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Abstract—In this paper, a novel 3D cellular model consisting
of aerial base stations (aBSs) and aerial user equipments (aUEs)
is proposed, by integrating the coordinated multi-point (CoMP)
transmission technique with the theory of stochastic geometry.
For this new 3D architecture, a tractable model for aBSs’
deployment based on the binomial-Delaunay tetrahedralization is
developed, which ensures seamless coverage for a given space. In
addition, a versatile and practical frequency allocation scheme is
designed to eliminate the inter-cell interference effectively. Based
on this model, performance metrics including the achievable
data rate and coverage probability are derived for two types
of aUEs: i) the general aUE (i.e., an aUE having distinct
distances from its serving aBSs) and ii) the worst-case aUE
(i.e., an aUE having equal distances from its serving aBSs).
Simulation and numerical results demonstrate that the proposed
approach emphatically outperforms the conventional binomial-
Voronoi tessellation without CoMP. Insightfully, it provides a
similar performance to the binomial-Voronoi tessellation which
utilizes the conventional CoMP scheme; yet, introducing a consid-
erably reduced computational complexity and backhaul/signaling
overhead.

Index Terms—3D cellular model, aerial network, coordinated
multi-point (CoMP) transmission, frequency allocation, stochas-
tic geometry, unmanned aerial vehicle (UAV) communications.

I. INTRODUCTION

W ITH the ever-increasing number of unmanned aerial

vehicles (UAVs), drone-based wireless communica-

tions are expected to play a pivotal role to the establishment of
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upcoming future networking infrastructures [1]. Due to their

inherent mobility and flexibility, they can act as aerial base

stations (aBSs) and aerial user equipments (aUEs). The former

nodes can be used to support wireless connectivity for exist-

ing terrestrial base stations (BSs) by providing reliable and

cost-effective on-the-fly communication. Also, they can offer

additional throughput and coverage in some hotspots or to

assist in emergency, disaster and critical situations. The latter

nodes essentially act as mobile terminals or relays under the

Internet of Things (IoT) and the emerging Internet-of-Space

applications, by improving the connectivity and coverage of

ground devices. They can also play a key role in surveillance

and package delivery. Despite such attractive opportunities for

UAVs, wireless communications via aerial nodes still face a

number of challenges. Regarding aBSs, a key challenge is the

three-dimensional (3D) deployment as well as other problems

including the resource allocation, trajectory optimization, air-

to-air/ground channel modeling, and performance analysis of

aBS-enabled networks. Regarding aUEs, the key challenge

is how to get reliable and high-throughput communication

since the existing terrestrial BSs are mainly designed for

serving terrestrial UEs, whereas they fail in meeting the high

capacity/coverage demands of aUEs. Therefore, using aBSs

to serve aUEs is quite promising and presents a requisite for

future 5G-and-beyond networking setups [2].

A. Related Works and Motivation

There are a number of works focusing on wireless com-

munications via UAVs. The theoretical investigation consid-

ering aUEs can be traced back to [3], where the coverage

probability was analyzed. Another performance metric, the

downlink achievable data rate for aUEs served by terrestrial

BSs was considered in [4]. By assuming that the reference

aUE is located at a fixed altitude and all the terrestrial BSs

are distributed according to a homogeneous Poisson point

process (PPP), a tractable coverage probability was derived

for aUEs in [5]. Further, by assuming that each aUE is

equipped with a tilted directional antenna, an exact downlink

coverage probability was obtained in [6]. On the contrary, for

the scenario where a number of terrestrial UEs are served

by a single (common) aBS, a joint optimization algorithm

was designed to maximize the minimum average rate among

multiple UEs in [7]. Extending a single aBS to multiple

ones, two UAV-based communication scenarios with exact

hover time constraints were investigated, and the maximum

average data rate was reached for terrestrial UEs in [8]. To
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increase the number of covered terrestrial UEs with minimum

transmit power, an optimal placement algorithm regarding

aBSs was proposed in [9]. Further, an integral expression

for the downlink coverage probability of terrestrial UEs was

presented in both [10] and [11], while a tractable expression

on the achievable data rate of terrestrial UEs was given in

[12]. In [13], the coverage probability of a terrestrial UE was

analytically studied when it is served by multiple aBSs, in

the case when the latter nodes make transitions in vertical and

spatial directions by following a simple mixed mobility model

for 3D UAV movement process.

Nevertheless, all the aforementioned works were based on

the air-to-ground model; either the case when aBSs provide

wireless links for terrestrial UEs, or terrestrial BSs offer

connectivity for aUEs. The scenario in which aUEs are served

by aBSs in an entirely aerial networking platform has not

been studied in the appropriate depth so far. In fact, quite

recently, a new 3D cellular architecture for aBSs’ deployment

based on truncated octahedron shapes was proposed in [14].

However, such a cell structure was extremely complex and

no closed-form expressions were attained. Besides, concerning

UAV-to-UAV systems, the statistical features of the received

signal-to-noise ratio (SNR) were defined in [15], while an

efficient iterative algorithm to maximize the uplink sum-

rate was proposed in [16]. To date, both the deployment of

3D aBSs and performance analysis of a fully-fledged aerial

communication network, integrating both aBSs and aUEs, are

still open problems.

Further, most of the existing 3D models for aBSs’ deploy-

ments are based on Poisson-Voronoi tessellation, which is

a direct extension of the 2D plane [17]–[19]. However, the

performance of cell-edge aUEs in Voronoi models is interfer-

ence limited, as they have farther distance from the serving

aBS and experience stronger inter-cell interference (ICI), as

compared to the cell-centric aUEs. Coordinated multi-point

(CoMP) transmission is a promising method to improve the

aUEs’ performance, where a reference aUE selects aBSs on

a dynamic basis, according to the received strongest signals.

In practice, a reference aUE can choose one, two, or more

aBSs to cooperate and work with so as to enhance its total

received signal strength and overall communication quality.

Nonetheless, this approach is achieved at the cost of an

overwhelming searching complexity and feedback overhead.

On another front, most of existing works in the literature

related to UAV-based communications are based on PPP mod-

eling, which is in fact not adequate since only a small number

of aBSs are required to cover a given finite space. Moreover,

although infinite homogeneous PPP has been widely used

to model the spatial locations of terrestrial BSs or aBSs,

the analytical framework of previous works was essentially

relied on the condition that the path loss exponent, say α,

is greater than the space dimension, which is not suitable

for line-of-sight (LoS) communication in the considered 3D

(aerial) free-space platform, where α ≤ 3 usually holds.

Particularly, the characteristic functional of a given PPP, say

Φ, is not applicable if α ≤ 3 because the total interference

I ,
∑

x∈Φ ‖x‖−α is almost surely (a.s.) non-convergent,

where ‖ · ‖ reflects the Euclidean distance. More specifically,

by recalling the Campbell’s theorem [20, Theorem 4.6], the

total interference is absolutely convergent a.s. if and only if

the condition
∫

R3 min (1, ‖x‖−α) dx <∞ is satisfied [20, Eq.

(4.5)]. To investigate this, by applying Campbell’s theorem to

the mean of total interference, I , we have

E(I) = E

(
∑

x∈Φ

‖x‖−α

)

= λ

∫

R3

‖x‖−α dx

=

{
1

3−α
4πλr3−α|∞0 , α 6= 3;

4πλ ln r|∞0 , α = 3,
(1)

where E[·], r, and λ denote the expectation operator, coverage

radius, and density of Φ, respectively. Clearly, if α > 3, by

properly adapting the path loss model,1 E(I) is finite and the

condition [20, Eq. (4.5)] is satisfied. If α ≤ 3, however, the

said condition is not satisfied and the interference computed

by (1) is infinite.
Unlike PPP, the homogeneous binomial point process (BPP)

[20], [21] is more suitable for UAV-based communications.

