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Abstract

Device-to-device (D2D) communication, which enables a direct connection between users while

bypassing the cellular channels to base stations (BSs), is a promising way to offload the traffic from

conventional cellular networks. In D2D communication, one recurring problem is that, in order to

optimally allocate resources across D2D and cellular users, the knowledge of D2D channel gains is

needed. However, such knowledge is hard to obtain at reasonable signaling costs. In this paper, we show

this problem can be circumvented by tapping into the information provided by the estimation of the

cellular channels between the users and surrounding BSs as this estimation is done anyway for a normal

operation of the network. While the cellular and D2D channel gains exhibit independent fast fading

behavior, we show that average gains of the cellular and D2D channels share a non-explicit correlation

structure, which is rooted into the network topology, terrain, and buildings setup. We propose a machine

(deep) learning approach capable of predicting the D2D channel gains from seemingly independent

cellular channels. Our results show a high degree of convergence between true and predicted D2D

channel gains. The predicted gains allow to reach a near-optimal communication capacity in many radio

resource management algorithms.
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I. INTRODUCTION

In device-to-device (D2D) communication, data is transmitted over a direct link between a

pair of nearby user equipment (UEs) instead of being relayed via a base station (BS)[1],[2].

Conventionally, the D2D pairs can exploit two communication modes: shared and dedicated [3].

In the shared mode, the D2D pairs reuse the same radio resources as cellular users (CUEs) that

send data through the BS [4]. On the contrary, the D2D pairs in the dedicated mode are allocated

with resources that are orthogonal to the resources of CUEs [5].

An efficient exploitation of the D2D network often entails challenging radio resource man-

agement (RRM) problems, such as, selection between shared and dedicated modes [5]-[9],

interference management to/from CUEs [10]-[13], channels and power allocation [14]-[21], to

name just a few. Conventional algorithms addressing the above RRM problems in D2D networks

assume a prior estimation of the D2D channel gains (i.e., channel gains among all UEs involved

in D2D). In some cases, the full knowledge can be relaxed to a partial knowledge, where only

a subset of the distributed D2D channel gains is required (e.g., in [19]). Nevertheless, even the

partial knowledge of the D2D channel gains implies a substantial cost in terms of an additional

signaling overhead on top of the one generated in classical cellular communications. In fact, the

cellular channel gains (i.e., channel gains between the UEs and the BSs) are typically estimated

by default as these are needed for handover as well as user attachment, authorization, and

classical cellular communication purposes. More precisely, even the users that wish to engage

in D2D communications must be recognized by the network and thereby their cellular channel

gains must be estimated initially. Thus, these cellular channels are periodically reported to the

BSs, and can be leveraged at no additional signaling overhead. An interesting question then

arises as to whether the by-default cellular channel gains carry information that is relevant to

D2D communication and somehow could help ”for free’ to solve the D2D resource management

problems.

The idea set forth in this paper is that, while the cellular channel gains should exhibit fading

coefficients that are known to be independent of those measured on the direct channels among

the UEs, there actually exists common information between these data at the statistical level. In

order to build up the reader’s intuition, consider the following toy example. Imagine a green-

field (free space) propagation scenario, in which the location of all UEs is made available to the

network (even for those devices not interested in communicating with the network), then both
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the cellular and the D2D channel gains would be easily predictable from the UEs’ locations

and the use of a deterministic free-space channel model with line of sight (LOS) among all

entities. Therefor, in a LOS environment, both D2D and cellular channel gains directly relate to

each other via the user location knowledge. In practice, however, the UEs’ locations may not

be known due to privacy issues or may not be simply available. More importantly, in non-line

of sight (NLOS) scenarios (such suburban or urban areas), the D2D channels and the cellular

channels may be obstructed in completely independent manners making the channel prediction

from the UEs’ locations seemingly impossible. For instance, two devices might experience a

strong LOS D2D channel while a building may block the cellular channel between one of these

devices (or more) and a given BS, thus making the D2D and cellular channel gains seemingly

quite a bit less related than in the pure LOS scenario. In this paper, we show that, in contrast

to initial belief, a powerful correlation between the cellular and the D2D channels still exists

in the NLOS case, and can be made even stronger by leveraging cellular measurements from

additional surrounding BS. In this paper, we exploit this correlation through the use of a machine

learning approach based on a deep neural network (DNN), which predicts the D2D gains from

the cellular gains. Another interesting by-product of our prediction scheme lies in seeing that

the set of cellular gains often constitute an order-of-magnitude smaller dimensional object than

the D2D channel that we are trying to predict (i.e., there are just X cellular gains for one cell

with X users in it, in contrast to X(X-1) direct and interference D2D gains). Hence, the proposed

approach not only offers to capitalize on easier-to-get information (cellular channel estimation)

rather than on the harder to get D2D channel gains for an optimization of D2D communications,

but it also promises substantial savings in signaling for the channel estimation.

