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Abstract

A novel non-orthogonal multiple access (NOMA) based cache-aided mobile edge computing (MEC)

framework is proposed. For the purpose of efficiently allocating communication and computation re-

sources to users’ computation tasks requests, we propose a long-short-term memory (LSTM) network

to predict the task popularity. Based on the predicted task popularity, a long-term reward maximization

problem is formulated that involves a joint optimization of the task offloading decisions, computation

resource allocation, and caching decisions. To tackle this challenging problem, a single-agent Q-learning

(SAQ-learning) algorithm is invoked to learn a long-term resource allocation strategy. Furthermore, a

Bayesian learning automata (BLA) based multi-agent Q-learning (MAQ-learning) algorithm is proposed

for task offloading decisions. More specifically, a BLA based action select scheme is proposed for

the agents in MAQ-learning to select the optimal action in every state. We prove that the BLA based

action selection scheme is instantaneously self-correcting and the selected action is an optimal solution

for each state. Extensive simulation results demonstrate that: 1) The prediction error of the proposed

LSTMs based task popularity prediction decreases with increasing learning rate. 2) The proposed frame-

work significantly outperforms the benchmarks like all local computing, all offloading computing and

non-cache computing. 3) The proposed BLA based MAQ-learning achieves an improved performance

compared to conventional reinforcement learning algorithms.
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I. INTRODUCTION

Mobile applications have been growing exponentially in wireless networks due to the explosive

growth in smart wireless devices. The success of heterogeneous services and related applications,

such as augmented reality (AR), virtual reality (VR), real-time online gaming and high-speed

video streaming in wireless networks require unprecedented high access speed and low latency [2,

3]. However, the stringent performance and delay requirements of computationally-intensive

and latency-sensitive applications are significantly restricted by limited battery capacity and

computation resources of the mobile devices. To address these significant challenges, a new

trend is emerging with the function of central networks being increasingly moved towards the

network edges (see [4], and references therein). The key idea of mobile edge computing (MEC) is

to promote abundant computing resources at the edge of networks by integrating MEC servers at

wireless access points (APs). The computation tasks requested by mobile users can be offloaded

to the APs, which liberates the mobile devices from heavy computation workloads and reduces

their energy consumption. However, determining communication and computation resources at

networks edge introduces significant challenges (see [3, 4], and references therein), such as task

offloading decisions of mobile users, computing resource allocation of the APs to satisfy large

numbers of computationally-intensive and latency-sensitive computing tasks..

For the transmission aspect: Non-orthogonal multiple access (NOMA) emerged recently

as a key enabling technology for next generation wireless communication, thanks to its high

bandwidth efficiency and ultra high connectivity [5, 6]. The key idea behind NOMA is to ensure

that multiple users are served simultaneously within the same given time/frequency resource

block (RB), utilizing superposition coding (SC) techniques at the transmitter and successive

interference cancellation (SIC) at the receiver [7, 8]. Different from orthogonal multiple access

(OMA) in MEC networks, NOMA based MEC enables the mobile users to offload the com-

putation tasks to the MEC servers simultaneously, which significantly reduce the computation

latency of the network. Therefore, adopting NOMA in MEC networks better utilizes the capacity

of the communication channel for offloading computation tasks, and thus improves the computing

performance for multiuser MEC networks.

For the computation aspect: Caching is another promising technique due to the strategy

of trading spectrum resources with storage resources. The main idea behind caching is to place

abundant cache resources at the network edge for storing reusable content. In MEC networks, the

task computation results may be requested by other users in the near future [9, 10]. For instance,

in real-time online gaming, a rendered game frame would be sent to a bunch of nearby users

in the same game. Accordingly, caching reusable task computation results in the MEC server
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is capable of reducing the duplicated task offloading and computing, therefore, it releases the

computation burden and latency of the MEC networks [11, 12].

A. Related Works

1) Studies on NOMA MEC networks: In contrast to the conventional OMA based MEC,

the NOMA based MEC enables simultaneous task offloading, thus reducing energy consump-

tion and avoiding delay. This motivated numerous researchers to dedicate substantial research

contributions to NOMA MEC networks [13–18]. Various asymptotic studies are carried out

in [13], revealing that the impact of channel conditions and transmit powers on NOMA MEC

are different from conventional NOMA scenarios. For one AP scenario, the authors in [14] jointly

optimized the communication and computation resource allocation as well as the BS’s successive

interference cancelation (SIC) decoding order, to minimize the total energy consumption of

the users. In [15], the energy consumption of the users is minimized via optimizing the user

clustering, computing and communication resource allocation, and transmit powers. Different

from [14, 15], which only consider the uplink task transmission, the authors exploited NOMA

for both task uploading and result downloading in [16]. Different from [14–16], which minimize

the energy consumption, the authors in [17] minimized the offloading delay in a two-user NOMA

MEC network. For the multiple APs scenario, a joint radio and computational resource allocation

problem is investigated in [18], aiming at minimizing the energy consumption of all users

under the task execution latency in heterogeneous networks. The above works on NOMA MEC

analyze the static NOMA MEC networks using stochastic geometry approaches. However, for

dynamic NOMA MEC networks, the uncertainty and unavailability of prior information makes

conventional approaches difficult or even impossible.

2) Studies on NOMA Caching networks: The flexibility of NOMA makes it easy to integrate

with other emerging wireless technologies like caching, to enable spectral and energy efficient

transmission [19]. In [20], the NOMA strategy is utilized in caching networks, for pushing

more contents to the server or simultaneously pushing the contents to the server and users.

In [21], the cache-aided NOMA scheme is proposed to improve the coverage performance of

NOMA communications. The authors in [8, 22] proposed a cache-aided NOMA scheme, to

exploit cached data for interference cancellation in NOMA transmission. In [23], cache-aided

NOMA is proposed to reduce the outage probability when a user possesses a cache of information

requested by a user with a stronger channel. Different from [8, 19–23], which adopt superposition

coding (SC) at the transmitters, the authors in [24] utilize index coding (IC) in cache-aided

NOMA networks for reducing the transmission power.
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3) Studies on Caching MEC networks: Wireless caching is typically employed in MEC

networks, for supporting multimedia contents in networks edge to reduce the computing overhead

and latency [25]. The motivation for integrating caching and computing for next generation

wireless networks is to facilitate massive content delivery and satiate the requirements of network

conditions and mobile devices. Both a cache-assisted computing mechanism and a computing-

assisted caching mechanism are proposed in [26].

