(69)

⇔∆m′ ‖ρρρ∗,(n)
m′ ‖2 ≤

(
‖ρρρ∗,(n−1)

m′ ‖2
+ ǫ2

n−1

)1− p̃

2
M∑
m=1

∆m‖ρρρ∗,(n−1)
m ‖ p̃ .

(70)

When ǫn−1 → 0 as n → ∞, (70) is approximated as

∆m′ ‖ρρρ∗,(n)
m′ ‖2 ≤ ‖ρρρ∗,(n−1)

m′ ‖2
(
1− p̃

2

) M∑
m=1

∆m‖ρρρ∗,(n−1)
m ‖ p̃, (71)

which indicates that if iteration n − 1 gives the total transmit

power of AP m′ equal to zero, i.e., ‖ρρρ∗,(n−1)
m′ ‖ = 0, then

‖ρρρ∗,(n)
m′ ‖2 ≤ 0. (72)

From (72), it indicates at iteration n that {ρ∗,(n)
m′k = 0,∀k =

1, . . . ,K}.
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