In the literature, existing channel prediction works related to this paper typically focus on

predicting the channel quality between a single UE and an antenna at the BS at a specific

frequency based on either: i) knowing the channel between this UE and the BS antenna at another

frequency [22]-[31], or ii) knowing the channel between this BS antenna and another UE that is

close to the original UE [32], or iii) knowing the channel between this UE and another close-by

antenna at the same BS [33]. However, the problem presented in this paper, which is predicting

D2D channel gains based on the cellular channel gains, is of a different nature from the above-

mentioned prediction problems solved in the literature because a strong commonality of space

can’t be relied upon. Note that this paper builds on and extends our previous work presented

in [34], where we introduced the idea of the DNN-based prediction of the transmission powers
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for D2D communication. Instead, in this paper, we generalize the problem to predicting directly

the D2D channel gains. This allows for a more powerful framework, which yields applications

to various radio resource management (RRM) related optimization problems in D2D networks.

The main contributions of this paper are summarized as follows:

• We present a novel framework for the D2D channel gains prediction based on the cellular

channel gains in order to solve various problems related to radio resource management in

D2D communication without incurring the pilot overhead that is usually expected in D2D

communication.

• We design a DNN to build up a regression model connecting the cellular channel gains (as

DNN inputs) to the D2D channel gains (as DNN outputs). Our results show a high convergence

between the true and the predicted D2D channel gains, even in typical urban NLOS scenarios.

• We demonstrate the efficiency of the proposed framework by applying the predicted D2D

gains to existing channel allocation and power control algorithms presented [20] and [21],

respectively.

• We analyze the signaling overhead in terms of the number of channel gains needed to

implement the radio resource management algorithms from [20] and [21] with and without

the proposed DNN-based D2D channel gains prediction scheme to show the benefits of the

proposed concept.

The rest of the paper is organized as follows. In Section II, we present system model and

formulate the problem of D2D channel gains prediction. Then, Section III describes the pro-

posed DNN-based scheme for the prediction of D2D channel gains. Performance evaluation and

simulation results are illustrated in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present our system model, and then, we formulate the problem of the D2D

channel gains prediction.

A. System model

In our model, we consider L base stations (BSs) deployed randomly in a square area together

with U UEs as shown in Fig. 1. The UEs are divided into M CUEs and 2N D2D user equipments

(DUEs) composing N D2D pairs, hence, U = 2N + M . Each D2D pair is composed of a

transmitter, DUET, and a receiver, DUER.
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In general, the capacity of the n-th D2D pair at the k-th communication channel is defined

as:

Ck
n = Bklog2

1 +
pkn gn,n

Bkσo +
∑q=N

q=1
q 6=n

pkqgq,n +
∑m=M

m=1 pkmgm,n

 (1)

where, for the k-th channel, Bk is the channel bandwidth, pkn is the transmission power of the

DUET of the n-th D2D pair, pkm is the transmission power of the m-th CUE, and pkq is the

transmission power of the DUET of the q-th D2D pair causing interference to the n-th D2D

pair (i.e., q ∈ {1, , N}/{n}). Further, gn,n represents the channel gain between the DUET and

the DUER of the n-th D2D pair, σo is the noise density, gm,n is the interference channel gain

between the m-th CUE and the DUER of the n-th D2D pair, and gq,n is the interference channel

gain between the DUET of the q-th D2D pair and the DUER of the n-th D2D pair.

This paper assumes a complete absence of channel gains knowledge among the UEs. Thus, the

channel between DUET and DUER of the same D2D pair, interference channels among DUEs of

different D2D pairs, and interference channels among the CUEs and the DUEs (i.e., gn,n, gq,n,

and gm,n in (1)) are unknown.

It is important to remember that the DUEs, not to mention the CUEs, need to to estimate

uplink/downlink channels to manage efficiently resource allocation and for handover purposes.