B. Motivation

While the aforementioned research contributions have laid a solid foundation for caching,

NOMA and MEC networks, the investigations on the applications of integrating caching and

NOMA in MEC networks are still in their infancy. It is worth pointing out that, in a multi-

users MEC network, where there are several users requesting services from one AP, the major

challenge is computing model selection (i.e., local computing or MEC computing) and com-

putation resource allocation. Due to the combinatorial nature of computing mode selection,

the task offloading and resource allocation problem is generally formulated as a mixed integer

programming (MIP) problem. To tackle this MIP problem, branch-and-bound algorithms [27]

and dynamic programming [28] are adopted for the globally optimal solution. Though the

conventional approaches make solid contributions to static optimization of task offloading and

resource allocation, the mobile users nowadays request dynamic task computing, which is non-

trivial for conventional approaches. Furthermore, designing the apriori resource allocation scheme

in a long-term manner is nontrivial or even impossible for conventional approaches.

With the development of reinforcement learning (RL) and the high computing speed of

new workstations, the investigations on the applications of RL algorithms in wireless networks

are growing rapidly [29]. RL is a promising approach to find an efficient long-term resource

allocation solution in an intelligent manner. In cache-aided NOMA MEC networks, the task

popularity prediction is the key foundation to efficiently serve mobile users’ dynamic requests.

1) For the prediction problem: Long short-term memory (LSTM) networks are utilized in [30]

to predict the traffic patterns at different timescales. In [31], LSTMs are adopted to predict

reference information in statistical script. A new spatiotemporal LSTM model is utilized in [32]

to generate future images by learning from the historical frames for spatiotemporal sequences.

2) For the resource allocation problem: A model-free deep reinforcement learning (DRL)

approach is proposed in [33] to efficiently allocate resources upon users’ requests and price

the resource usage. In [34], the server selection problem is formulated as a budget-constrained

multi-armed bandit (MAB) problem, where each agent is given a reward and cost. A Bayesian



5

reinforcement learning (BRL) algorithm is proposed in [35] for a distributed resource sharing

problem in a heterogeneous network, which shows a superior performance compared with other

resource allocation schemes. It is worth pointing out that the characteristics of cache-aided

NOMA MEC networks make it challenging to apply the RL algorithms, because the number of

states increase exponentially with the number of users and tasks, which we have demonstrated

in our previous work [36]. In this paper, our goal is to answer the following key questions:

• Question 1 : Do cache-aided NOMA MEC networks significantly outperform non-cached

NOMA MEC networks?

• Question 2 : Do NOMA enhanced MEC networks bring energy reduction compared with

conventional OMA based networks?

• Question 3 : Do BLA based MAQ-learning algorithm achieve better performance than

conventional RL algorithms?

C. Contributions and Organization

Being motivated to answer the above questions, in this paper, we design a cache-aided NOMA

MEC framework, in which cache and computation resources are integrated for computationally-

intensive and latency-sensitive tasks. In our proposed framework, we formulate the considered

problem as a long-term reward maximization problem that entails joint optimization of task

offloading decisions, computation resource allocation and caching decisions. Instead of solving

a sophisticated joint optimization problem, the proposed algorithms are capable of learning from

the past experience and automatically improve the allocation policy. In this paper, we propose

a Bayesian learning automata (BLA) based multi-agent Q-learning (MAQ-learning) algorithm

to improve the performance. Furthermore, we utilize the LSTM to predict the task popularity,

while in [1], the task popularity is assumed to follow a Zipf distribution. Our main contributions

are summarized as follows

• We propose a cache-aided NOMA MEC framework to reduce energy consumption. We es-

tablish the correlation between task popularity and cache-aided NOMA MEC, by modeling

the cache-aided NOMA MEC with task popularity. We formulate a long-term energy min-

imization problem that jointly optimizes task offloading, computation and cache resource

allocation.

• We propose a LSTM algorithm for task popularity prediction. The task popularity predic-

tion is formulated as a time series prediction problem. We derive the weight value update

expressions of LSTM based on a real-time recurrent learning (RTRL) algorithm, due to

its low complexity in our proposed task popularity prediction problem.
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• We formulate the total energy consumption as the reward function in the proposed RL

algorithms. We prove that the Bayesian learning automata (BLA) based action selection

scheme is instantaneously self-correcting and the selected action is an optimal solution for

each state.

• We demonstrate that the proposed cache-aided NOMA MEC framework outperforms the

other benchmark schemes such as non-cache MEC networks. The proposed algorithms

achieve a performance improvement compared to MAQ-learning algorithms.

The rest of this paper is organized as follows. In Section II, the system model for the

proposed cache-aided NOMA MEC framework is presented. In Section III, the LSTMs based

task popularity prediction is investigated. The proposed algorithms for cache-aided NOMA MEC

is given in Section IV. Simulation results are presented in Section V, before we conclude this

work in Section VI. Table I provides a summary of the notations used in this paper.

TABLE I: LIST OF NOTATIONS

Notation Description Notation Description

Nu the mobile users Nt the computation tasks

B the bandwidth between the AP and users σ2 the power of additive noise

CMEC the computing capacities of the AP CCache the caching capacities of the AP

πj the size of the input of task j (in bits) Toffload
i,j (t) the offloading time for task j

ωj the computing capability required for this task Eoffload
i,j (t) the transmit energy consumption of offloading

κj Caching capacity Tloc
i,j local computing time for task j

σ2 the computation result of task j (in bits) Eloc
i,j energy consumption of local computing for task j

X (t) the task offloading decision Tmec
i,j (t) MEC computing time for task j

Y (t) the computing resource allocation vector Emec
i,j (t) energy consumption of MEC computing for task j

Z (t) the task computation results caching decision vector Wf weights in the forgot gate of the LSTM

Prji the probability that user i requests for task j bf bias in the forgot gate of the LSTM

hi (t) the channel gain between user i and the MEC server Wi weights of the sigmoid gate in the input gate

Ri (t) the achievable transmit rate of user i at time t WC weights of the tanh gate in the input gate

ρi (t) the transmit power of user i bi bias of the sigmoid gate in the input gate

bC bias of the tanh gate in the input gate µt the learning rate

II. SYSTEM MODEL

A. Network Model

As illustrated in Fig. 1, we consider a multi-user cache-aided MEC network with a single-

antenna AP and N single-antenna users, denoted as Nu = {1, · · · , Nu}. The bandwidth between

the AP and users is denoted by B. The AP is associated with an MEC server using optical
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Fig. 1: An illustration of multi-users cache-aided mobile edge computing networks.

fiber, whose transmission delay can be ignored. The computing resources are partitioned into a

resource pool to provide uniform resources granularity for the users. The AP has strong caching

capability, which is capable of caching the computation results to serve other users who request

the tasks in the future. The computing and caching capacities of the AP are denoted by CMEC and

CCache, respectively. Each user has a limited computation capacity and one intensive computation

and sensitive latency computation task. Assume that there are Nt computation tasks in the central

network, denoted as Nt = {1, · · · , Nt}. Each task j ∈ Nt is characterized by three parameters

{πj, ωj, κj}, which are defined as follows [11]:

• πj represents the size of the input of task j (in bits);

• ωj represents the computing capability required for this task which is quantized by the

number of CPU cycles;

• κj represents the computation result of task j (in bits).