In fact, BPP has received considerable attention in 2D cel-

lular and ad-hoc networks [22], [23]. However, the outage

probability was usually derived by assuming that a reference

UE was served by a given transmitter (not a point of BPP)

at a fixed distance. Recently, considering the scenario that

serving BSs for the reference UE will be chosen from the

BPP itself, the exact performance analysis for this network

was conducted in [24]. Using the distance distributions derived

in [21], [24], [25], the downlink coverage probability of

terrestrial UEs based on aBSs networks was firstly analyzed

in [10]. Nonetheless, BPP has not been used to model 3D

deployments integrating aBSs and aUEs, to the best of our

knowledge.
The motivation of this paper is triggered by the recent works

[26], [27], where the Poisson-Delaunay triangulation was used

to model two-dimensional (2D) cellular networks and a novel

CoMP transmission scheme was proposed. This principle is

expanded here to model the considered 3D spatial deployment,

which is expected to be an indispensable component of

future 5G-and-beyond space-air-ground integrated networking

setups [28]. The benefits behind the selection of binomial-

Delaunay tetrahedralization used for the newly proposed 3D

joint-transmission CoMP (JT-CoMP) are twofold: i) over all

possible tetrahedralizations of a 3D point set, the Delaunay

tetrahedralization minimizes the maximum enclosing radius of

any simplex, where the enclosing radius of a simplex is defined

as the minimum radius of an enclosing sphere [29]; and ii) the

cooperation set for an aUE is fixed and uniquely determined

by the geometric locations of its nearby aBSs. In this study,

BPP is used to simulate the aBSs’ locations and Delaunay

tessellation is used for 3D cellular network modeling. The

resulting network model is called binomial-Delaunay tetra-

hedralization. This is in contrast to the conventional CoMP

in binomial-Voronoi cells, where the said cooperation should

be dynamically defined; thereby, causing extensive signaling

overhead. Besides, assumingN aBSs and compared to the typ-

1The divergence of the mean is caused due to the singularity of the path
loss law, which is a modeling of artifact, since a receiver cannot get more
power than the total transmit power of interfering BSs. To address this issue,
the path loss model can be amended as ℓ(x) = min{1, ‖x‖−α} or ℓ(x) =
(

1 + ‖x‖−α
)

. Then, this convergence is guaranteed as r → 0 and E(I) is
finite, as long as α > 3 [20, p. 146].
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ical dynamic cooperation in a 3D binomial-Voronoi network,

which provides an average (normalized) volume 1/N [30,

Table 5.5.2], the proposed scheme introduces a corresponding

average volume 35/(24π2N) ≈ 1/(7N) [30, Table 5.11.2].

This implies approximately a 7-fold total improvement of the

network coverage probability and spectral efficiency.

B. Contributions

The main contributions of this paper are summarized as

follows:

1) Network model: We propose a novel 3D cellular model

based on binomial-Delaunay tetrahedralization. More

specifically, 3D CoMP transmission is applied (as an

extension of the reference 2D CoMP case in planar

terrestrials) in order to further boost the overall commu-

nication quality. Particularly, a joint-transmission CoMP

(JT-CoMP) scheme is proposed, where each aUE is

being simultaneously served by four aBSs using the same

system resources, thus forming tetrahedral cells.

2) Performance analysis: Both the average data rate and cov-

erage probability expressions are derived for the general

aUE (i.e., the reference aUE having distinct distances

from its four serving aBSs). Corresponding expressions

are also provided for the worst-case aUE (i.e., when the

reference aUE is located at an equidistant point with

regards to its four serving aBSs).

3) Frequency planning: A practical frequency allocation is

developed so as to effectively mitigate ICI. Based on

this strategy, each networking cell operates in different

frequency bands according to a fast greedy coloring

algorithm. Actually, a practical frequency allocation is

proposed, where the most efficient space filling mode,

called face-centered cubic (FCC) packing [31, Section

6.3], is adopted to fill the entire 3D space. The entire

process is indeed a graph coloring problem, where each

tetrahedral cell denotes a graph node and the goal is to

allocate different colors (i.e., spectrum resources) to each

cell appropriately.

To detail the aforementioned contributions, the rest of this

paper is organized as follows. Section II describes the system

model and the types of aUEs. Then, Section III is devoted

to the performance analysis of both the general aUE and the

worst-case aUE, where the achievable data rate and coverage

probability of the reference aUE are explicitly derived. Next,

a frequency planning scheme is developed in Section IV.

Simulation and numerical results are discussed in Section V

and, finally, Section VI concludes the paper.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a 3D wireless network

consisting of UAVs or drones. In particular, let a certain

type of drones be aBSs, which serve another type of drone

aUEs in the downlink. Further, aBSs are interconnected with

the core network via high-altitude platforms (HAPs) and/or

terrestrial BSs, while aUEs forward data to their associated

terrestrial UEs. Each aBS supports a full 3D connectivity

to its corresponding aUEs. Moreover, we consider a BPP

network Φ, with N transmitting aBSs uniformly distributed

Drone-BS

Drone-UE

HAP-based Backhaul Link

Air-to-Air Link

Air-to-Ground Link

Fig. 1. Conceptual model of 3D wireless communication systems.

in a finite ball b(0, R) centered at the origin o = (0, 0, 0)
with radius R. By using the criteria of the nearest neighbor

association, namely, each aUE is directly connected with its

nearest aBS, 3D binomial-Voronoi cells are therefore formed.

Unfortunately, the typical cell of this Voronoi tessellation is

too complex to be mathematically tractable even in 2D space

[26], [32]. It is noteworthy at this point that for an arbitrary

dimensional binomial-Voronoi tessellation, its dual graph is

the so-called binomial-Delaunay triangulation as shown in

Fig. 2. In the 3D case considered herein, it is known as

binomial-Delaunay tetrahedralization. In practice, given the

geographical locations of aerial nodes, the binomial-Delaunay

tetrahedralization can be uniquely determined by using, e.g.,

the radial sweep algorithm or divide-and-conquer algorithm

[33, ch. 4]. Subsequently, for each aUE, the CoMP cooperation

set consists of the four aBS at the vertices of its corresponding

tetrahedron.

Like [10], [21], a reference aUE is assumed to be located at

the origin (0, 0, 0) ∈ R
3, without loss of generality. By using

the propagation model with path loss exponent being α, we

can express the instantaneous received signal-to-interference-

plus-noise ratio (SINR) at the reference aUE as

Γ =

∣
∣
∣
∣
∣

∑

i∈C0

κ
1
2

i P
1
2

i d
−α

2

i

∣
∣
∣
∣
∣

2

∑

k∈Φ\C0

κkPkd
−α
k, 0 + σ2

0

, (2)

where the numerator denotes the power of desired signals

originating from the cooperating set C0 = {A0, B0, C0, D0}.

The first term in the denominator represents the power of inter-

cell interfering signals coming from the remaining aBSs in the

set difference Φ\C0. Specifically, κi stands for a fixed (known)

system parameter incorporating antenna gains and (reference)

propagation attenuation of the considered path loss model. Pi

denotes the transmit power of the ith serving aBS while Pk is

the transmit power of the kth interfering aBS; di indicates the
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Fig. 2. An illustrative cellular network modeled by the binomial-Delaunay
tetrahedralization, where the blue-circles refer to the drone aBSs and the
cross-marks denote the drone aUEs.

distance between the ith serving aBS and the reference aUE

while dk,0 stands for the distance between the kth interfering

aBS and the reference aUE; and σ2
0 refers to the noise power.