Thus, although the D2D channel gains are not known by the network, still, the information on the

Fig. 1: System model: An example with four DUEs, one CUE and three BSs. Note that red and

blue colors are used for D2D and cellular channels, respectively, and only part of the signaling

(channel estimation) is shown for sake of clarity.
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channel quality between each UE (CUE or DUE) and its neighboring BSs are sent periodically

to the serving BS in order to update the network information [35]. The corresponding estimated

channel gain between any i-th (or j-th) UE and the l-th BS is denoted as Gi,l (or Gj,l). These

cellular channel gains (Gi,l and Gj,l) are assumed to be represented by uplink channel gains

estimated (measured) by the BS using the common way from the existing reference signals

[36]. Nevertheless, it is worth to mention that even downlink channel gains can also be used to

estimate quality of cellular channels as the downlink gains can be estimated (measured) by the

UEs and fed back to the BS.

B. Problem formulation

We aim to predict the real (true) channel gain gi,j between any i-th and j-th UEs, that can be,

then, exploited for any existing RRM algorithms. Our goal is to minimize the prediction error

and we formulate the problem as:

min
g∗i,j

(gi,j − g∗i,j)2 (2)

where g∗i,j is the predicted channel gain between the i-th and the j-th UEs. To predict the channel

gain between any two UEs, we exploit only the available information about each UE, i.e., cellular

channel gains. Therefore, in the next section, we propose a novel DNN-based scheme for the

prediction of gi,j relying on the knowledge of the cellular channel gains of the i-th and the j-th

UEs.

III. PREDICTION SCHEME

This section describes the proposed scheme for prediction of the D2D channel gains among the

UEs. First, the principle of the D2D channel gain prediction is illustrated. Then, the architecture

of the proposed DNN is described and the training process is clarified. Moreover, we discuss

the signaling overhead reduction reached by the proposed prediction scheme.

A. Principle of DNN-based prediction of D2D channel gains exploiting cellular channel gains

In general, it is clear that in a green-field (free space) propagation scenario, in which the

location of all UEs is made available to the network, both the cellular and the D2D channel

gains are easily predictable from the UEs’ locations. In the free space area with LOS, the cellular

channel from the UE to at least three BSs corresponds to a single specific location of the UE.
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Consequently, the D2D channel gain value between two UEs can be easily predicted in such

(unrealistic) scenario. However, in practice, the UEs’ locations may not be known due to privacy

issues or may not be simply available. Moreover, in NLOS (urban or suburban) scenarios, the

D2D channels and the cellular channels may be obstructed in completely independent manner

and the D2D channel prediction from the UEs’ locations seems to be impossible. For instance,

two devices might experience a strong LOS D2D channel while a building(s) obstructs the

cellular channel between one of these devices (or more) and the given BS (see Fig. 2). In such

a case, the D2D channel gains between the two UEs might be hard to predict based on the

cellular channel gains. However, in contrast to this initial belief, a powerful correlation between

the cellular and the D2D channels is still expected by accounting for additional surrounding BS.

The reason behind this is that increasing the number of known cellular channel gains from each

UE leads to a higher confidence related to the UE’s location and provides information about

the position (and shape) of obstructing elements of the terrain. This information can then, in

principle, be mapped into a cartography of D2D gains.

To put the above-mentioned intuition into more rigorous terms, given a specific area with

certain topology, terrain and buildings’ setup, there exists a mapping F connecting the cellular

channel gains of the existing UEs (denoted as GC) and the D2D channel gains among these

UEs (denoted as g) so that:

g = F(GC) (3)

It is obvious that solving the problem (2) can be achieved by approximating the function F

from (3). Nevertheless, this approximation is hard to be done taking into account the changeable

size of GC and g when the number of UEs changes. In other words, a different function F need

to be approximated for every possible number of UEs making the solution unrealistic. Therefore,

taking into account the problem defined in (2), we circumvent this problem by approximating

the mapping F between GC
i,j and gi,j where GC

i,j = {Gi,1, Gi,L, Gj,1, Gj,L} includes the gains

of the cellular channels from L BSs to any i-th and j-th UEs. In such a way, regardeless of

the number of the existing UEs, the D2D channel between any two UEs can be predicted by

knowing the gains of the cellular channels from these two UEs and the surrounding BSs. hence,

the problem (2) is written as:
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min
F

(gi,j − F (GC
i,j))

2 (4)

The optimization problem (4) aims, by approximating F , to minimize the difference between

the true (real) and the predicted gains of the D2D channel between any i-th UE and j-th UE;

based on the knowledge of the cellular channel gains of these two UEs.

Deep neural networks are typical up-to-date tools for functions approximation and regression

models creation. Thus, in this paper, we exploit the DNN for the prediction of gi,j based on

GC
i,j.