The task offloading decision is denoted as X (t) = [x1 (t) , x2 (t) , · · · , xNu (t)], where xi (t) ∈

{0, 1}, xi (t) = 0 means that the task of user i is offloaded to the MEC server for computing,

while xi (t) = 1 means that the task is computed locally. The computing resource allocation

vector is represented as Y (t) = [y1 (t) , y2 (t) , · · · , yNu (t)], where yi (t) ∈ [0, 1] denotes that

the computing resource proportion allocated to user i from the AP. The task computation results

caching decision vector is denoted as Z (t) = [z1 (t) , z2 (t) , · · · , zNt (t)], where zj (t) ∈ {0, 1},

zj (t) = 1 means that the computation result of task j is cached, while zj (t) = 0 means that

the result is not cached. If the computation result is cached in the AP, the AP multicasts it to

all users, thus reducing the offloading and computing workloads. The probability that user i

requests for task j is denoted as Prji ∈ [0, 1] [9].
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B. Communication Model

In our NOMA transmission model, multiple users transmit their own uplink signals to the

AP in the same RB. Therefore, the intercellular interference of the users in the same group

is identical, the decoding order in one RB is determined only by the channel gains of users.

Suppose that there are Nup users who choose to upload their computation tasks, represented as

Nup = {1, · · · , Nup}, where Nup =
∑Nu

i=1 xi. Without loss of generality, assuming the users are

ordered as follows:

|h1 (t)|2 ≥ |h2 (t)|2 ≥ · · · ≥
∣∣hNup (t)

∣∣2, (1)

where |hi (t)|2, i ∈ [1, Nup] represents the channel gain between user i and the MEC server.

In our NOMA scenario, the user with higher channel gain is decoded first, while the signal of

lower channel gain user is considered as interference. Consider user i ∈ [1, Nup] who chooses

to upload the computation task at time t, then the achievable transmit rate Ri (t) (in bits/s) is

given by

Ri (t) = Blog2

1 +
ρi (t) |hi (t)|2

Nup∑
l=i+1

ρl (t) |hl (t)|2 + σ2

 , (2)

where ρi (t) denotes the transmit power of user i, and σ2 represents the power of additive noise.

We assume that the users are randomly distributed in a square area. Accordingly, the offloading

time for task j with input size πj at time t is

Toffload
i,j (t) =

πj
Ri (t)

. (3)

In addition, the transmit energy consumption of offloading at time t is given by

Eoffload
i,j (t) = ρi

πj
Ri (t)

. (4)

C. Computation Model

For the computation model, the task j that user i requests can be computed locally on the

mobile device or offloaded to the MEC server for computing. Next, we consider the computation

overhead in terms of processing time and energy consumption for both local computing and MEC

computing.
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1) Local Computing: For user i, the local computing capability (i.e. CPU cycles per second)

is denoted by ωloci , and P loc
i denotes the energy consumption per second for local computing

at user i. If task j is computed locally, the computing time Tloc
i,j for task j with computational

requirement ωj is

Tloc
i,j =

ωj
ωloci

, (5)

Hereinafter, the energy consumption of local computing Eloc
i,j of task j is given by

Eloc
i,j = P loc

i

ωj
ωloci

, (6)

2) MEC Computing: Let yi (t) ∈ [0, 1] denote the proportion of the computing resources that

the AP allocated to user i. The computing time Tmec
i,j (t) for task j at time t is

Tmec
i,j (t) =

ωj
yi (t)CMEC

. (8)

The energy consumption per second for MEC server is denoted as Pmec, thus the energy

consumption Emec
i,j (t) of task j computed in the AP is given by

Emec
i,j (t) = Pmec ωj

yi (t)CMEC

. (9)

The computing time for local-execution computing is Tloc
i,j . On the other hand, the computing

time To
i,j (t) for MEC computing contains two parts To

i,j (t) = Toffload
i,j (t) + Tmec

i,j (t). Since

the size of the task computation result is smaller than the input, and the downloading data rate

is higher than that of the uplink, we neglect the delay and energy consumption associated with

results downloading (same assumptions made in [37, 38]). The caching constraint is formulated as∑Nt
j=1 zj = Ccache. Also, the computing resources allocating constraint is formulated as

∑Nu
i=1 yi =

1. For task j in time t, the MEC computing time requirement should satisfy:

Toffload
i,j (t) + Tmec

i,j (t) ≤ T. (10)

where T denotes the time constraint of task computing.

The structure of the cache-aided NOME MEC networks is depicted in Fig. 2. Firstly, we

predict the task popularity utilizing the LSTMs. Then, based on the predicted task popularity,

we formulate a long-term resource allocation problem, which is solved utilizing a single-agent Q-

learning (SAQ-learning) algorithm. Finally, we proposed a BLA based MAQ-learning algorithm

for the long-term task offloading problem.
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Ei (t, xi (t) , yi (t) , zj (t)) =
(
Prji (1− zj(t))

(
xi(t)E

loc
i,j + (1− xi(t))Eoffload

i,j (t) + (1− yi(t))Emec
i,j (t)

))
.

(7)
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Fig. 2: An illustration of cache-aided MEC networks.

III. LSTMS FOR TASK POPULARITY PREDICTION

Generally, task popularity information can be revealed by direct measurements in real time

or by computational estimation of historical data. However, the above techniques suffer from

some technical and mercantile issues. Therefore, we predict task popularity from the previously

collected data instead of measuring it directly. To predict task popularity, we need to model the

map between the historical task popularity and task popularity in the future, which can be used

as input sequences and output sequences, respectively. We adopt the widely used LSTMs model

to determine the mapping. LSTMs have been widely used for time series prediction like text,

speech, audio, etc, to ensure the persistence in learning, by connecting the offline historical data

and online data. In our task popularity prediction, we formulate the task popularity as a time

series, because it changes in different time slots. In practical situations, we are able to collect

the series in a long-term storage. Based on the storage, we are capable of predicting the task

popularity in the near future. Since the task popularity evolves over time, we define a dynamic

series Xt = [x (1) , x (2) , · · ·x (Tp)], where x (t) = [Pr (1) ,Pr (2) , · · ·Pr (Ts)] denotes a series

of task popularity. We assume that time slots are discretized and collect Tp samples of popularity.

The input and output of the LSTMs model are presented in Fig. 3. The goal is to predict xt+1

based on our current and past observations [x (1) , x (2) , · · ·x (Tp)]. Assuming that the output

of the network is denoted as x̂t, and the observed real task popularity is xt. Our goal is to

minimize
∑T

t=1 L (xt, x̂t) =
∑T

t=1 (xt − x̂t)
2.
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Fig. 3: Flow chart of LSTMs for task popularity prediction.