Finally, notice that the intra-cell interference is not accounted

for in (2) since it can be readily mitigated by classical time

and/or frequency division multiplexing techniques.

Since only a single-tier cellular network and the downlink

transmission without power control are considered, the trans-

mit powers of all aBSs are assumed identical and normalized

to be unity. Moreover, the fixed system parameters between

aBSs and aUEs are assumed identical, that is, κi = κk , κ,

for all i ∈ C0 and k ∈ Φ \ C0. Meanwhile, as the network

performance under study is typically interference-limited, the

noise term in (2), i.e., σ2
0 , is negligible.2 Accordingly, by

canceling out the constant term κP in (2), the signal-to-

interference ratio (SIR) stems as

Γ1 =

∣
∣
∣
∣
∣

∑

i∈C0

d
−α

2

i

∣
∣
∣
∣
∣

2

∑

k∈Φ\C0

d−α
k, 0

. (3)

As illustrated in Fig. 3, we consider two types of aUEs

based on their geographical locations relative to aBSs; namely,

i) the general aUE refering to an aUE having distinct distances

to its four serving aBSs (i.e., aUE1 in Fig. 3); and ii) the worst-

case aUE which is equidistant from its four serving aBSs (i.e.,

aUE2 in Fig. 3). The so-called ‘worst-case’ aUE is due to

its received signal power is on average smaller than that of

any general aUE, by recalling the inequality of arithmetic and

geometric means.
To measure the effectiveness of CoMP operation based on

the binomial-Delaunay tetrahedralization, we investigate two

performance metrics, namely, the achievable data rate and

2It is noteworthy that, unlike terrestrial communications, UAV commu-
nication links are vulnerable to strong electromagnetic pulse generated by
lightning or highvoltage transmission lines in the complex electromagnetic
environment, and the resulting noise must be carefully suppressed [34]. After
proper noise suppression, the network becomes interference-limited.

A

B

C

D

aUE1
aUE2

Fig. 3. Two types of aUEs: aUE1 has distinct distances to its four serving
aBSs {A,B, C,D} whereas aUE2 has identical distance to them.

coverage probability. Mathematically, the achievable data rate

of a reference aUE can be calculated by

R , E [ln(1 + Γ)] , (4)

where the expectation is taken with respect to the spatial

distribution of serving aBSs pertaining to the reference aUE,

rather than to channel fading as usual.

Furthermore, given an outage threshold on the received SIR

at a reference aUE, say γ, the coverage probability is defined

as [17]

P , 1− Pr {Γ ≤ γ} . (5)

Remark 1 (On the geometry of the aerial network). The

geometry of the aerial network under study is assumed to

be a finite sphere above the ground, for ease of mathematical

tractability. However, the BPP based network modeling is also

applicable to other possible shapes, such as hemisphere and

dome. This is because the BPP needs only the network nodes

to be randomly and independently placed in the target space,

no matter what the shape of the space is. As for the height

of the reference aUE, according to the 3GPP TR 36.777 [35,

Annex A.1], the height of UAV is set to be uniformly distributed

between 1.5 m and 300 m. In this regard, the height of the

reference aUE can be set to 150 m.

Remark 2 (On the channel model of UAV communications).

For the ideal scenario in the absence of signal obstruction or

reflection, the free-space propagation channel model depends

only on the transmitter-receiver distance whereas the effects

of shadowing and small-scale fading vanish. This model gives

a reasonable approximation when the altitude of UAV is

sufficiently high such that a clear LoS link between the UAV

and its serving node (either an aerial node or a ground node)

is almost guaranteed [36]. On the contrary, for low-altitude

UAV operating in an urban area where the building height is

comparable to UAV altitude, the LoS model is oversimplified

and more refined models are necessary. In this paper, we

focus on large-scale spatial network modeling and assume

that a LoS link exists between any two aerial nodes, thus,

we adopt the simplified free-space path loss model, like [14],

[15]. For more details on various channel models of UAV

communications, the interested reader is referred to [36].
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III. PERFORMANCE ANALYSIS

In this section, joint transmission (JT) is applied at the four

aBSs within a tetrahedral cooperation set pertaining to both the

general aUE and the worst-case aUE, whereas the achievable

data rate and coverage probability are used to evaluate their

performance.

A. The General aUE

According to (3), the SIR for the general aUE is explicitly

given by

Γ1 =

∣
∣
∣
∣

4∑

i=1

d
−α

2

i

∣
∣
∣
∣

2

N∑

k=5

d−α
k, 0

=
S1

I1
, (6)

where S1 ,

∣
∣
∣
∑4

i=1 d
−α

2

i

∣
∣
∣

2

and I1 ,
∑N

k=5 d
−α
k, 0. To calculate

(4) and (5), we next derive the distance distribution involved

in (6). Defining the distance between the ith aBS and the

reference aUE at the origin as Di, the cumulative distribution

function (CDF) of Di is given by [21]

FDi
(ri) =

(ri
R

)3

, 0 ≤ ri ≤ R, (7)

and, consequently, the probability density function (PDF) of

Di can be readily shown as

fDi
(ri) =

3r2i
R3

. (8)

Conditioned on the serving distance r, the set of distances

between the reference aUE and the interfering aBSs {Di}Ni=5,

are independent and identically distributed (i.i.d.) having the

following conditional PDF (for more details, please refer to

Appendix A):

fDi|r(ri) =
3r2i

R3 − r3
, r ≤ ri ≤ R. (9)

Recalling the theory of order statistics [37, Eq. (2.2.2)], the

joint PDF of the nearest four distances is given by

fd1,d2,d3,d4
(r1, r2, r3, r4)

=
N !

(N − 4)!
(1− FD4

(r4))
N−4

4∏

i=1

fDi
(ri). (10)

Finally, substituting (7) and (8) into (10) yields

fd1,d2,d3,d4
(r1, r2, r3, r4)

=
N !

(N − 4)!

(

1−
(r4
R

)3
)N−4 4∏

i=1

3r2i
R3

. (11)

1) Achievable Data Rate: Now, we are in a position to

formalize the achievable data rate of a reference UE in the

following theorem.

Theorem 1. The achievable data rate of the general aUE can

be calculated as

R1(α) =

∫

r>0

∫

z>0

1

z
(1−MS1

(z))MI1(z)

× fd1,d2,d3,d4
(r1, r2, r3, r4) dz dr, (12)

where r = (r1, r2, r3, r4) with r1 < r2 < r3 < r4, and the

moment generating functions of SI and I are given by

MS1
(z) = exp



−z
∣
∣
∣
∣
∣

∑

i∈C0

d
−α

2

i

∣
∣
∣
∣
∣

2


 (13)

and

MI1(z) =
( 3

α (R3 − d34)

[

R3E 3+α
α

(
zR−α

)

− d34E 3+α
α

(
zd−α

4

)])N−4

, (14)

respectively, with Ev(·) being the vth order exponential inte-

gral function [38, p. xxxiii].