Note that, for any UE (DUE or CUE), the cellular channel gains between this particular UE

and the surrounding BSs are periodically reported to the BSs for purposes related to the conven-

tional communication and/or handover. In addition, in the future mobile networks, the network

computations are supposed to be offloaded to powerful computation servers reducing networks

Fig. 2: Illustration of D2D channels prediction based on cellular channels for LOS (left part of

figure) and NLOS (right part) scenarios
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energy consumption. Those computation servers are located at a relatively far centralized cloud

(cloud computing) or placed closer to the UEs, e.g., attached to the BS, in frame of mobile edge

computing [37]. Thus, the proposed DNN is assumed to take place on the computation servers at

the cloud and/or at the edge of the network. The estimated (and reported) cellular channel gains

are assumed to be transferred to the computation servers (purple dash-dotted lines in Fig.2), and

on these servers, the prediction of gi,j takes place (see Fig. 2).

B. The architecture of the proposed DNN

The problem of predicting the D2D channel gain between the i-th and the j-th UE based

on the cellular channel gains from both the i-th and j-th UEs to the L BSs is a regression

problem, which can be solved by the deep neural network designed to build the regression

model. Fig. 3 shows the proposed fully-connected DNN for regression. The proposed DNN is

composed of an input layer (X0), H hidden layers (X1, ..., XH) and an output layer (XH+1).

The input layer contains the cellular channel gains between the i-th UE and the L BSs and

between the j-th UE and the L BSs (i.e., GC
i,j) aligned as an input vector in the input layer as

illustrated in Fig. 3. Thus, the output of the input layer out0 is the cellular channel gains vector

GC
i,j = {Gi,1, Gi,L, Gj,1, Gj,L} of length 2×L. Then, the DNN contains H hidden layers whereas

every hidden layer Xh is composed of Vh neurons. Every hidden layer Xh has an input vector inh

equivalent to the output of the previous layer outh−1 (i.e., inh = outh−1,∀h ∈ {1, , H}). Each

input element z in inh is fed to every neuron v in the hidden layer Xh with a weight wh−1,h
z,v .

Consequently, every neuron v performs dot product between the input elements in inh and the

corresponding weights. The result of the dot product is added to a corresponding bias bh−1,h0,v

and processed by commonly used sigmoid function giving the output of the neuron. Hence, the

hidden layer Xh with Vh neurons and input vector inh gives an output vector outh of the length

Vh and this output vector outh is, thus, written as:

outh = Sig(Wh−1,hinh + bh−1,h) = Sig(Wh−1,houth−1 + bh−1,h) (5)

where Sig is the sigmoid function Sig(Z) = 1
1+exp(−Z)

, Wh−1,h is the matrix of weights of

the links between every input element of Xh (i.e., equivalent to the output of Xh−1) and every

neuron in Xh and bh−1,h is the vector of biases attached to every neuron.

The output of the last hidden layer outH is followed by the output layer. The output layer in

the DNN for regression of a single variable is composed of one neuron. The single neuron of
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Fig. 3: The proposed DNN to build up a regression model connecting input variables (cellular

channel gains from two UEs (i and j) to L BSs) and a single output variable (the D2D channel

gain between the i-th and the j-th UE).

the output layer performs the dot product between outH and corresponding weights WH,H+1

(i.e., the vector of weights dedicated to the links between outputs of the last hidden layer XH

and the single neuron in the output layer XH+1). Then, the output layer neuron also sums its

attached bias scalar bH,H+1 and implements a linear activation function giving an output as:

g∗i,j = Lin(WH,H+1outH + bH,H+1) (6)

where Lin is the linear activation function Lin(Z) = Z and the output g∗i,j of the proposed

DNN is the predicted D2D channel gain between the i-th and the j-th UEs.

C. Offline learning and exploitation of the proposed DNN

We propose a supervised learning-based solution to predict the D2D channel gains based on

the cellular channel gains. To this end, the D2D channel gain gi,j between the i-th UE and the

j-th UE is derived offline. Then, gi,j is fed to the proposed DNN as a target attached to the

cellular channel gains between the i-th UE and L BSs and between the j-th UE and L BSs
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(GC
i,j) presenting features. The features (i.e., cellular channel gains) and the target (i.e., D2D

channel gain gi,j) compose together a single learning sample. As a pre-training step, learning

samples are collected and, then, split into a training set and a test set. The samples from the

training set are used to train the proposed DNN while the samples in the test set are used

to test the accuracy of the trained DNN on a set of samples that is not used for training to

prevent overfitting [38]. During the training process, a loss function is defined to evaluate the

regression model prediction accuracy. The loss function in the DNN that builds the regression

model predicting a single variable is, typically, a measurement showing how far is the predicted

value of the variable from the true value of this variable (g∗i,j and gi,j in our case). Therefore,

taking the optimization problem (4) into account, we consider a mean square error loss function

that can be written as:

ι =
1

S

s=S∑
s=1

(gsi,j − gs∗i,j) (7)

where S is the number of the training samples, gsi,j is the target (true D2D channel gain) of

the s-th training sample, and gs∗i,j is the predicted D2D channel gain based on the cellular channel

gains of the s-th training sample.