The core component of LSTMs to implement the above property is the memory cell state

integrated with serval gates to filter different information sequences. This paper follows a similar

approach for constructing LSTMs as [39]. There are several types of gates in LSTMs, which

are described below:

Forget gate: the forget gate decides whether to retain the information by the sigmoid function.

The input of the forget gate is xt and ht−1, while the output is a number between 0 and 1 for

each number in the memory cell state Ct−1.

ft = σ (Wf [ht−1,xt] + bf ), (11)

where xt and ht−1 denote the input of the forget gate. Wf and bf denotes the weights and bias

of the layer, respectively.

Input gate: the input gate decides which information to be committed to memory. The function

of input gate is achieved by a sigmoid gate and a tanh gate given below:

it = σ (Wi [ht−1,xt] + bi), (12)

dt = tanh (WC [ht−1,xt] + bC). (13)

where Wi and WC denote the weights of the layers while bi and bC represent the bias of the

layers.

Output gate: The output gate decides which information to output. Based on Eq. (11), (12), (13),

we obtain the new memory cell state Ct. The output gate also contains two layers (i.e., a sigmoid

layer and a tanh layer).



12

Algorithm 1 LSTMs based task popularity prediction.
1: Stage One: Back propagation through time (BPTT) training

Initialization: Time interval Ts, Training data: task popularity [Pr (1) ,Pr (2) , · · ·Pr (Tp)].

2: Randomly initialize weight matrix Wf ,Wi,WC,Wo and bias bf ,bi,bC,bo in the hidden

layers.

3: for each episode do

4: Choose input x (t) from training set;

5: Forward propagation algorithm: calculate the output of the layers ht;

6: Calculate loss function
∑T

t=1 L (xt, x̂t);

7: BPTT algorithm: adjust the weights Wf ,Wi,WC,Wo and bias bf ,bi,bC,bo according

to the loss function;

8: end for

Output Weights Wf ,Wi,WC,Wo and bias bf ,bi,bC,bo of the network.

9: Stage Two: Testing

Initialization: Time interval Ts, Testing data: task popularity, Parameters of s: weights

Wf ,Wi,WC,Wo and bias bf ,bi,bC,bo of the network, number of epochs.

10: for each episode do

11: Choose input X from testing set;

12: Forward propagation: calculate the output of the layers ht;

13: Calculate loss function
∑T

t=1 L (xt, x̂t);

14: end for

Output Task popularity in the next time slot [Pr (Tp + 1) ,Pr (Tp + 2) , · · ·Pr (Tp + Ts)].

Ct = ftCt−1 + itdt, (14)

ot = σ (Wo [ht−1,xt] + bo) , (15)

ht = ot ∗ tanh (Ct) . (16)

where Ct is the state of the cell, ot is the combination of history output and input of this layer,

ht is the output of the network, Wo and bo denotes the weights and bias.

Remark 1. The mobile users request different tasks in different time slots, thus the task popularity

prediction is a time series prediction problem. The balance ability between historical information
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and instantaneous information of the proposed LSTMs makes it capable of predicting the task

popularity in the cache-aided NOMA MEC networks.

Given the output of the network ht, the estimated output is obtained as

x̂t = wtht

= wtot ∗ tanh (Ct),
(17)

where wt is the regression coefficient.

To obtain the corresponding parameters above, we introduce the real-time recurrent learning

(RTRL) algorithm [40], which enjoys low complexity for our proposed task popularity prediction

scenario. For the weight vector wt in Eq. (17)

wt+1 = wt − µt∇wtl (xt, x̂t)

= wt − µt∇wt(xt − x̂t)
2

= wt + 2µt (xt − x̂t)ot tanh (Ct),

(18)

where µt represents the learning rate. We set µt = 1/t.

Proposition 1. For each element wC in WC, we update it as follows

wC = wC + 2µt (xt − x̂t)wt
∂ (ot tanh (Ct))

∂ (wC)
. (19)

Remark 2. The partial derivative in Eq. (19) contains two parts: the first is the output ot, and

the second part is the memory cell state tanh (Ct). We can implement Eq. (19) if we compute
∂(ot)
∂(wC)

and ∂(tanh(Ct))
∂(wC)

Proof: See Appendix A .

IV. RESOURCE ALLOCATION PROBLEM FORMULATION AND PROPOSED APPROACHES

A. Problem Formulation

Based on the predicted task popularity we obtained from Section III, we formulate the

optimization problem for cache-aided NOMA MEC networks as in (20) below, in which, the

objective function is the energy consumption given by Eq. (7). The parameters are the offloading

decision vector, computation resources allocation vector and caching vector. The joint task

offloading decision and resource allocation problem is formulated as follows:
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(P1) min
X,Y,Z

T∑
t=1

Nu∑
i=1

Ei (t, xi (t) , yi (t) , zj (t)), (20a)

s.t. C1 : xi (t) ∈ {0, 1} ,∀i ∈ [1, Nu] , t ∈ [1, T ] , (20b)

C2 : yi (t) ∈ [0, 1] ,∀i ∈ [1, Nu] , t ∈ [1, T ] , (20c)

C3 : zj (t) ∈ {0, 1} ,∀j ∈ [1, Nt] , t ∈ [1, T ] , (20d)

C4 :
Nu∑
i=1

yi (t) = 1,∀t ∈ [1, T ] , (20e)

C5 :
Nt∑
j=1

zj (t) ≤ Ccache,∀t ∈ [1, T ] , (20f)

C6 : To
j (t) ≤ T,∀j ∈ [1, Nt] , t ∈ [1, T ] . (20g)

where Ei (t, xi, yj, zj) denotes the energy consumption for computing task j given in Eq. (7),

xi (t) denotes the offloading decision of user i at time t, and yi (t) denotes the computing speed

that the AP allocates to user i at time t. The variable zj (t) denotes the task caching decision

of task j at time t. Eq. (20e) guarantees that the task computing resource allocation is valid.

While Eq. (20f) guarantees that the task computation results cached do not exceed the caching

capacity of the AP. Finally, Eq. (20g) guarantees the time constraint.

Remark 3. The formulated problem is a long-term minimization problem. Consequently, in order

to solve it, we need to design a long-term policy, which instantaneously gives the optimal of-

floading decision vector, computation resources allocation vector and caching vector at different

time slots.

B. SAQ-learning Solution for Cache-aided NOMA MEC

In this section, a single-agent Q-learning (SAQ-learning) algorithm is proposed for the formu-

lated problem in Subsection IV-A. We reformulate the cache-aided NOMA MEC problem as a

SAQ-learning model, which consists of three elements: states, actions, and rewards. The aim of

this section is to devise a resource allocation policy π∗ that is capable of quickly generating an

optimal resource allocation action.