Proof: Using the equality involved in the lemma of [39],

which reads

ln

(

1 +
X

Y

)

=

∫

z>0

1

z
(1− exp (−zX)) exp(−zY ) dz,

(15)

the achievable data rate can be derived as

R1(α) =

∫

r>0

E

[

ln

(

1 +
S1

I1

) ∣
∣
∣
∣
r

]

fd1,d2,d3,d4
(r1, r2, r3, r4) dr

(16)

=

∫

r>0

fd1,d2,d3,d4
(r1, r2, r3, r4)

×
∫

z>0

1

z




1− E [exp (−zS1)]

︸ ︷︷ ︸

MS1
(z)




E [exp (−zI1)]
︸ ︷︷ ︸

MI1
(z)

dzdr,

(17)

where E [ln (1 + S1/I1) |r] is the conditional data rate accord-

ing to (4), MS1
(z) is previously given by (13), and MI1(z)

is derived as follows:

MI1(z) = Edk,0

[

exp

(

−z
N∑

k=5

d−α
k, 0

)]

= Edk

[
N∏

k=5

exp
(
−zd−α

k

)

]

=
(
Edk

[
exp

(
−zd−α

k

)])N−4

=

(
∫ R

d4

fDi|d4
(x) exp

(
−zx−α

)
dx

)N−4

. (18)

Substituting (9) into (18) and using [38, Eq. (8.351.2)] as

well as performing some straightforward manipulations, we

get (14). Finally, inserting (13) and (14) into (17) gives the

desired (12).

2) Coverage Probability: In this subsection, an accurate

approximation on the coverage probability for the general

aUE is provided. By recalling the causal form of the central

limit theorem [40, p. 234], the sum of multiple positive i.i.d.

variables can be approximated by a Gamma distribution. In

particular, for the PDF of I1, we have the following lemma.

Lemma 1. The PDF of I1 ,
∑N

k=5 d
−α
k, 0 can be well
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approximated by the Gamma distribution

fI1(x) ≈
xv(d)−1

Γ[v(d)] θ(d)v(d)
exp

(

− x

θ(d)

)

, (19)

where

v(d) =







(N − 4)

[
(3−α)2(R3−d3)

3(3−2α)(R3−2α−d3−2α) − 1

]−1

, α 6= 3;

(N − 4)

[

(d−3−R−3)(R3−d3)
9(lnR−ln d) − 1

]−1

, α = 3,

(20)

θ(d) =







3−α
3−2α − 3(R3−2α−d3−2α)

(3−α)(R3−d3) , α 6= 3;
d−3−R−3

3(lnR−ln d) −
3(lnR−ln d)

R3−d3 , α = 3,
(21)

and Γ[·] denotes the Gamma function [38, Eq. (8.310.1)].

Proof: See Appendix B.

0 10 20 30 40 50 60
I
1

0

0.01

0.02

0.03
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0.07

0.08

PD
F

Eq. (19)
Sim.

Fig. 4. The PDF of the interference I1 (d = 500 m, α = 2.8 and N = 150).

To illustrate the accuracy of the approximation given by

(19), assuming d = 500 m, α = 2.8 and N = 150, the

numerical results computed as per (19) and corresponding

simulation ones are compared in Fig. 4. It is clear that they

agree well with each other.
Next, with the aid of Lemma 1, we can derive an accurate

approximation for the coverage probability, as the following

theorem suggests.

Theorem 2. Given a prescribed outage threshold γ, the

coverage probability of the general aUE can be approximated

by

P1(γ, α) ≈
1

Γ [v(d4)]

∫

r>0

γ



v(d4),
1

γ θ(d4)

∣
∣
∣
∣
∣

4∑

i=1

d
−α

2

i

∣
∣
∣
∣
∣

2




× fd1,d2,d3,d4
(r1, r2, r3, r4) dr, (22)

where γ(·, ·) is the lower incomplete Gamma function [38,

Eq. (8.350.1)], fd1,d2,d3,d4
(r1, r2, r3, r4) is given by (11), and

v(d4) and θ(d4) are shown in (20) and (21), respectively.

Proof: By definition, the coverage probability can be

computed as

P1(γ, α) =

∫

r>0

Pr (Γ1 > γ|r) fd1,d2,d3,d4
(r1, r2, r3, r4) dr,

(23)

where the conditional probability in the integrand becomes

Pr (Γ1 > γ|r) = Pr



I1 <
1

γ

∣
∣
∣
∣
∣

4∑

i=1

d
−α

2

i

∣
∣
∣
∣
∣

2


 (24)

≈ 1

Γ [v(d4)]
γ



v(d4),
1

γ θ(d4)

∣
∣
∣
∣
∣

4∑

i=1

d
−α

2

i

∣
∣
∣
∣
∣

2


 .

(25)

As earlier stated, I1 is the sum of multiple conditional i.i.d.

random variables. Therefore, by applying Lemma 1, (24) can

be explicitly computed as (25) via [38, Eq. (3.381.1)]. Finally,

substituting (25) and the joint distance distribution (11) into

(23) yields the intended (22).
Now, we establish a connection between Theorems 1 and 2.

Specifically, as per [41, Eq. (5)], given the coverage probabil-

ity P1(γ, α), the achievable data rate can be computed as

R1(α) , E[ln(1 + Γ1)] =

∫ ∞

0

ln(1 + γ)fΓ1
(γ) dγ

(a)
=

∫ ∞

0

1

1 + ω

[∫ ∞

ω

fΓ1
(γ) dγ

]

dω

=

∫ ∞

0

P1(γ, α)

1 + γ
dγ, (26)

where fΓ1
(γ) denotes the PDF of Γ1 and the integral ln(1 +

γ) =
∫ γ

0
1

1+ω
dω is exploited in the step (a). As to be shown

at the end of Section V-A1, the numerical results computed by

(26) coincide with those computed as per (12), which cross-

validates the preceding derivations.

B. The Worst-Case aUE

In this subsection, the achievable data rate and coverage

probability are analyzed for the worst-case aUE. By recalling

Fig. 3, an aUE at the vertex of a tetrahedral cell, i.e., aUE2,

is chosen as the reference point and set to be the origin in 3D

space, which implies that the Euclidean distances between the

reference aUE and its serving aBSs are identical, i.e., di = d,

for all i ∈ C0. Thereby, (3) reduces to

Γ2 =
16d−α

N∑

k=5

d−α
k, 0

. (27)

Also, the PDF of the equidistant d can be derived and given

by (for more details, please refer to Appendix C)

fd(x) =
3

R

1

β (N − 3, 3)

( x

R

)8
(

1−
( x

R

)3
)N−4

. (28)

1) Achievable Data Rate: Based on (15) and (28), the

achievable data rate of the worst-case aUE is formalized in

the following theorem.

Theorem 3. The achievable data rate of the worst-case aUE

can be computed as

R2(α) =

∫

0<x<R

∫

z>0

1

z
(1−MS2

(z))MI2(z) fd(x) dz dx,

(29)

where

MS2
(z) = exp

(
−16zd−α

)
,
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MI2(z) =
( 3

α (R3 − d3)

[

R3E 3+α
α

(
zR−α

)

− d3E 3+α
α

(
zd−α

)])N−4

. (30)

Proof: The proof is similar to that of Theorem 1 and,

thus, it is omitted for brevity.

2) Coverage Probability: Using the same method as in

Theorem 2, the coverage probability for the worst-case aUE

can be derived, as summarized in the following theorem.

Theorem 4. The coverage probability of the worst-case aUE

is approximated by

P2(γ, α) ≈
1

Γ [v(d)]

∫

d>0

γ

(

v(d),
16d−α

γ θ(d)

)

fd(x) dx, (31)

where fd(x) is given by (28), and v(d) and θ(d) are shown

in (20) and (21), respectively.

Likewise, (26) can be used to make a connection between

(29) and (31).