To minimize the mean square error loss function, the weights and biases of the proposed DNN

are updated using Levenberg-Marquardt Backpropagation algorithm, which is an optimization

method designed to solve non-linear least squares problems [39]. Thus, Levenberg-Marquardt

algorithm can be applied with backpropagation for the neural networks training when the loss

function is a sum of squares [40].

It is worth to mention that the whole learning phase (i.e., collecting samples, training, and

testing the proposed DNN) is done offline, i.e., before it is applied to the real mobile network

(or before its testing by simulating the mobile network). Therefore, the cellular channel gains

derived from the simulations can be used for the offline training and testing and, then, the trained

DNN is applied directly in the real network.

The proposed DNN is able to predict the channel gain between any pair of UEs. Thus, for

multiple UEs, the trained (and tested) DNN is utilized to predict all needed channel gains among

every pair of UEs independently and in parallel. To be more specific, based on the cellular channel

gains of the UEs, we utilize the trained DNN to obtain all D2D channel gains, such as the channel

gains between every two DUEs of the same D2D pair, interference channel gains between every
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couple of DUEs from different D2D pairs and interference channels between the CUEs and the

DUEs. These can be, then, exploited to solve any RRM problem using the existing algorithms.

D. Analysis of reduction in signaling overhead

In this subsection, we discuss the signaling overhead in terms of the number of channel gains

that need to be estimated (measured) in the network.

In the existing network, the cellular channel gains between the UEs and the neighboring BSs

are commonly estimated (i.e., for conventional communication and handover purposes). The

number of the commonly estimated cellular gains is L(2N + M). Note that even the DUEs

might need to change from the D2D communication to the conventional communication in the

case of a sudden D2D communication quality drop and, therefore, the cellular channels of DUEs

are also periodically estimated and reported.

In the literature, for conventional RRM algorithms related to the D2D communication (e.g.,

power control algorithm from [21]), additional 2N(2N−1) direct and interference D2D channels

need to be estimated between the 2N DUEs. Moreover, for the D2D in shared mode, interference

channels between the CUEs and the DUEs have to be estimated and reported as well. The number

of those interference channels between the M CUEs and the 2N DUES that should be estimated

is 2NM . Thus, the number of estimated channel gains in the common network with the D2D

communication is:

Σ = L(2N +M) + 2N(2N − 1) + 2NM (8)

In this paper, we predict the D2D channel gains from the common estimated cellular gains. In

other words, in the network with D2D communication utilizing the proposed prediction scheme,

the number of channel gains need to be estimated (measured) is limited to the estimation of

L(2N +N) channel gains, which are used to predict the remaining needed D2D channel gains.

Thus, by subtracting L(2N + M) from (8), we can calculate the reduction in the number of

estimated channel gains. This reduction, in the shared mode, is equal to:

∆Σ = Σ− L(2N +M) = 2N(2N − 1) + 2NM (9)

In the dedicated mode, the CUEs do not affect the D2D communication as the channels allocated

to the CUEs are orthogonal to those allocated to the D2D pairs. In such case, the reduction in the

number of estimated channel gains achieved by the proposed prediction scheme is determined

by setting M to zero in (8) and (9), respectively.
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IV. PERFORMANCE EVALUATION

In this section, we describe the simulation scenarios and parameters, and then, we discuss

simulation results from two different perspectives as follows. First, we analyze the accuracy

of the prediction scheme statistically showing how close the predicted D2D channel gains are

to the true gains of the D2D channels. Second, we illustrate the performance of the proposed

prediction scheme on selected examples of existing algorithms for D2D RRM in the mobile

network, and we show how this prediction scheme affects the D2D communication quality and

networks signaling overhead. To this end, it is important to remember that the proposed prediction

scheme, in this paper, aims to reduce the signaling overhead needed for D2D communication

without significant losses in the communication quality.