Definition 1. A SAQ-learning model is a tuple 〈S,A,R〉. The definitions of the three parameters

are given below.
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Qt (s, a) = (1− γ) Qt−1 (s, a)︸ ︷︷ ︸
history Q value

+ γ︸︷︷︸
learning rate

 rt︸︷︷︸
obtained reward

+ β︸︷︷︸
discount factor

max
at+1

Qt−1 (st+1, at+1)︸ ︷︷ ︸
optimal Q value in the next state

 .
(21)

• State space (S): A finite set of states of the agent; We assume that all the users are controlled

by a central agent, the state of agent is denoted as st =
Nu∑
i=1

Ei (t, xi (t) , yi (t) , zj (t)). The

state is the energy consumption of the network in time slot t.

• Action space (A): A finite set of actions. The action of the central agent is defined as at =

[a1 (t) , a2 (t) , a3 (t)], where, the first part a1 (t) = [x1 (t) , · · · , xNu (t)] is the task offloading

vector of the users. The second part a2 (t) = [f1 (t) , · · · , fNu (t)] contains the computing

speed allocation from the AP to all users. The last part a3 (t) = [c1 (t) , · · · , cNu (t)]

represents the cache decision of the AP.

• Reward function (R): The reward function is the key to solve (P1) by utilizing the SAQ-

learning model. The objective of SAQ-learning is to maximize the expected long-term reward,

also known as the state-value function given by:

Vπ(s) = Eπ

[
∞∑
t=0

γtrt |s0 = s

]
= Eπ

[
r0 + γE

[
γr1 + γ2r2 + ...

]
|s0 = s

]
= Eπ [r (s′ |s0, a) + γV π(s′) |s0 = s ] .

(22)

where γ represents the learning rate and rt denotes the reward that the agents obtain in

time slot t. In order to minimize the energy consumption in (P1), we define the reward

function as rt =
∑Nu

i=1Ei (t− 1, st−1)−
∑Nu

i=1Ei (t, st).

• Action value function (Qπ(s, a)): The long-run average reward is the payoff of an infinite

path where every state-action pair is assigned a real-valued reward.

Qπ(s, a) = Eπ

[
∞∑
i=0

γiri |s = s0, a = a0

]
. (23)

• A policy π is a distribution over actions given states,

π (a|s) = P [At = a|St = s] , (24)

where a policy fully defines the behaviour of an agent.
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Therefore, the optimal policy is given by

π∗ (s) = arg min
α

Vπ(s),∀s ∈ S, (25)

which finds an optimal policy (i.e., a set of actions) to maximize the long-run average reward.

TABLE II: Q-table of Q-learning Algorithm

a1 a2 ... aN2

s1 Q1,1 (s1, a1) Q1,2 (s1, a2) ... Q1,N2 (s1, aN2)

s2 Q2,1 (s2, a1) Q2,2 (s2, a2) ... Q2,N2 (s2, aN2)

... ... ... ... ...

sN1 QN1,1 (sN1 , a1) QN1,2 (sN1 , a2) ... QN1,N2 (sN1 , aN2)

According to [41], the optimal state-value function V π (s) can be achieved by solving the

Bellman’s optimality equation.

Remark 4. The optimal state-value function V π (s) satisfies the Bellman’s optimality equation,

which is given by

V π (s) = min
a∈A

{
(1− γ) p (x, y) + γ

∑
s′∈S

Pr {s′|s, a}V (s′)

}
. (26)

In order to solve this problem, Bellman’s equations and backward induction are used. We

develop a SAQ-learning based resource allocation algorithm for cache-aided NOMA MEC

system. In SAQ-learning, the Q value Qt (s, a) at time slot t is updated as in Eq. (21). The

SAQ-learning algorithm for cache-aided NOMA MEC includes two cycles: the first cycle in

each episode obtains the optimal policy, while the second cycle in each step executes the policy

in each step. The central agent has to decide all the actions from the first to the last time slot to

minimize the total long-term energy consumption. The details of the SAQ-learning are presented

in our previous work [36], and are omitted here due to space limitations. The size of the Q-table

is shown in Table II, in which N1 = 2NuNNf , N2 = 2NuNf , where Nu represent the number

of users and, Nf denotes the number of slices the computing resources are sliced into.

C. BLA-MAQ-learning Solution for Task Offloading

To reduce the dimension of state space and action space of the agent, which reduce the per-

formance of learning [36], we propose a distributed RL algorithm, i.e., MAQ-learning algorithm,

for task offloading. In MAQ-learning, the users operate cooperatively as distributed agents to

decide whether to offload the computation tasks to the server or not.
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Definition 2. A MAQ-learning model is a tuple 〈S,A,R〉. The definition of the parameters

adopted in MAQ-learning are given below.

• State (S): We assume that all the users are set as agents, the state of agent i is denoted

as sit = Ei (t). The state is the energy consumption of computing of the task that the user

requests.

• Action (A): The action of the agent i is defined as ait ∈ [0, 1], where ait= 1 implies that

the task is computed locally while ait= 0 implies that the task is offloaded to the AP for

computing.

• Reward function (R): The local reward function of the central agent is defined as rit =

Ei

(
t− 1, sit−1

)
− Ei (t, sit).

Different from SAQ-learning, in the MAQ-learning case, three cycles are looped over. Apart

from the two cycles in SAQ-learning, one more loop for the agents is added, to cooperatively

decide the actions, as shown in Fig. 4. The action selection scheme (i.e., how the action is

selected during the learning process) is the core issue in the RL algorithm, which is utilized to

balance the exploration and exploitation and avoiding over-fitting. In conventional RL algorithms,

ε-greedy exploration is adopted. However, the selection mechanism of ε-greedy exploration is

based on a random mechanism. In order to overcome this drawback, we apply Bayesian learning

automata (BLA) for action selection, because BLA is capable of choosing the optimal action

for two action case [42].

A BLA is an adaptive decision-making unit which learns the optimal action from a set of

actions offered by the environment it operates in. Essentially, there are two Beta distributions in

the BLA based action selection scheme. In our MEC scenario, we assume that the computation

Bayesian 
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Fig. 4: An illustration of Bayesian learning automata based multi-agent Q-learning in cache-aided

NOMA-MEC networks.
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task is computed locally as Arm 1, while the task is offloaded to MEC server for computing as

Arm 2. The heart of BLA is the beta distribution, whose probability density function is:

f (x;α, β) = xα−1(1−x)β−1∫ 1
0 u

α−1(1−u)β−1du
, x ∈ [0, 1] , (27)

where α and β are the parameters of beta distribution and the corresponding cumulative distri-

bution function is:

F (x;α, β) =
∫ x
0 tα−1(1−t)β−1dt∫ 1
0 u

α−1(1−u)β−1du
, x ∈ [0, 1] . (28)

BLA uses the beta distribution for two purposes. Firstly, the beta distribution is used to provide

a Bayesian estimation of the reward probabilities associated with each action of Q-learning.