IV. FREQUENCY PLANNING AND INTERFERENCE

MITIGATION

This section develops a practical frequency planning strat-

egy so as to sufficiently reduce ICI. In particular, the frequency

division multiple access (FDMA) scheme is adopted herein.3

Doing so, each four-node aBS set forming a tetrahedral cell

occupies a unique frequency band for its underlying aUEs.

Nonetheless, a given aBS could be interconnected simultane-

ously to multiple tetrahedra, reflecting that each aBS should

be able to reserve a corresponding number of available (i.e.,

non-overlapping, non-occupied) frequency bands. Therefore,

the proposed drone-based wireless cellular network can be

visualized as a 3D colored graph, consisting of multiple

non-overlapping tetrahedra. Each tetrahedron has a unique

color reflecting the corresponding frequency band to serve

its associated aUEs. Also, the number of distinct frequency

bands that a given aBS must preserve is determined by its

corresponding graph degree and the number of aUEs inside

that every tetrahedron is linked with. For a sufficient spectrum

resource, whenever the number of aBSs is relatively low (e.g.,

N < 20), the said condition may be feasible. However, as

the number of aBSs increases, the corresponding spectrum

resources per each cell become quite narrow. To this end,

a frequency reuse scheme is required in accordance to the

typical 2D cellular infrastructures.

A. Face-Centered Cubic Packing

As illustrated in Fig. 5, the face-centered cubic (FCC)

packing is widely adopted to fill the entire 3D space [31,

Section 6.3]. In particular, Fig. 5a shows the close-packing

of equal spheres of radius r, which is in geometry a dense

arrangement of congruent spheres in an infinite, regular

manner (i.e., lattice). Figure 5b illustrates FCC packing in

a cubic of edge length a, where the spheres are situated

at the corners of the cubic and at the centers of all the

3Other orthogonal multiple access schemes can alternatively be used
instead, such as time division multiple access (TDMA) or orthogonal FDMA
(OFDMA), without affecting the main results presented hereinafter.

(a) Close-packing of equal spheres of radius r.

(b) FCC packing in a cubic of edge length a.

Fig. 5. The principle of face-centered cubic (FCC) packing.

cube faces. To guarantee a close-packed arrangement, namely,

there is no way to pack more spheres into the cubic, we

must have a = 2
√
2r and, hence, the packing efficiency is

δ = VSphere/VCube = (16πr3/3)/(16
√
2r3) ≃ 74%. As

proved in [42], this is the highest packing efficiency achieved

by a lattice packing.

Now, we integrate the methodology of FCC packing into our

binomial-Delaunay tetrahedralization for frequency planning.

The main idea is to use each sphere in Fig. 5a to represent

a cluster of tetrahedra. The same spectrum resource is reused

among spheres whereas in each sphere, the spectrum resource

is orthogonally allocated to different tetrahedra. As a result,

the frequency allocation strategy is a solution to the well-

known graph coloring problem, where each tetrahedron de-

notes a graph node and the goal is to allocate different colors

(i.e., frequency bands) to each tetrahedron lying within its

corresponding sphere.

Prior to further proceeding, as shown in Fig. 6, we define

three types of tetrahedral cells: i) Standard cell: It refers to

a tetrahedron whose vertices (thus, its whole volume) are

located inside a given sphere; ii) Residual cell: It stands for a

tetrahedron intersecting a sphere. In other words, the volume

of a residual cell does not entirely belong to a particular

sphere and it may be ‘spatially connected’ to more than one

sphere; and iii) Independent cell: It indicates a tetrahedron

whose volume falls entirely outside any given sphere, i.e., in

the gap between tangent spheres. For illustration purposes,

Fig. 7 depicts two filling spheres (one is blue and the other is

yellow), and the red circles refer to aBSs involved in the two

spheres whereas the blue circles refer to the remaining aBSs.

The tetrahedra with red boundaries illustrates the three types

of cells involved in the two spheres.
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Fig. 6. Three types of tetrahedral cells with respect to a reference sphere,
where ‘◦’ denotes the drone aBSs.

B. Frequency Reuse Distance

To further elaborate on the frequency reuse criterion, the

effective interference radius, ǫ, is defined such that each

interfering aBS using the same frequency band should be

outside this region. The achievable data rate is selected as

a standard performance metric. In particular, the following

condition should be satisfied:

E [ln(1 + Γ)] ≥ Rth, (32)

where Rth is a predetermined minimum data rate of every aUE

in the network under study (in nat/sec/Hz). Since we consider a

fully-fledged aerial wireless cellular system consisting entirely

of drones, the path loss exponent is set to α = 2. Also,

let b(o, ǫ) be a sphere with radius ǫ centered at the origin

o, X , |
∑

i∈C0
d−1
i |2, and Yǫ ,

∑

k∈Φ\b(o,ǫ) d
−2
k, 0. It is

straightforward that

E

[

ln

(

1 +
X

Yǫ

)]

≤ ln

(

1 + E

[
X

Yǫ

])

≈ ln

(

1 +
E [X ]

E [Yǫ]

)

,

(33)

which implies that a large ǫ is desired from the received SIR

viewpoint as E [Yǫ] decreases with ǫ. In contrast, as the said

sphere b(o, ǫ) gets larger, there are more tetrahedral cells in a

cluster and each cell gets less spectrum resources. To resolve

this dilemma, the optimal spherical radius, ǫ⋆, is determined

by allowing the maximum interference, that is, the inequality

(32) takes equality:

ln

(

1 +
E [X ]

E [Yǫ⋆ ]

)

= Rth, (34)

where E [Yǫ⋆ ] can be computed as

E [Yǫ⋆ ] = N
ǫ⋆3

R3

∫ R

ǫ⋆
x−2 3x2

R3 − ǫ⋆3
dx

=
3Nǫ⋆3

R3 (R2 +Rǫ⋆ + ǫ⋆2)
, (35)

and E[X ] in (34) is evaluated by

E[X ] =

∫

r>0

(
r−1
1 + r−1

2 + r−1
3 + r−1

4

)2

Fig. 7. An illustrative example of CoMP transmission based on binomial-
Delaunay tetrahedralization with two filling spheres, where red circles denote
the drone aBSs involved in the two observed spheres while the blue circles
refer to the remaining aBSs.

× fd1,d2,d3,d4
(r1, r2, r3, r4) dr (36)

=
65Γ(N + 1)Γ

(
10
3

)

12ǫ2Γ
(
N + 1

3

) , (37)

with {r : 0 < r1 ≤ r2 ≤ r3 ≤ r4 ≤ ǫ}. As for the worst-case

aUE, we have

E[X ] = 16

∫ ǫ

0

r−2fd(r) dr =
8Γ
(
7
3

)
Γ (N)

ǫ2Γ
(
N − 2

3

) , (38)

where fd(·) is defined earlier in (28).

Next, inserting (37) (resp., (38)) and (35) into (34) for the

general aUEs (resp., the worst-case aUEs), the numerical result

for the optimal spherical radius ǫ⋆ can be computed as per
(

eR
th − 1

)

ǫ⋆5 −∆(N)R3ǫ⋆2 −∆(N)R4ǫ⋆ −∆(N)R5 = 0,

(39)

with ∆(N) , 65Γ(N + 1)Γ (10/3)/ (36NΓ (N + 1/3)) for

the general aUE, whereas for the worst-case aUE ∆(N) ,

8Γ(N)Γ (7/3) / (3NΓ (N − 2/3)). The solution ǫ⋆ for the

worst-case aUE provides an upper bound for the general aUE.