A. Simulation scenarios and performance metrics

We consider up to 20 DUEs (composing up to 10 D2D pairs) and 10 CUEs deployed uniformly

within an area of 250 × 250 m2 covered by up to 5 BSs. Although the DUEs are uniformly

distributed, the maximum distance between the DUET and the DUER of the same D2D pair is

upper-bounded by a maximal distance of dmax = 50 m as in [41]-[42] to guarantee availability

of D2D communication. For any D2D transmitter, the maximal and the minimal transmission

powers are set to pmax = 24 dBm and pmin = 1 dBm, respectively, like in [34].

We consider two different scenarios according to the signal propagation between the UEs and

the BSs and among all UEs. The first scenario assumes an open rural area with full availability of

Fig. 4: Example of simulation deployment with buildings (pink rectangles) for urban area with

N = 4, M = 10 and L = 5. Note that no buildings are present in rural area.
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TABLE I: Simulation parameters.

Parameter Value

Carrier frequency fc 2 GHz

Bandwidth B 20 MHz

Number of D2D pairs N 2− 10

Number of CUEs (shared mode only) M 10

Number of channels (shared mode only) K 10

Bandwidth per any k-th channel (shared mode only) Bk 2 MHz

Maximal distance between DUET and DUER of the same pair dmax 50 m

Number of BSs L 1− 5

Maximal transmission power pmax 24 dBm [34]

Minimal transmission power pmin 1 dBm [34]

Noise power spectral density σo −174 dBm/Hz

line-of-sight (LOS) for all channels (D2D channels and cellular channels). The second scenario,

shown in Fig. 4, presents an urban area (such as scenario C2 in [43]) with building blocks

forming a Manhattan-like grid (see the pink rectangular building blocks in Fig. 4). In the second

scenario, the buildings lead to a certain probability of non-line-of-sight (NLOS) for both the

D2D and cellular channels. In both rural and urban areas, the LOS path loss is generated in line

with 3GPP recommendations [44]. In the urban scenario, we assume that the communication

channel intercepted by a single or more building walls is exposed to an additional loss of 10

dB per wall as in [34]. Note that Fig. 4 presents a 2D projection of the simulated urban area,

nevertheless, in our simulations, the building heights are distributed uniformly between 20 and

30 m to randomly affect NLOS and LOS probabilities. Simulation parameters are summarized

in Table I.

For the learning process, we generate 1 000 000 learning samples divided into 700 000 samples

used to train the DNN (i.e., the training set) and another 300 000 samples for testing (i.e., the

test set). Note that we show also an impact of the number of learning samples on the prediction

accuracy in the next subsections. The proposed DNN exploits five hidden layers composed of 20,

18, 15, 12, and 8 neurons, respectively. Note that the number of hidden layers and the number

of neurons in each layer are set by trial and error approach.

In this paper, we evaluate the proposed prediction scheme from two following perspectives:

i) Statistical evaluations related to prediction accuracy (before implementing the prediction
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scheme in the mobile network). For the statistical evaluation, we consider the well-known

Pearson correlation coefficient as a performance metric to show how close are the predicted

D2D channel gains to the true channel gains statistically. It is important to remember that

Pearson correlation coefficient values range between zero and one where the value of one

represents a complete matching between the predicted and the true values of the D2D

channel gains.

ii) Evaluations related to the D2D communication performance represented by the sum capacity

of the D2D pairs C =
∑n=N

n=1

∑k=K
k=1 C

k
n. Moreover, we analyze the signaling overhead

corresponding to the number of channel gains that need to be estimated/reported in the

network.

Both above-mentioned evaluation perspectives are presented in the next two subsections.

B. Statistical analysis of the prediction scheme

In this subsection, we analyze the results related to gi,j prediction statistically. In other words,

as the training is done offline before its usage in the mobile network, we aim to study the

Fig. 5: Pearson correlation coefficient between the true and the predicted D2D channel gains as

a function of number of BSs L
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prediction accuracy from the statistical point of view showing how close we expect the predicted

gain of a D2D channel to be compared to the true gain of this channel. We show the statistical

results of predicting a single D2D channel gain by testing the trained DNN on the test set.

Fig. 5 shows Pearson correlation coefficient between true and predicted D2D channel gains

over different number of BSs. As expected, for both rural and urban scenarios, the Pearson

correlation coefficient increases with the number of BSs. The reason of this increase is that the

more BSs in the area, the more information about each UE are known (i.e., we know cellular gains

to more BSs). When number of BSs reaches three, the Pearson correlation coefficient saturates

to its maximum values of 0.999 and 0.94 for the rural and urban scenarios, respectively. The

higher value of the Pearson correlation coefficient is reached in the rural scenario because the

cellular channel gains are less random in the rural scenario due to absence of the building, and

presence of LOS channels only.