Secondly, a novel feature of BLA is that it uses the beta distribution as the basis for a randomized

action selection mechanism. The state of user i at time slot n is sni = (αn1 , β
n
1 , α

n
2 , β

n
2 ), where

(αn1 , β
n
1 ) determines the parameter of the first Beta distribution, and (αn2 , β

n
2 ) determines the

parameter of the second Beta distribution. The action selection probability of Arm 1 (i.e., local

computing) is given in Eq. (31). After taking the action, the parameters of the Beta distribution

are updated as follows:

 αi = αi + 1 the feedback is a reward

βi = βi + 1 the feedback is a penalty
(i = 1, 2) (29)

The BLA is briefly described as follows: The agent of BLA estimates the reward probability

of every action utilizing two Beta distributions, denoted as Beta (α1, β1) and Beta (α2, β2).

During the learning process, two variables are generated according to the two Beta distributions,

while the action of a higher variable is selected. Then, the reward of taking the chosen action

is computed to update the parameters of the two Beta distribution.

The goal of RL is to find an optimal policy that maximize the expected sum of discounted

return:

π∗ = arg maxEπ

π

[
T−1∑
t=0

γt+1r̃ (s̃t, s̃t+1)

]
. (30)

The details of BLA based action selection can be found in Fig. 4(a). The first advantage

of BLA compared with other learning automata (LA) algorithms is computational simplicity,

achieved by relying implicitly on Bayesian reasoning principles. The second advantage of BLA

is that for the two actions case, the action selected from BLA can be proven optimal. In our

scenario, we assume that the computation task is computed locally as arm 1, while the task is
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p
snBLA
1 =

(αn1 + βn1 − 1)! (αn2 + βn2 − 1)!

(αn1 − 1)! (βn1 − 1)! (αn1 + βn1 + αn2 + βn2 − 2)!
×

αn2+β
n
2−1∑

j=αn2

(j + αn1 − 1)! (βn1 + αn2 + βn2 − j − 2)!

j! (αn2 + βn2 − 1− j)!
.

(31)

offloaded to the MEC server to be computed as arm2. Given the state snBLA = (αn1 , β
n
1 , α

n
2 , β

n
2 ),

the action selection probability of local computing is given in Eq. (31).

The details of the proposed BLA-MAQ-learning algorithm are in Algorithm 2. However, the

optimal action may not always return a higher reward than the suboptimal actions at a certain

time instant when we select it. Thus, the self-correcting character of BLA is of great value.

According to [42], the BLA is instantaneously self-correcting for two-armed bernoulli bandit

problems. Here it is expressed formally as follows:

Theorem 1. Assume that local computing is the optimal solution, and the expected value of

the Beta distribution associated with offload computing, (αn2/(αn2 + βn2 )) is approaching r2,

while (αn1/(αn1 + βn1 )) is less than r2. The BLA is capable of increasing the probability of local

computing after each action selection. Moreover, BLA is instantaneously self-correcting.

Proof: See Appendix B .

Remark 5. Due to the symmetry of the two actions (i.e., local computing and offload computing),

the BLA based action selection scheme is capable of reducing the probability of a non-optimal

action under the situation that the probability of choosing a non-optimal action is higher than

that of optimal action. In other words, if the time slot is extensively, and the total number of

taken actions is infinite, then we can obtain the optimal action eventually.

For further generalization, we present the following Theorem 2, which describes the optimal

solution of Bayesian learning automata in the two-action cases.

Theorem 2. In the cache-aided MEC scenario, given the two action selection between local

computing and offloading computing, the BLA based offloading decision scheme is capable of

converging to only choosing the optimal selection i.e., lim
n→∞

p
snBLA
1 → 1, if r1 > r2.

Proof: See Appendix C .

Remark 6. Given the assumption that the probabilities of two actions are not equal. Theorem 2

asserts that the action trained from the BLA based action selection scheme is the optimal action.
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P1 (e1 > e2) =

α1−1∑
i=0

B (α2 + i, β1 + β2)

(β1 + i)B (1 + i, β1)B (α2, β2)

=

β2−1∑
i=0

B (β1 + i, α1 + α2)

(α2 + i)B (1 + i, α2)B (α1, β1)

(32)

Algorithm 2 The Proposed Algorithm in Cache-Aided NOMA-MEC networks
Initialization:

1: for i ∈ Nu do

2: Initialize state si, action ai, reward function.

3: end for

4: Do while: t < T ;

5: for each episode do

6: for each step do

7: for each agent in Nu do

8: Select the actions according to BLA based action selection scheme;

8.1: Initialize α1 = 1, β1 = 1, α2 = 1, β2 = 1;

8.2: Generate two values X1 and X2 randomly from Beta distribution Beta (α1, β1)

and Beta (α2, β2).

8.3: If X1 > X2, choose local computing, else choose offload computing.

8.4: Accept the reward from this action, then update the parameters of the Beta

distribution according to Eq. (29).

9: Take the chosen action a, move state, then calculate reward r of the action a and

state s;

10: State update: s← s′;

11: end for

12: end for

13: end for

14: return: task offloading vector.

D. Complexity of the proposed algorithm

The computational complexity analysis of the proposed BLA based MAQ-learning for the

cache-aided MEC algorithm is evaluated as follows. There are Nu users and M computation

tasks. The computational resources of the MEC server are sliced into Nf . The number of offload-
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TABLE III: Simulation Parameters

Parameter Description Value

CMEC computation capacity of the AP 10 GHz/sec

Nu Number of Users 3/4

f l CPU frequency of each user 1 GHz/sec

Ri,j computation offloading size 500 bits

B Bandwidth 20MHz [43]

Pt Transmit power of the AP 20 dBm [43]

σ2 Gaussian noise power -95 dBm [43]
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Fig. 5: Training loss of the proposed LSTM for task popularity prediction.

ing decisions for Nu users and caching decisions for the AP are 2Nu and 2M , respectively. Thus,

the complexity for MAQ-learning is O
(
N2
u2NuNu

NfNf

)
. The complexity of BLA is O

(
2Nu
)
.

Therefore, the complexity of the proposed BLA base MAQ-learning is O
(
N2
u22NuNu

NfNf

)
.

V. SIMULATION RESULTS

In this section, we present extensive simulation results to quantify the performance of the

proposed SAQ-learning and BLA-based MAQ-learning algorithms for task offloading and com-

putation resource allocation in a cache-aided NOMA MEC system. The simulation parameters

settings are as given in Table III unless otherwise stated. Due to the fact that the user’s movement

during requests for a computing service operates on a limited scale, we consider the situation

that the positions of the users and the AP are fixed. However, different users may have different

interests in different tasks. Hence, we first evaluate the proposed LSTMs for task popularity

prediction. In the simulation, the positions of users in our scenario are randomly distributed
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(a) Task popularity prediction (goal equals to 0.1). (b) Task popularity prediction (goal equals to 0.01).