Based on the definition of the sphere b(o, ǫ⋆), a cluster of

manifold tetrahedral cells is being formed lying within this

sphere. Each cell in a given cluster uses distinct spectrum

resources so as to eliminate intra-cluster interference. Outside

b(o, ǫ⋆), the same spectrum resources are reused by other cells

forming another cluster, and the entire process is quite similar

to the classical planar case. Therefore, frequency reuse factor

can be defined as

η ,

⌈ Vb(o,ǫ⋆)

E [Vcell]

⌉

, (40)

where the numerator and denominator represents the vol-

ume of the effective interfering sphere and the expected

volume of the reference cell, respectively, and ⌈·⌉ stands

for the ceiling operator. The volume of the sphere b(o, ǫ⋆)
is simply Vb(o,ǫ⋆) = 4π(ǫ⋆)3/3. Further, according to [30,

Table 5.11.2] and [20, Thm. 2.9 and Def. 2.12], we get

E [Vcell] = 35R3/(18πN). As a result, the integer-valued

frequency reuse factor can be explicitly computed as

η ,

⌈

24

35
Nπ2

(
ǫ⋆

R

)3
⌉

. (41)
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Algorithm 1 Greedy-Coloring based Frequency Allocation

Require: The radius R of a 3D space, the number of aBSs

N , and the threshold of data rate Rth.

1: Construct the Delaunay tetrahedralization;

2: Calculate the optimal spherical radius, ǫ⋆, as per (39);

3: Fill the space with spheres of radius ǫ⋆ by using FCC

packing;

4: For each sphere, count the number of its standard cells

and residual cells;

5: Sort the spheres in a descending order by starting with the

one having the largest number of cells (say, k1), and define

W = {k1, k2, · · · , kn}, where k1 ≥ k2 ≥ · · · ≥ kn,

where n denotes the number of spheres;

6: for i := 1 to n do

7: if Sphere-i has partially colored tetrahedral cells then

8: Assign the smallest number of possible colors to the

remaining tetrahedral cells;

9: end if

10: end for

11: Identify independent cells;

12: Randomly assign colors (chosen from Sphere-1) to inde-

pendent cells.

C. Frequency Allocation

The basic idea of the proposed frequency allocation strategy

is as follows. Given a spherical space of radius R, there are

N aBSs with each predetermined data rate threshold Rth. We

first construct the Delaunay tetrahedralization and define the

corresponding tetrahedral cells by using, e.g., the radial sweep

algorithm or divide-and-conquer algorithm [33, Ch. 4]. Then,

we compute the radius of sphere ǫ⋆ as per (39), and fill the

target space with spheres of radius ǫ⋆ by using FCC packing.

For each sphere, count its standard cells and residual cells

and, then, sort the resulting spheres in a descending order by

starting with the one with the largest number of tetrahedral

cells, which is labeled Sphere-1. Given that there are k1 cells

in Sphere-1, the bandwidth reserved for each cell is simply

B/k1, where B denotes the total bandwidth for the whole

system. Finally, apply a fast greedy coloring algorithm [43]

with repeated random sequences to assign different spectrum

resources for each cell, starting with Sphere-1. This colored

pattern is repeated in every sphere such that unique colors

are being assigned to cells of the same sphere, meanwhile,

the effective interference radius ǫ⋆ is always satisfied for each

cell. Finally, all independent cells are identified and randomly

assigned colors chosen from Sphere-1.

In summary, the proposed frequency allocation based on

greedy coloring is formalized in Algorithm 1. For illustration

purposes, Fig. 8 shows five spheres and five tetrahedral cells

of the same frequency band, filled in yellow.

Remark 3 (The maximum number of colors). In general,

the optimal approach for frequency planning is to adopt a

greedy coloring algorithm. However, greedy coloring is a

well-known NP-hard problem. For practical applications, a

heuristic solution is adopted in this paper. Obviously, Algo-

rithm 1 is suboptimal yet practical. The reason is that the color

allocation of the underlying 3D graph is unbalanced since the

Fig. 8. An illustrative example of the proposed frequency allocation, where
the five yellow tetrahedral cells pertaining to five distinct spheres are assigned
the same frequency resource.

maximum number of different colors (i.e., k1) is determined by

the most dense sphere in a single round. On the other hand, the

optimal solution would require multiple iterations of the used

coloring algorithm (e.g., balanced coloring [43]) to determine

a potentially smaller number of colors. Nevertheless, the latter

gain in terms of spectrum resources could be obtained via a

considerably higher computational complexity.

D. Interference Analysis

When frequency reuse is implemented amongst the avail-

able tetrahedral cells, the interfering aBSs, not all aBSs in

Φ, which transmit in the same frequency band, are a thinned

version of the original BPP with a total number of aBSs

N ′ , (N − 4)/η. Since a thinned version of a BPP is

again a BPP, the achievable data rate for general aUEs can

be computed as

R′
1(α, η) =

1

η

∫

r>0

∫

z>0

1

z
(1−MS1

(z))M ′
I1
(z, η)

× fd1,d2,d3,d4
(r1, r2, r3, r4) dz dr, (42)

where r = (r1, r2, r3, r4) with r1 < r2 < r3 < r4, and

MS1
(z) is given by (13), and

M ′
I1
(z, η) =

(

1

R3 − d34

∫ R

d4

3x2 exp
(
−zx−α

)
dx

)N−4

η

(43)

=

(
3

α (R3 − d34)

[

R3E 3+α
α

(
zR−α

)

− d34E 3+α
α

(
zd−α

4

)])
N−4

η

. (44)

The same analogy holds also for the worst-case scenario.
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Apart from the above thinning BPP, the arising point process

(regarding the inter-cluster interference) can be sufficiently

modeled by a Matérn hard-core point process (MHCPP) of

Type I [44]; whereby, there are no points inside b(o, ǫ⋆), while

they are uniformly placed elsewhere. Given a parent PPP with

intensity λ, Type I MHCPP has a corresponding intensity

λ′ , λ exp
(
−λ4π(ǫ⋆)3/3

)
[20, Section 3.5]. To evaluate

the interfering power at the cluster-based system model, the

approximation in [45] is adopted where the Type I MHCPP is

approximated as a PPP, which follows the conditional intensity

λ′. Doing so, referring back to our model with a given number

of aBSs N and with the help of [20, Thm. 2.9 and Def.

2.12], the inter-cluster interference is modeled by a BPP with

parameter

ψ ,

⌊

(N − 4) exp

(

−(N − 4)
ǫ⋆3

R3

)⌉

, (45)

where ⌊·⌉ is the rounding operator to the closest integer. Then,

the equivalent frequency reuse factor is

η′ =

⌊
N − 4

ψ

⌉

. (46)

Consequently, the achievable data rate of the general aUE can

be expressed as

R′
1(α, η

′) =
1

η′

∫

r>0

∫

z>0

1

z
(1−MS1

(z))M ′
I1
(z, η′)

× fd1,d2,d3,d4
(r1, r2, r3, r4) dz dr, (47)

where MS1
(z) and M ′

I1
(z, η′) are given by (13) and (44),

respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical results computed as per the

previously obtained analytical expressions are illustrated, in

comparison with extensive Monte-Carlo simulation results. In

the pertaining simulation experiments, a large 3D wireless

network with coverage radius R = 3 km is assumed. Since

we focus on LoS signal propagation conditions in free-space,

the value of path loss exponent is set to α ≤ 3.2.4

A. Achievable Data Rate and Coverage Probability

1) General aUEs: Figure 9 depicts the achievable data rate

versus the path loss exponent α for general aUEs, where

the number of aBSs is set to N = 50 or N = 150. As

observed, for a fixed N , the data rate monotonically increases

with α. It implies that the interfering power decreases more

intense compared to the signal power, as α increases; thereby,

improving the achievable data rate. On the other hand, for

a fixed α, the achievable data rate decreases for a larger

number of aBSs, as interference gets stronger with regards

to an increased number of interfering aBSs. For either case,

the numerical results computed as per Theorem 1 agree well

with the simulation ones, which corroborates the effectiveness

of our analysis.