Fig. 6 shows the regression plot for rural (Fig. 6a) and urban (Fig. 6b) scenarios with L = 3

BSs and considering 1 000 testing samples from the test set. In general, we can see that the values

of the path loss in the urban scenario are spread in a wider domain, because of a presence of the

buildings and NLOS as explained in Section IV-A. We can also see, in Fig. 6a, that the predicted

(a) (b)

Fig. 6: Regression plot for rural (a) and urban (b) scenarios for L = 3 BSs.
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Fig. 7: Pearson correlation coefficient between the true and the predicted D2D channel gains as

a function of number of learning samples for L = 3 BSs.

path loss (i.e., 10log10(1/g
∗
i,j)) matches almost perfectly the true path loss (i.e., 10log10(1/gi,))

for the rural area. In contrast, some deviation of the predicted path losses from the true values

can be seen in Fig. 6b in the urban area. This deviation is a result of the existence of the

buildings producing some randomness and uncertainty in the values of the estimated channel

gains. Nevertheless, the predicted and the true path losses are, still, highly correlated and Pearson

correlation coefficient equals 0.94 even for the urban scenario.

Note that results presented in Fig. 5 and Fig. 6 are based on learning with 1 000 000 samples.

Consequently, to illustrate the influence of the number of samples on the learning accuracy,

Fig. 7 shows Pearson correlation coefficient over number of samples for both rural and urban

scenarios. In the rural and urban areas, the correlation coefficient increases with the number

of samples rapidly at the beginning for lower numbers of the samples. Then, the correlation

coefficient increment with the number of learning samples becomes negligible. We can further

see that, in the rural scenario, 10 000 samples are sufficient to reach almost a perfect matching

between the predicted and the true D2D channel gain. However, for the urban scenario, 500 000

learning samples are needed to reach the correlation coefficient of 0.94. This can be explained
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Fig. 8: Pearson correlation coefficient between the true and the predicted D2D channel gains as

a function of the cellular channel estimation accuracy represented via estimation SNR for L = 3

BSs.

by the higher difficulty of constructing the regression model that connects cellular channel gains

to the D2D channel gains in the case where buildings (or obstacles) exist and randomize the

path loss values.

In Fig. 8, we show the effect of the possible noise and inaccuracy in the estimation (mea-

surement) of the conventional cellular channels by the BSs. To this end, we define SNRG as

zero-mean Gaussian noise (i.e., the error) added to the modeled cellular channel gain estimation.

Hence, SNRG represents the cellular channel gain estimation accuracy and it is expressed

as the ratio between the true cellular channel gain (UE to BS) and the noise representing

an error in estimation of the UE to BS channel. Thus, we add the noise of N (0, e) (where

SNRG = 10log10(
Gi,l

e
) dB) to the estimated cellular channel gain Gi,l. As we see in Fig. 8,

the correlation coefficient between the true and predicted D2D channel gains increases with the

increasing accuracy of the estimated cellular channel gains. If the cellular channels are estimated

with SNRG of 30 dB, the Pearson correlation coefficient is 0.999 and 0.94 for the rural and

urban scenarios, respectively.
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C. Performance of D2D communication aided by the prediction scheme

In this subsection, we show the impact of exploiting the proposed D2D channel prediction

scheme based on the machine learning for the D2D communication in the mobile network. For

this purpose, we adopt two up-to-date RRM algorithms, one for the channel allocation in the D2D

shared mode [20] and one greedy algorithm for a binary power control in the D2D dedicated

mode [21]. For both algorithms, we compare the performance (i.e., sum capacity of D2D pairs

and the number of channels need to be estimated) in the case when these algorithms are supported

by our proposed D2D channel prediction scheme with the case when these algorithms are

implemented without the machine learning-based prediction approach according to the respective

original papers [20] and [21]. The purpose of this comparison is to show that the performance

of the existing RRM schemes reached with the proposed prediction scheme is not impaired

while a substantial reduction in signaling overhead is achieved. Note that, in the legend of this

subsection’s figures, CA and PC are used to denote channel allocation scheme from [20] in the

shared mode and binary power control from [21] in the dedicated mode.

Fig. 9: Sum capacity of D2D pairs as a function of number of D2D pairs when channel allocation

scheme from [20] is implemented on true and predicted D2D channel gains with L = 3 BS and

M = 10 CUEs.