Fig. 6: Simulation results of task popularity prediction using LSTMs.

within a square region with length of a side 300m. The number of users is set to 3 and 4. The

AP location is in the centre of the area. The bandwidth is 20MHz. The computation capacity

of the AP is F=10GHz/sec. Hereinafter, the size of the task input of users follows the uniform

distribution with Ri,j (k) ∈ [300, 800] KB. Meanwhile the number of CPU cycles per bit for the

required computational resources obeys the uniform distribution with Rw,j (k) ∈ [1000, 1500]

cycles/bit. The CPU frequency of each user is f l=1GHz/sec. We compare our proposed algorithm

with three traditional MEC schemes: “Full local” means that all the tasks are computed locally in

the mobile users. “Full offloading” means that all the tasks are offloaded to the AP for computing.

“Conventional MEC” means that there is no caching capacity in the AP. All the simulations are

performed on a desktop with an Intel Core i7 9700K 3.6 GHz CPU and 16 GB memory.

A. Simulation results of task popularity prediction

First, we evaluates the performance of the proposed LSTMs based task prediction algorithm. In

our scenario, we assume that the user requests different tasks in different time slots. Meanwhile,

the tasks have different popularity. We first generate the tasks’ popularity through a random walk

model. Fig. 5 demonstrates the loss of the network with different learning rates. According to

the figure, the proposed algorithm is capable of converging to a stable loss. The proposed LSTM

converges faster with a higher learning rate. This is also justified in Remark 1. Fig. 6 compares

real task popularity and predicted popularity. According to Fig. 6, we obtain better performance

when we reduce the value of the goal.
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B. Simulation results of the proposed SAQ-learning algorithm for cache-aided NOMA MEC

The simulation results of the proposed SAQL algorithm for cache-aided NOMA MEC is

shown in Fig. 7 and Fig. 8. The total energy consumption vs. the task input size is shown in

Fig. 7. A larger task input size requires more computing energy both for the mobile users and

the MEC server. This is also justified in (6) and (9). In Fig. 7, the proposed cache-aided NOMA

MEC outperforms both the all local computing and the all offload computing schemes. In Fig. 8,

the proposed cache-aided NOMA MEC outperforms conventional MEC. The reason is that, in

cache-aided MEC, the reusable task computing results are stored in the AP, which reduces the

offloading and computing energy.

C. Simulation results of the proposed BLA-MAQ-learning algorithm for cache-aided NOMA

MEC

The simulation results of the proposed BLA-MAQ-learning algorithm for cache-aided NOMA

MEC is shown in Fig. 9. As can be seen from Fig. 9, the total energy consumption decreases with

the increase of caching capacity. This is because more computation results are stored in the AP,

moreover, the offloading consumption and computing consumption of the same tasks required by

other users are all reduced. As can be seen from Fig. 8, the total energy consumption decreases

sharply with more computational capacity. Meanwhile, compared with Fig. 9, the total energy

consumption decrease faster than increasing the cache capacity. This shows that increasing the

computational capacity of the AP is a more efficient way of reducing total energy consumption

compared with increasing the cache capacity of the AP.

Finally, the convergence of the proposed algorithm is shown in Fig. 10. As can be seen from

Fig. 10, the proposed algorithm converges faster with a higher learning rate. However, higher

learning rate may cause overfit.

VI. CONCLUSION

In this paper, a cache-aided NOMA MEC framework is proposed. In order to reduce the

total energy consumption in cache-aided NOMA MEC networks, a joint long-term optimization

problem is formulated, subject to caching and computing resources constraints in the AP. Three

parameters are optimized in the formulated MINL problem. To make task offloading decisions

of users and resource allocation for the AP, a SAQ-learning based resource allocation algorithm

scheme was proposed. For the task offloading problem, a BAL-MAQ-learning algorithm is

proposed, in which, the BLA based action selection scheme is adopted for every agent to obtain

optimal action in every state. Simulation results demonstrated the performance of the proposed
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Fig. 7: Total transmit energy consumption vs. task input size.

Fig. 8: Total energy consumption vs. the computation capacity of the AP.

framework and algorithm. Our extensive simulation results demonstrated that increasing compu-

tation capacity of the AP was a more efficient method to reduce the total energy consumption

compared with increasing caching capacity. One promising extension of this work is to consider

more complicated joint learning algorithms for networks with multiple MEC servers, that require

cooperation between the caching resource and computing resource. Moreover, incorporating the

optimization of uploading power and computing allocation can further improve energy efficiency

of multi-server networks, which is another promising future research direction.
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Fig. 9: Total transmit energy consumption vs. cache capacity of the AP.

Fig. 10: The convergence of the proposed algorithm.

APPENDIX A: PROOF OF PROPOSITION 1

In Eq. (19), the partial derivative contains two parts: the first is the output ot, and the second

part is the memory cell state Ct. The detail is in Eq. (33). The partial derivatives of ∂ (ot)/∂ (wC)

are given in Eq. (34). Based on Eq. (14), we can write a recursive equation as in Eq. (35).

Combining Eq. (11), (12), (13), we obtain Eq. (36) (37) (38). Next, we can obtain Eq. (19).

Finally, the proof is complete.

APPENDIX B: PROOF OF THEOREM 1

In each iteration, the computation task is either computed locally or is offloaded to the

MEC server for computing. The probability that the agent chooses local computing at iteration
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∂ (ot tanh (Ct))

∂ (wC)
=

∂ (ot)

∂ (wC)
tanh (Ct) + ot

∂ (tanh (Ct))

∂ (wC)

=
∂ (ot)

∂ (wC)
tanh (Ct) + ot

∂ (tanh (Ct))

∂ (Ct)

∂ (Ct)

∂ (wC)
.

(33)

∂ (ot)

∂ (wC)
=
∂ (σ (Wo [ht−1,xt] + bo))

∂ (wC)

=
∂ (σ (Wo [ot−1 ∗ tanh (Ct−1) ,xt] + bo))

∂ (wC)

=
∂ (σ)

∂ (Wo [ht−1,xt] + bo)

[
Wo

∂ (ot−1)

∂ (wC)
tanh (Ct−1) + Woot−1

∂ (tanh (Ct−1))

∂ (wC)

]
.

(34)

∂ (Ct)

∂ (wC)
= Ct−1

∂ (ft)

∂ (wC)
+ ft

∂ (Ct−1)

∂ (wC)
+ dt

∂ (it)

∂ (wC)
+ it

∂ (dt)

∂ (wC)
. (35)

∂ (ft)

∂ (wC)
=

∂ (σf )

∂ (Wf [ht−1,xt] + bf )

[
Wf

∂ (ot−1)

∂ (wC)
tanh (Ct−1) + Wfot−1

∂ (tanh (Ct−1))

∂ (wC)

]
.