4Although the path loss exponent α ≤ 3.2 is assumed in our simulation
experiments, it can take values α > 3.2. More specifically, the value of
α is environment-related and ranges approximately from 1.6 (e.g., hallways
inside buildings) to 8 (e.g., dense urban environments) [46, p. 41], with α = 2
corresponding to free-space propagation.
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Fig. 9. Achievable data rate of the general aUEs versus the path loss exponent
α with N = 50, 150.
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Fig. 10. Achievable data rate of the general aUEs versus the number of aBSs,
α = 2 and Rth = ln(1 + 103) ≈ 6.9 nats/sec/Hz.

Figure 10 shows the achievable data rate versus different

number of aBSs, N , for a given threshold data rate Rth =
ln
(
1 + 103

)
≈ 6.9 nats/sec/Hz. The corresponding frequency

reuse factor is calculated via (41) for the random interference

model and (46) for the Type I MHCPP interference model. In

fact, the average data rate decreases with an increased density

of aBSs, since the frequency reuse factor is increasing as the

number of aBSs also increases for a fixed data rate threshold,

while the data rate decreases with an increased reuse factor. On

the other hand, it can be seen that the numerical results of (42)

based on a thinning BPP are sharply close to the simulated

ones, compared to the ones based on (47). This is consistent

to our approach, adopting the tractable randomized frequency

assignment scheme. It is also revealed that the correlation

between points in the Type I MHCPP make the properties

of a BPP no longer valid.

Figure 11 illustrates the coverage probability versus the SIR

threshold, with different path loss exponent α. It is seen that

the coverage probability increases with α, as larger α implies

lower interference. Besides, the numerical results computed

as per Theorem 2 also match well with the corresponding

simulated ones, which further verifies the accuracy of the
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Fig. 11. Coverage probability of the general aUEs versus the SIR threshold
in the unit of dB, with N = 150.
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Fig. 12. Achievable data rate of the general aUEs.

proposed approach. Finally, Fig. 12 illustrates the achievable

data rates numerically computed by (12) and (26). Their

complete coincidence further validates Theorems 1 and 2.

2) Worst-case aUEs: Figure 13 shows the achievable data

rate versus the path loss exponent α for the worst-case aUEs. It

is noted that the analytical results lower bound the simulation

ones. In fact, this underestimation is introduced by the as-

sumption of independence between aBSs and a reference aUE.

More specifically, by recalling the Slivnyak-Mecke theorem in

stochastic geometry [47, p. 132], a reference aUE is assumed

to be located at the origin (0, 0, 0) ∈ R
3, without loss of

generality. This assumption implies that the location of a ref-

erence aUE is independent of aBSs’ location. However, as far

as the worst-case aUE is concerned, a reference aUE maintains

the same distance from its four nearest aBSs. Obviously, the

location of a reference aUE here directly depends on the

locations of its closest aBSs. Such a dependence results in an

overestimation of the total interfering power as further shown

in Fig. 14. The same observation is found in Fig. 15, where the

analytical results are a bit lower than the simulation ones. It

is noteworthy that, although the achievable data rate decreases

with more and more aBSs, the simulated achievable data rate

of the worst-case aUEs is higher than that of the general
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Fig. 13. Achievable data rate of the worst-case aUEs versus the path loss
exponent α with N = 50 and N = 150.

0 0.05 0.1 0.15 0.2 0.25 0.3
Power of interference

0

5

10

15

20

25

30

35

40

PD
F

At the vertex
At the origin

Fig. 14. PDFs of the interference at the origin and at the vertex.

aUEs as shown in Fig. 10, which serves as a performance

upper bound. The same observation is also reflected in Fig. 16,

where the analytical results slightly deviate (i.e., overestimate

the total interfering power) from the corresponding simulated

ones. It is remarkable that, although the interfering power is

approximated by the Gamma distribution, the said deviation

caused by the interference approximation given by (19) is

rather marginal (the analytical coverage probability is well

matched with the simulation results for the general aUE case

as shown in Fig. 11). The reason for such a slight deviation

is the independence assumption of the reference aUE.

B. Binomial-Delaunay Tetrahedralization vs. Binomial-

Voronoi Tessellation

1) Comparison with binomial-Voronoi tessellation without

CoMP: Figure 17 illustrates the coverage probability of the

general aUEs versus the SIR threshold, where the path loss

exponent was set to α = 2 or α = 3. It is observed that the

coverage probability in our proposed model is much higher

than that in the scheme without CoMP, even at a relatively high

value of α = 3. This emphatically manifests that cooperative

communication is quite necessary, especially in the presence

of ICI.
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Fig. 15. Achievable data rate of the worst-case aUEs versus the number of
aBSs N with α = 2 and Rth = ln(1 + 103) ≈ 6.9 nats/sec/Hz.

-6 -4 -2 0 2 4 6 8 10 12 14
SIR threshold (in dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e 
pr

ob
ab

ili
ty

Sim.
Eq. (31)

 = 2
 = 2.5

 = 3

Fig. 16. Coverage probabilities of the worst-case aUEs versus the SIR
threshold in the unit of dB with N = 150.

2) Comparison with binomial-Voronoi tessellation with dy-

namic cooperation set: For binomial-Voronoi tessellation uti-

lizing a dynamic cooperation set, the reference aUE is always

located at the center of its serving aBSs, belonging to a aUE-

centric scheme. In this scheme, the reference aUE exhaustively

searches every aBS so as to determine the appropriate aBS

set whereby it receives the strongest signals. Then, aUE can

choose one, two, or more aBSs to cooperate and enhance

its received SINR, at the cost of searching complexity and

feedback (signaling) overhead. It turns out that the resultant

aBS set does not always include the four nearest aBSs.

This scheme is fundamentally different from our proposed

approach, which is aBS-centric (i.e., all aUEs within a cell

are being served by an identical fixed and location-dependent

aBS set). For the worst-case aUE, the serving aBSs are the

four nearest aBSs with equal distance. On this condition, the

signal power in the aUE-centric case is equivalent to that of

an aBS-centric case; the same outcome also holds for the

interfering power. For the general aUE case, without loss of

generality, we choose the origin as the reference aUE. The

simulation results are presented in Fig. 18. It can be seen

that the performance under the two schemes is comparable,
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Fig. 17. Coverage probabilities of the general aUEs versus the SIR threshold
in the unit of dB under the proposed Delaunay CoMP scheme and binomial-
Voronoi tessellation scheme without CoMP and N = 150.
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Fig. 18. Coverage probabilities for a reference aUE simulated under the
proposed Delaunay CoMP scheme and binomial-Voronoi tessellation scheme
with n = {1, 2, 3, 4} dynamic cooperating BSs and N = 50.

which further implies that the serving aBSs at the vertices of

a tetrahedral cell in our approach can be well approximated as

the nearest four ones. Most importantly, it is verified that the

proposed approach presents quite a similar performance as the

conventional approach; yet, introducing considerably reduced

computational efforts and feedback overhead.