20

Fig. 10: Sum capacity of D2D pairs as a function of number of D2D pairs when greedy algorithm

for binary power control from [21] is utilized to allow all D2D pairs to reuse the whole bandwidth

in the D2D dedicated mode (L = 3 BS).

Fig. 9 shows the sum capacity of D2D pairs over the number of D2D pairs communicating

in the shared mode and with the channel allocation scheme from [20] implemented on true and

predicted D2D channel gains. It is clear that, in the rural area, the predicted channel gains can

lead to a sum capacity that matches the one that can be reached if the true channel gains are

known for different numbers of D2D pairs (solid lines in Fig. 9). The reason for this outstanding

performance in the rural area is the high accuracy of the D2D channel gains prediction as shown

in previous subsection. Even in the urban area, we can see only a negligible loss in terms of the

sum capacity (up to 1.9% loss for 10 pairs) comparing to the channel allocation scheme with

full knowledge of the true values of all D2D channel gains. Note that, In Fig. 9, the changes of

the sum capacity of D2D pairs over different numbers of D2D pairs, in both scenarios, follows

the behavior described in [20].

The performance of the greedy algorithm for binary power control in D2D dedicated mode

from [21] is shown in Fig. 10, where the D2D pairs are considered to reuse the whole bandwidth.

Then, the greedy algorithm is implemented to make a binary transmission power decision for
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Fig. 11: Signaling overhead in terms of number of channels need to be estimated by the network

as a function of number of D2D pairs; when channel allocation scheme from [20] or binary

power control from [21] is implemented on true and predicted D2D channel gains with L = 3

BS and M = 10 CUEs.

each D2D pair with true and predicted D2D channel gains. In the rural area, a perfect matching

between the binary power control implemented on true and on predicted gains is achieved due

to the very high accuracy in the prediction of the D2D channel gains. In the urban area, only

a small loss in the sum capacity, ranging from 1% (for two pairs) to 9% (for ten pairs), is

introduced by implementing the binary power control on the predicted channel gains comparing

to the binary power control based on true gains. However, such a loss can be expected by the

fact that making a binary decision about the transmission power of each D2D pair is critical

and highly sensitive to the accuracy of the predicted D2D channel gains. Nevertheless, ten D2D

pairs in proximity reusing a single channel is an extreme case that is not expected to occur often

in the real network. In contrast, a reasonable case is when, approximately, four or six D2D pairs

reuse a single channel. For four and six D2D pairs, the binary power control implemented on

the predicted channel gains loses only 3.4% and 5.6%, respectively, comparing to the binary

power control implemented on true D2D channel gains.
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In Fig. 11, we show the signaling overhead in terms of the number of channels estimated

by the network if the channel allocation scheme from [20] and the greedy algorithm for binary

power control from [21] are implemented on true and predicted D2D channel gains. As shown in

Fig. 11, for both the channel allocation scheme from [20] and the power control algorithm from

[21], the number of estimated channel gains with the proposed prediction scheme is significantly

lower than when all the channel gains would need to be estimated. More specifically, we need to

estimate/report up to approximately seven times less channel gains if the proposed DNN-based

prediction is used for the channel allocation scheme from [20] or the power control algorithm

from [21] comparing to the case when the knowledge of all gains would be required.

V. CONCLUSION

In this paper, we have proposed a novel D2D channel gains prediction scheme based on

the cellular channel gains between the UEs and multiple BSs. The proposed prediction scheme

takes the advantage of the network topology-related correlation between the cellular and D2D

channel gains. Supervised learning-based approach exploiting deep neural networks has been

implemented to extract the mapping between the cellular channel gains of any couple of the UEs

(i.e., gains of channels between these two UEs and multiple BSs) and the gain of the D2D channel

between these two UEs. The proposed prediction scheme achieves a high Pearson correlation

coefficient between the true and the predicted D2D channel gains. In addition, we show that the

proposed prediction scheme significantly reduces the networks signaling (represented by channel

state information) overhead if applied to realistic radio resource management algorithms. This

saving of the channel information is at the cost of only a negligible performance losses in terms

of communication capacity comparing to the conventional implementation of these algorithms

with knowledge of all channels.

The future work should focus on improving the prediction scheme performance (prediction

accuracy) for scenarios with buildings and obstacles existence. A dynamic architecture of the

Deep neural network varying with number of available base stations can be a promising solution

to be investigated. Moreover the future work should include studying the proposed prediction

scheme performance for more RRM algorithms and in different possible scenarios and cellular

cell types.
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