(36)

∂ (it)

∂ (wC)
=

∂ (σf )

∂ (Wi [ht−1,xt] + bi)

[
Wi

∂ (ot−1)

∂ (wC)
tanh (Ct−1) + Wiot−1

∂ (tanh (Ct−1))

∂ (wC)

]
.

(37)

∂ (dt)

∂ (wC)
=

∂ (σf )

∂ (Wd [ht−1,xt] + bd)

[
Wd

∂ (ot−1)

∂ (wC)
tanh (Ct−1) + Wdot−1

∂ (tanh (Ct−1))

∂ (wC)

]
.

(38)

n is pr21 [αn1 , β
n
1 ], where (αn1 , β

n
1 ) are the parameters of the Beta distribution associated with

local computing. According to the characteristic of the Beta distribution, the probability of

local computing (i.e., expected value) is Elocal = αn1/(αn1 + βn1 ). In addition, the probability of

offloaded computing is 1 − pr21 [αn1 , β
n
1 ]. The feedback of local computing provides a reward

with probability r1, and a penalty with probability 1 − r1. Meanwhile, if offload computing is
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chosen by the agent, we have pr21
[
αn+1
1 , βn+1

1

]
= pr21 [αn1 , β

n
1 ], because r2 is given, and there is

no feedback from local computing. Therefore we have:

E
{
pr21
[
αn+1
1 , βn+1

1

]
|pr21 [αn1 , β

n
1 ]
}

= (pr21 [αn1 + 1, βn1 ] r1 + pr21 [αn1 , β
n
1 + 1] (1− r1))

= (pr21 [αn1 , β
n
1 ] + pr21 [αn1 , β

n
1 ] (1− pr21 [αn1 , β

n
1 ])) .

(39)

Then, by dividing the left and right side of the inequality, we can obtain Eq. (40).

In order to prove Theorem 1, we need to prove that the following is true:

E
{
pr21
[
αn+1
1 , βn+1

1

]
|pr21 [αn1 , β

n
1 ]
}
> pr21 [αn1 , β

n
1 ]

⇔ αn1
αn2+β

n
2
< r1.

(41)

According to the characteristics of the Beta distribution, the probability density function (PDF)

of the beta distribution is

f (x;α, β) =
xα−1(1− x)β−1∫ 1

0
uα−1(1− u)β−1du

=
Γ (α + β)

Γ (α) Γ (β)
xα−1(1− x)β−1. (42)

The expected value (mean) of a Beta distribution random variable X is

E (X) =

∫ 1

o

xf (x;α, β) dx =

∫ 1

o

x
Γ (α + β)

Γ (α) Γ (β)
xα−1(1− x)β−1dx. (44)

According to the fact that:∫ 1

o

Γ (α + β + 1)

Γ (α + 1) Γ (β)
tα−1(1− t)β−1dt = 1. (45)

F (x;α + 1, β) = F (x;α, β) +
(α + β − 1)!

α! (β − 1)!
(1− x)βxα, (46)

F (x;α, β + 1) = F (x;α, β) +
(α + β − 1)!

β! (α− 1)!
(1− x)βxα. (47)

The cumulative distribution function is given by:

F (x;α, β) =

α+β+1∑
k=α

(α + β + 1)!

k! (α + β − 1− k)!
xk(1− x)α+β−1−k. (48)

Then, the probability p1 (αn1 , β
n
1 |r2) is given by

pr21 (αn1 , β
n
1 ) = P

(
XN

1 > r2|αn1 , βn1
)

= 1− F (r2;α
n
1 , β

n
1 ) . (49)

Therefore, substituting Eq. (49) in Eq. (41), we can get Eq. (43). Therefore, Eq. (41) is correct.

The BLA based action selection scheme is capable of self-correcting to the local computing

under the condition that the probability of choosing offload computing is higher than that of

local computing.
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E
[
pr21
(
αn+1
1 , βn+1

1

)
|pr21 (αn1 , β

n
1 )
]
> pr21 [αn1 , β

n
1 ]

⇔ pr21 (αn1 + 1, βn1 ) r1 + pr21 (αn1 , β
n
1 + 1) (1− r1) + (1− pr21 (αn1 , β

n
1 )) > 1

⇔ pr21 (αn1 + 1, βn1 ) r1 + pr21 (αn1 , β
n
1 + 1) (1− r1) > pr21 (αn1 , β

n
1 )

(40)

pr21 [αn1 + 1, βn1 ] r1 + pr21 [αn1 , β
n
1 + 1] (1− r1) > pr21 [αn1 , β

n
1 ]

⇔ (1− F (r2;α
n
1 + 1, βn1 )) r1 + (1− F (r2;α

n
1 , β

n
1 + 1)) (1− r1) > 1− F (r2;α

n
1 , β

n
1 )

⇔ F (r2;α
n
1 , β

n
1 )− r1F (r2;α

n
1 + 1, βn1 )− (1− r1)F (r2;α

n
1 , β

n
1 + 1) > 0

⇔ F (r2;α
n
1 , β

n
1 )− r1

(
F (r2;α

n
1 , β

n
1 ) +

(αn1+βn1−1)!
αn1 !(βn1−1)!

(1− x)β
n
1 xα

n
1

)
− ...

(1− r1)
(
F (r2;α

n
1 , β

n
1 ) +

(αn1+βn1−1)!
βn1 !(αn1−1)!

(1− x)β
n
1 xα

n
1

)
⇔ αn1

αn1+β
n
1
< r1.

(43)

APPENDIX C: PROOF OF THEOREM 2

In order to prove Theorem 2, first we need to make an assumption, which is that there is

only one optimal action, i.e., P (r1 = r2) = 0. If the probabilities of the two actions are the

same, according to Theorem 1, the probability of selecting the optimal action will not increase

given the worst situation (i.e., the probability of non-optimal action is higher than that of optimal

action). In other words, the self-correcting feature of BLA vanishes.

Since all the quantities involved in Eq. (31) are positive, we obtain αn2 > 0. According to

Theorem 1, the expected value E (Xi) =
αni

βni +α
n
i

approaches ri with the increase of time, i.e.:

E (X1) =
αn1

βn1 + αn1
= r1, (50)

E (X2) =
αn2

βn2 + αn2
= r2. (51)

Combining Eq. (53) and Eq. (51), we get

βn1 =
(1− r1)αn1

r1
. (52)

According to [44], the probability of chosen local computing is given by

p
snBLA
1 =

(βn1 )! (αn2 )!

(βn1 + αn2 )!
=

(
(1−r1)αn1

r1

)
! (αn2 )!(

(1−r1)αn1
r1

+ αn2

)
!

= 1. (53)
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The proof is complete.
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