VI. CONCLUSION

In this paper, a novel 3D cellular model was proposed. In

particular, CoMP was adopted to enhance the communication

quality, based on the binomial-Delaunay tetrahedralization;

whereby, each aUE in a tetrahedral cell can be jointly served

by four aBSs, thus providing reliable and high throughput

connectivity. Analytical formulae regarding the achievable

data rate and coverage probability were offered for two user

cases, namely, the general aUE and the worst-case aUE. It

turns out that CoMP brings significant performance gain to

the considered system setup in the presence of ICI. Also, a

fair comparison with the classical binomial-Voronoi approach

with a dynamic cooperation set was conducted. Simulation
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and numerical results explicitly indicated that our proposed

approach is comparable to the dynamic scheme, yet introduc-

ing much less computational burden and signaling overhead.

Finally, a practical frequency allocation scheme based on a

fast greedy coloring algorithm was developed, which provides

a benchmark for future network planning in 3D aerial net-

working infrastructures.

APPENDIX A

DERIVATION OF EQ. (9)

Given the serving distance d4, the joint conditional PDF of

the ordered distances di, i = 5 : N , is given by

fd5,d6,··· ,dN |d4
(r5, r6, · · · , rN ) =

fd4,d5,··· ,dN
(r4, r5, · · · , rN )

fd4
(r4)

,

(A.1)

where the numerator can be explicitly computed as

fd4,d5,··· ,dN
(r4, r5, · · · , rN )

=

∫

r1>0

∫

r2>r1

∫

r3>r2

fd1,d2,··· ,dN
(r1, r2, · · · , rN ) dr3 dr2 dr1

=

∫

r1>0

∫

r2>r1

∫

r3>r2

N !

N∏

i=1

fDi
(ri) dr3 dr2 dr1 (A.2)

= N !
N∏

i=4

fDi
(ri)

∫

r1>0

∫

r2>r1

∫

r3>r2

3∏

i=1

fDi
(ri) dr3 dr2 dr1

= N !
N∏

i=4

fDi
(ri)

1

3!

3∏

i=1

∫ r3

0

fDi
(ri) dri (A.3)

=
N !

3!

N∏

i=4

fDi
(ri) [FD(r3)]

3 , (A.4)

where (A.2) follows from the definition of the joint distance

distribution based on the equality in [48, Eq. (2.10)], and (A.3)

follows from the symmetry of [48, Eq. (2.12)]. According to

[21, Eq. (4)], the PDF of the fourth nearest distance can be

shown as

fd4
(r4) =

N !

3!(N − 4)!
[FD (r4)]

3
[1− FD (r4)]

N−4
fD (r4) .

(A.5)

Inserting (A.4) and (A.5) into (A.1) yields

fd5,d6,··· ,dN |d4
(r5, r6, · · · , rN ) = (N − 4)!

N∏

i=5

fD (ri)

1− FD (r4)
.

(A.6)

Note that there are (N − 4)! possible permutations of the

ordered distances di, i = 5, 6, · · · , N . Since the interfering

aBSs are chosen uniformly at random, the permutation term

does not appear in the conditional joint PDF of the unordered

distances [24, Appendix A], that is,

fd5,d6,··· ,dN |d4
(r5, r6, · · · , rN ) =

N∏

i=5

fD (ri)

1− FD (r4)
, (A.7)

then, the sampling distribution of the N − 4 i.i.d. random

variables is given by

fDi|r(ri) =
fD (ri)

1− FD (r4)
, (A.8)

where fD (ri) is shown in (8). Finally, substituting (7) and (8)

into (A.8) yields the intended (9).

APPENDIX B

PROOF OF LEMMA 1

By recalling the causal form of the central limit theorem

[40, p. 234], it is known that the distribution of the sum I1 ,
∑N

k=5 d
−α
k, 0 can be approximated by the Gamma distribution

given by (19), with the parameters determined by

v(d) =
E
2(I1)

Var(I1)
, θ(d) =

Var(I1)

E(I1)
, (B.1)

where the operators E(I1) and Var(I1) denote the mean and

variance of I1, respectively.

By virtue of (9), the average interference power conditioned

on the serving distance d4 is computed as

E(I1) = (N − 4)

∫ R

d

x−α 3x2

R3 − d3
dx

=

{
3(N−4)

(3−α)(R3−d3)

(
R3−α − d3−α

)
, α 6= 3,

3(N−4)
R3−d3 (lnR− ln d) , α = 3.

(B.2)

Likewise, the conditional variance of interference power can

be derived as

Var(I1) = (N − 4)





R∫

d

3x2−2α

R3 − d3
dx−

(
∫ R

d

3x2−α

R3 − d3
dx

)2




=







(N − 4)

[

3(R3−2α−d3−2α)
(3−2α)(R3−d3) − 9(R3−2α−d3−2α)

2

(3−α)2(R3−d3)2

]

, α 6= 3,

(N − 4)

[

d−3−R−3

R3−d3 −
(

3
R3−d3 (lnR− ln d)

)2
]

, α = 3.

(B.3)

Finally, in light of (B.1)-(B.3) and after performing some

algebraic manipulations, we attain the desired (20) and (21).

APPENDIX C

DERIVATION OF EQ. (28)

Define a new process Φ(W ) = N , i.e., a process having

exactly N points uniformly distributed in W . The resulting

set is a binomial point process, which is in fact a conditional

PPP Φ with Φ(W ) = N [47, p. 43]. Let b(o, r) be a 3D ball

of radius r centered at o. The conditional probability that there

are k points in b(o, r) is given by [49, Eq. (13)]:

Pr [Φ[b(o, r)] = k|Φ(W ) = N ]

=

(
N

k

)

pk(1 − p)N−k, 0 ≤ r ≤ R, (C.1)

where the operator
(
·
·

)
denotes the binomial coefficient, p =

V [b(o, r) ∩W ]/V [W ] = (r/R)3 with V [b(o, r) ∩W ] and

V [W ] being the volumes of b(o, r)∩W and W , respectively.

Denoting the distance between the vertex and its nearest k
neighbors by d, in principle, its CDF Fd(δ) can be calculated

as per (C.2) shown at the top of the next page. For further
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Fd(δ) = lim
ǫ→0

∫ δ

0
Pr [Φ (b(o, x)) = 0,Φ (b(o, x+ ǫ) \ b(o, x) = k) |Φ(W ) = N ] dx

∫ R

0 Pr [Φ (b(o, x)) = 0,Φ (b(o, x+ ǫ) \ b(o, x) = k) ,Φ(W ) = N ] dx
. (C.2)

proceeding, by using a similar technique as that in [50, Sec. 6],

(C.2) can be simplified as

Fd(δ) = lim
ǫ→0

δ∫

0

(
N
k

) [
1
R3

(
(x+ ǫ)3 − x3

)]k
[

1−
(
x
R

)3
]N−k

dx

R∫

0

(
N
k

) [
1
R3 ((x+ ǫ)3 − x3)

]k
[

1−
(
x
R

)3
]N−k

dx

=

δ∫

0

x(3−1)k
[

1−
(
x
R

)3
]N−k

dx

R∫

0

x(3−1)k
[

1−
(
x
R

)3
]N−k

dx

. (C.3)

Then, taking differentiation of Fd(δ) with respect to δ and

using [38, Eq. (8.380.1)], we attain

fd(δ) =
3

Rβ
(

N − k,
(
2
3

)k
+ 1

3

)

(
δ

R

)2k
[

1−
(
δ

R

)3
]N−k

,

(C.4)

where β(x, y) ,
∫ 1

0
tx−1(1 − t)y−1dt is the Beta function.

Finally, substituting k = 4 into (C.4) yields the desired (28).
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